
Formalising Oblivious Transfer in the Semi-Honest
and Malicious Model in CryptHOL

David Butler
The Alan Turing Institute

London, UK
dbutler@turing.ac.uk

David Aspinall
The University of Edinburgh

Edinburgh, UK
david.aspinall@ed.ac.uk

Adrià Gascón
Google

London, UK
adriagascon@gmail.com

Abstract
Multi-Party Computation (MPC) allows multiple parties to
compute a function together while keeping their inputs pri-
vate. Large scale implementations of MPC protocols are be-
coming practical thus it is important to have strong guaran-
tees for the whole development process, from the underlying
cryptography to the implementation. Computer aided proofs
are a way to provide such guarantees.
We use CryptHOL [5, 26] to formalise a framework for

reasoning about two party protocols using the security def-
initions for MPC. In particular we consider protocols for
1-out-of-2 Oblivious Transfer (OT 1

2) — a fundamental MPC
protocol — in both the semi-honest and malicious models.
We then extend our semi-honest formalisation toOT 1

4 which
is a building block for our proof of security for the two party
GMW protocol — a protocol that can securely compute any
Boolean circuit.

The semi-honestOT 1
2 protocol we formalise is constructed

from Extended Trapdoor Permutations (ETP), we first prove
the general construction secure and then instantiate for the
RSA collection of functions — a known ETP. Our general
proof assumes only the existence of ETPs, meaning any in-
stantiated results come without needing to prove any secu-
rity properties, only that the requirements of an ETP are
met.

Keywords Multi-Party Computation, Oblivious Transfer,
Formal Verification, Isabelle/HOL, Malicious Security

1 Introduction
The area of provable security provides a firm mathematical
foundation for reasoning about cryptography resulting in
proofs of security being at the heart of modern cryptogra-
phy. However even with the increased rigour and detail this
affords cryptographic proofs often still present informal or
intuitive reasoning.

To overcome the crisis of rigor [6] formal tools have been
developed to allow for the computer-aided checking of proofs.
CryptoVerif [7], CertiCrypt [3], EasyCrypt [4], FCF [32] and
CryptHOL [5, 26] have all been used to formalise cryptog-
raphy. Proofs of security can broadly be partitioned into
one of two types: game-based [6, 34] and simulation-based
proof [15, 19]. All the tools in the preceding list were ini-
tially designed for game-based proofs however some have

been used for simulation-based proofs too; in [11] and [21]
standalone MPC protocols were considered, whereas more
recent work [28] and [16] considers composibility in the form
of Constructive Cryptography and Universal Composibility
respectively.
In this work we consider the simulation-based paradigm

in the context of MPC. MPC aims to provide protocols for
parties who wish to jointly compute functions over their
inputs while keeping their inputs private. Work on MPC
can be traced to Yao [35] where he posed and proposed the
first solution to the problem. Initially MPC was considered
an intellectual curiosity among cryptographers. However,
advances in the last decade and improvements in efficiency
and increased demand due to data protection regulations and
industry needs mean it is now starting to be deployed in the
real world. For example, it has been used for auctioning [9],
secure email filtering and teleconferencing [23] and private
statistical computation, e.g., using Sharemind [8]. It is this
potential large scale implementation of MPC that heightens
the need to examine it under the lens of formal verification.

In this work, we first consider Oblivious Transfer (OT), a
two party protocol, which is at the heart of many MPC proto-
cols. Its most simple form is 1-out-of -2 OT (OT 1

2) where the
Receiver chooses to learn one of two pieces of information
held by the Sender, and learns nothing of the other piece,
moreover the Sender does not learn the Receivers choice.
OT 1

2 is described by the functionality fOT 1
2
,

fOT 1
2
((m0,m1),σ) = (_,mσ). (1)

Here party 1, the Sender, holds two messages (m0,m1) and
party 2, the Receiver, holds its choice bit σ . At the end of the
protocol the Sender receives nothing (denoted by ‘_’) and
the Receiver obtains its chosen message,mσ .

Our study of OT here is motivated by its almost universal
use across MPC and its central role to Garbled Circuits [36]
and GMW [20]. The GMW protocol allows for the secure
computation of any function that can be represented as a
Boolean circuit. To achieve this OT 1

4 is required and thus
motivates our formalisation of OT 1

4 as a stepping stone in
our formalisation of the two party GMW protocol.
There are two adversary models of differing strength in

the simulation-based paradigm. First, the semi-honest model
assumes the parties do not deviate from the protocol descrip-
tion. This may appear to be a weak definition, but it ensures

1

there is no inadvertent data leakage from the protocol and
acts as an important baseline of security. For example, if
the server of one of the parties was compromised and an
adversary accessed the trace of the protocol execution the ad-
versary can learn nothing of the party’s inputs beyond what
can be learnt from the output. We follow the exposition of
Lindell [24] in the semi-honest setting. The second, stronger,
model is the malicious model where we allow the adversary
to fully control (corrupt) one of the parties. Here we for-
malise the definitions of malicious security from Goldreich
[19] and Lindell and Hazay [22].

We formalise our proofs in the theorem prover Isabelle/HOL
using CryptHOL [5, 26] which provides a shallow embed-
ding of a probabilistic programming language. We follow
the literature definitions and define security using proba-
bilistic programs that describe the real view a party sees in
a protocol execution and an ideal world where security is
guaranteed by construction. An increasing number of proofs
have been completed using CryptHOL [2, 13, 27, 29].

