
Implementation of a Strongly Robust Identity-Based Encryption

Scheme over Type-3 Pairings*

Hiroshi Okano¶, Keita Emura§, Takuya Ishibashi¶, §, Toshihiro Ohigashi¶, §, and Tatsuya
Suzuki†

¶Tokai University, Japan.
§National Institute of Information and Communications Technology (NICT), Japan.

†University of Tsukuba, Japan.

April 28, 2020

Abstract

Identity-based encryption (IBE) is a powerful mechanism for maintaining security. However,
systems based on IBE are unpopular when compared with those of the public-key encryption
(PKE). In our opinion, one of the reasons is a gap between theory and practice. For example,
a generic transformation of weakly/strongly robust IBE from any IBE has been proposed by
Abdalla et al., no robust IBE scheme is explicitly given. This means that, theoretically, anyone
can construct a weakly/strongly robust IBE scheme by employing this transformation. However,
this seems not easily applicable to non-cryptographers. In this paper, we first introduce the
Gentry IBE scheme constructed over Type-3 pairings by employing the transformation proposed
by Abe et al., and second we explicitly give strongly/weakly robust Gentry IBE schemes by
employing the Abdalla et al. transformation. Finally, we show its implementation result and
show that we can add strong robustness to the Gentry IBE scheme with a very few additional
costs. We employ the mcl library to support a Barreto-Naehrig curve defined over the 462-bit
prime. The encryption requires about 5 ms, whereas the decryption requires about 9 ms.

1 Introduction

1.1 Background

Public-key encryption (PKE) is an important mechanism for maintaining security in several orga-
nizations. Identity-based encryption (IBE) [52] is an extension of PKE in which an arbitrary string,

*An extended abstract appears in the Seventh International Symposium on Computing and Networking (CANDAR
2019) [45]. After publishing the conference version, the mcl library v1.00 (released on September 30, 2019) supports
functions for computing multi-scalar multiplications (mclBnG1 mulVec, mclBnG2 mulVec, and mclBnGT powVec) that
were not employed in our implementation. In this version, we employed these functions and re-implement IBE schemes
(Section 5). In addition to this, we found that our encodings given in [45] do not work well (See Appendix), and
thus we employ the KEM/DEM framework where KEM stands for key encapsulation mechanism and DEM stands
for data encapsulation mechanism. For the DEM part, we employ AES-GCM and gave new implementation results
due to this modification. Moreover, we add an application of robust IBEs to searchable encryption (Section 6). This
work was done when the fifth author, Tatsuya Suzuki, was a master student at the Tokai University, Japan, and was
a research assistant at the National Institute of Information and Communications Technology (NICT), Japan. He is
supported by a JSPS Research Fellowship for Young Scientists.

1

such as email, location information, and biometrics information, is considered to be a public key,
and is standardized by the ISO/IEC 18033-5 and IEEE P1363.3. The conventional PKE requires
public-key infrastructure systems, whereas IBE does not require such systems. However, IBE can
offer secure systems, which are not achievable using PKE. For example, IBE can maintain IoT
security as revealed by [2,8,40,50]. Micro Focus [41] launched a secure email service based on IBE
and insisted that “IBE can be used to build security systems that are more dynamic, lightweight,
and scalable”.

Further, the security systems based on IBE are not popular when compared with PKE-based
systems. A gap between theory and practice is one of the reasons for the non-universal applicability
of IBE. Regardless, several IBE security definitions are proposed, which include indistinguisha-
bility against plaintext/ciphertext attacks (IND-CPA/CCA) [17], selective/adaptive security [15],
anonymity against chosen plaintext/ciphertext attacks (ANON-CPA/CCA) [18], and weak/strong
robustness [4,5]. However, software engineers face challenges while implementing the IBE schemes
integrated into the security systems since these security properties are not easily selected according
to the functionalities or models of the systems if engineers are not familiar with cryptography.

For example, Abdalla et al. [4,5] introduced robustness which seems attractive to be employed
in such systems. Informally, robustness guarantees that a ciphertext C of a plaintext M encrypted
by an identity ID is not decrypted by a secret key of a different identity ID′ (ID ̸= ID′). This causes
a problem when the underlying IBE scheme is anonymous. Here, anonymity indicates that the ID
information is not revealed from C. Although a receiver’s privacy is protected in an anonymous
IBE, nobody can recognize the decryption keys that are to be used, even the corresponding receiver.
We remark that, “C is not decrypted” contains the situation that the decryption algorithm outputs
a plaintext M ′ where M ̸= M ′. Thus, if a random string such as password is encrypted, then one
may receive M ′ as own password. If the underlying IBE scheme is robust, then the decryption
algorithm outputs a special rejection symbol ⊥ if an inaccurate secret key is used. Abdalla et al.
defined two notions of robustness, weak robustness and strong robustness. Refer to Section 4 for
details. Although robustness seems naturally holds in usual IBE schemes, this it not true, and
is not guaranteed in usual IBE schemes in general. Thus, Abdalla et al. proposed the generic
transformation of weakly/strongly robust IBE from any IBE. That is, anyone can theoretically
construct a weakly/strongly robust IBE scheme by employing this transformation. However, this
seems not easily applicable to non-cryptographers. In addition, no robust IBE scheme is explicitly
given in their paper.1

Moreover, it is difficult to select which parameters, e.g., elliptic curves, should be used for
implementation based on a state-of-the-art method for solving the discrete logarithm (DL) prob-
lem [12, 39] or based on the type of pairings. These situations may prevent the applicability of
IBE.2

1.2 Our Contribution

In this paper, we focus on the robustness [4, 5] because no concrete IBE scheme offers robustness.
We explicitly present strongly/weakly robust IBE schemes. Moreover, inspired by [49], we present
the implementation results.

We employ the Gentry IBE scheme [32] as the underlying IBE, which is adaptively IND/ANON-
CCA secure. Because the Abdalla et al. transformation preserves CCA security and anonymity, we
can add weak/strong robustness of the Gentry IBE scheme without detracting the CCA security

1As a remark, they explicitly gave a strongly robust CCA secure Cramer-Shoup PKE scheme in their paper.
2Aoki [9] mentioned that majority of the cryptographic algorithms that guarantee security require assumptions,

but it is sometimes not clearly written.

2

The original Gentry IBE scheme

• Type 1
• Adaptively CCA secure
• Adaptively Anonymous

The Gentry IBE scheme (Sec. 4.3)

• Strongly Robust
• Type 3
• Adaptively CCA secure
• Adaptively Anonymous

The Gentry IBE scheme (Sec. 3)

• Type 3
• Adaptively CCA secure
• Adaptively Anonymous

The Gentry IBE scheme (Sec. 4.2)

• Weakly Robust
• Type 3
• Adaptively CCA secure
• Adaptively Anonymous

Abe et al. Transformation

Abdalla et al. Transformation
(For strong robustness)

Abdalla et al. Transformation
(For weak robustness)

Figure 1: Overview of the Transformations

and anonymity. Unfortunately, the original Gentry IBE scheme is constructed over Type-1 pairings
although the construction of schemes over Type-3 pairings is the most efficient (refer to Section 2
for details). Thus, we employ the transformation proposed by Abe et al. [6,7] to the original Gentry
IBE scheme, constructed over Type-3 pairings. Then, we employ the transformation proposed by
Abdalla et al. Figure 1 reveals an overview of the transformations.

