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Abstract. We present a transformation from NIZK with inefficient provers in the uniform random
string (URS) model to ZAPs (two message witness indistinguishable proofs) with inefficient provers.
While such a transformation was known for the case where the prover is efficient, the security proof
breaks down if the prover is inefficient. Our transformation is obtained via new applications of Nisan-
Wigderson designs, a combinatorial object originally introduced in the derandomization literature.
We observe that our transformation is applicable both in the setting of super-polynomial provers/poly-
time adversaries, as well as a new fine-grained setting, where the prover is polynomial time and
the verifier/simulator/zero knowledge distinguisher are in a lower complexity class, such as NC1. We
also present NC1-fine-grained NIZK in the URS model for all of NP from the worst-case assumption
⊕L/poly 6⊆ NC1.
Our techniques yield the following applications:
1. ZAPs for AM from Minicrypt assumptions (with super-polynomial time provers),
2. NC1-fine-grained ZAPs for NP from worst-case assumptions,
3. Protocols achieving an “offline” notion of NIZK (oNIZK) in the standard (no-CRS) model with

uniform soundness in both the super-polynomial setting (from Minicrypt assumptions) and the
NC1-fine-grained setting (from worst-case assumptions). The oNIZK notion is sufficient for use in
indistinguishability-based proofs.

1 Introduction

A long and important line of research has been dedicated to understanding the necessary and sufficient
assumptions for the existence of computational zero knowledge (CZK) proofs (with potentially unbounded
provers) for a language L [BMO90, OW93, IOS94]. This line of research culminated with the work of Ong and
Vadhan [OV08] which fully resolved the question by proving that a language in NP has a CZK protocol if and
only if the language has an “instance-dependent” commitment scheme. The minimal assumptions required in
the non-interactive zero knowledge (NIZK) setting—assuming unbounded provers and a common reference
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string (CRS) 4 (sometimes called the “public parameters” setting)—are also well-understood. The work of
Pass and shelat [Ps05], showed that (non-uniform) one-way functions are sufficient for NIZK with unbounded
provers in the CRS model for all of AM, whereas NIZK with unbounded provers in the CRS model for a
hard-on-average language implies the existence of (non-uniform) one-way functions.

While the NIZK of Pass and shelat [Ps05] indeed minimizes interaction and assumptions, it critically
utilizes trusted setup to generate a structured CRS sampled from a particular distribution. In contrast,
motivated by concerns of subversion of public parameters [BFS16] and considerations from the blockchain
community [BBC+17, BBHR18, BBHR19], a recent line of research has focused on “transparent” setup that
does not require a trusted party, but simply access to a shared source of public randomness such the NIST
randomness beacon, or a uniform random string (URS).5 In the URS model, it is well known that NIZK
with unbounded provers follows from one-way permutations (OWP) [FLS99]. However, even agreeing upon
a genuinely random string to implement the URS model may be infeasible in some cases.

We investigate what can be proven with “zero-knowledge” in a truly trust-free setting, with minimal
interaction and assumptions. In particular, we extend the above line of work on minimizing assumptions to
other types of “zero knowledge” primitives, such as ZAPs (two message witness indistinguishable (WI)
proofs), non-interactive witness indistinguishable proofs (NIWI), and, ultimately, a type of NIZK with
uniform soundness (and no URS/CRS).

Our primary goal is to understand the relationship between ZAPs and zero-knowledge primitives that
can be constructed from minimal assumptions in the inefficient prover setting. Once we construct ZAPs,
we will show that NIWI and a type of NIZK with uniform soundness can also be constructed (note that
while these implications are already known in the efficient-prover setting [BOV07, BP04], hurdles are
introduced by removing this constraint). Ultimately, we are interested in obtaining constructions of ZAPs
from Minicrypt [Imp95] assumptions only6. To further motivate our focus on the inefficient prover setting,
note that barriers are known for constructions of ZAPs from Minicrypt assumptions when the prover is
required to be efficient. Indeed, efficient-prover ZAPs are known to be equivalent to efficient-prover NIZK
in the URS model [DN07] (assuming one-way functions exist), and efficient-prover NIZKs, in turn, are only
known to be achievable from Cryptomania [Imp95] primitives such as (enhanced) trapdoor permutations.
(See Section 1.2 for details.)

Because of this dichotomy, we consider the setting where the prover is computationally more powerful
than the simulator/zero knowledge distinguisher. We refer to this setting as the inefficient prover setting.
This covers both the setting of super-polynomial provers/polynomial adversary, as well as a new fine-
grained setting that we consider for the first time (to the best of our knowledge), where the prover is
polynomial time and the verifier/simulator/zero knowledge distinguisher are in a lower complexity class, such
as NC1 (logarithmic depth, polynomial-size circuits with constant fan-in). Our main technical contribution
is a new transformation from inefficient prover NIZK in the URS model to inefficient prover ZAPs. A
single transformation works both for the unbounded prover and fine-grained settings. Our transformation is
obtained via new applications of Nisan-Wigderson designs, a combinatorial object originally introduced in
the derandomization literature [NW88]. We also show that fine-grained NIZK in the URS model is achievable
from worst-case assumptions (⊕L/poly 6⊆ NC1). Given the well-known construction of unbounded prover
NIZK in the URS model from one-way permutations (via the hidden bits model), we obtain (1) super-
poly prover ZAPs for AM from Minicrypt assumptions and (2) fine-grained ZAPs for NP from worst-case
assumptions.

4 Throughout this work we make a distinction between common reference string denoted as CRS and uniform random
string denoted as URS. URS is sometimes referred to common random string in literature. We write URS to avoid
the confusion and overloading.

5 Note that recent work on transparent or trustless (succinct) proofs, typically assumes existence of a public random
oracle. We will will only consider (at most) short public random strings in this work.

6 We understand Minicrypt to be chiefly characterized by the lack of key agreement (KA), and note that one-way
permutations (OWP) are separated from KA via the original Impagliazzo and Rudich separation [IR89] For the
same reason, we consider Collision-Resistant Hashing to be in Minicrypt.
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Technical hurdles introduced by inefficient provers. When dealing with inefficient provers, one must proceed
with care, as many “folklore” results no longer hold. We make the following surprising observation (discussed
in more detail in Section 1.1): While it is known that NIZKs in the uniform random string (URS) model
imply ZAPs for the case of efficient provers [DN07], the transformation of [DN07] fails when the NIZK
prover is inefficient. Briefly, this occurs because the reduction from the zero knowledge of the underlying
NIZK to the witness indistinguishability of the ZAP does not have the computational power to run the
honest prover’s algorithm. Furthermore, as we will discuss in depth in Section 1.1, the honest proofs cannot
simply be pre-computed and hardwired into the reduction. Instead, we must develop new techniques for the
inefficient prover case.

Our notions of Zero Knowledge: the “fine-grained” setting. We introduce fine-grained analogues of zero
knowledge and witness indistinguishability. In fine-grained zero knowledge, we are concerned with (very)
low complexity verifiers. We wish the honest verifier to have low complexity (we will use NC1 as a running
example), but we also want to scale down the claim “no additional knowledge” leaked (beyond validity of
the statement) to what can be computed in this low complexity class (NC1). The standard definition of
zero knowledge simply requires that real transcripts can be simulated in probabilistic polynomial time. But
if the verifier is in NC1 the simulation complexity could in fact be substantially larger than that of the
verifier, which does not capture the idea that “no additional knowledge” was leaked. While such a notion
of simulation is stronger, we only require interactions with malicious verifiers in NC1 to be simulatable.
Moreover, simulation is only required to be indistinguishable from real to NC1 distinguishers. In this sense,
our notion of fine-grained zero knowledge is orthogonal to the standard, poly-time zero knowledge.7 We also
define a notion of fine-grained witness indistinguishability, where indistinguishability of interactions is only
required to hold for low complexity distinguishers/verifiers.

We note that interactive fine-grained zero knowledge is straightforward to achieve using fine-grained
commitments (which follow from the work of [DVV16]) and a commitment-based ZK protocol (e.g. Blum-
Hamiltonicity). We therefore focus on fine-grained ZAPs and NIZK.

NIZK imply ZAPs for inefficient provers. Our main contribution is to prove that NIZK in the URS model
implies ZAPs, even in the case of inefficient provers. Specifically, we show the following:

Theorem 1 (Informal). Assuming the existence of an NIZK proof system for a language L ∈ AM with
provers running in time T in the URS model, there exists a ZAP for L with provers running in time
poly(T, n), where n is security parameter.

Our proof surprisingly leverages a type of design—a combinatorial object that was used in the
derandomization of BPP by Nisan and Wigderson [NW88]. To the best of our knowledge, this is a novel
application of designs to the cryptographic setting.

We also briefly discuss here the notion of a “witness” for an AM language and the meaning of witness
indistinguishability. Recall that a language is in AM iff it has an AM protocol (Prover,Verifier) and so AM
languages are inherently tied to protocols. Therefore, similarly to tying witnesses for NP languages to a
specific verification algorithm, the notion of a “witness” for an AM language will be tied to the protocol.

Specifically, we assume that there is an AM-protocol for a language L. Given the first message r from
the verifier, we can consider the Circuit-SAT problem w.r.t. the first message r and the verifier’s circuit.
Specifically, a witness w is a Prover’s message that causes the verifier to output 1, when the first message r
is fixed. Thus, witness-indistinguishability means that if there are two possible Prover messages w1, w2 that

7 Note that this is very different from other fine-grained flavors of zero knowledge such as “knowledge tightness” or
“precise zero knowledge” [GMW91, Gol01, MP06, DG11, DG12] which look for a simulation complexity that is
tight to each simulator. Under these notions, if a malicious verifier, V , runs for ncV steps, then the interaction with
the prover should simulatable with order O(ncV ) steps. These verifier-by-verifier notions, in some sense, recover
fine-grained zero knowledge with respect to TIME(nc) for all c simultaneously. In this work, we aren’t concerned
with such verifier-by-verifier simulation of malicious poly-time verifiers, but instead what can be achieved if one is
only concerned with (very) simple malicious verifiers (in order to minimize assumptions).
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can be sent in response to r and such that the verifier accepts both, then the transcript of the ZAP should
be indistinguishable when the Prover uses witness w1 or w2.

As a concrete example, consider the Goldwasser-Sipser (GS) protocol [?] for proving lower bounds on the
size of NP sets. The verifier sends a random hash value and the prover responds with an element in the set
that hashes to that value. WI is meaningful if there are multiple elements in the set that hash to the target
value, since it guarantees that the verifier cannot distinguish which pre-image was used.8

Since it is well-known that NIZK with inefficient provers in the URS model can be constructed from
one-way permutations (OWP) (see e.g. [Ps05]), our result immediately yields ZAPs with subexponential
provers from the Minicrypt assumption of OWP.