1.1 Contributions
By using the modularity and expressiveness of CryptHOL
and Isabelle we construct a framework for reasoning formally
about the security of Multi-Party Computation protocols
in the two party setting. In this work we instantiate our
definitional framework to reason about Oblivious Transfer
protocols and the two party GMW protocol.
We believe our work advances the state of the art in two

separate directions:
(i) We extend the work of Butler et al. [11] by giving more

modular proofs of OT protocols in the semi-honest setting,
building OT 1

4 from OT 1
2 , and proving security of the two

party GMW protocol.
(ii) Moreover we investigate the malicious security model

for MPC by proving the OT 1
2 of [22]. This complements the

work of Haagh et al. [21] in that the formalisation consid-
ers the same security definitions. However our formal proof
is for the full simulation-based definition, rather than an
intermediate non-interference based definition that was for-
malised in EasyCrypt and thus we lack the need for any
paper proofs.
The motivation for studying the two party GMW proto-

col is clear, it is a powerful result that allows for the secure
computation of any boolean circuit. To study this we re-
quire both OT 1

2 and OT 1
4 . Our motivation for studying the

particular OT 1
2 protocols we choose is twofold: first both

OT 1
2 protocols (one in the semi-honest model and one in

the malicious model) have proofs presented by Lindell (the
latter paper proof is from the book by Lindell and Hazay)
[22, 24]. Out of the many proofs written of cryptographic
protocols we find his among the clearest and most detailed,
and thus this seems like a good starting point for formali-
sation. Second, the OT 1

2 protocol constructed from an ETP

allows us to show how the general proof can be instantiated
for the RSA function — we believe this shows the benefits
of formalisation as our result allows more instantiations to
be proved secure without the need to consider the security
proofs in anyway.

Extending our work to maliciously secure OT 1
4 and GMW

is left as future work. From our experience of formalising
proofs in both semi-honest and malicious models we believe
a full formalisation of malicious GMW would require an-
other major proof effort. In particular, one would need to
expand the formalisation of Σ-protocols from [12, 14] to Zero
Knowledge protocols and work in the n party setting which
is thus far not considered in CryptHOL.

All definitions and theorems presented in this paper have
been checked by the Isabelle/HOL proof assistant. In addition
all statements made in this paper are only slight adaptations
from the Isabelle statements, we only slightly modify their
syntax for ease of reading. We believe that if the reader can
parse the statements presented in the paper then they would
be able to parse the formal statements in our theory.

1.2 Related work
Semi-honest security has been considered in EasyCrypt [1]
where the security of Garbled circuits is considered. The
authors give a formal definition of simulation-based security
using a game defined as a probabilistic program. As described
in Section 3.1 we prove their definitions are equivalent to
ours. The challenge faced in formal verification is to provide
definitions that are equivalent to the paper definitions. By
showing our definitions are equivalent to the ones provided
in [1] we add confidence to this equivalence.

The malicious model we consider has been formally stud-
ied in [21] where the authors prove security of Maurer’s
multiplication protocol [30]. This was the first work to con-
sider malicious security however their formalised definitions
were not directly from the literature. The authors proved
a meta-theorem (proven on paper) which showed their for-
malised definitions implied the traditional definitions of mali-
cious security. This is not necessarily a weakness of the work
because by proving the meta theorem a new approach is pro-
posed; nonetheless one would prefer a completely formalised
approach.

Originally CryptHOLwas used for game-based proofs [29]
and has recently been used for constructive cryptography
[27, 28] and commitment schemes and Σ-protocols [12–14].
In [10, 11] the authors used CryptHOL for MPC protocols in
the semi-honest model, this work builds on their definitions
to make them more abstract and reusable.
To the best of our knowledge none of the protocols con-

sidered in this paper have been formalised in any theorem
prover.

2

1.3 Outline of Paper and Formalisation
An outline of the paper can be seen in Fig. 1. Here dashed
boxes represent abstract definitional theories — we provide
some proof at this abstract level, for example our proof of
equivalence with the definitions of security from [1] in the
semi honest setting. Solid boxes represent proofs of secu-
rity and arrows represent imported theories. We provide
formalisation for the whole of Fig. 1.
We outline the work in this paper based on which adver-

sary model (semi-honest or malicious) it corresponds to.

Semi-honest model
• We first formalise a framework for reasoning about the
simulation-based definitions for the security of two
party MPC protocols (Section 3.1).
• We instantiate our framework to consider aOT 1

2 proto-
col [17] constructed from a general Extended Trapdoor
Permutation (ETP). We prove the construction secure
at an abstract level, assuming only the existence of an
ETP, meaning the results for known ETPs come for
free once we have proved they are in fact ETPs. As a
case study we show that RSA forms an ETP and thus
prove the corresponding security results (Section 4).
• Weprove howOT 1

4 is constructed fromOT 1
2 . Our proofs

here, again, are modular in the sense we assume an
OT 1

2 protocol exists to construct OT 1
4 . This allows for

differentOT 1
2 protocols to be plugged in at a later time

(Appendix C).
• Finally we prove security of AND and XOR gates in the
two party GMW protocol. Again we consider this in a
modular way by assuming that a secure OT 1

4 protocol
exists (Section 5).