For the implementation of the strongly robust Gentry IBE scheme over Type-3 pairings, we
employ the mcl library [42] that supports Type-3 pairings with the parameters that have been
selected by considering the state-of-the-art for solving discrete logarithm problem [12, 39]. The
encryption requires about 5 ms, whereas the decryption requires about 9 ms.

2 Bilinear Groups

In this section, we define bilinear groups and types as follows:

Definition 1 (Bilinear Groups) Let p be a λ-bit prime, G1,G2 and GT be the groups of order
p; e : G1 × G2 → GT is a bilinear map, and g1 and g2 are generators of G1 and G2, respectively.
We require bilinearlity: for all h1 ∈ G1, h2 ∈ G2, and a, b ∈ Zp, e(h

a
1, h

b
2) = e(h1, h2)

ab, and
non-degeneracy: e(g1, g2) ̸= 1 hold.

If G1 = G2, the map e is called symmetric, and we call the setting Type 1. If G1 ̸= G2, the map
e is called asymmetric. If there is an efficient computable isomorphism ψ : G2 → G1, we call the
setting Type 2 (e.g., Miyaji-Nakabayashi-Takano (MNT) curves [43]). If no efficient isomorphism
is known between G1 and G2, we call the setting Type 3 (e.g., Barreto-Naehrig (BN) curves [14] or
Barreto-Lynn-Scott (BLS) curves [13]). Alternatively, we use the terms Type-i pairings/curves or
Type-i bilinear groups for i = 1, 2, 3.

Currently, constructing schemes in the Type-3 setting is the most efficient. Refer to [31] for
details. From the implementation point of view, Type-3 curves are the most reasonable choice

3

unless there is a specific reason, e.g., employing symmetric curves as Gap-DH groups [36]. The mcl
library implements a BN curve [14] defined over the 462-bit prime r(z) := 36z4+36z3+24z2+6z+1
and has the order p(z) = 36z4 + 36z3 + 18z2 + 6z + 1 where z = 2114 + 2101 − 214 − 1. Currently,
this curve is believed to provide 128-bit security, denoted as BN462 in this paper.

Remark. The symmetric pairing is known as a decisional Diffie-Hellman (DDH) solver. That
is, for a tuple (g, ga, gb, gc) ∈ G4

1, one can check whether c = ab or not by checking whether
e(ga, gb) = e(g, gc). However, in the computational Diffie-Hellman (CDH) problem, computing gab

from (g, ga, gb) ∈ G3
1 is still believed to be difficult. Further, the DDH assumption holds in case of

both G1 and G2 in Type-3 bilinear groups, which we call the symmetric external Diffie-Hellman
(SXDH) assumption. We also state that the DDH assumption holds in G1 and does not hold in G2

in the Type-2 setting, which we call the external Diffie-Hellman (XDH) assumption.

3 The Gentry IBE scheme over Type-3 Pairings

As mentioned in the previous section, Type-3 pairings are better from an efficiency point of view.
Unfortunately, the original Gentry IBE scheme is constructed in Type-1 pairings. Thus, in this
section, we introduce the Gentry IBE scheme constructed over Type-3 pairings that is obtained by
employing the Abe et al. transformation [6, 7] to the original Gentry IBE scheme. Before giving
that, we define the syntax of IBE as follows.

Definition 2 (Syntax of IBE) An IBE scheme IBE consists of the following four algorithms,
IBE.Setup, IBE.KeyGen, IBE.Enc and IBE.Dec:

� IBE.Setup(1λ): The setup algorithm takes as an input a security parameter λ ∈ N, and returns
a public parameter params and a master key msk.

� IBE.KeyGen(params,msk, ID): The key extract algorithm takes as input an identity ID and
msk, and returns a secret key skID corresponding to ID.

� IBE.Enc(params, ID,M): The encryption algorithm takes as input params, ID, a plaintext M ,
and returns a ciphertext C.

� IBE.Dec(params, skID, C): The decryption algorithm takes as input params, skID, and C, and
returns a plaintext M or a reject symbol ⊥.

Next, we introduce the Gentry IBE scheme over Type-3 pairings as follows. In the construction,
public parameters h1, h2, and h3, and secret keys (hID,1, hID,2, hID,3) are elements on G2 whereas
these are elements on G1 in the original construction.

The Gentry IBE Scheme over Type-3 Pairings:

� IBE.Setup(1λ): Choose a Type-3 bilinear group (G1,G2,GT , e, g1, g2) with λ-bit prime p where

g1 and g2 are generators of G1 and G2, respectively. Choose α
$←− Zp and h1, h2, h3

$←− G2,
compute g′1 = gα1 , and output params = (g1, g

′
1, g2, h1, h2, h3,H) where H : {0, 1}∗ → Zp is a

universal one-way hash function, and msk = α.

� IBE.KeyGen(params,msk, ID): For identity ID ∈ Zp, for i = 1, 2, 3 choose rID,i
$←− Zp, compute

hID,i = (hig
rID,i

2)1/(α−ID) ∈ G2, and output skID = (rID,i, hID,i)
3
i=1.

4

� IBE.Enc(params, ID,M): Let M ∈ GT be a plaintext to be encrypted. Choose s
$←− Zp,

compute C1 = g′1
sg−sID

1 , C2 = e(g1, g2)
s, C3 = Me(g1, h1)

−s, β = H(C1, C2, C3), and C4 =
e(g1, h2)

se(g1, h3)
sβ, and output C = (C1, C2, C3, C4).

� IBE.Dec(params, skID, C): Compute β = H(C1, C2, C3). If C4 ̸= e(C1, hID,2h
β
ID,3)C

rID,2+rID,3β
2 ,

then output ⊥. Otherwise, compute M = C3e(C1, hID,1)C
rID,1

2 and output M .

The security of original Gentry IBE scheme relies on the truncated q-ABDHE assumption where
ABDHE stands for augmented bilinear Diffie-Hellman exponent. Since the assumption is defined
over Type-1 settings, we also need to duplicate the assumption via the Abe et al. transformation
as follows. Interestingly, we do not have to duplicate not all elements. We duplicate generators
and (gα1 , g

α
2) only.

Definition 3 (The truncated q-ABDHE Assumption over Type-3 Pairings) Let (G1,G2,
GT) be a Type-3 bilinear groups with λ-bit prime order p. Let g1, g

′
1 ∈ G1 and g2, g

′
2 ∈ G2

be generators, α
$←− Zp, and Z

$←− GT . For all probabilistic polynomial-time adversaries A, we

define the advantage AdvABDHE
A (λ) := Pr[A(g1, g′1, g2, g′2, gα1 , gα2 , gα

2

2 , . . . , gα
q

2 , g′1
αq+2

, e(gα
q+1

1 , g′2))]

− Pr[A(g1, g′1, g2, g′2, gα1 , gα2 , gα
2

2 , . . . , gα
q

2 , g′1
αq+2

, Z)]. We say that the truncated q-ABDHE assump-
tion holds if AdvABDHE

A (λ) is negligible.

4 Robust Gentry IBE Schemes

In this section, we employ the Abdalla et al. transformation [4,5] to the Gentry IBE scheme given
in Section 3.