Theorem 2 (Informal). Assuming the existence of one-way permutations, if L ∈ AM with prover run-time
T , then there exists a ZAP for L with prover run-time poly(T, subexp(n)).

Extending to the fine-grained setting. Next, we observe that our same transformation can be applied to
obtain fine-grained ZAPs from fine-grained NIZK in the URS model. Here, we assume that the prover is
polynomial-time, but that the verifier and distinguisher are in a lower complexity class, F . We then require
that zero knowledge/witness indistinguishability hold against distinguishers from complexity class F .

For the proof technique from above to work, we require the class F to satisfy some mild compositional
requirements, which are, in particular, satisfied by the class NC1.

We thus obtain the following:

Theorem 3 (Informal). Assuming the existence of non-adaptive NC1-fine-grained NIZK proof systems for
NP in the URS model, there exist NC1-fine-grained ZAPs for NP.

We next show how to construct NC1-fine-grained NIZK in the URS model for all of NP, assuming the
worst-case assumption that ⊕L/poly 6⊆ NC1. Our result begins by converting the NIZK construction of
[AR16] that works for languages L with randomized encodings from the CRS model to the URS model. 9

Since randomized encodings are known for the class ⊕L/poly, this yields an NIZK proof system in the URS
model (which actually achieves statistical zero knowledge). We then introduce a new primitive, which we call
a G-extractable, F-Fine-Grained Commitment. This is a commitment that is perfectly binding, hiding against
F , but extractable by G. We show how to construct ⊕L/poly-extractable, NC1-Fine-Grained Commitment
under the worst-case assumption that ⊕L/poly 6⊆ NC1 using techniques of [DVV16]. Then, using ⊕L/poly-
extractable, NC1-Fine-Grained Commitment we show how to bootstrap the NIZK proof system in the URS
model for the class ⊕L/poly to an F-fine-grained NIZK proof system for NP in the URS model. We obtain
the following theorem:

Theorem 4 (Informal). Assuming that ⊕L/poly 6⊆ NC1, there exist non-adaptive NC1-fine-grained NIZK
proof systems for NP in the URS model.

Beyond ZAPs. One reason that ZAPs are a crucial tool in cryptography, is that they can be used as a building
block to construct NIWI in the standard (no trusted setup) model under certain types of assumptions that
are common in the derandomization literature. Indeed, the seminal work of Barak et al. [BOV07] was the first
to establish this connection between derandomization assumptions and NIWI. Furthermore, NIWI in the

8 We note that the GS protocol is used to prove that MA is contained in AM (by proving that the set of accepting
coins of the verifier is sufficiently large). Recall that MA is like NP except the verifier can be randomized. It is
not difficult to observe that our notion under the above transformation yields proofs for MA where witnesses that
make the randomized verifier accept w.h.p. are indistinguishable.

9 Recently, [EWT19] constructed one-way permutations in the fine-grained setting. However, their results cannot
be extended in straight-forward manner to construct fine-grained NIZKs and therefore are unlikely to lead to
simpler constructions without using other techniques. For more discussion on this, we refer the interested readers
to Section 1.2.
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standard model can be used to construct NIZK with soundness against uniform adversaries in the standard
model.

The constructions of NIWI from ZAPs and derandomization techniques go through in the inefficient-
prover setting, since parallel repetition of 2-message protocols retains WI even in the inefficient prover
setting (though this is not necessarily true for protocols with more than 2-messages).

We are not able to convert NIWI into fully standard NIZK with uniform soundness. The reason is that the
transformation from NIWI to NIZK with uniform soundness in the no-CRS model employs the well-known
FLS paradigm [FLS99]. In this paradigm, the ZK simulator runs the honest prover with a trapdoor witness.
However, in our case, the simulator cannot run the honest prover as it does not have enough computational
power. Fortunately, we are able to show that if the simulator is given non-uniform advice that does not
depend on the statement being proved then the simulator can perfectly simulate the honest prover’s output
on the trapdoor witness. Thus, we introduce offline NIZK (oNIZK), which requires existence of a distribution
DSim over small circuit simulators Sim, such that for any statement x ∈ L, the distribution over (URS′, π′)
obtained by drawing Sim from DSim and outputting (URS′, π′)← Sim(x) is computationally indistinguishable
from honest CRS’s and proofs (URS, π). We note that this notion is sufficient for indistinguishability-based
applications.

We next state our results for the oNIZK setting:

Theorem 5 (Informal). Assuming the existence of one-way permutations, appropriate derandomization
assumptions,10 and sub-exponentially-hard uniform collision resistant hash functions, then for any constant
0 < ε < 1 and constant c ≥ 1, there exist oNIZK in the standard model for NP with honest provers running
in uniform time 2n

ε

and soundness against uniform adversaries running in time 2n
c

, where n is security
parameter.

Theorem 6 (Informal). Assuming that ⊕L/poly 6⊆ NC1, appropriate derandomization assumptions as
above, and the existence of uniform collision resistant hash functions, there exist NC1-fine-grained oNIZK in
the standard model for NP.

1.1 Technical Overview

ZAPs from NIZK with inefficient provers. Let us begin by recapping the construction of ZAPs from a
non-adaptive NIZK proof system with an efficient prover in the URS model.

The public coin verifier sends a random string r, which is partitioned into n′ sections r1|| · · · ||rn′ . Each
ri is a bitstring of length n, where n is also the bit length of the URS for the underlying NIZK proof
system. Upon receiving r1|| · · · ||rn′ , the prover chooses a string x ∈ {0, 1}n. For i ∈ [n′], the prover then sets
URSi := ri ⊕ x and runs the prover of the underlying NIZK proof system on the input statement, witness
and URSi, to produce proof πi. The prover then sends x, π1, . . . , πn′ to the verifier. For i ∈ [n′], the verifier
recomputes URSi := ri ⊕ x and runs the verifier of the underlying NIZK proof system on URSi, πi. If all the
proofs accept, then the verifier accepts; otherwise, it rejects.

To prove soundness of the above proof system, a counting argument is employed. Specifically, fix any
statement st that is not in the language. Since the underlying NIZK is statistically sound, the number of
“bad” URS’s for which there exists a proof π that accepts for st is small; say the fraction of “bad” URS’s is
at most 1/2. This means that for a fixed statement st not in the language and a fixed x, the probability over
random choice of r1, . . . , rn′ that there exists an accepting proof πi relative to each URSi, i ∈ [n′] is at most
2−n

′
. Taking a union bound over all possible choices for x, we have that for a fixed st, the probability over

choice of r1, . . . , rn′ that there exists an x of length n for which there exists an accepting proof relative to
each URSi, i ∈ [n′] is at most 2n−n

′
. Setting n′ = 2n provides us with negligible statistical soundness in n.

On the other hand, to prove witness indistinguishability, one proceeds via a hybrid argument. In the
original hybrid, witness w1 is used for each of the n′ number of honestly generated proofs π1, . . . , πn′ . In the

10 Specifically, the existence of efficient 1/2-hitting set generators (HSG) against co-nondeterministic uniform
algorithms [BOV07].
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final hybrid, witness w2 is used for each of the n′ number of honestly generated proofs π1, . . . , πn′ . In each
intermediate hybrid, we switch from honestly generating a proof using w1 to using w2. Indistinguishability
of intermediate hybrids is proved by showing that an efficient distinguisher between the hybrids implies
an efficient distinguisher between real and simulated proofs of the underlying NIZK system. Specifically,
a reduction is constructed as follows: Given the verifier’s string r = r1|| · · · ||rn′ and a real or simulated
URS/proof pair (URS∗, π∗), the reduction sets x such that URSi = x⊕ ri = URS∗. The reduction then runs
the honest prover with w2 for the first i− 1 proofs, runs the honest prover with w1 for the last n′− i proofs,
and embeds π∗ in the i-th location. The reduction then applies the distinguisher between Hybrids i − 1
and i to the resulting transcript, and outputs whatever it does. Since a distinguisher between Hybrids i− 1
and i must either distinguish the above when (URS∗, π∗) were generated using the honest prover and w1

versus using the simulator or when (URS∗, π∗) were generated using the honest prover and w2 versus using
the simulator, the above reduction succeeds in one of those cases. If one of the cases succeeds, we obtain a
contradiction to the zero knowledge property.

Note that for the soundness argument for the ZAP, soundness against unbounded provers in the underlying
NIZK is crucial since we use a counting argument based on the number of “bad” URS’s for which there exists
an accepting proof of the false statement. Furthermore, the fact that the prover in the underlying NIZK is
efficient is crucial for the witness indistinguishability argument. The reason can be seen from the sketch of
the hybrid argument above. Specifically, we will have a hybrid in which we reduce to the zero knowledge
of the underlying NIZK (note that the zero knowledge must always be computational, since we require the
soundness to be statistical). This means that existence of a distinguisher for consecutive hybrids must imply a
ZK distinguisher, and the ZK distinguisher that is constructed, given an efficient distinguisher for consecutive
hybrids, must be efficient. But in the approach outlined above, to generate the correct hybrid distributions
for the efficient distinguisher, we must run the honest prover with witness w2 for the first i − 1 number of
proofs and run the honest prover with witness w1 for the last n′ − i number of proofs. This cannot be done
efficiently if the honest prover is inefficient. An immediate thought would be to use non-uniform advice to
hardcode all the proofs except the i-th proof into the ZK distinguisher. However, this does not work because
URSi′ for i′ 6= i depends on URS∗, which is part of the input to the ZK distinguisher. Specifically, on input
(URS∗, π∗), x is set to URS∗ ⊕ ri and only once x is fixed do we learn URSi′ := ri′ ⊕ x for i′ 6= i. So we
cannot know the URS’s URSi′ , i

′ 6= i ahead of time. In this case, we cannot hope to hardcode the proofs πi′

as non-uniform advice.