Malicious model
• In an analogous way to the semi-honest model we
formalise the security definitions for two party MPC
protocols. (Section 6)
• We demonstrate how our framework can be instanti-
ated by proving security of a OT 1

2 protocol from [22].
(Section 6)

In our formalisation we first consider security in the con-
crete setting. Here we assume a constant security parameter
is implicit in all algorithms that parametrise the framework.
We prove all security notions in this setting first, by showing
a reduction for example, before utilising Isabelle’s module
system to prove security in the asymptotic setting — here we
reason about negligible functions in the security parameter.
More details about this part of our formalisation are given
in Section 4.5.

2 CryptHOL and Isabelle Background
In this section we follow [12] and briefly introduce Isabelle
and the notions we use throughout and then highlight and
discuss some important aspects of CryptHOL. Formore detail

on CryptHOL see [5, 26]. The full CryptHOL formalisation
is available at [25].

2.1 Isabelle
For function application we write f (x,y) in an uncurried
form for ease of reading instead of f x y as in the λ-calculus.
To indicate that term t has type τ we write t :: τ . Isabelle
uses the symbol⇒ for the function type, so α ⇒ β is the
type of functions that takes an input of type a and has out-
put of type β . The type ‘a denotes an abstract type. The
implication arrow −→ is used to separate assumptions from
conclusions inside a closed HOL statement. Sets, of type
α set are isomorphic to predicates, of type α ⇒ bool via the
membership map ∈. We write ⊗ to represent multiplication
in a group and · for multiplication of natural numbers.

2.2 CryptHOL
CryptHOL [5, 26] is a framework for reasoning about reduction-
based security arguments that is embedded inside the Is-
abelle/HOL theorem prover. At a high level it allows the
prover to reason about security by writing probabilistic pro-
grams and determine the relationships between them.
CryptHOL, like much of modern cryptography, is based

on probability theory. Probabilistic programs in CryptHOL
are shallowly embedded as sub-probability mass functions of
type spmf using Isabelle’s library for discrete distributions.
These can be thought of as probability mass functions with
the exception that they do not have to sum to one — we can
lose some probability mass. This allows for the modelling of
failure events and assertions. When a sub probability mass
function does sum to one, we say it is lossless.
HOL functions cannot in themselves provide effects like

probabilistic choice therefore all such effects are modelled
using monads. A monad consists of a (polymorphic) type
constructor, in this case spmf and two (polymorphic) opera-
tions:

• return :: α ⇒ α spmf
• bind :: α spmf ⇒ (α ⇒ β spmf) ⇒ β spmf .

We now introduce parts of CryptHOL that are particularly
relevant to our work.

2.2.1 Writing probabilistic programs
Probabilistic programs can be encoded as sequences of func-
tions that compute over values drawn from spmfs. CryptHOL
provides some, easy-to-read, Haskell-style do notation to
write probabilistic programs where do{x ← p; f (x)} is the
probabilistic program that samples from the distribution p
and returns the spmf produced by f . The do notation de-
sugars to p▷(λx . f (x)), where ▷ is the binding operator. The
desugaring can be read as; the output of f on input x where
x has been sampled from p. We can also return an spmf
using the monad operation return. For example to define the

3

2-PC defs
(Section 3.1)

Secret Sharing defs
(Section 3.2)

OT 1
2 from HCP

(Section 4.2)

RSA
(Section 4.4)

ETP defs
(Section 4.1)

OT 1
2 defs

(formalisation)
OT 1

4 defs
(formalisation)

OT 1
4 from OT 1

2
(formalisation)

GMW from OT 1
4

(Section 5)

2PC defs
(Section 6)

OT 2
1

(Section 6.2)

Malicious AdversariesSemi-Honest Adversaries

Figure 1. Outline of the formalisation for the paper.

security property of a Hard Core Predicate (HCP) associated
with an ETP we define the probabilistic program HCPgame .

HCPgame(A,σ , bσ ,D) ≡ do {
(α, τ) ← I ;
x ← S(α);
let b = B(α, F−1(α, τ , x));
b ′← A(α,σ ,bσ , x,D);
return(b = b ′)}

(2)

is tasked with guessing b by outputting b ′, if b = b ′ we say
the adversary wins the game. We introduce this game along
with the notion of ETPs in more detail in Section 4.1.

Our proofs of security are mainly completed by manipulat-
ing the appropriate probabilistic programs. While the proofs
that each manipulation is valid are not always accessible to
non-experts, the effect of each manipulation can be easily
seen and recognised as they are explicitly written in the do
notation.

2.2.2 Sampling
Sampling from sets is important in cryptography. CryptHOL
gives an operation samp-uniform which returns a uniform
distribution over a finite set.We use two cases of this function
extensively: by uniform(q), where q is a natural, we denote
the uniform sampling from the set {0, · · · < q} and by coin
we denote the uniform sampling from the set {True, False}
— a coin flip.

2.2.3 Probabilities
Security definitions are based on explicit probabilities of
events occurring. In CryptHOL the expression P[Q = x] de-
notes the subprobability mass the spmfQ assigns to the event
x . For example, to define the security property of an HCP
we consider the probability (advantage) that an adversary
wins the HCP game.

advHCP (A,σ ,bσ ,D) =

|P[HCPgame(A,σ ,bσ ,D) = True] −
1
2
|

We provide this definition in full in Definition 5. In our
proofs reasoning at this level is often the last step, much of
the proof effort is in showing properties of the probabilistic
programs over which the properties are defined.