4.1 Two Robustness Notions

Abdalla et al. defined two notions of robustness, weak robustness and strong robustness. Weak
robustness ensures that M ′ ̸=⊥ holds with negligible probability where M ′ is defined as M ′ :=
IBE.Dec(params, skID′ , CID) where skID′ := IBE.KeyGen(params,msk, ID′) and CID := IBE.Enc(params,
ID,M). Here, (M, ID, ID′) is selected by an adversary with the condition M ̸=⊥ and ID ̸=
ID′. Further, we remark that the ciphertext of ID on M is honestly computed. Strong robust-
ness ensures that M ̸=⊥ and M ′ ̸=⊥ hold with negligible probability where M and M ′ are
defined as M := IBE.Dec(params, skID, C) and M ′ := IBE.Dec(params, skID′ , C) where skID :=
IBE.KeyGen(params,msk, ID) and skID′ := IBE.KeyGen(params,msk, ID′). Here, (C, ID, ID′) is se-
lected by an adversary with the condition ID ̸= ID′. We remark that the ciphertext C is adversarially
computed.

4.2 Weakly Robust Gentry IBE Scheme

First, we denote a weakly robust Gentry IBE scheme. We employ the Abdalla et al. transformation

for weak robustness. Intuitively, the auxiliary information K
$←− {0, 1}λ is chosen and is contained

in public parameters. The encryption algorithm encrypts the plaintext M ||K, and the decryption
algorithm checks whether K is appropriately recovered. We remark thatM ||K is not an element of
GT since K ∈ {0, 1}λ. Thus, we need to consider an encoding for K and how to recover M and K
from the decryption result. Thus, we employ the KEM/DEM framework and M ||K is encrypted
by AES-GCM. Let AES.Enc(·, ·) and AES.Dec(·, ·) be encryption and decryption algorithms whose
the first input is a key and the second input is either a plaintext or a ciphertext.

5

Weakly Robust Gentry IBE Scheme:

� IBE.Setup(1λ): Choose a Type-3 bilinear group (G1,G2,GT , e, g1, g2) with λ-bit prime order p

where g1 and g2 are generators of G1 and G2, respectively. Choose K
$←− {0, 1}λ, α $←− Zp, and

h1, h2, h3
$←− G2, compute g′1 = gα1 , and output params = (K, g1, g

′
1, g2, h1, h2, h3,H,HAES)

where H : {0, 1}∗ → Zp is a universal one-way hash function, HAES : GT → {0, 1}256 be a
collision resistant hash function, and msk = α.

� IBE.KeyGen(params,msk, ID): For identity ID ∈ Zp, for i = 1, 2, 3 choose rID,i
$←− Zp, compute

hID,i = (hig
rID,i

2)1/(α−ID) ∈ G2, and output skID = (rID,i, hID,i)
3
i=1.

� IBE.Enc(params, ID,M): Choose s
$←− Zp, compute C1 = g′1

sg−sID
1 , C2 = e(g1, g2)

s, KAES =
HAES(e(g1, h1)

−s), C3 = AES.Enc(KAES,M ||K), β = H(C1, C2, C3), and C4 = e(g1, h2)
se(g1, h3)

sβ,
and output C = (C1, C2, C3, C4).

� IBE.Dec(params, skID, C): Compute β = H(C1, C2, C3). If C4 ̸= e(C1, hID,2h
β
ID,3)C

rID,2+rID,3β
2 ,

then output ⊥. Otherwise, compute M ||K ′ = AES.Dec(HAES((e(C1, hID,1)C
rID,1

2)−1), C3).
Output ⊥ if K ′ ̸= K, and output M , otherwise.

4.3 Strongly Robust Gentry IBE Scheme

Next, we denote a strongly robust Gentry IBE scheme. We employ the Abdalla et al. transformation
to the weakly robust Gentry IBE scheme as the building block. The transformation additionally
introduces a commitment scheme CMT = (CPG,Com,Ver). The parameter generation algorithm
CPG takes as input a security parameter, and outputs the public parameter cpar. The committal
algorithm Com takes as input cpar and data x, and outputs a commitment com and a decommittal
key dec. The verification algorithm Ver takes as input (cpar, x, com, dec), and outputs 1 or 0. We
employ the Pedersen commitment scheme [46]. Let G1 be a group with a prime order p. The CPG

algorithm chooses g′, h′
$←− G1. The Com algorithm chooses dec

$←− Zp and computes com = g′xh′dec.

The Ver algorithm outputs 1 if com = g′xh′dec and 0 otherwise. The Pedersen commitment scheme
is perfectly hiding, and is computationally binding under the DL assumption. Since we do not have
to assume the hardness of the DDH problem, we implement the scheme on G1 regardless of types
of pairings.

In the scheme, a public key ID is committed. The encryption algorithm encrypts a plaintext
M ||dec and the commitment com is contained in the ciphertext. Because the weakly robust IBE
scheme is used as the building block, the encryption algorithm encrypts a plaintext M ||K||dec in
the actual scheme. The decryption algorithm checks whether com is a commitment of ID or not.
As in the weak one, we remark that M ||K||dec is not an element of GT and thus we employed the
KEM/DEM framework.

Strongly Robust Gentry IBE Scheme:

� IBE.Setup(1λ): Choose a Type-3 bilinear group (G1,G2,GT , e, g1, g2) with λ-bit prime or-

der p where g1 and g2 are generators of G1 and G2, respectively. Choose K
$←− {0, 1}λ,

g′, h′
$←− G1, α

$←− Zp, and h1, h2, h3
$←− G2, compute g′1 = gα1 , and output params =

(K, g′, h′, g1, g
′
1, g2, h1, h2, h3,H,HAES)) where H : {0, 1}∗ → Zp is a universal one-way hash

function, HAES : GT → {0, 1}256 be a collision resistant hash function, and msk = α.

6

Table 1: Comparison among Gentry IBE Schemes over Type-3 Pairings (millisec)
Normal (Sec. III) Weakly Robust (Sec. IV) Strongly Robust (Sec. IV)

IBE.Setup 14.66 14.63 15.39

IBE.KeyGen 4.54 4.54 4.49

IBE.Enc 4.66 4.63 5.19

IBE.Dec 8.49 8.46 9.00

� IBE.KeyGen(params,msk, ID): For identity ID ∈ Zp, for i = 1, 2, 3 choose rID,i
$←− Zp, compute

hID,i = (hig
rID,i

2)1/(α−ID) ∈ G2, and output skID = (ID, (rID,i, hID,i)
3
i=1).

� IBE.Enc(params, ID,M): Choose dec
$←− Zp and compute com = g′IDh′dec. Choose s

$←− Zp,
compute C1 = g′1

sg−sID
1 , C2 = e(g1, g2)

s, KAES = HAES(e(g1, h1)
−s), C3 = AES.Enc(KAES,

M ||K||dec), β = H(C1, C2, C3), and C4 = e(g1, h2)
se(g1, h3)

sβ, and output C = (com,C1, C2,
C3, C4).

� IBE.Dec(params, skID, C): Compute β = H(C1, C2, C3). If C4 ̸= e(C1, hID,2h
β
ID,3)C

rID,2+rID,3β
2 ,

then output ⊥. Otherwise, computeM ||K ′||dec = AES.Dec(HAES((e(C1, hID,1)C
rID,1

2)−1), C3).

Output ⊥ if K ′ ̸= K. Otherwise, output ⊥ if com ̸= g′IDh′dec, and output M , otherwise.

Remark. To the best of our knowledge, the strongest notion among several robustnesses is complete
robustness defined by Farshim et al. [29].3 They also showed that the transformation from weakly
robust IBE to strongly robust IBE, employed in this paper, is already powerful enough to construct
completely robust IBE. Thus, the strongly robust Gentry IBE scheme given in this paper provides
complete robustness in the strict sense.

5 Implementation

In this section, we give our implementation results.