We will resolve this issue and show that non-uniform advice can help in our setting, by allow
limited pairwise dependency across the URS’s, instead of imposing pairwise independence. Specifically,
our construction leverages the notion of a design, introduced by Nisan and Wigderson in their seminal
work [NW88]. A design with parameters (l, n, c, n′) is a set of n′ number of sets S1, . . . ,Sn′ , where each
Si, i ∈ [n′] is a subset of [l] and has size |Si| = n. Moreover for every pair i, j ∈ [n′], i 6= j, it holds
that |Si ∩ Sj | ≤ c. It is known how to construct designs with l = n2, constant c and n′ := nc (see
e.g. [NW88]). Let us see how a design with parameters (l = n2, n, c = 3, n′ = n3) can be used to resolve
our problems above. Upon receiving string r = r1|| · · · ||rn′ from the verifier, we now allow the prover to
choose a bit string x = [xj ]j∈[l] of length l. URSi is then defined as ri ⊕ [xj ]j∈Si , where [xj ]j∈S for a set
S ⊆ [l] denotes the substring of x corresponding to the positions j ∈ S and Si is the corresponding set
in the design. Now, soundness is ensured by the same argument as above (i.e. via a union bound), since

2−n
′ · 2l = 2−n

3 · 2n2

= 2−n
3+n2

is negligible in n. Furthermore, since for each pair i, j ∈ [n′], i 6= j, it holds
that |Si∩Sj | ≤ 3, we can use the following proof strategy to argue indistinguishability of consecutive hybrids:
In the i-th hybrid, we fix the string [xj ]j /∈Si at random. We then generate n′ − 1 truth tables with constant
input length. The input to the i′-th truth table (i′ ∈ [n′], i′ 6= i) will be at most 3 bits, corresponding to
[xj ]j∈Si′∩Si . For i′ < i, the output of the truth table Ti′ will be a proof πi′ that is honestly computed using
witness w2 and URSi′ = [xj ]j∈Si′ For i′ > i, the output of the truth table Ti′ will be a proof πi′ that is
honestly computed using witness w1 and URSi′ = [xj ]j∈Si′ . Note that since everything is fixed (including all
the bits of [xj ]j∈Si′ except for [xj ]j∈Si′∩Si), each truth table can be computed by an NC0 circuit.

Now, given a real or simulated URS/proof pair (URS∗, π∗), the reduction will set [xj ]j∈Si such that
URSi = [xj ]j∈Si ⊕ ri = URS∗. The reduction will then use the truth table Ti′ to generate proof πi′ for i′ 6= i,
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and will embed π∗ in the i-th location. The reduction will then evaluate the distinguisher D (represented as
a poly-sized circuit) on the resulting transcript and output whatever it outputs. Note that the reduction can
now be represented as a poly-sized circuit and note that it outputs exactly the correct distribution to the
distinguisher. Thus, an efficient distinguisher for intermediate hybrids yields a poly-sized circuit that breaks
the zero knowledge property of the underlying NIZK, resulting in contradiction.

Fine-Grained ZAPs. As discussed previously, fine-grained ZAPs relative to a class F are ZAPs that have a
poly-time prover and provide witness indistinguishability against class F that is conjectured to not contain
P. The same difficulty of converting a single-theorem fine-grained NIZK in the common random string model
into a ZAP arises as above. Luckily, if circuits f ∈ F composed with NC0 circuits are also in F , then the
same proof as above can work (since the reduction sketched above can be implemented with a NC0 circuit.
Thus, given a non-adaptive, fine-grained NIZK in the URS model against NC1, we obtain a fine-grained ZAP
relative to NC1.

Fine-Grained NIZK in uniform random string (URS) model. We first modify a construction of [AR16]
in the CRS model to yield a construction in the URS model. This is done by observing that a random
string is a good CRS for the construction of [IK00] with probability 1/2 (which follows from the fact that
randomized encodings of [IK00] are “balanced”). We then construct a URS by sampling many reference
strings at random, and having the prover either prove that the reference string is invalid or provide a
proof of the statement relative to the reference string. Note that this yields a construction with a poly-time
prover and provides statistical -zero knowledge as well as soundness against unbounded provers. However,
this construction only allows proving statements for languages that have randomized encodings (such as
languages in ⊕L/poly). We would like to obtain a proof system for all languages in NP, while sacrificing
the statistical zero knowledge property and obtaining a fine-grained NIZK with poly-time prover against
the class NC1. It turns out that to obtain this, we can use the fact that, assuming ⊕L/poly 6= NC1, there
exist “commitments” with the following properties: (1) Commitments can be constructed in the class NC1.
(2) Given a commitment, extracting the committed value can be performed in the class ⊕L/poly (i.e. the
decision problem Ldet which, given a commitment com outputs 1 if it is a commitment to 1 is in ⊕L/poly). (3)
Commitments are hiding against a NC1 adversary. Such commitments can be easily constructed by computing
the randomized encoding of a “canonical” 0 (resp. 1) input to commit to 0 (resp. 1). Now, using the fact that
⊕L/poly is closed under negation, disjunction and conjunction (see [BG99] ), we can use the statistical-zero
knowledge NIZK in the URS model for languages in ⊕L/poly to obtain a fine-grained NIZK in the URS
model against NC1 for all of NP as follows: Given a circuit-SAT instance C, where C is a circuit consisting of
NAND gates and we assume that it has z wires. the prover will commit to the values of all the wires of C for
some satisfying assignment. This commitment will be performed using the “commitment” scheme described
above. The prover will then prove that the sequence of “commitments” com1, . . . , comz is in the language
LC , where comz ∈ Ldet, and for each NAND gate, with input wires i, j and output wire k, comi, comj , comk

are commitments to valid inputs/outputs for a NAND gate (i.e. (comi, comj , comk) ∈ Lgate). Since LC will
consist of negation/conjunction/disjunction of languages in ⊕L/poly and since ⊕L/poly is closed under
negation/conjunction/disjunction, we have that LC ∈ ⊕L/poly. Moreover, given com1, . . . , comz, we can
simulate a proof in NC1 (using the simulator for the NIZK for languages in ⊕L/poly), indicating that the
NIZK provides zero knowledge against NC1.

1.2 Related Work

Zero Knowledge Zero knowledge (ZK) proofs were introduced by Goldwasser, Micali, and Rackoff [GMR89].
Since its introduction, ZK proof systems and its variants have been studied with great interest. Some of
the notable results related to ZK proofs are – [GMW91] which showed ZK proofs exist for all languages
in NP, and [GO94] which showed that interaction is crucial for achieving zero knowledge property in
case of non-trivial languages. Specifically, [GO94] showed that if for language L, 2-message ZK proof
system exists then L ∈ BPP. The research aimed at minimizing the interaction has since relied on
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either constructing Non-Interactive Zero Knowledge proof systems (NIZKs) with the help of trusted setup
assumptions such as uniform random string (URS) [BFM88] or constructing non-interactive protocols with
weaker security guarantees such as non-interactive witness indistinguishability (NIWI). Intuitively, witness
indistinguishability ensures that the verifier does not learn which witness (out of multiple valid witnesses) is
used by the prover to generate the proof. Dwork and Naor [DN07] showed introduced two-message, witness
indistinguishable proof systems (ZAPs) and showed that ZAPs (in a no-CRS model) are equivalent to NIZKs
in uniform random string (URS) model.

Zero Knowledge Primitives and Underlying Assumptions Blum et al. [BFM88], gave the first construction of
NIZK in CRS model from number-theoretic assumptions (e.g. quadratic residuosity). Since then, NIZKs have
been constructed in URS model from one-way permutations and certified trapdoor permutations [FLS99],
whereas Lapidot and Shamir [LS91], constructed publicly verifiable NIZK from one-way permutations in URS
model, Groth et al. [GOS06] constructed NIZK from DLIN assumption in URS model. Recently, Peikert and
Shiehian [PS19] constructed NIZK from LWE assumption in URS model.

NIZKs have also been studied in other models [BG03, CV07, CCKV08], and models which consider
preprocessing along with other assumptions such as one-way encryption schemes exist [DMP90], lattices
(LWE) [KW18], and DDH/CDH [KNYY19]. Few of the other works on NIZKs include [BY96, Ps05, GS08,
BL18, CCH+19, GJS19, ADKL19]. For more details on NIZK related research, we refer the interested
readers to [WW14]

We now present an overview of research related to ZAP and NIWI systems. The notion of witness
indistinguishable proofs was introduced by [FS90]. As discussed earlier, Dwork and Naor [DN07] introduced
ZAP (two-message, witness indistinguishable proofs) and presented a construction in plain (no-CRS) model
assuming the existence of certified trapdoor permutations. Barak et al. [BOV07] gave a construction of
NIWI based on derandomization assumptions and certified trapdoor permutations (by derandomizing the
verifier of [DN07] construction). Groth et al. [GOS12] constructed first non-interactive ZAP from DLIN
assumption, whereas Bitansky and Paneth [BP15] showed a construction of ZAP based on indistinguishabliy
obfuscation (iO) and one-way functions, and NIWI from iO and one-way permutations. Recently ZAP were
constructed assuming quasi-polynomial hardness of DDH [JKKR17, KKS18], and quasi-polynomial hardness
of LWE [BFJ+19, JJ19].

Fine-Grained Cryptography Fine-grained cryptography refers to construction of primitives which provide
security guarantees against adversaries with sharper complexity bounds than simply “polynomial time.”
Both adversaries with specific polynomial runtime bounds (e.g. TIME[O(n2)]) and adversaries with specific
parallel-time complexity (e.g. NC1) have been considered under this moniker in the literature. In [DVV16]
Degwekar et al. constructed primitives like one-way functions, pseudo-random generators, collision-resistant
hash functions and public key encryption schemes based on well-studied complexity theoretic assumptions.
Ball et al. [BRSV17, BRSV18] worst-case to average-case reduction for different type of fine-grained hardness
problems and then extended their work to construct Proofs of Work. Campanelli and Gennaro [CG18]
initiated the study of fine-grained secure computation by constructing a verifiable computation protocol
secure against NC1 adversaries based on worst-case assumptions. LaVigne et al. [LLW19] constructed a
fine-grained key-exchange protocol.

Comparison with Egashira et al. [EWT19] Recently, Egashira et al. [EWT19] constructed one-way
permutations, hash-proof systems, and trapdoor one-way functions, all of which can be computed in NC1

and are secure against adversaries in NC1, from the same assumptions that are considered in this work
(⊕L/poly 6⊆ NC1). Their results do not directly extend to construct NC1-fine-grained NIZK systems in the
URS model, as (1) to the best of our knowledge it is not known how to construct NIZK in URS model
from trapdoor one-way functions, and (2) their one-way permutation does not directly allow instantiation of
the hidden bits model [FLS99], which could then be used to construct NC1-fine-grained NIZK in the URS
model. Specifically, the domain/range of their OWP includes only full rank matrices and does not include
all strings of a given length. Furthermore, whether a given string is contained in the domain/range cannot
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be determined by a NC1 circuit (assuming ⊕L/poly 6⊆ NC1) and strings that are not in the range can have
more than one pre-image. This means that to implement the hidden bits model, a prover would need to prove
that a string is or is not contained in the domain/range, without compromising the one-wayness of unopened
bits, which would itself require a NC1-fine-grained NIZK proof system in the URS model. In contrast, our
construction of NC1-fine-grained NIZK in the URS model is direct and does not require fine-grained OWP
nor implementing a fine-grained hidden bits model.