2.2.4 Module System
CryptHOL extensively uses the module system available in
Isabelle — called locales. Locales allow the user to prove
theorems abstractly, relative to given assumptions. These
theorems can be reused in situations where the assumptions
themselves are theorems. In our case locales allow us to de-
fine properties of security relative to fixed parameters of ab-
stract type and then instantiate these definitions for explicit
protocols and prove the security properties as theorems.

2.2.5 Concrete vs Asymptotic security
In our formalisation, we first prove concrete security bounds
using reduction-style proofs. That is, we give a bound on the
adversary’s advantage (with respect to a security property)
as a function of advantages of different adversaries of the
primitives used in the construction.

From these concrete statements, we can easily derive more
abstract asymptotic security statements. To that end, a secu-
rity parameter must be introduced. We describe in Section
4.5 how we achieve this with little effort using Isabelle’s
locale system.

2.2.6 Negligible functions
To reason about security in the asymptotic case we must
consider negligible functions. These were formalised as a
part of CryptHOL. A function, f :: (nat ⇒ real) is said to
be negligible if

(∀c > 0. f ∈ o(λx .inverse(xc)))

where o is the little o notation. We discuss the use of such
functions in our proofs in Section 4.5.

3 Semi-honest security for MPC
In this section we show how we formalise the definitions
of security in the semi-honest model and how we define

4

secret sharing schemes and their correctness. As we are
interested in OT we consider only the two party setting.
Before detailing our formalisation we first introduce the
definitions of security from [24] that we follow.

3.1 Two party protocol security
Definitions from [24] A functionality is a function that
maps inputs to desired outputs for a defined protocol prob-
lem, for example the functionality describing OT 1

2 is given
in Equation 1. Functionalities can be deterministic or non-
deterministic1. In this section we show our formalisation
for the case where the functionality is deterministic (OT is
deterministic); for the case where the functionality is non-
deterministic we must extend the views in the real and ideal
world to also include the output of the protocol — we provide
these extended definitions in our formalisation.

For the deterministic case we first require correctness, that
is the output of the protocol must equal the output of the
functionality.

Intuitively we say a protocol is secure if whatever can be
computed by a party can also be simulated from only the
input and output of the party — in particular simulated not
using the input from the other party. We require that the
output of the real view and the simulator are indistinguish-
able. This simulation of the real execution of the protocol
means no information is leaked during its execution.
To define security we consider the real/ideal world para-

digm. Let π be a two party protocol with inputs (x,y). The
real view of the ith party (here i ∈ {1, 2}) is denoted by

viewπ
i (x,y) = (w, r

i ,mi
1, ...,m

i
t)

where w ∈ {x,y} and is dependent on which view we are
considering, r i accumulates random values generated by the
party during the execution of the protocol, and themi

j are
the messages received by the party. In short the real view is
the trace of the execution of the protocol that can be seen
by the party.
A protocol π is said to securely compute f in the pres-

ence of a semi-honest adversary if there exist probabilistic
polynomial time algorithms (simulators) S1, S2 such that,

{S1(x, f1(x,y))}
c
≡ {viewπ

1 (x,y)} (3)

{S2(y, f2(x,y))}
c
≡ {viewπ

2 (x,y)} (4)

where
c
≡ denotes computational indistinguishability. Unfor-

tunately, CryptHOL cannot reason about computational as-
pects, due to the shallow embedding. We therefore cannot
formalise the notion of computational indistinguishability.
Instead, we capture the underlying reduction argument in a
reduction-based security theorem. For example, in Theorem
3 we bound the advantage a distinguisher has of distinguish-
ing the real and simulated views for party two of the ETPOT 1

2
1Here a deterministic functionality will always produce the same output
from the same inputs.

construction by the advantage an adversary we construct
(AHCP) has against the hard core predicate game. The HCP
game is considered hard, therefore the reduction implies
security.
Reduction-based statements like this capture the key as-

pects of the security proof and are more generic in the sense
that we need not commit to a particular computational model
or complexity class such as polynomial time however the
reader must manually check that the reduction lies in the
desired complexity class.

Formalisation To formalise the semi-honest security defi-
nitions we begin by fixing the required parameters to make
our definitions in a locale.

locale semi-honest-det =
fixes funct :: ‘msg1 ⇒ ‘msg2 ⇒ (‘out1 × ‘out2) spmf
and protocol :: ‘msg1 ⇒ ‘msg2 ⇒ (‘out1 × ‘out2) spmf
and R1 :: ‘msg1 ⇒ ‘msg2 ⇒ ‘view1 spmf
and S1 :: ‘msg1 ⇒ ‘out1 ⇒ ‘view1 spmf
and R2 :: ‘msg1 ⇒ ‘msg2 ⇒ ‘view2 spmf
and S2 :: ‘msg2 ⇒ ‘out2 ⇒ ‘view2 spmf

We fix funct and protocol to represent the probabilistic
programs defining the output of the required functionality
and the protocol respectively and R1, S1, R2, S2 to represent
the real and simulated views of the parties. In any instantia-
tion it is the provers job to correctly translate the protocol
onto the definitions of these parameters.

A protocol is correct if it is functionally equivalent to the
functionality it implements.

Definition 1 (Correctness).

correct(m1,m2) ≡ (protocol(m1,m2) = funct(m1,m2))

Herem1 andm2 are the inputs to the protocol for Party 1
and 2.