5.1 Implementation Results

Our implementation environment includes CPU: Intel(R) Core(TM) i7-6950X (3.00GHz), gcc 4.9.2,
openssl 1.0.1t, and mcl v1.00. First, we denote a comparison among the Gentry IBE schemes over
Type-3 pairings in Table 1. All the schemes are implemented using the mcl library and BN462.
We add e(g1, g2), e(g1, h1), e(g1, h2), and e(g1, h3) to params in case of all the implementations.
Then, no pairing computation is required in the encryption algorithm at the expense of the pre-
computation costs on the setup algorithm. As presented in Table 1, the efficiencies of all the
schemes are almost the same, revealing a strong robustness with little additional costs.

In Table 2, we compare the running times of the strongly robust Gentry IBE schemes to denote
the effectiveness of the Type-3 curves. Here, PBC stands for the PBC library [1] (we employ
pbc-0.5.14). We use the effective security system because the PBC library offers no support to
elliptic curves that provide 128-bit security by default. For PBC (Type-1), we generate parameters
for a symmetric bilinear group (Type A curve in PBC), defined over 1536-bit prime r using the

3As another robustnesses notions, Mohassel [44] defined robustness for key-encapsulation mechanisms, Farshim
et al. [30] defined robustness for symmetric primitives (authenticated-encryption, message-authentication codes and
pseudo-random functions), and Géraud et al. [33] defined robustness for functional encryption and digital signatures.

7

Table 2: Comparison of Strongly Robust Gentry IBE Schemes among Pairing Libraries (millisec)
PBC (Type-1) PBC (Type-3) mcl (Type-3)

IBE.Setup 83.85 317.69 15.39

IBE.KeyGen 42.08 33.32 4.49

IBE.Enc 21.99 62.13 5.19

IBE.Dec 34.83 181.69 9.00

Table 3: Benchmarks (millisec)
PBC (Type-1) PBC (Type-3) mcl (Type-3)

Exp. on G1 6.84 3.22 0.35

MulExp. on G1 9.38 4.50 0.50

Exp. on G2 – 5.37 0.75

MulExp. on G2 – 7.40 1.19

Exp. on GT 0.77 15.65 1.14

MulExp. on GT 1.43 21.71 1.75

Pairing 8.50 70.70 2.70

PairingParametersGenerator API supported by jPBC [22]. Here, GT is a subgroup of F∗
r2 . For

additional information, we generate parameters for a BN curve (Type F curve in PBC) defined
over 462-bit prime using the same API. The implementation results are presented in the PBC
(Type-3) column. Moreover, we employ the element pow2 mpz function supported by PBC and
the mclBnG1 mulVec, the mclBnG2 mulVec, and the mclBnGT powVec functions supported by the mcl
library that compute gxhy directly from g, h, x, and y, which is generally faster than performing
two separate exponentiations (i.e., compute gx and hy separately, and compute gxhy). We employ
them to compute C1 = g′1

sg−sID
1 , com = g′xh′dec, and C4 = e(g1, h2)

se(g1, h3)
sβ in the encryption

algorithm.
In Table 3, we show the benchmarks. Here, MulExp is the running time of multi-scalar mul-

tiplications with the length 2, i.e, compute gxhy directly as mentioned above. For the mcl li-
brary, MulExp. on G1 (resp. G2) is the running time of the mclBnG1 mulVec function (resp. the
mclBnG2 mulVec function), and Exp. on GT is the running time of the mclBnGT powVec function.
With respect to the exponentiations of G1, Type-3 curves is faster than that of Type-1 curves re-
gardless of the library. This is a reasonable result because we set the order of G1 is 462-bit prime in
Type-3 settings and that is 1536-bit prime in Type-1 settings. More precisely, that of mcl (Type-3)
is almost 20 times faster than that of PBC (Type-1). However, that of PBC (Type-3) is just two
times faster than that of PBC (Type-1). PBC (Type-1) is more efficient than mcl (Type-3) with
respect to the exponentiations of GT . This is also a reasonable result. In PBC (Type-1), GT is a
subgroup of F∗

r2 where r is a 1536-bit prime. In mcl (Type-3), GT is a subgroup of F∗
r12 where r

is a 462-bit prime. In terms of the element size of GT , PBC (Type-1) is more efficient than mcl
(Type-3) with respect to the exponentiations of GT . More precisely, that of PBC (Type-1) is almost
1.5 times faster than that of mcl (Type-3), and that of PBC (Type-3) is much slower among them.
Although the same type is used in mcl (Type-3) and PBC (Type-3), there is a significant difference
from the running time point of view. It seems the reason behind is that the parameter employed
in mcl (Type-3) is optimized but that of PBC (Type-3) is randomly generated by the API. The
dominant computations in IBE schemes are (Mul)Exp. on G1 and GT since almost pairings are
pre-computed in our implementations. As a reslut, PBC (Type-1) provides a more efficient imple-

8

mentation than that provided by PBC (Type-3). In total, mcl (Type-3) yields the most efficient
implementation result due to the efficency of (Mul)Exp. on G1 and pairing computations, and Exp.
on GT is comparable to that of PBC (Type-1).

6 Application to Searchable Encryption

Although robustness itself is already an attractive property, in this section we introduce an ap-
plication of robust IBE to searchable encryption. Before giving the application, we introduce the
relation between consistency of searchable encryption and robustness as follows. As a well known
result, public key encryption with keyword search (PEKS) [16] can be constructed from anonymous
IBE [3]. Intuitively, a keyword ω to be searched is regarded as an identity of an IBE scheme, and
a random plaintext R is encrypted by using ω. A secret key skω is regarded as a trapdoor, and
one (typically a server that has a role of searching) can check whether a ciphertext is associated to
ω or not by checking the decryption result of the ciphertext using the trapdoor is R. Due to the
anonymity, no information of keyword is revealed from the ciphertext.4 Remark that the original
paper [16] indicated the fixed R = 0|λ| (for a security parameter λ ∈ N), but as mentioned in [3]
the construction does not guarantee (wrong keyword) consistency where a ciphertext of ω may be
searched by a trapdoor skω′ with ω ̸= ω′. As an application of robustness, Abdalla et al. [4, 5]
showed that if the underlying IBE is robust, then this original construction above provides con-
sistency. This result fits the following intuition where robustness guarantees that the decryption
result of a ciphertext encrypted by ω is ⊥ when skω′ with ω ̸= ω′ is used.