Organization

The paper is organized as follows: We present preliminaries and definitions related to NIZK and ZAPs in
Section 2. Section 3, presents a construction of inefficient-prover ZAPs from inefficient-prover NIZK. The
constructions of NIZK in the fine-grained setting are presented in Section 5. The applications of inefficient-
prover ZAPs to obtain oNIZK with uniform soundness (in the super-polynomial and fine-grained settings)
are presented in Sections 4 and 5.6.

2 Definitions

Definition 1. Let F = {Fn}n∈N be a class of circuits parameterized by n with input length `(n). We say
that two distribution ensembles {D0

n}n∈N, {D0
n}n∈N, with support {0, 1}`(n), are indistinguishable by F if

max
fn∈Fn

∣∣Pr[fn(x) = 1 | x ∼ D0
n]− Pr[fn(x) = 1 | x ∼ D1

n]
∣∣ ≤ negl(n).

Definition 2 (Fine-Grained Pseudorandom Generator (PRG) [DVV16]). Let H =
{
hn : {0, 1}n → {0, 1}`(n)

}
be a function family. H is a F-fine-grained-pseudorandom generator (PRG) if 11 :

– Computability: For each n, hn is deterministic.
– Expansion: `(n) > n for all n.
– Pseudorandomness: For any F =

{
fn : {0, 1}`(n) → {0, 1}

}
∈ F , and for all n ∈ N:∣∣∣∣ Pr

x←Un
[fn(hn(x)) = 1]− Pr

x′←U`(n)

[fn(x′) = 1]

∣∣∣∣ ≤ negl(n)

Definition 3 (G-Extractable, F-Fine-Grained Commitment Scheme). A commitment scheme com-
prising of three algorithms (Commit,Open,Extract) is called G-Extractable, F-Fine-Grained Commitment
Scheme if the following hold:

– Commit ∈ F and Open ∈ F for class F .
– Correctness: For all n ∈ N and for b ∈ {0, 1}:

Pr[(com, d)← Commit(1n, b) : Open(com, d) = b] = 1

– Perfect Binding: There does not exist a tuple (com, d, d′) such that

Open(com, d) = 0 ∧ Open(com, d′) = 1.

– F-Hiding: For any Open∗ ∈ F ,∣∣∣∣ Pr
b←{0,1}

[(com, d)← Commit(1n, b) : Open∗(c) = b]− 1

2

∣∣∣∣ ≤ negl(n)

– G-Extractability: There exists Extract ∈ G such that for any string com,

Extract(com) = b iff ∃d s.t. Open(com, d) = b.

An F-Fine-Grained Commitment Scheme is the same as the above definition, but does not enjoy the
G-Extractability property.

11 Note that unlike the definition of [DVV16], our notion F-PRG means H is secure against adversaries in class F .
Whereas, [DVV16] use notation F-PRG to indicate that PRG H can be computed in class F .

9



2.1 NIZK and Fine-Grained NIZK in the URS Model

Definition 4 (Non-Interactive Proofs in the URS Model). A pair of algorithms (Prover,Verifier)
is called a non-interactive proof system in the URS model for a language L if the algorithm Verifier is
deterministic polynomial-time, there exists a polynomial p(·) and a negligible function µ(·) such that the
following two conditions hold:

– Completeness: For every x ∈ L

Pr[URS← {0, 1}p(|x|);π ← Prover(x,URS) : Verifier(x,URS, π) = 1] ≥ 1− µ(|x|).

– Soundness: For every x /∈ L, every algorithm P ∗

Pr[URS← {0, 1}p(|x|);π′ ← P ∗(x,URS) : Verifier(x,URS, π′) = 1] ≤ µ(|x|).

Definition 5 (Non-Interactive Zero-Knowledge with Offline Simulation (oNIZK) in the URS
Model). Let (Prover,Verifier) be a non-interactive proof system in the URS model for the language L. We
say that (Prover,Verifier) is non-adaptively zero-knowledge with offline simulation in the URS model if there
exists a distribution DSim over polynomial-sized circuits Sim such that the following two distribution ensembles
are computationally indistinguishable by polynomial-sized circuits (when the distinguishing gap is a function
of |x|)

{(URS, π) : URS← {0, 1}p(|x|);π ← Prover(URS, x)}x∈L
{(URS′, π′)← Sim(x) : Sim← DSim}x∈L.

A useful property of oNIZK is the following: Let Dyes be a distribution over statements x ∈ L and
let Dno be a distribution over statements x ∈ L. If Dyes and Dno are computationally indistinguishable by
polynomial-sized circuits then the following two distribution ensembles are computationally indistinguishable
by polynomial-sized circuits (when the distinguishing gap is a function of |x|)

{(x, (URS, π)← Sim(x)) : Sim← DSim, x← Dyes}
{(x′, (URS′, π′)← Sim(x′)) : Sim← DSim, x

′ ← Dno}.

The above allows a typical usage of oNIZK in hybrid style proofs: In the first hybrid, one can leave
the statement the same and switch from proofs generated by the honest prover to proofs generated by the
simulator, in the second step, one can switch the statement from a true statement to a false statement.

Relation to Zero Knowledge Notions in the Literature. We next discuss the relationship between
Definition 5 and the notions of witness hiding (WH) and weak zero knowledge (WZK).

First, we show that Definition 5 in fact implies witness hiding (WH).

Let D be a distribution over statements x ∈ L. Assume that L has witness relation R, computable by a
poly-size circuit, such that x ∈ L if and only if there exists a witness w such that (x,w) ∈ R. We wish to
show that if for all polynomial sized circuits C,

Pr
x∼D

[R(x,C(x)) = 1] ≤ negl(|x|).

Then for all polynomial sized circuits C ′

Pr
x∼D

[R(x,C ′(x,URS, π)) = 1 : URS← {0, 1}p(|x|);π ← Prover(URS, x)] ≤ negl(|x|).

Towards contradiction, assume that there exists a polynomial sized circuit C ′ such that

Pr
x∼D

[R(x,C ′(x,URS, π)) = 1 : URS← {0, 1}p(|x|);π ← Prover(URS, x)] ≥ µ(|x|),
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where µ(·) is non-negligible. Consider the following poly-size distinguisher D: On input (URS, π) and implicit
x, run C ′(x,URS, π) and obtain w. If R(x,w) = 1 output 1. Otherwise, output 0. Then we have that

Pr
x∼D

[D(URS, π) = 1 : URS← {0, 1}p(|x|);π ← Prover(URS, x)] ≥ µ(|x|).

By the above zero knowledge property (Def. 5), we have that

Pr
x∼D,Sim∼DSim

[D(URS′, π′) = 1 : (URS′, π′)← Sim(x)] ≥ µ′(|x|),

where µ′ is non-negligible. But this implies that

Pr
x∼D,Sim∼DSim

[R(x,C ′(x, Sim(x))) = 1] ≥ µ′(|x|),

and equivalently, that
Ex∼D,Sim∼DSim

[R(x,C ′(x,Sim(x)))] ≥ µ′(|x|).

This, in turn, implies that there exists some Sim in the support of DSim such that

Pr
x∼D

[R(x,C ′(x, Sim(x))) = 1] ≥ µ′(|x|).

But the above implies a poly-sized circuit C (corresponding to C ′ composed with Sim) such that
Prx∼D[R(x,C(x)) = 1] is non-negligible, which is a contradiction to the hardness of distribution D over
language L.

Recall that Weak Zero Knowledge (WZK) defined in ([DNRS99]), allows the simulator Sim to depend on
the zero knowledge distinguisher D. Weak zero knowledge is known to be sufficient to argue security in For
any cryptographic protocol that only aims to achieve indistinguishability-based security, weak zero knowledge
is known to be sufficient, since the security reduction has access to an efficient distinguisher [JKKR17].

We also show that Definition 5 implies Weak Zero Knowledge (WZK) with an inverse-polynomial bound
on distinguishing advantage. (This follows more or less directly from Lipton and Young’s sparse min-max
theorem [LY94], but we give full details here for completeness.)

Fix any distinguisher A, ε(n) = 1/nc for some c, and define

DP
x :={(URS, π, x) : URS← {0, 1}p(|x|);π ← P(URS, x)}

DSim
x :={(URS′, π′, x)← Sim(x)},∀Sim ∈ Supp(DSim)}

Consider Sim′, and corresponding distributions DSim′

x , that works by sampling k ≥ 2n+ln(2)
2ε(n)2 i.i.d. samples

Sim1, . . . ,Simk ← DSim, before selecting a Simi∗ uniformly at random from {Simi}ki=1 and evaluating it on x.

Notice that by Chernoff/Hoeffding

Pr
(Sim1,...,Simk)←DSim′

[
|
k∑
i=1

E[A(DSimi
x )]

k
− E[A(DSim′

x )]| > ε

]
< 2e−2kε(n)

2

≤ 2−2n

Additionally, for any fixed i ∈ [k] we have

ESim1,...,Simk←DSim′ [A(DSimi
x )] = ESim←DSim

[A(DSim
x )].

It follows that
E i∗←[k],
Sim1,...,Simk←DSim′

[A(DSimi∗
x )] = ESim←DSim

[A(DSim
x )].
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Thus by the triangle inequality we have that with probability at least 1− 2−2n over the choice of S ← DSim′ ,
for any x

|E[A(DS
x )]− E[A(DP

x)]| = |E[A(DS
x )]

− (E i∗←[k],
Sim1,...,Simk←DSim′

[A(DSimi∗
x ]− ESim←DSim

[A(DSim
x )])

− E[A(DP
x)]|

≤ |E[A(DS
x )]− Ei∗←[k],Sim1,...,Simk←DSim′

[A(DSimi∗
x ]|

+ |ESim←DSim
[A(DSim

x )]− E[A(DP
x)]|

≤ ε(n) + η(n)

So, for all x we have that Pr[|E[A(DS
x )]− E[A(DP

x)]| > ε+ η] < 2−2n. It follows that

Pr[∃x : |E[A(DS
x )]− E[A(DP

x)]| > ε+ η] ≤
∑
x

Pr[|E[A(DS
x )]− E[A(DP

x)]| > ε+ η]

<
2n

22n
= 2−n.