In the case ofOT 1
2 the functionality given in Equation 1 is

encoded in Isabelle as.

functOT 1
2
((m0,m1),σ) = return(_, if σ then m1 else m0) (5)

Later, in Protocol 1, we will see a protocol that realises
this functionality.

Recall that the simulator for party i ∈ {1, 2} takes as input
the input for party i and the output from the functionality of
party i . We call the output of the simulator on these inputs
the ideal view. To construct the ideal view we sample from
the functionality and use the binding operator (▷) to hand
the appropriate output to the simulator. For party 1 the ideal
view is as follows:

ideal1(m1,m2) = funct(m1,m2) ▷ (λ(o1, o2). S1(m1, o1)) (6)

The right hand side of the statement can be read as: the
output distribution of the simulator (S1) on input m1 and
the output for Party 1 (o1) that has been sampled from the

5

functionality. More explicitly, using the monadic do notation
this reads:

do {(o1, o2) ← funct(m1,m2); S1(m1, o1)}.

For perfect security we require the real and simulated
views to be equal. We define this for Party 1 below:

Definition 2 (Perfect security, Party 1).

perfect-sec-P1(m1,m2) ≡ (R1(m1,m2) = ideal1(m1,m2))

We make the analogous definition for Party 2.
When perfect security cannot be proven we reason about

the advantage a distinguisher has of distinguishing the real
and ideal views. We define the advantage of a distinguisher,
D, for Party 1 as follows.

Definition 3.

adv-P1(m1,m2,D) ≡ (|P[(R1(m1,m2) ▷ D) = True]

−P[(ideal1(m1,m2) ▷ D) = True]|)

The definitions in this section have been extracted from
[11] and formalised in a more modular way so they can be in-
stantiated easily for any two party protocol that is considered
under this security paradigm.
In Almeida et al. [1] define semi-honest security using a

game where a bit is flipped to determine which view the
distinguisher is given. As well as the security definitions we
provide above, we also define in Isabelle the definitions from
[1] and prove the two are equivalent2.

3.2 Secret sharing schemes
Secret sharing schemes [33] are at the core of MPC protocols.
We formalise such schemes by fixing three parameters in a
locale; share, reconstruct and evaluate. The first two define
the sharing scheme and a third represents the set of functions
wewish to realise (in our instantiation of the two party GMW
protocol these are AND and XOR). We give their types below.

share :: ‘a⇒ (‘share × ‘share) spmf (7)
reconstruct :: (‘share × ‘share) ⇒ ‘a spmf (8)

evaluate :: (‘a⇒ ‘a⇒ ‘a spmf) set (9)
A sharing scheme is correct if reconstructing a shared

input returns the original input.

Definition 4 (Correctness on secret sharing).

correctshare(input) ≡

(share(input) ▷ (λ(s1, s2).reconstruct(s1, s2))

= return(input))

We use the notation given in this Section for the views and
advantages throughout the paper however we add subscripts
to note which protocol we are considering for clarity.
2We do not provide any proof directly from the EasyCrypt definitions, only
transcribe their definitions into Isabelle and prove they are equivalent to
our definitions.

4 1-out-of-2 OT using Enhanced Trapdoor
Permutations

In this section we present our formalisation of the proto-
col realising OT 1

2 using an Enhanced Trapdoor Permutation
(ETP) [17].

4.1 ETPs and HCPs
We recap the paper based definitions of an ETP and refer the
reader to [24] (Section 4.3) and [19] (Appendix C.1) for more
details.
A collection of trapdoor permutations is a set of permu-

tations (fα) along with four algorithms I ,S ,F and F−1, such
a collection can be thought of as a collection of one way
permutations with a trapdoor such that the inverse can be
obtained easily.
• I samples an index α of a permutation, fα , as well
as a corresponding trapdoor τ for the permutation,
(α, τ) ← I .

• S(α) samples a uniform element in the domain of fα .

• F performs the mapping of fα , F (α, x) = fα (x).

• F−1 computes the inverse of fα , F−1(α, τ ,y) = f −1α (y).
The definition of S provided in [24] and [19] gives values

of randomness as inputs meaning S is considered to be de-
terministic. However, there is no need for such input in our
formalisation as we model S (and I) as probabilistic programs
that toss their own random coins.

Example 1 (RSA ETP). The RSA function provides an ex-
ample of and ETP. We informally describe it here and note
that we treat it formally in Section B. Here we introduce the
ETP as it is done in [18].

The RSA function is considered on input (N , e):

FRSA((N , e), x) = xe mod N (10)

whereN = P ·Q for primes P andQ and e such that gcd(e, (P−
1) · (Q − 1)) = 1. That is IRSA must output (N , e) as the
index. The inverse function requires the trapdoor, τ that is
the multiplicative inverse of e mod (P − 1) · (Q − 1), and is
constructed as follows:

F−1RSA((N , e),d,y) = y
d mod N . (11)

Using the trapdoor we correctly compute the inverse, such
that the following holds:

F−1RSA((N , e),d, FRSA((N , e), x)) = x (12)

The range and domain of the RSA ETP are the same, namely
{0, . . .N − 1} and S(N , e) outputs a uniform sample from
this set.

ETPs have the added property that an HCP, B, is associated
with it. We assume such a B exists and fix it in the locale.
Informally, B is an HCP of f if, given f (α, x) for a uniformly

6

sampled x , an adversary cannot distinguish B(α, x) from a
random bit.