Suzuki et al. [53, 54] showed that secure-channel free PEKS with public key encryption (SCF-
PEKS/PKE), which is explained later more clearly, can be constructed from anonymous IBE with a
certain robustness, which they call unrestricted strong collision-freeness. Since unrestricted strong
collision-freeness is weaker than complete robustness [29], and the transformation from weakly
robust IBE to strongly robust IBE, employed in this paper, is already powerful enough to construct
completely robust IBE. Thus, the strongly robust Gentry IBE scheme given in this paper provides
unrestricted strong collision-freeness in the strict sense, and it can be employed as an underlying
IBE scheme. So, in this section we explicitly present a SCF-PEKS/PKE scheme based on the
strongly robust Gentry IBE scheme. Before giving the construction, we explain SCF-PEKS/PKE
as follows. In PEKS, a trapdoor needs to be sent to the server via a secure channel since anyone can
run the test algorithm if they obtain the trapdoor. We call secure-channel free if no secure channel
is required for sending trapdoors to the server. To add the functionality, the server also has a public
key and a secret key, and a ciphertext is generated both a keyword and the server public key. The
test algorithm requires both a trapdoor and the server secret key. Such schemes, SCF-PEKS (which
is also called designated tester PEKS), have been proposed in [11, 23, 24, 26, 27, 35, 37, 47, 48, 55].
In addition, PEKS does not provide a decryption functionality as PKE. Thus, schemes with both
PEKS and PKE functionalities, which we call PEKS/PKE, have been proposed in [10,19,20,51,56].
SCF-PKES/PKE provides both these functionalities. Here there are three entities, a receiver, an
encryptor, and the server. The receiver has a public key and a master secret key, generates a
trapdoor for searching using the masker secret key, and sends the trapdoor to the server via a

4We remark that we just consider whether information of keyword is revealed from the “ciphertext” or not as a
standard security requirement of PEKS. Thus, the server may obtain information of keyword when it runs the test
algorithm. Especially, in some schemes (e.g., PEKS-STAT [3]) a keyword to be searched is directly contained in a
trapdoor. Then, obviously the server can know what keyword is searched. Our SCF-PEKS/PKE instantiation also
follows this structure due to strong robustness. More concretely, the IBE decryption algorithm needs to know the
identity for checking the validity of the commitment contained in the ciphertext. How to prevent the information
leakage, i.e., preventing keyword guessing attacks [28], is left as a future work.

9

public channel. An encryptor generates a ciphertext of both a keyword and a plaintext, and sends
the ciphertext to the server. The server that has a trapdoor searches a ciphertext by using the
trapdoor, and sends the ciphertext to the receiver. Finally, the decrptor decrypts the ciphertext,
and obtain the plaintext. We introduce the syntax of SCF-PEKS/PKE as follows. Let K be the
keyword space andM be the message space.

Definition 4 (Syntax of SCF-PEKS/PKE [53,54]) A SCF-PEKS/PKE scheme SCF-PEKS/PKE
consists of the following six algorithms, KeyGenS, KeyGenR, Trapdoor, Enc, Dec and Test:

� KeyGenS(1
λ): The server key generation algorithm takes as input the security parameter

λ ∈ N, and returns a server public key pkS and a server secret key skS.

� KeyGenR(1
λ): The receiver key generation algorithm takes as input the security parameter

λ ∈ N, and returns a receiver public key pkR and a receiver secret key skR.

� Trapdoor(pkR, skR, ω): The trapdoor generation algorithm takes as input pkR, skR, and a
keyword ω ∈ K, and returns a trapdoor tω corresponding to keyword ω.

� Enc(pkS, pkR, ω,M): The encryption algorithm takes as input pkR, pkS, ω, and a message M
∈M, and returns a ciphertext CT.

� Dec(pkR, skR,CT): The decryption algorithm takes as input pkR, skR, and CT, and returns
a message M or a reject symbol ⊥.

� Test(pkS, skS, pkR, tω,CT): The test algorithm takes as input pkS, skS, pkR, tω, and CT,
and returns 1 if ω = ω′, where ω′ is the keyword which was used for computing CT, and 0
otherwise.

Suzuki et al. gave a generic construction of SCF-PEKS/PKE by extending the generic construction
of SCF-PEKS [25] from anonymous IBE, tag-based encryption (TBE) [38], and one-time signature
(OTS). The Suzuki et al. construction is briefly described as follows. The server has a public
key and a decryption key of a TBE scheme, and the receiver has a public key and a decryption
key of a TBE scheme and a master public key and a master secret key of an IBE scheme. The
Enc algorithm generates a ciphertext as follows. Let (vk, sigk) be a verification key and a signing
key of the underlying OTS scheme. vk is regarded as a tag of the underlying TBE scheme, and
a plaintext M is encrypted by using the TBE scheme using the receiver public key (let CTBE,R

be the ciphertext). A keyword ω is regarded as an identity of the underlying IBE scheme, and
a plaintext R is encrypted. Here, R is computed by R = HR(vk) where HR is a target-collision
resistant hash function. The relation betweenR and vk is important for preventing the re-encryption
attack. See [53, 54] for details. The IBE ciphertext is also encrypted by using the TBE scheme
with the same tag vk using the server public key (let CTBE,S be the ciphertext). Remark that to
encode vk to the tag space of the TBE scheme, we employ a target-collision resistant hash function
HTBE : {0, 1}∗ → Zp. Finally, a signature σ is computed on two TBE ciphertexts and R by
using sigk. A SCF-PEKS/PKE ciphertext is (CTBE,S, CTBE,R, vk, σ). The Dec algorithm computes
R = HR(vk) and decrypts CTBE,R by using the receiver secret key if σ is a valid signature on
(CTBE,S, CTBE,R, R). The Test algorithm decrypts CTBE,S using the server secret key, and decrypts
the result by using the trapdoor. Let R′ be the decryption result. The algorithm outputs 1 if
R′ = H(vk) and σ is a valid signature on (CTBE,S, CTBE,R, R

′), and 0 otherwise.
Next, we describe a SCF-PEKS/PKE scheme. In addition to employ the strongly robust Gentry

IBE scheme, we employ the Ghadafi TBE scheme [34] which is a Type-3 pairings variant of the

10

Kiltz TBE scheme [38]. We also employ the discrete-log-based Wee OTS scheme. We call the
instantiation Gentry-Ghadafi-Wee (GGW). For encrypting an IBE ciphertext by using a TBE
scheme, usually KEM/DEM framework (KEM stands for key encapsulation mechanism and DEM
stands for data encapsulation mechanism) is required since the plaintext space of the TBE scheme is
different from the ciphertext space of the IBE scheme. In order to avoid employing the KEM/DEM
framework, Emura and Rahman [26] introduced partitioned ciphertext structures where an IBE
ciphertext can be split into two parts, CIBE,1 and CIBE,2 such that CIBE,1 only includes an identity
(i.e., CIBE,2 is independent of the identity) and for any common plaintext M and distinct identities
ID0 and ID1, CIBE,2 can be commonly used for (CIBE,1, CIBE,2) ← IBE.Enc(params, ID0,M ; s) and
(C ′

IBE,1, CIBE,2) ← IBE.Enc(params, ID1,M ; s) if the same randomness s is used. This structure
is employed for computing the challenge ciphertext regardless of whether ID0 or ID1 is encrypted.
See [26] for details. If CIBE,1 belongs to the plaintext space of the TBE scheme (e.g., CIBE,1 ∈ G1), it
is enough to encrypt CIBE,1, and CIBE,2 can be directly included to the SCF-PEKS/PKE ciphertext.
Remark that CIBE,2 needs to be a part of signed message. Unfortunately, now CIBE,1 = (C1, C4) due
to the CCA security, i.e., C1 = g′1

sg−sID
1 is generated by ID and C4 depends on C1 via the hashed

value β.5 Thus, still we need to employ the KEM/DEM framework for encrypting (C1, C4). In the
following construction, we denote M ⊙ K meaning that the underlying DEM scheme encrypts a
plaintext M using K.

Without loss of generality, all algorithms use the same Type-3 bilinear groups (G1,G2,GT , e, p).
Moreover, two TBE schemes also use the same target-collision resistant hash function HTBE :
{0, 1}∗ → Zp. For the Wee OTS scheme, let G be a group with prime order q and g ∈ G be a
generator, and Hsig : {0, 1}∗ → Zq be a collision resistant hash function.