So, Pr[∀x : |E[A(DS
x )] − E[A(DP

x)]| ≤ ε + η] > 1 − 2−n. In other words, the probability A has advantage at
most ε+η (on any x) is bounded away from zero. By an averaging argument, it follows that there must exist
some fixed choice of Sim1, . . . ,Simk that satisfies this bound on distinguishing advantage for A.

Definition 6 (Fine-Grained Non-Interactive Proofs in the URS Model). A pair of algorithms
(Prover,Verifier) is called a F-fine-grained non-interactive proof system in the URS model for a language L
if the algorithm Prover is polynomial-time, (uniformly generated) Verifier ∈ F|x| (Verifier can be uniformly
generated), there exists a polynomial p(·) and a negligible function µ(·) such that the following two conditions
hold:

– Completeness: For every x ∈ L

Pr[URS← {0, 1}p(|x|);π ← Prover(x,URS) : Verifier(x,URS, π) = 1] ≥ 1− µ(|x|).

– Soundness: For every x /∈ L, every algorithm P ∗

Pr[URS← {0, 1}p(|x|);π′ ← P ∗(x,URS) : Verifier(x,URS, π′) = 1] ≤ µ(|x|).

Definition 7 (Fine-Grained Non-Interactive Zero-Knowledge in the URS Model). Let (Prover,Verifier)
be a F-fine-grained non-interactive proof system in the URS model for the language L. We say that
(Prover,Verifier) is a F-fine-grained non-adaptively zero-knowledge in the URS model if there exists
a randomized circuit Sim in F such that the following two distribution ensembles are computationally
indistinguishable by circuits in F (when the distinguishing gap is a function of |x|)

{(URS, π) : URS← {0, 1}p(|x|);π ← Prover(URS, x)}x∈L
{(URS′, π′)← Sim(x)}x∈L.

We say that a fine-grained non-interactive proof system in the URS model is a statistical NIZK protocol
(or alternatively achieves statistical zero knowledge) if the above distribution ensembles are statistically close.

Definition 8 (Fine-Grained Non-Interactive Zero-Knowledge with Offline Simulation (oNIZK)
in the URS Model). Let (Prover,Verifier) be a F-fine-grained non-interactive proof system in the URS
model for the language L. We say that (Prover,Verifier) is a F-fine-grained non-adaptively zero-knowledge
with offline simulation in the URS model if there exists a distribution DSim over circuits in F such that
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the following two distribution ensembles are computationally indistinguishable by circuits in F (when the
distinguishing gap is a function of |x|)

{(URS, π) : URS← {0, 1}p(|x|);π ← Prover(URS, x)}x∈L
{(URS′, π′)← Sim(x) : Sim← DSim}x∈L.

Note that by the same argument as above, our fine-grained NIZK definition (for F = NC1) implies
witness hiding and weak zero knowledge with inverse-polynomial distinguishing advantage. Specifically, for
the witness hiding case: Let D be a distribution over statements x ∈ L. Assume that L has witness relation
R such that x ∈ L if and only if there exists a witness w such that (x,w) ∈ R. Note that WLOG we can
assume that R ∈ NC1. Assume that for all circuits C ∈ NC1,

Pr
x∼D

[R(x,C(x)) = 1] ≤ negl(|x|).

Then we have that for all circuits C ′ ∈ NC1

Pr
x∼D

[R(x,C ′(x,URS, π)) = 1 : URS← {0, 1}p(|x|);π ← Prover(URS, x)] ≤ negl(|x|).

2.2 Witness Indistinguishability and Fine-Grained Witness Indistinguishability

Definition 9 (Witness Indistinguishability). A proof system 〈Prover,Verifier〉 for a language L is
witness-indistinguishable if for any polynomial time V ∗, for all x ∈ L, for all w1, w2 ∈ w(x), and for all
auxiliary inputs z to V ∗, the distribution on the views of V ∗ following an execution 〈Prover,Verifier〉(x,w1, z)
is indistinguishable from the distribution on the views of V ∗ following an execution 〈Prover,Verifier〉(x,w2, z)
to a non-uniform probabilistic polynomial-time distinguisher receiving one of the above transcripts as well as
(x,w1, w2, z).

Definition 10 (F-fine-grained Witness Indistinguishability). A proof system 〈Prover,Verifier〉 for a
language L is F-fine-grained witness-indistinguishable if Prover is polynomial-time, Verifier is in the class F
and for any V ∗ ∈ F , for all x ∈ L, for all w1, w2 ∈ w(x), and for all auxiliary inputs z to V ∗, the distribution
on the views of V ∗ following an execution 〈Prover,Verifier〉(x,w1, z) is indistinguishable from the distribution
on the views of V ∗ following an execution 〈Prover,Verifier〉(x,w2, z) to a non-uniform distinguisher in class
F receiving one of the above transcripts as well as (x,w1, w2, z).

2.3 ZAPs and Fine-Grained ZAPs

Definition 11 (ZAP). A ZAP is a 2-round (2-message) protocol for proving membership of x ∈ L, where
L is a language in NP. Let the first-round (verifier to prover) message be denoted ρ and the second-round
(prover to verifier) response be denoted π satisfying the following conditions:

– Public Coins: There is a polynomial p(·) such that the first round messages form a distribution on
strings of length p(|x|). The verifier’s decision whether to accept or reject is a polynomial time function
of x, ρ, and π only.

– Completeness: Given x, a witness w ∈ w(x), and a first-round ρ, the prover generates a proof π that
will be accepted by the verifier with overwhelming probability over the choices made by the prover and the
verifier.

– Soundness: With overwhelming probability over the choice of ρ, there exists no x′ /∈ L and second round
message π such that the verifier accepts (x′, ρ, π).

– Witness-Indistinguishability: Let w,w′ ∈ w(x) for x ∈ L. Then ∀ρ, the distribution on π when the
prover has input (x,w) and the distribution on π when the prover has input (x,w′) are nonuniform
probabilistic polynomial time (in |x|) indistinguishable, even given both witnesses w,w′.
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Definition 12 (F-fine-grained ZAP). A F-fine-grained ZAP is a 2-round (2-message) protocol for
proving membership of x ∈ L, where L is a language in NP. Let the first-round (verifier to prover) message be
denoted ρ and the second-round (prover to verifier) response be denoted π satisfying the following conditions:

– Public Coins and Fine-Grained Verifier: There is a polynomial p(·) such that the first round
messages form a distribution on strings of length p(|x|). The verifier’s decision whether to accept or
reject is a function of x, ρ, and π only, and is contained in F|x|.

– Completeness: Given x, a witness w ∈ w(x), and a first-round ρ, the prover, running in time polynomial
in |x|, can generates a proof π that will be accepted by the verifier with overwhelming probability over the
choices made by the prover and the verifier.

– Soundness: With overwhelming probability over the choice of ρ, there exists no x′ /∈ L and second round
message π such that the verifier accepts (x′, ρ, π).

– F-fine-grained Witness-Indistinguishability: Let w,w′ ∈ w(x) for x ∈ L. Then ∀ρ, the distribution
on π when the prover has input (x,w) and the distribution on π when the prover has input (x,w′) are
indistinguishable to nonuniform algorithms in the class F|x|, even given both witnesses w,w′.

2.4 NIWI and Fine-Grained NIWI

Definition 13 (NIWI). A NIWI is a non-interactive protocol for proving membership of x ∈ L, where L
is a language in NP. A single message π is sent from the prover to the verifier.

– Efficient Verifier: The verifier’s decision whether to accept or reject is a polynomial time function of
x and π only.

– Completeness: Given x and a witness w ∈ w(x), the prover generates a proof π that will be accepted
by the verifier.

– Soundness: There exists no x′ /∈ L and message π such that the verifier accepts (x′, π).
– Witness-Indistinguishability: Let w,w′ ∈ w(x) for x ∈ L. Then the distribution on π when the prover

has input (x,w) and the distribution on π when the prover has input (x,w′) are nonuniform probabilistic
polynomial time (in |x|) indistinguishable, even given both witnesses w,w′.

Definition 14 (F-fine-grained NIWI). A F-fine-grained NIWI is a non-interactive protocol for proving
membership of x ∈ L, where L is a language in NP. A single message π is sent from the prover to the verifier.

– Fine-Grained Verifier: The verifier’s decision whether to accept or reject is a function of the statement
x and proof π only, and the verifier’s circuit is contained in F|x|.

– Completeness: Given x, and a witness w ∈ w(x) the prover, running in time polynomial in |x|, can
generate a proof π that will be accepted by the verifier with overwhelming probability over the choices
made by the prover and the verifier.

– Soundness: There exists no x′ /∈ L and message π such that the verifier accepts (x′, π).
– F-fine-grained Witness-Indistinguishability: Let w,w′ ∈ w(x) for x ∈ L. Then the distribution

on π when the prover has input (x,w) and the distribution on π when the prover has input (x,w′) are
indistinguishable by the class F := {F|x|}|x|∈N, even given both witnesses w,w′.

2.5 NIZK and Fine-Grained NIZK without CRS and with uniform soundness

Definition 15 (Non-Interactive Proofs with uniform soundness). A pair of algorithms (Prover,Verifier)
is called a non-interactive proof system with uniform soundness T := T (|x|), for a language L if the algorithm
Verifier is deterministic polynomial-time, there exists a polynomial p(·) and a negligible function µ(·) such
that the following two conditions hold:

– Completeness: For every x ∈ L

Pr[π ← Prover(x) : Verifier(x, π) = 1] ≥ 1− µ(|x|).
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– Soundness: For every x /∈ L, every algorithm P ∗ running in uniform time T ,

Pr[π′ ← P ∗(x) : Verifier(x, π′) = 1] ≤ µ(|x|).

Definition 16 (Non-Interactive Zero-Knowledge with Offline Simulation (oNIZK) in the
standard model with uniform soundness). Let (Prover,Verifier) be a non-interactive proof system
with uniform soundness T := T (|x|) for the language L. We say that (Prover,Verifier) is zero-knowledge
with offline simulation if there exists a distribution DSim over polynomial-sized circuits Sim such that the
following two distribution ensembles are computationally indistinguishable by polynomial-sized circuits (when
the distinguishing gap is a function of |x|)

{π ← Prover(x)}x∈L
{π′ ← Sim(x) : Sim← DSim}x∈L.

As discussed previously, our NIZK definition above implies witness hiding, via the same argument.