Our formalisation of ETPs fixes five parameters in a locale
etp-base: I , domain, range, F , F−1 and B.

locale etp-base =
fixes I :: (‘index × ‘trap) spmf

and domain :: ‘index ⇒ ‘domain set
and range :: ‘index ⇒ ‘range set
and F :: ‘index ⇒ (‘domain⇒ ‘range)
and F−1 :: ‘index ⇒ ‘trap⇒ (‘range⇒ ‘domain)
and B :: ‘index ⇒ ‘range⇒ bool

assumes (α, τ) ∈ set-spmf (I) → domain(α) = range(α)
and (α, τ) ∈ set-spmf (I) → finite(range(α))
and (α, τ) ∈ set-spmf (I) → range(α) , {}
and (α, τ) ∈ set-spmf (I) → bij-betw(F(α), domain(α), range(α))
and (α, τ) ∈ set-spmf (I) → x ∈ range(α)

→ F−1(α, τ , (F (α, x))) = x
and lossless-spmf (I)

Wemake six assumptions in the locale on the fixed param-
eters, the most interesting are the fourth and fifth. The fourth
assumption requires that F is a bijection if α is the index out-
putted by I and the fifth requires that the inverse is correct,
namely that applying F−1 to F returns the original input. We
make this assumption as we cannot explicitly define F−1 in
general, in particular the inverse function must use the trap-
door τ . We note that F−1 must be efficiently computable how-
ever as we do not have a notion for runtime in CryptHOL
any instantiation of F−1 must be manually checked to be
computable. In our instantiation for the RSA function the
inverse is clearly efficiently computable as it only requires
an exponentiation, F−1RSA((N , e), τ ,y) = y

τ mod N .
We define S as uniformly sampling from the range,

S(α) = samp-uniform(range(α)).

To formally define the security property of HCPs, we define
the HCP advantage advHCP which captures the probability
that A wins the HCP game. The aim of the adversary A in
the game is to guess the value of B.

Definition 5. To define advHCP we use the probabilistic pro-
gram, HCPgame , given in Equation 2 to define the HCP advan-
tage as,

advHCP (A,σ ,bσ ,D) =

|P[HCPgame(A,σ ,bσ ,D) = True] −
1
2
|.

In the HCP game (Equation 2) A receives α , σ (the Re-
ceivers input) and bσ (the output received by the Receiver)
as input. In addition, we must pass x to A. This is because
we do not carry around the randomness given to S however
we must allow the adversary access to x .

4.2 Realising OT 1
2 using ETPs

We consider the OT 1
2 protocol from [17] which is described

in Protocol 1.

Protocol 1. P1 has input (b0,b1) ∈ {0, 1}, P2 has input σ ∈
{0, 1}.

1. P1 samples an index and trapdoor, (α, τ) ← I , and sends
the index, α , to P2.

2. P2 samples S twice, xσ ← S(α), y1−σ ← S(α) and sets
yσ = F (α, xσ).

3. P2 sends y0 and y1 to P1.
4. P1 computes x0 = F−1(α, τ ,y0), x1 = F−1(α, τ ,y1), β0 =

B(α, x0) ⊕ b0 and β1 = B(α, x1) ⊕ b1.
5. P1 sends β0, β1 to P2.
6. P2 computes bσ = B(α, xσ) ⊕ βσ .

Intuitively, Party 2 samples yσ ,y1−σ where it only knows
the pre-image of one of them. Party 1 then inverts both pre-
images (as it knows the trapdoor) and sends both its input
messages to Party 2 masked by the HCP of the inverted pre-
images. Party 2 can obtain its chosen message as it knows
the inverse of the pre-image but learns nothing of the other
message as it cannot guess the HCP (with probability greater
than 1

2). Party 1 learns nothing of Party 2’s choice bit as it
only receives yσ ,y1−σ which have the same distribution.
We formalise the execution of the protocol with the fol-

lowing probabilistic program.
protocolOT 1

2 ,ET P
((bσ ,b1−σ),σ) = do {

(α, τ) ← I ;
xσ ← S(α);
y1−σ ← S(α);
let yσ = F (α, xσ);
let xσ = F−1(α, τ ,yσ);
let x1−σ = F−1(α, τ ,y1−σ);
let βσ = B(α, xσ) ⊕ bσ ;
let β1−σ = B(α, x1−σ) ⊕ b1−σ ;
return((), if σ then B(α, x1−σ) ⊕ β1−σ

else B(α, xσ) ⊕ βσ)}

Using this definition and the functionality given in Eq. 5
we show correctness of Protocol 1.

Theorem 2.

protocolOT 1
2 ,ETP
((b0, b1),σ) = functOT 1

2
((b0, b1),σ)

Proofs of correctness are proven by unfolding the relevant
definitions and providing Isabelle with some hints on how
to rewrite some terms. Depending on the protocol Isabelle
requires more or less help with the rewriting steps, more help
is needed when the steps require non trivial assumptions.
For example we had to prove certain constructed terms are
elements of the group when proving correctness of Protocol
4.