GGW SCF-PEKS/PKE Scheme:

� KeyGenS(1
λ): Let ḡ1 ∈ G1 and ḡ2 ∈ G2 be generators. Choose h̄, w̄, z̄, ū, v̄

$←− Zp, compute

H̄1 = ḡh̄1 , H̄2 = ḡh̄2 , Ū1 = H̄ ū
1 , Ū2 = H̄ ū

2 , V̄1 = Ū
1/v̄
1 , V̄2 = Ū

1/v̄
2 , W̄1 = H̄w̄

1 , W̄2 = H̄w̄
2 , Z̄1 = V̄ z̄

1 ,
and Z̄2 = V̄ z̄

2 . Return a server public key pkS = (ḡ1, ḡ2, H̄1, H̄2, Ū1, Ū2, V̄1, V̄2, W̄1, W̄2, Z̄1,
Z̄2,HTBE) and a server secret key skS = (ū, v̄).

� KeyGenR(1
λ): Let g1, ĝ1 ∈ G1, g2, ĝ2 ∈ G2, and g ∈ G be generators. Choose K

$←−
{0, 1}λ, g′, h′ $←− G1, α

$←− Zp, and h1, h2, h3
$←− G2, and compute g′1 = gα1 . Let H :

{0, 1}∗ → Zp be a universal one-way hash function and HAES : GT → {0, 1}256 be a col-

lision resistant hash function. Choose ĥ, ŵ, ẑ, û, v̂
$←− Zp, compute Ĥ1 = ĝĥ1 , Ĥ2 = ĝĥ2 ,

Û1 = Ĥ û
1 , Û2 = Ĥ û

2 , V̂1 = Û
1/v̂
1 , V̂2 = Û

1/v̂
2 , Ŵ1 = Ĥŵ

1 , Ŵ2 = Ĥŵ
2 , Ẑ1 = V̂ ẑ

1 , and
Ẑ2 = V̂ ẑ

2 . Let Hsig : {0, 1}∗ → Zq be a collision resistant hash function. Return a receiver

public key pkR = (K, g′, h′, g1, g
′
1, g2, h1, h2, h3,H,HAES, ĝ1, ĝ2, Ĥ1, Ĥ2, Û1, Û2, V̂1, V̂2, Ŵ1, Ŵ2,

Ẑ1, Ẑ2,HTBE, g,Hsig) and a receiver secret key skR = (α, û, v̂).

� Trapdoor(pkR, skR, ω): Parse pkR = (K, g′, h′, g1, g
′
1, g2, h1, h2, h3,H, ĝ1, ĝ2, Ĥ1, Ĥ2, Û1, Û2, V̂1,

V̂2, Ŵ1, Ŵ2, Ẑ1, Ẑ2,HTBE, g,Hsig) and skR = (α, û, v̂). For a keyword ω ∈ Zp, for i = 1, 2, 3

choose rω,i
$←− Zp, compute hω,i = (hig

rω,i

2)1/(α−ω), set tω := (ω, (rω,i, hω,i)
3
i=1), and return tω.

� Enc(pkS, pkR, ω,M): Parse pkS = (ḡ1, ḡ2, H̄1, H̄2, Ū1, Ū2, V̄1, V̄2, W̄1, W̄2, Z̄1, Z̄2,HTBE) and
pkR = (K, g′, h′, g1, g

′
1, g2, h1, h2, h3,H, ĝ1, ĝ2, Ĥ1, Ĥ2, Û1, Û2, V̂1, V̂2, Ŵ1, Ŵ2, Ẑ1, Ẑ2,HTBE, g,Hsig).

5We remark that a commitment com is also generated by ID. However, thanks to the perfect hiding property of
the Pedersen commitment scheme, for any value com ∈ G1 and distinct ID0, ID1 ∈ Zp there exists dec0, dec1 ∈ Zp

such that com = g′
ID0h′dec0 = g′

ID1h′dec1 . Thus, com is not required to be a part of CIBE,1.

11

– Generate OTS keys: Choose s0, s1, x
$←− Zq and compute u0 = gs0 , u1 = gs1 , and c = gx.

Set vk := (u0, u1, c).

– Compute IBE ciphertext for R: Choose dec
$←− Zp and compute com = g′ωh′dec.

Choose s
$←− Zp. Compute R = HR(vk), C1 = g′1

sg−sω
1 , C2 = e(g1, g2)

s, KAES =
HAES(e(g1, h1)

−s), C3 = AES.Enc(KAES, R||K||dec), β = H(C1, C2, C3), and C4 =
e(g1, h2)

se(g1, h3)
sβ. Set CIBE,1 := (C1, C4) and CIBE,2 := (com,C2, C3).

– Compute TBE ciphertext for CIBE,1: Compute t = HTBE(vk). Choose r̄1, r̄2
$←− Zp.

Compute C̄1 = H̄ r̄1
1 , C̄2 = V̄ r̄2

1 , C̄3 = CIBE,1⊙Ū r̄1+r̄2
1 , C̄4 = (Ū t

1W̄1)
r̄1 , and C̄5 = (Ū t

1Z̄1)
r̄2 .

Set CTBE,S := (C̄1, C̄2, C̄3, C̄4, C̄5).

– Compute TBE ciphertext for M : Compute t = HTBE(vk). Choose r̂1, r̂2
$←− Zp. Ĉ1 =

Ĥ r̂1
1 , Ĉ2 = V̂ r̂2

1 , Ĉ3 = MÛ r̂1+r̂2
1 , Ĉ4 = (Û t

1Ŵ1)
r̂1 , and Ĉ5 = (Û t

1Ẑ1)
r̂2 . Set CTBE,R :=

(Ĉ1, Ĉ2, Ĉ3, Ĉ4, Ĉ5).

– Compute OTS for (CIBE,2, CTBE,S, CTBE,R, R): Choose e
′ $←− Zq, compute w′ = x+ e′s0+

(Hsig(CIBE,2, CTBE,S, CTBE,R, R) + e′)s1, and set σ := (e′, ω′).

Return CT = (CIBE,2, CTBE,S, CTBE,R, vk, σ).

� Dec(pkR, skR,CT): Parse pkR = (K, g′, h′, g1, g
′
1, g2, h1, h2, h3,H, ĝ1, ĝ2, Ĥ1, Ĥ2, Û1, Û2, V̂1, V̂2,

Ŵ1, Ŵ2, Ẑ1, Ẑ2,HTBE, g,Hsig), skR = (α, û, v̂), and CT = (CIBE,2, CTBE,S, CTBE,R, vk, σ).

– Verify OTS σ: Parse vk = (u0, u1, c) and σ = (e′, ω′). Compute R = HR(vk). If

gω
′ ̸= c · ue′0 · u

Hsig(CIBE,2,CTBE,S,CTBE,R,R)+e′

1 then output ⊥.
– Decrypt TBE ciphertext CTBE,R: Parse CTBE,R = (Ĉ1, Ĉ2, Ĉ3, Ĉ4, Ĉ5). If e(Ĉ1, Û

t
2Ŵ2) ̸=

e(Ĉ4, Ĥ2) or e(Ĉ2, Û
t
2Ẑ2) ̸= e(Ĉ5, V̂2), then output ⊥. Otherwise, return M = Ĉ3/Ĉ

û
1 Ĉ

v̂
2 .