Definition 17 (Fine-Grained Non-Interactive Proofs with uniform soundness). A pair of algo-
rithms (Prover,Verifier) is called a F-fine-grained non-interactive proof system with uniform soundness for
a language L if the algorithm Prover is polynomial-time, (uniformly generated) Verifier ∈ F|x|, there exists a
polynomial p(·) and a negligible function µ(·) such that the following two conditions hold:

– Completeness: For every x ∈ L

Pr[π ← Prover(x,URS) : Verifier(x, π) = 1] ≥ 1− µ(|x|).

– Soundness: For every x /∈ L, every uniform, PPT algorithm P ∗

Pr[π′ ← P ∗(x) : Verifier(x, π′) = 1] ≤ µ(|x|).

Definition 18 (Fine-Grained Non-Interactive Zero-Knowledge with Offline Simulation (oNIZK)
in the standard model with uniform soundness). Let (Prover,Verifier) be a F-fine-grained non-
interactive proof system with uniform soundness for the language L. We say that (Prover,Verifier) is F-
fine-grained zero-knowledge with offline simulation if there exists a distribution DSim over circuits in F such
that the following two distribution ensembles are computationally indistinguishable by circuits in F (when
the distinguishing gap is a function of |x|)

{π ← Prover(x)}x∈L
{π′ ← Sim(x) : Sim← DSim}x∈L.

As discussed previously, our fine-grained NIZK definition above implies witness hiding, via the same
argument.

3 ZAPs from NIZK

For our construction of ZAPs from oNIZK in the URS model, we will require a certain type of design, defined
next and first used by Nisan and Wigderson in their derandomization of BPP [NW88].

Definition 19 (Design). A (l, n′, n, c)-design consists of sets S1, . . . ,Sn′ ⊆ [l] such that the following hold:

– For each i ∈ [n′], |Si| = n,
– For each i, i′ s.t. i 6= i′, |Si ∩ Si′ | ≤ c.
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(l, n′, n, c) designs are known to exist for l := n2, constant c ∈ N, and n′ := nc [NW88].

Let Π = (ProverNIZK ,VerifierNIZK) be a non-adaptive oNIZK in the URS model with inefficient prover
for language L that has soundness 1/2 or better. Let sets S1, . . . ,Sn′ ⊆ [l] form a (l, n′, n, c)-design, where
l := n2, c := 3, and n′ := n3.

Verifier’s First Round Message: Recall that in the first round of a ZAP, the Verifier sends a random
string r to the Prover.

Prover Algorithm: On input statement st ∈ L, witness w, and random string r = r1|| · · · ||rn′ from the
Verifier:

1. Choose bits [xj ]j∈[l] at random. For a set S ⊆ [l], let [xj ]j∈S denote the substring of [x1, . . . , xl]
corresponding to indices in set S.

2. For each i ∈ [n′], let URSi = ri ⊕ [xj ]j∈Si , where each ri has length n and each |Si| = n (recall that the
sets Si are the sets of the design).

3. For i ∈ [n′], run ProverNIZK on input URSi and witness w, outputting proof πi.
4. Output [πi]i∈[n′] along with [x1, . . . , xl].

Verifier’s Algorithm after the Second Round: Recall that the Verifier’s first message is denoted r
and that the verifier gets input statement st. After observing the Prover’s message consisting of [πi]i∈[n′],
[x1, . . . , xl], the Verifier does the following:

1. For i ∈ [n′], set URSi = ri ⊕ [xj ]j∈Si
2. For i ∈ [n′], verify proof πi relative to URSi by running the verifier VerifierNIZK .
3. If all checks accept, then accept. Otherwise reject.

Theorem 7. Assume Π = (ProverNIZK ,VerifierNIZK) is a non-adaptive oNIZK proof system for language
L with an inefficient prover in the URS model. Then the above construction is a ZAP for language L with
an inefficient prover.

Soundness Proof: We say that a URS is “bad” relative to a statement st /∈ L that is not in the language, if
there exists an accepting proof relative to that URS (recall that the verifier is deterministic). For statement
st /∈ L and fixed [xj ]j∈[l], the probability over choice of r that every URSi, i ∈ [n′] is bad is at most 2−n

′
.

Since there are at most 2l choices for [xj ]j∈[l] (where l := n2), the probability over random choice of r that

there exists a setting of [xj ]j∈[l] such that each URSi is bad is at most 2n
2 · 2−n′ . Since we have set n′ := n3,

we have that that 2n
2 · 2−n′ = 2−n

3+n2

is negligible.

Witness Indistinguishability Proof: We consider the following distributions:

Hybrid Hw1 : This is the real world distribution with statement st and witness w1.

Hybrid Hw2 : This is the real world distribution with statement st and witness w2.

To prove WI, we must show that for every malicious verifier V ∗.

Hw1 ≈ Hw2 .

Towards this goal, we define the following sequences of hybrid distributions:

Hybrid Hi,w1,w2 , for i ∈ [n′]: Proofs with URSi′ for i′ ≤ i are honest proofs using w2. Proofs with URSi′
for i′ > i are honest proofs using w1.

Note that Hw1 = H0,w1,w2 and Hw2 = Hn′,w1,w2 .

Claim. For i ∈ [n′],
Hi−1,w1,w2 ≈ Hi,w1,w2 .
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Proof. Consider the distribution H∗,i,w1,w2(URS∗, π∗), where a draw from the distribution is defined as
follows:

– Run V ∗ to produce r = r1|| · · · ||rn′ , sample [xj ]j∈[l]\Si
– Set [xj ]j∈Si := URS∗ ⊕ ri.
– Set πi := π∗.
– For each i′ ∈ [i − 1], run the honest prover ProverNIZK on witness w2 and URSi′ = ri

′ ⊕ [xj ]j∈Si′ to
obtain proof πi′ .

– For each i′ ∈ {i+ 1, . . . , n′}, run the honest prover ProverNIZK on witness w1 and URSi′ = ri
′ ⊕ [xj ]j∈Si′

to obtain proof πi′ .
– Output [πi′ ]i′∈[n′] and x := [xj ]j∈[l].

Note that when (URS∗ = URShonest, π
∗ = πw1

) (resp. (URS∗ = URShonest, π
∗ = πw2

))
are generated as honest CRS/proofs with witness w1 (resp. w2), then H∗,i,w1,w2(URShonest, πw1

)
(resp. H∗,i,w1,w2(URShonest, πw2

)) is equivalent to Hi−1,w1,w2 (resp. Hi,w1,w2). We must also have that
H∗,i,w1,w2(URShonest, πw1

) (resp. H∗,i,w1,w2(URShonest, πw2
)) is indistinguishable from H∗,i,w1,w2(URSSim, πSim)

(where URSSim, πSim are generated by drawing a simulator from the oNIZK distribution and obtaining its
output), since otherwise we obtain a non-uniform PPT adversary that breaks the zero knowledge of the
underlying NIZK proof system. We will elaborate on how this indistinguishability is proved below. Assuming
that this is the case, we conclude that Hi−1,w1,w2 and Hi−1,w1,w2 are indistinguishable, which completes the
proof.

We now show that H∗,i,w1,w2(URShonest, πw1) (resp. H∗,i,w1,w2(URShonest, πw2)) is indistinguishable
from H∗,i,w1,w2(URSSim, πSim) (where URSSim, πSim are generated by drawing a simulator from the
oNIZK distribution and obtaining its output). Towards contradiction, assume the existence of non-
uniform PPT verifier V ∗ and non-uniform PPT distinguisher D distinguishing H∗,i,w1,w2(URShonest, πw1

)
(resp. H∗,i,w1,w2(URShonest, πw2

)) from H∗,i,w1,w2(URSSim, πSim). Using V ∗, D as above, we construct the
following distribution over poly-sized circuits that receive as input (URS∗, π∗):

– Run V ∗ to produce r = r1|| · · · ||rn′ , sample [xj ]j∈[l]\Si uniformly at random as well as any auxiliary
state stateV ∗ , which will be used by the distinguishing circuit D.

– Hardwired values:
1. Statement s and witnesses w1, w2.
2. Auxiliary state stateV ∗ .
3. r = r1|| · · · ||rn′ , [xj ]j∈[l]\Si .
4. For each i′ ∈ [i], hardwire truthtable Ti′ that takes as input [xj ]j∈Si∩Si′ (at most 3 input bits) and

outputs URSi′ = ri′ ⊕ [xj ]j∈Si′ , and proof πi′ honestly computed with statement st and witness w2.
5. For each i′ ∈ {i + 1, . . . , n′}, hardwire truthtable Ti′ that takes as input [xj ]j∈Si∩Si′ and outputs

URSi′ = ri′ ⊕ [xj ]j∈Si′ , and proof πi′ honestly computed with statement st and witness w1.
– Circuit Evaluation: On input (URS∗, π∗), do the following:
• Embed (URS∗, π∗): Set [xj ]j∈Si := ri ⊕ URS∗. Set πi := π∗.
• Compute Honest Proofs: Use the truthtables to compute URSi′ and πi′ for all i′ 6= i, where the
i′-th truthtable Ti′ takes input [xj ]j∈Si∩Si′ .

• Output of Prover: Combine the above two steps to obtain the Prover’s message: ([πi′ ]i′∈[n′′], x :=
[xj ]j∈[l]).

• Application of Distinguisher: Apply D (which may require stateV ∗ as auxiliary input) to the
transcript and output D(r, [πi′ ]i′∈[n′′], x := [xj ]j∈[l]).

Note that since each of the truth tables Ti′ takes a constant number of input bits, and since all the truth
tables can be evaluated in parallel, the above is a distribution over circuits corresponding to a (non-uniform)
NC0 circuit composed with the distinguisher D. When D is a poly-sized circuit, the resulting circuit drawn
from the distribution is poly-sized. Moreover, the expected distinguishing probability of a circuit drawn
from the above distribution is exactly equal to D’s distinguishing probability (which is assumed to be non-
negligible). But this contradicts the the zero knowledge property of the underlying oNIZK.
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Note the same proof as above holds for the case of F-fine-grained oNIZK, as long as the distribution
defined above is a distribution over circuits contained in F , whenever D is contained in F . This holds when
instantiating F with the class non-uniform NC1 since, as discussed above, the depth of “Embed” + “Compute
Honest Proofs” + “Output of Prover” is constant. So if the depth of D in the “Application of Distinguisher”
is logarithmic, then the depth of the entire “Circuit Evaluation” is logarithmic. We therefore obtain the
following theorem:

Theorem 8. Assume Π = (ProverNIZK ,VerifierNIZK) is a NC1-fine-grained, non-adaptive oNIZK proof
system in the URS model. Then the above construction is a NC1-fine-grained ZAP.