4.3 Proving security
To show the protocol is secure in the semi-honest model we
consider each party in turn and construct an appropriate
simulator. Here we focus on the proof of security for Party
2 as it is more interesting from both a cryptographic and

7

formal methods point of view. We follow the paper proof
from [24] (Section 4.3).
The real view for party 2 is everything the party sees in

the execution of the protocol, in this instance that is: the in-
put σ , the index α and the messages from Party 1 (βσ , β1−σ).
The samples xσ and y1−σ are not included as S is modelled
as a probabilistic program. The real view is described by the
following probabilistic program.

R2,OT 1
2 ,ET P

((b0,b1),σ) ≡ do {

(α, τ) ← I ;
xσ ← S(α);
y1−σ ← S(α);
let yσ = F (α, xσ);
let xσ = F−1(α, τ ,yσ);
let x1−σ = F−1(α, τ ,y1−σ);
let βσ = B(α, xσ) ⊕ (if σ then b1 else b0);
let β1−σ = B(α, x1−σ) ⊕ (if σ then b0 else b1);
return(σ ,α, (βσ , β1−σ))}

The only part of the real view we are unable to simulate
is the construction of β1−σ as it requires b1−σ — the message
party 2 does not receive and thus the simulator does not
have access to. However Theorem 3 shows that the follow-
ing simulator suffices.

S2,OT 1
2 ,ET P

(σ ,bσ) ≡ do {

(α, τ) ← I ;
xσ ← S(α);
y1−σ ← S(α);
let x1−σ = F−1(α, τ ,y1−σ);
let βσ = B(α, xσ) ⊕ bσ ;
let β1−σ = B(α, x1−σ);
return(σ ,α, (βσ , β1−σ))}

For the case where b1−σ = False we have perfect security,
the real and ideal views are equal.

Lemma 1. Assume ¬ b1−σ then we have

R2,OT 1
2 ,ETP
((b0, b1),σ) = ideal2,OT 1

2 ,ETP
((b0, b1),σ)

This implies that adv-P2,OT 1
2 ,ET P

((b0,b1),σ ,D) = 0 (when
b1−σ = False). It is left to consider the case where b1−σ =
True. In this case we construct an adversary, AHCP that
wins the HCP game if D (which is taken as an input) can
distinguish the real and simulated views — that is we show
a reduction to the HCP assumption.

AHCP (A,σ , bσ ,D) ≡ do {
β1−σ ← coin;
xσ ← S(α);
let βσ = B(α, xσ) ⊕ bσ ;
d ← D(σ ,α, βσ , β1−σ);
return(if d then β1−σ else ¬β1−σ)}

Lemma 2. Assume b1−σ then we have

adv-P2,OT 1
2 ,ETP
((b0, b1),σ ,D) = 2 · advHCP (AHCP,σ , bσ ,D)

The proof of Lemma 2 is technical and involved. We for-
mally define a number of intermediate probabilistic programs
that bridge the gap between the two sides of the equality in-
crementally. Our formal proof however still follows the over-
all structure of the proof in [24] (the sequence of equalities
on p. 14). We find one proof step was formally more difficult
to reason about than the others — namely the first equality
in the sequence; we are required to split the probability of
AHCP winning the HCP game into two cases, dependent on
the coin flip in AHCP (β1−σ). While splitting the probability
based on the outcome of the coin flip is obvious in the paper
proof, formally we have to work harder. The formal proof
is challenging as β1−σ is a bound variable inside the proba-
bilistic program that defines AHCP . Accessing and dealing
with this requires some underlying probability theory for-
malised in Isabelle. More precisely, we are required to prove
that extracting the sample from the probabilistic program is
legitimate so the cases can be reasoned about.

Using Lemmas 1 and 2 we bound the advantage for Party
2.

Theorem 3.

adv-P2,OT 1
2 ,ETP
((b0, b1),σ ,D) ≤ 2 · advHCP (AHCP,σ , bσ ,D)

For Party 1 we are able to construct a simulator, S1,OT 1
2 ,ET P

(shown in Appendix A), in the same manner as in [24] and
show it is equal to the real view.

Theorem 4.

perfect-sec-P1,OT 1
2 ,ETP
((b0, b1),σ)

Together Theorems 3 and 4 show Protocol 1 is secure.

4.4 Instantiating for RSA
It is known that the RSA collection of functions provides an
ETP (see [18, Section 2.4.4.2] together with [19, Section C.1]).
We formalise this RSA collection and instantiate it for Proto-
col 1.We fix as a parameter a set of primes (prime-set :: nat set)
that we can sample the parameters for RSA from and de-
fine the algorithms that make up the ETP for RSA (IRSA,
domainRSA, rangeRSA, fRSA). The permutation considered here
is,

FRSA((N , e), x) = xe mod N (13)
for appropriately chosen N and e . The other algorithms are
given and explained in Appendix B.
To show security for the RSA instantiation of Protocol 1

we use the generality of our work from the previous section
and Isabelle’s module system. In particular to realise the
whole proof of security for the RSA instantiation we only
need to prove that assumptions made in the locale etp-base
are satisfied. The most challenging of these assumptions to
prove is that the RSA function (Equation 13) is a permutation.

8

It is often the case when formalising paper proofs that
detailed proofs of obvious results are hard to find and while
this is a well known result we struggled to find a proof in
the literature with sufficient enough detail to be useful in
the formalisation.
In this instance, the map’s domain and range are equal

thus we must show that for any x,y in the domain (or range),
if f (x) = f (y) then we have x = y. Formally we prove the
following.

Lemma 3. Assume P and Q are primes, P , Q , e and (P −
1) · (Q − 1) are coprime, x,y < P · Q and xe mod(P · Q) =
ye mod(P ·Q) then we have that x = y.