� Test(pkS, skS, pkR, tω,CT): Parse pkS = (ḡ1, ḡ2, H̄1, H̄2, Ū1, Ū2, V̄1, V̄2, W̄1, W̄2, Z̄1, Z̄2,HTBE),
skS = (ū, v̄), pkR = (K, g′, h′, g1, g

′
1, g2, h1, h2, h3,H, ĝ1, ĝ2, Ĥ1, Ĥ2, Û1, Û2, V̂1, V̂2, Ŵ1, Ŵ2, Ẑ1, Ẑ2,

HTBE, g,Hsig), tω = (ω, (rω,i, hω,i)
3
i=1), and CT = (CIBE,2, CTBE,S, CTBE,R, vk, σ).

– Decrypt TBE ciphertext CTBE,S: Parse CTBE,S = (C̄1, C̄2, C̄3, C̄4, C̄5). If e(C̄1, Ū
t
2W̄2) ̸=

e(C̄4, H̄2) or e(C̄2, Ū
t
2Z̄2) ̸= e(C̄5, V̄2), then output 0. Otherwise, set CIBE,1 = C̄3⊙C̄ ū

1 C̄
v̄
2 .

– Decrypt IBE ciphertext (CIBE,1, CIBE,2): Parse CIBE,1 = (C1, C4), CIBE,2 = (com,C2, C3),

and tω = (ω, (rω,i, hω,i)
3
i=1). Compute β = H(C1, C2, C3). If C4 ̸= e(C1, hω,2h

β
ω,3)C

rω,2+rω,3β
2 ,

then output 0. Otherwise, computeR′||K ′||dec = AES.Dec(HAES((e(C1, hω,1)C
rω,1

2)−1), C3).

Output 0 if K ′ ̸= K. Otherwise, output ⊥ if com ̸= g′ωh′dec. Otherwise, output 0 if
R′ ̸= HR(vk).

– Verify OTS σ: Parse vk = (u0, u1, c) and σ = (e′, ω′). If gω
′ ̸= c·ue′0 ·u

Hsig(CIBE,2,CTBE,S,CTBE,R,R
′)+e′

1

then output 0. Otherwise, output 1.

Acknowledgment

The authors would like to thank Dr. Miyako Ohkubo for her helpful advice to employ the Abe et
al. transformation.

12

References

[1] The PBC (pairing-based cryptography) library. Available at http://crypto.stanford.edu/
pbc/.

[2] Emad Abd-Elrahman, Hatem Ibn-Khedher, Hossam Afifi, and Thouraya Toukabri. Fast group
discovery and non-repudiation in D2D communications using IBE. In IWCMC, pages 616–621,
2015.

[3] Michel Abdalla, Mihir Bellare, Dario Catalano, Eike Kiltz, Tadayoshi Kohno, Tanja Lange,
John Malone-Lee, Gregory Neven, Pascal Paillier, and Haixia Shi. Searchable encryption
revisited: Consistency properties, relation to anonymous IBE, and extensions. J. Cryptology,
21(3):350–391, 2008.

[4] Michel Abdalla, Mihir Bellare, and Gregory Neven. Robust encryption. In TCC, pages 480–
497, 2010.

[5] Michel Abdalla, Mihir Bellare, and Gregory Neven. Robust encryption. J. Cryptology,
31(2):307–350, 2018.

[6] Masayuki Abe, Jens Groth, Miyako Ohkubo, and Takeya Tango. Converting cryptographic
schemes from symmetric to asymmetric bilinear groups. In CRYPTO, pages 241–260, 2014.

[7] Masayuki Abe, Fumitaka Hoshino, and Miyako Ohkubo. Design in type-i, run in type-iii: Fast
and scalable bilinear-type conversion using integer programming. In CRYPTO, pages 387–415,
2016.

[8] Bayu Anggorojati and Ramjee Prasad. Securing communication in inter domains Internet of
Things using identity-based cryptography. In IWBIS, pages 137–142, 2017.

[9] Kazumaro Aoki. Towards reducing the gap between cryptography and its usage. IEICE
Transactions, 102-A(1):11–16, 2019.

[10] Joonsang Baek, Reihaneh Safavi-Naini, and Willy Susilo. On the integration of public key
data encryption and public key encryption with keyword search. In ISC, pages 217–232, 2006.

[11] Joonsang Baek, Reihaneh Safavi-Naini, and Willy Susilo. Public key encryption with keyword
search revisited. In ICCSA, pages 1249–1259, 2008.

[12] Razvan Barbulescu and Sylvain Duquesne. Updating key size estimations for pairings. J.
Cryptology, 2018.

[13] Paulo S. L. M. Barreto, Ben Lynn, and Michael Scott. Constructing elliptic curves with
prescribed embedding degrees. In Security and Cryptography for Networks, pages 257–267,
2002.

[14] Paulo S. L. M. Barreto and Michael Naehrig. Pairing-friendly elliptic curves of prime order.
In SAC, pages 319–331, 2005.

[15] Dan Boneh and Xavier Boyen. Efficient selective-ID secure identity-based encryption without
random oracles. In EUROCRYPT, pages 223–238, 2004.

[16] Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, and Giuseppe Persiano. Public key
encryption with keyword search. In EUROCRYPT, pages 506–522, 2004.

13

[17] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the weil pairing. In
CRYPTO, pages 213–229, 2001.

[18] Xavier Boyen and Brent Waters. Anonymous hierarchical identity-based encryption (without
random oracles). In CRYPTO, pages 290–307, 2006.

[19] Francesco Buccafurri, Gianluca Lax, Rajeev Anand Sahu, and Vishal Saraswat. Practical and
secure integrated PKE+PEKS with keyword privacy. In SECRYPT, pages 448–453, 2015.

[20] Yu Chen, Jiang Zhang, Dongdai Lin, and Zhenfeng Zhang. Generic constructions of integrated
PKE and PEKS. Des. Codes Cryptography, 78(2):493–526, 2016.

[21] Ronald Cramer, Rosario Gennaro, and Berry Schoenmakers. A secure and optimally efficient
multi-authority election scheme. In EUROCRYPT, pages 103–118, 1997.

[22] Angelo De Caro and Vincenzo Iovino. jPBC: Java pairing based cryptography. In ISCC, pages
850–855. IEEE, 2011.

[23] Keita Emura. A generic construction of secure-channel free searchable encryption with multiple
keywords. In NSS, pages 3–18, 2017.

[24] Keita Emura, Atsuko Miyaji, and Kazumasa Omote. Adaptive secure-channel free public-key
encryption with keyword search implies timed release encryption. In ISC, pages 102–118, 2011.

[25] Keita Emura, Atsuko Miyaji, Mohammad Shahriar Rahman, and Kazumasa Omote. Generic
constructions of secure-channel free searchable encryption with adaptive security. Security and
Communication Networks, 8(8):1547–1560, 2015.

[26] Keita Emura and Mohammad Shahriar Rahman. Constructing secure-channel free searchable
encryption from anonymous IBE with partitioned ciphertext structure. In SECRYPT, pages
84–93, 2012.

[27] Liming Fang, Willy Susilo, Chunpeng Ge, and Jiandong Wang. A secure channel free public
key encryption with keyword search scheme without random oracle. In CANS, pages 248–258,
2009.

[28] Liming Fang, Willy Susilo, Chunpeng Ge, and Jiandong Wang. Public key encryption with
keyword search secure against keyword guessing attacks without random oracle. Inf. Sci.,
238:221–241, 2013.

[29] Pooya Farshim, Benôıt Libert, Kenneth G. Paterson, and Elizabeth A. Quaglia. Robust
encryption, revisited. In Public-Key Cryptography, pages 352–368, 2013.