4 ZAPs, NIWI and oNIZK for AM or NP with Polynomial Security

Using Theorem 7 and the fact that non-adaptive (standard) NIZK with unbounded provers in the URS
model for AM can be constructed from one-way permutations, we obtain:

Theorem 9 (Informal). Assuming the existence of one-way permutations, there exist NIWI for AM with
inefficient provers.

Using known results [BOV03, BOV07] on transformation of ZAPs to NIWI proof systems via the
derandomization assumption of the existence of hitting set generators (HSG) against co-nondeterministic
uniform algorithms, we obtain:

Theorem 10 (Informal). Assuming the existence of one-way permutations and efficient 1/2-HSG against
co-nondeterministic uniform algorithms, there exist NIWI for NP with inefficient provers.

Finally, we observe that the only non-polynomial-time computations performed by the NIWI prover are
inversions of OWP, and that the hardness of the OWP is tunable to any 2n

ε

for any constant 0 < ε < 1,
since the input length of the OWP is independent of all other parameters. Therefore, we can use known
techniques to obtain oNIZK in the standard model that guarantees soundness against uniform adversaries.
Specifically, the soundness against uniform adversaries comes from the hardness of finding a collision in a
keyless collision resistant hash function. Assuming subexponential hardness of such collision resistant hash
functions, we can tune the hardness of finding such a collision to be any 2n

c

, for any constant c. We therefore
obtain the following:

Theorem 11 (Informal). Assuming the existence of one-way permutations, efficient 1/2-HSG against co-
nondeterministic uniform algorithms, and subexponentially-hard uniform collision resistant hash functions,
then for any constant 0 < ε < 1 and constant c ≥ 1, there exist oNIZK in the standard model for NP with

honest provers running in uniform time 2n
ε

and soundness against uniform adversaries running in time 2n
ε′

,
where n is security parameter.

5 Fine-Grained NIZK and ZAPs for NP

This section is chiefly devoted to constructing an NC1-fine-grained zero-knowledge non-interactive proofs for
NP. Our general approach is bootstrap a statistical NIZK just for languages in ⊕L/ poly to a fine-grained
NIZK for all of NP.

The NISZK protocol we bootstrap is a variant of NISZK protocol from [AR16], in turn constructed from
the randomized encodings of [IK00, IK02], adapted to work in the URS setting. Next we repurpose the
randomized encodings to construct a perfectly binding commitment scheme which is (a) hiding for NC1, yet
(b) extractable in ⊕L/ poly. Finally, to prove a circuit is satisfiable, the prover simply commits to a witness
and the ensuing circuit evaluation and appends a NISZK that the commitments indeed open to a satisfying
evaluation (which, when using such a special commitment scheme, is a ⊕L/ poly statement).

The fine-grained ZAP follows from the fine-grained NIZK by Theorem 8.
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5.1 Background on Randomized Encodings of [IK00, IK02]

We begin by reviewing some of the ingredients we require from the work of Ishai and Kushilevitz [IK00, IK02].
Our exposition in this subsection follows that of [App14].

Let BP = (G,φ, s, t) be a mod-2 BP of size `, computing a Boolean function f : {0, 1}n → {0, 1}; that is,
f(x) = 1 if and only if the number of paths from s to t in Gx equals 1 modulo 2, where Gx is the subgraph
of G specified momentarily. Fix some topological ordering of the vertices of G, where the source vertex s is
labeled 1 and the terminal vertex t is labeled `.

Let A(x) be the ` × ` adjacency matrix of Gx viewed as a formal matrix whose entries are degree-1
polynomials in the input variables, x1, . . . , xn = x. Specifically, the (i, j) entry of A(x) contains the value of
φi,j(x), where φi,j(x) is equal to either a constant function 1 or some literal, such as xk or x̄k. We constrain
φ such that if (i, j) is not an edge, the entry is necessarily 0. Define L(x) as the submatrix of A(x) − I
obtained by deleting column s and row t (i.e., the first column and the last row). As before, each entry of
L(x) is a degree-1 polynomial in a single input variable xi; moreover, L(x) contains the constant −1 = 1
mod 2 in each entry of its second diagonal (the one below the main diagonal) and the constant 0 below this
diagonal (see Figure 5.1).



1 r
(1)
1 r

(1)
2 · · r(1)`−2

0 1 · · · ·
0 0 1 · · ·
0 0 0 1 · ·
0 0 0 0 1 r

(1)

(`−1
2 )

0 0 0 0 0 1




φ1,2(x) φ1,3(x) · · · φ1,`(x)

1 · · · · ·
0 1 · · · ·
0 0 1 · · ·
0 0 0 1 · ·
0 0 0 0 1 φ`−1,`(x)





1 0 0 0 0 r
(2)
1

0 1 0 0 0 r
(2)
2

0 0 1 0 0 ·
0 0 0 1 0 ·
0 0 0 0 1 r

(2)
`−2

0 0 0 0 0 1


Fig. 5.1. The matrices R1(r(1)), A(x), and R2(r(2)).

Let r(1) and r(2) be vectors of F2 of length
∑`−2
i=1 i =

(
`−1
2

)
and ` − 2, respectively. Let R1(r(1)) be an

(` − 1) × (` − 1) matrix with 1’s on the main diagonal, 0’s below it, and r(1)’s elements in the remaining(
`−1
2

)
entries above the diagonal (a unique element of r(1) is assigned to each matrix entry). Let R2(r(2)) be

an (`− 1)× (`− 1) matrix with 1’s on the main diagonal, r(2)’s elements in the rightmost column, and 0’s
in each of the remaining entries (see Figure 5.1).

We will also need the following facts. Note that in all that follows, we consider all arithmetic over F2,
including determinants.

Fact 1 ([App14]) Let M,M ′ be (`− 1)× (`− 1) matrices that contain the constant −1 = 1 mod 2 in each
entry of their second diagonal and the constant 0 below this diagonal. Then, det(M) = det(M ′) if and only
if there exist r(1) and r(2) such that R1(r(1))MR2(r(2)) = M ′.

Lemma 1 ([App14]). Let BP be a mod-2 branching program computing the Boolean function f . Define a

function f̂(x, (r(1), r(2))) := R1(r(1))L(x)R2(r(2)). Then f̂ is a perfect randomized encoding of f .

Define M0 and M1 as matrices that are all 0 except for the lower diagonal which is 1, and the top right
entry which is 1 in the case of M1 (and 0 in the case of M0).

M0 :=


0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

 M1 :=


0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
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Lemma 2. Assuming ⊕L/poly 6⊆ NC1, the distributions R1(r(1))M0R2(r(2)) and R1(r(1))M1R2(r(2))
cannot be distinguished by NC1 circuits, where r(1), r(2) are chosen at random.

5.2 Statistical NIZK protocol in the URS model for ⊕L/ poly

Due to properties of the randomized encoding construction of [IK00], we can construct a statistical NIZK
protocol in the uniform random string (URS) model for languages in ⊕L/poly. Our protocol is heavily
based on the protocol of Applebaum and Raykov [AR16], which gave a NISZK construction in the common
reference string (CRS) model for languages that have (statistical) randomized encodings. Our protocol is
described next:

– URS Generation: The URS consists of λ random strings, each from {0, 1}t = {0, 1}(
`−1
2 )+`−1.

– Prover: On input statement matrix M = L(x) (as defined in Section 5.1), the prover does the following:
1. For i ∈ [λ], use the i-th block of t bits to populate the upper-triangular entries of a matrix M ′i that

has −1’s on its second diagonal and 0’s below it.

2. For i ∈ [λ], if det(M ′i) = 0, reveal r
(1)
i , r

(2)
i of the correct form such that R1(r

(1)
i )M0R2(r

(2)
i ) = M ′i ,

where M0 is a determinant 0 matrix of “canonical form.” Otherwise, reveal r(1), r(2) of the correct
form, such that

R1(r
(1)
i )MR2(r

(2)
i ) = M ′i .

3. Output π = [(r
(1)
i , r

(2)
i )]i∈[λ].

– Verifier: On input (URS,M, π = [(r
(1)
i , r

(2)
i )]i∈[λ]), the verifier checks that for all i ∈ [λ], either M ′i =

R1(r
(1)
i )M0R2(r

(2)
i ) or M ′i = R1(r

(1)
i )MR2(r

(2)
i ).

Lemma 3. The protocol above is a NIZK proof system with statistical soundness and statistical zero
knowledge in the URS for languages L ∈ ⊕L/poly. Moreover, the NIZK simulator can be instantiated
by sampling a NC1 circuit Sim from an efficiently samplable distribution DSim.

The only way that soundness fails, is if all λ instances M ′i obtained from the URS have determinant
0. This occurs with probability at most 2−λ, due to the fact that the randomized encodings of [IK00] are
“balanced” (i.e. an equal number of strings correspond to an encoding of 0 vs. 1).

Statistical Zero knowledge. We define the following randomized circuit Sim ∈ NC1. Sim takes as input
the instance, represented by M , and a sufficiently long string of random coins and does as follows:

– Sample a random set S ⊆ [λ] of indices, where each i ∈ [λ] is placed in S with independent probability
1/2.

– Sample random bitsrings (r
(1)
i , r

(2)
i ) of the correct length for i ∈ [λ].

– For i ∈ S, Sim sets the corresponding t bit string of the URS to consist of the entries of R1(r
(1)
i )M0R2(r

(2)
i )

and reveals (r
(1)
i , r

(2)
i ).

– For i /∈ S, Sim sets the corresponding t bit string of the URS to consist of the entries of R1(r
(1)
i )MR2(r

(2)
i )

and reveals (r
(1)
i , r

(2)
i ).

5.3 G-extractable, F-Fine-Grained Commitments for NC1

G-extractable, F-Fine-Grained Commitments are are commitments that are perfectly binding and have the
following properties (see also Definition 3 for a formal description):

– The commitments can be computed and opened in class F .
– Given a commitment, the committed value can be extracted in class G.
– The hiding property of the commitment holds against adversaries in class F .

20



For our purposes, we will consider G to be the class ⊕L/poly and the class F to be the class NC1.

Define the following languages Ldet, Ldet. Ldet is the set of ` − 1 × ` − 1 matrices M with −1 on the
second diagonal, 0’s below the second diagonal, 0 or 1 elements on the diagonal and above such that M has
determinant 1 over F2. Ldet is the set of `− 1× `− 1 matrices M with −1 on the second diagonal, 0’s below
the second diagonal, 0 or 1 elements on the diagonal and above such that M has determinant 0 over F2.