[30] Pooya Farshim, Claudio Orlandi, and Razvan Rosie. Security of symmetric primitives under
incorrect usage of keys. IACR Trans. Symmetric Cryptol., 2017(1):449–473, 2017.

[31] Steven D. Galbraith, Kenneth G. Paterson, and Nigel P. Smart. Pairings for cryptographers.
Discrete Applied Mathematics, 156(16):3113–3121, 2008.

[32] Craig Gentry. Practical identity-based encryption without random oracles. In EUROCRYPT,
pages 445–464, 2006.

[33] Rémi Géraud, David Naccache, and Razvan Rosie. Robust encryption, extended. In CT-RSA,
pages 149–168, 2019.

14

[34] Essam Ghadafi. Efficient distributed tag-based encryption and its application to group signa-
tures with efficient distributed traceability. In LATINCRYPT, pages 327–347, 2014.

[35] Lifeng Guo and Wei-Chuen Yau. Efficient secure-channel free public key encryption with
keyword search for EMRs in cloud storage. J. Medical Systems, 39(2):11, 2015.

[36] Antoine Joux and Kim Nguyen. Separating decision Diffie-Hellman from computational Diffie-
Hellman in cryptographic groups. J. Cryptology, 16(4):239–247, 2003.

[37] Dalia Khader. Public key encryption with keyword search based on k-resilient IBE. In ICCSA,
pages 1086–1095, 2007.

[38] Eike Kiltz. Chosen-ciphertext security from tag-based encryption. In Theory of Cryptography,
pages 581–600, 2006.

[39] Taechan Kim and Razvan Barbulescu. Extended tower number field sieve: A new complexity
for the medium prime case. In CRYPTO, pages 543–571, 2016.

[40] Tobias Markmann, Thomas C. Schmidt, and Matthias Wählisch. Federated end-to-end au-
thentication for the constrained Internet of Things using IBC and ECC. In ACM SIGCOMM,
pages 603–604, 2015.

[41] Micro Focus. Voltage SecureMail On-Premise: How it Works, 2019.

[42] Shigeo Mitsunari. mcl: A generic and fast pairing-based cryptography library, 2019/Sep/30
v1.00.

[43] Atsuko Miyaji, Masaki Nakabayashi, and Shunzou Takano. New explicit conditions of elliptic
curve traces for FR-reduction. IEICE Transactions, 84-A(5):1234–1243, 2001.

[44] Payman Mohassel. A closer look at anonymity and robustness in encryption schemes. In
ASIACRYPT, pages 501–518, 2010.

[45] Hiroshi Okano, Keita Emura, Takuya Ishibashi, Toshihiro Ohigashi, and Tatsuya Suzuki.
Implementation of a strongly robust identity-based encryption scheme over type-3 pairings. In
CANDAR, 2019, to appear.

[46] Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing.
In CRYPTO, pages 129–140, 1991.

[47] Hyun Sook Rhee, Jong Hwan Park, and Dong Hoon Lee. Generic construction of designated
tester public-key encryption with keyword search. Inf. Sci., 205:93–109, 2012.

[48] Hyun Sook Rhee, Jong Hwan Park, Willy Susilo, and Dong Hoon Lee. Trapdoor security in
a searchable public-key encryption scheme with a designated tester. Journal of Systems and
Software, 83(5):763–771, 2010.

[49] Shahidatul Sadiah and Toru Nakanishi. Implementation of revocable group signatures with
compact revocation list using vector commitments. In CANDAR, pages 489–495, 2017.

[50] Sriram Sankaran. Lightweight security framework for IoTs using identity based cryptography.
In ICACCI, pages 880–886, 2016.

15

[51] Vishal Saraswat and Rajeev Anand Sahu. Short integrated PKE+PEKS in standard model.
In SPACE, pages 226–246, 2017.

[52] Adi Shamir. Identity-based cryptosystems and signature schemes. In CRYPTO, pages 47–53,
1984.

[53] Tatsuya Suzuki, Keita Emura, and Toshihiro Ohigashi. A generic construction of integrated
secure-channel free PEKS and PKE. In ISPEC, pages 69–86, 2018.

[54] Tatsuya Suzuki, Keita Emura, and Toshihiro Ohigashi. A generic construction of integrated
secure-channel free PEKS and PKE and its application to EMRs in cloud storage. J. Medical
Systems, 43(5):128:1–128:15, 2019.

[55] Tingting Wang, Man Ho Au, and Wei Wu. An efficient secure channel free searchable encryp-
tion scheme with multiple keywords. In NSS, pages 251–265, 2016.

[56] Rui Zhang and Hideki Imai. Combining public key encryption with keyword search and public
key encryption. IEICE Transactions, 92-D(5):888–896, 2009.

Appendix

In this appendix, we explain why our encodings given in [45] do not work well.
Consider that K ∈ {0, 1}λ, dec ∈ Zp, and the plaintext space of the Gentry IBE scheme is GT .

If we simply encode K (or dec) as GK (or Gdec) for a public value G ∈ GT (e.g., G := e(g1, g2)),
then the decryption algorithm needs to compute K (or dec) from GK (or Gdec). This requires to
solve the discrete logarithm problem over GT . If K (or dec) is relatively small, then we can employ
the lifted ElGamal encryption approach [21]. However, these values are randomly selected from
{0, 1}λ (or Zp) and thus we cannot employ the approach.

We pay attention to the algebraic structure of GT and the decryption procedure. For a BN
curve, GT , that has a prime order p, is a subgroup of F∗

r12 where r is a prime and p|r12 − 1. Fr12 is
represented as Fr2 [X]/(X6−ξ) where ξ ∈ Fr2 is neither a square nor a cube, and hence X6−ξ is ir-
reducible over Fr2 [X]. Thus, an element of Fr12 can be written as [[X1, X2], [X3, X4], . . . , [X11, X12]]
where each Xi (i = 1, 2, . . . , 12) is an element of Fr. So, we set the plaintext space is Fr. Moreover,
K is λ-bit number and for 128-bit security (in our implementation), λ = 128, and r > p, K ∈ {0, 1}λ
and dec ∈ Zp also in Fr. So, we encode (M ||K||dec) as M̄ := [[M, 0], [K, 0], [dec, 0], [0, 0], . . . , [0, 0]] ∈
Fr12 . Remark that, now C3 := M̄ · e(g1, h1)−s ∈ Fr12 and more precisely C3 ∈ Fr12 \GT with high
probability 1 − p/(r12 − 1). However, the decryption procedure is unaffected. The decryption
algorithm computes E := e(C1, hID,1)C

rID,1

2 over GT , and computes C3 · E over Fr12 . This offers

no group operation for M̂ . Thus, the decryption algorithm can uniquely recover M , K, and dec.
For a symmetric bilinear group, GT is a subgroup of F∗

r2 where r is a prime r = 3 (mod 4), and
the order p is a prime factor of r + 1. An element of GT can be written as [X1, X2] where each
Xi (i = 1, 2) is an element of Fr. We set the plaintext space is Zp, and (M ||K||dec) is encoded as
M̄ := [M ′, 0] ∈ Fr2 where M ′ := M · p2 + K · p + dec. Then, since we set r as a 1536-bit prime
and p is a 256-bit prime for ensuring 128-bit security (i.e., r > p4), M ′ ∈ Fr. Thus, the decryption
algorithm can uniquely recover M , K, and dec.

At first glance, our encodings work well. However, there is an attack since Cp
3 ̸= 1 holds. This

leaks information of plaintext and thus our encodings do not work well. Thus, in the current version
we employed the KEM/DEM framework.

16