Lemma 4. The languages Ldet and Ldet are contained in ⊕L/poly.

Toda [Tod84] showed that the determinant is complete for #L by demonstrating NC1-computable
projection from the determinant to counting paths in acyclic graphs. It follows that evaluating the
determinant in F2 can be done in ⊕L/poly.

Construction of ⊕L/poly-extractable, NC1-Fine-Grained Commitment Scheme: To commit to a 1, choose
random (r(1), r(2)) of appropriate length and output R1(r(1))M0R2(r(2)). To commit to a 0, choose random
(r(1), r(2)) of appropriate length and output R1(r(1))M1R2(r(2)).

The required properties of the ⊕L/poly-extractable, NC1-Fine-Grained Commitment Scheme follow from
Lemma 4 and from the assumption that ⊕L/poly 6⊆ NC1, as shown by [DVV16].

5.4 NC1-Fine-Grained NIZK for Circuit SAT

Assume C is represented as a circuit consisting of NAND gates and assume it has z number of wires. The
value of each wire is committed (using the ⊕L/poly-extractable, NC1-fine-grained commitment scheme from
the previous section) as com1, . . . , comz. Recall that comi commits to 1 iff com1 ∈ Ldet and com1 commits
to 0 iff com1 ∈ Ldet. Additionally, recall that Ldet (and therefore also Ldet) is contained in ⊕L/poly. The
language LC consists of strings com1, . . . , comz which satisfy all of the following:

– comz ∈ Ldet
– For each gate G` with with input wires i, j and output wire k:(

comi ∈ Ldet ∧ comk ∈ Ldet
)
∨
(
comj ∈ Ldet ∧ comk ∈ Ldet

)
∨(

comi ∈ Ldet ∧ comj ∈ Ldet ∧ comk ∈ Ldet
)
.

We denote this as (comi, comj , comk) ∈ Lgate.

Due to closure of ⊕L/poly w.r.t. negation, conjunction and disjunction [BG99], we have that LC ∈ ⊕L/poly.

Construction of NC1-Fine-Grained NIZK for Circuit SAT. Given a circuit-SAT instance with circuit C,
commit to the witness w using the above type of commitment (i.e. the witness corresponds to the values of
all wires in the circuit C and the commitment is a wire-by-wire commitment to those values as above).
We have shown above that the following language LC is then in ⊕L/poly LC : {(com1, . . . , comz) :
com1, . . . , comz are commitments to w = w1, . . . , wz and w is a circuit-SAT witness for C}.

Now, applying the argument system from before to proving statement (com1, . . . , comz) is contained in
language LC yields a fine-grained NIZK in the URS model for circuit SAT.

In more detail, the construction proceeds as follows: The Prover commits to witness w = w1, . . . , wz using
a⊕L/poly-extractable, NC1-Fine-Grained Commitment Scheme, yielding (com1, . . . , comz). The Prover then
runs the statistical NIZK protocol given above in Section 5.2 to prove that (com1, . . . , comz) ∈ LC .

Theorem 12. The construction above is a NC1-fine-grained NIZK proof system for the circuit SAT language.

Note that the above implies a NC1-fine-grained NIZK proof system for all of NP. This is because given an
NP language, L, with a canonical polynomial size verification circuit V (x,w), the prover can simply prove
that the circuit Vx(·) := V (x, ·) is satisfiable. Because each bit of Vx is computable in NC0, the NIZK verifier
can generate Vx independently of the prover.
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To argue zero knowledge of the NIZK against a NC1 distinguisher, we define the following randomized
circuit Sim′ ∈ NC1. Sim′ takes as input the instance, represented by NAND circuit C consisting of z number
of wires, and a sufficiently long string of random coins and does as follows:

– Generate z commitments to garbage (com1, . . . , comz).
– Let Sim be the zero knowledge simulator defined in Section 5.2 for languages in ⊕L/poly.
– Sim′ runs the simulator Sim on input statement (com1, . . . , comz) and language LC .
– Sim′ outputs whatever Sim outputs.

Note that Sim′ ∈ NC1, since Sim ∈ NC1. If a NC1 adversary can distinguish simulated and real proofs,
then we can use the adversary to break the hiding property of the ⊕L/poly-extractable, NC1-Fine-Grained
Commitment Scheme, a contradiction.

We now present an alternative construction of NC1-fine-grained NIZK in the URS model, which will be
needed to construct NC1-fine-grained oNIZK with uniform soundness in the standard model.

Alternative Construction. The following alternative construction of a NC1-fine-grained NIZK proof system
for the Circuit SAT language will be useful for some of our applications. In the alternate construction, the
Prover still produces a single set of commitments (com1, . . . , comz) to the wire values of the circuit C, but we
include a separate URS for proving that the satisfying assignment is valid for each individual gate. Details
follow.

Given a circuit C with t gates and a common random string split into t + 1 sections URS0, . . . ,URSt,
witness w = w1, . . . , wz (which consists of the values of each of the z wires of C corresponding to a
satisfying assignment. The Prover does as follows: Commit to the values of the wires, using the ⊕L/poly-
extractable, NC1-Fine-Grained Commitment Scheme, producing commitments com1, . . . , comz. Use URS0 to
prove that comz ∈ Ldet. For the `-th gate, with input wires i, j and output wire k, use URS` to prove that
(comi, comj , comk) ∈ Lgate. Note that Ldet and Lgate are both contained in ⊕L/poly. Therefore, to prove
each of the z + 1 statements, the NIZK in the URS model given in Section 5.2 can be used.

The simulator Sim′ is almost exactly as above: On input circuit C, Sim′ still proceeds by randomly
generating a commitments (com1, . . . , comz) to garbage. We also now will now invoke the simulator Sim ∈
NC1 given in Section 5.2, Sim′ now has z+1 number of statements to be proven about different subsets of the
commitments (com1, . . . , comz), each proof with a separate URS. In parallel for the z + 1 statements, Sim′

invokes Sim with the corresponding i-th statement. Each invocation of Sim outputs a URSi and a proof πi.
Sim′ then concatenates the URS’s and proofs and outputs the result as the final simulated URS and proof.

Since Sim′ ∈ NC1, if a NC1 adversary can distinguish simulated and real proofs, then we can use the
adversary to break the hiding property of the ⊕L/poly-extractable, NC1-fine-grained commitment scheme,
a contradiction.

5.5 NC1-Fine-Grained ZAPs for Circuit SAT

We use the construction above together with Theorem 8 to obtain the following:

Theorem 13. Assuming that ⊕L/poly 6⊆ NC1, there exist NC1-fine-grained ZAPs for NP.

5.6 NC1-Fine-Grained NIWI for NP

We use the transformation of Barak et al. [BOV03, BOV07] from ZAPs to NIWI, that relies on the existence of
hitting set generators (HSG) against co-nondeterministic uniform algorithms. Note that this transformation
retains statistical soundness (due to the properties of the HSG) and retains its witness indistinguishability
against NC1 adversaries. However, the verifier may no longer be in NC1, since the verifier must evaluate the
HSG in order to check that the prover is using the correct URS for each of the sub-proofs. To remedy this
situation, the prover evaluates the HSG and then sends a tableau of the computation (which can be verified
in AC0) to the verifier, who can then verify that the URS being used is indeed consistent with the output of
the HSG.
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Theorem 14. Assuming that ⊕L/poly 6⊆ NC1, the existence of efficient 1/2-HSG against co-nondeterministic
uniform algorithms, there exist NC1-fine-grained NIWI for NP.

5.7 NC1-Fine-Grained oNIZK with uniform soundness

We now assume existence of a uniform collision resistant hash function h. Let Ch be the circuit that takes
two inputs x1, x2 and outputs 1 if x1 6= x2 and h(x1) = h(x2). On input circuit SAT circuit C, the prover
now proves circuit satisfiability of the circuit C′, where C′ is defined as follows: C′ takes public input desc(C),
which is a description of the circuit C, and private input x. C′ outputs 1 on input (desc(C), x) if and only if
x is a satisfying assignment for C or x is a satisfying assignment for Ch. Note that C′ is a NC1 circuit.

On input statement C, the Prover uses the NIWI based on the alternate construction of the NC1-fine-
grained NIZK proof system with statistical soundness for the Circuit SAT language to prove that (1)
(com1, . . . , comz) is a satisfying assignment for C′ and (2) The commitments corresponding to the public
input decommit to values that are consistent with desc(C).

The verifier runs the verifier of the NIWI to verify the proof for the statements (1) and (2) above.

To prove zero knowledge with offline simulation (oNIZK), we must show a distribution DSim over
NC1 circuits such that a circuit drawn from this distribution, evaluated on input statement C produces
a distribution over proofs that is indistinguishable from real proofs for a NC1 circuit.

A draw from DSim is defined as follows:

– Sample colliding inputs x1, x2 for h.
– For each wire i of C′, sample a commitment to 0 and a commitment to 1: (com0

i , com
1
i ).

– For each public wire i of C′, compute honest proofs π0
in,i, π

1
in,i proving that com0

i ∈ Ldet and that

com1
i ∈ Ldet, respectively.

– For the output wire z of C′, compute an honest proof πout that com1
z ∈ Ldet.

– For each gate with input wires i, j and output wire k of C′, compute 4 honest proofs [πb1,b2gate,i,j,k]b1,b2∈{0,1}

proving that comb1
i , com

b2
j , com

1−b1∧b2
k ∈ Lgate, for b1, b2 ∈ {0, 1}.

– Hardwired Values: A satisfying assignment y (using colliding inputs x1, x2) for Ch and [com0
i , com

1
i ]i∈[z],

(π0
in,i, π

1
in,i), πout, [πb1,b2gate,i,j,k]i,j,k,b1,b2 .

– Circuit Evaluation: On input desc(C), choose the appropriate public inputs corresponding to that
input. Additionally, chose the private inputs corresponding to the satisfying assignment y. Let bin(i)
denote the value of the i-th public input wire. Assume there are a total of z′ input wires. Using these,
compute the values of all wires of C′ (this can be done in NC1, since C′ is a NC1 circuit). Let b(i) denote the

value of the i-th wire of C′. Output commitments [com
b(j)
i ]i∈[z] and proofs [π

bin(i)
in,i ]i∈[z′], [π

b(i),b(j)
gate,i,j,k]i,j,k.

Note that the outputted distribution is indentical to an honest proof with witness corresponding to a
satisfying assignment of Ch. Thus, by the witness indistinguishability property of the proof system, the
simulated proof is indistinguishable from the real proof.

Moreover, note that by the collision resistance of h, soundness still holds against uniform, poly-time
provers.
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