Corollary 1. Assume α ∈ set-spmf (IRSA), then we have

bij-betw(f (α), domain(α), range(α)).

This Corollary comes directly from Lemma 3 where the
assumptions in Lemma 3 are met due to the construction of
IRSA. This is the main proof statement we require to import
our proof from the general case to the RSA instantiation.

Theorem 5. For Party 1 we have perfect security

perfect-sec-P1,OT 1
2 ,RSA
((b0, b1),σ)

and for Party 2 we bound the advantage by the HCP advantage

adv-P2,OT 1
2 ,RSA

(((b0,b1),σ),D) ≤ 2·advHCP (AHCP ,σ ,bσ ,D).

This has shown that, assuming an HCP exists for RSA we
can securely compute OT 1

2 in the semi-honest model using
the ETP obtained from the RSA function.
This proof highlights the strengths of Isabelle’s module

system. Initially we completed the proof of the RSA instanti-
ation in full from scratch. However subsequent leveraging
of the module system, as outlined above, allowed us to halve
the proof effort (in lines of proof). Anyone wishing to prove
further instantiations only needs to define the ETP and prove
that the assumptions given in the locale etp-base are valid.
In fact, no security results need to be proven at all in future
instantiations.

4.5 The RSA instantiation in the asymptotic setting
So far all security statements have been considered in the con-
crete setting, where the security parameter has been assumed
to be implicit in all algorithms. Isabelle and CryptHOL pro-
vides a method for proving asymptotic security statements
by making all definitions and statements dependent on the
security parameter allowing us to derive the conventional
asymptotic security statements from the original concrete
statements. We provide proofs in the asymptotic setting for
all protocols we consider — here we present the instantiation
of RSA by way of example.
We introduce the security parameter n by replacing the

locale parameter prime-set by a family of sets of primes
prime-set :: nat ⇒ nat set. Now the set of primes used
in the protocol is dependent on n. After this parameter has

been altered to account for n the others become explicitly de-
pendent on it also; for example IRSA samples from prime-set,
thus it is also now dependent on n.

After importing the concrete setting parametrically for all
n; algorithms now depend explicitly on n. Moreover, due to
Isabelle’s module structure we are able to use results proven
in the concrete setting in our newly constructed asymptotic
setting. Results from the concrete setting can only be used
once it has been proven that the import is valid, something
the user is required to do when importing a module. This is
similar to importing the general proof ofOT 1

2 using HCPs to
the RSA instantiation.
We now prove the security results in the asymptotic set-

ting. First we show correctness is still valid and then that
security holds.

Theorem 6. The RSA instantiation of Protocol 1 is correct.

protocolOT 1
2 ,RSA
(n, (b0, b1),σ) = functOT 1

2
((b0, b1),σ)

Note that the security parameter only appears as inputs to
functions where it is used. Equation 5 shows that the security
parameter is never required to define functOT 1

2
. Security is

shown by the following Theorem.

Theorem 7. For Party 1 we have perfect security, that is,

perfect-sec-P1,OT 1
2 ,RSA
(n, (b0, b1),σ).

For Party 2, assume negligible(λ n. advHCP (n,AHCP, bσ ,D))
then we have,

negligible(λ n. adv-P2,OT 1
2 ,RSA
(n, (b0, b1),σ ,D).

Thus we have shown the security results in the asymptotic
setting.

5 Formalising the GMW protocol
The GMW protocol allows for the secure computation of any
boolean circuit. It does so by providing a method for com-
puting gates in the circuit securely. The protocol achieves
secure gate computation by using secret sharing among the
parties. Intuitively each party splits their input into two parts
(shares); keeping one share and sending the other to the other
party. The parties work together through the circuit they
want to compute, gate by gate. After each gate computation
each party holds one share of the output of the gate.

We formalise the security results for computing AND and
XOR gates in the two party setting — AND and XOR form a
universal set from which we can realise the whole of MPC.

5.1 Secret sharing
The input from each party to a gate is a bit, thus the parties
need to share their input bit between them.

To share a bit x a party flips a coin to obtain a bit, a. The bit
a is kept by the party and x ⊕a is sent to the other party; this
is often called xor-sharing. To reconstruct the two parties

9

compute the xor of their shares.

shareGMW (x) = do { reconstructGMW (a, b)
a← coin; = return(a ⊕ b)
return(a, x ⊕ a)}

Correctness of the sharing scheme comes easily.

Theorem 8. correctshareGMW (x).

5.2 Securely computing AND and XOR gates
The GMW protocol provides sub protocols to compute XOR
and AND gates on the shared inputs (that have already been
shared between the parties). We formalise both sub protocols.
To achieve secure computation of an AND gate we re-

quire OT 1
4 . We take the protocol that realises OT 1

k from [19]
(Section 7.3.3) and formalise the adapted case for OT 1

4 .
Again our proofs here are constructed in a modular way,

for the construction of OT 1
4 from OT 1

2 we assume the se-
curity results of the underlying OT 1

2 . Namely we assume
correctness, perfect security for Party 2 and bound the ad-
vantage of Party 1. These assumptions correspond to the
results obtained by the Noar-Pinkas OT 1

2 [31] which is used
in practical implementations of GMW. We leave details of
our formalisation of the construction of OT 1

4 from OT 1
2 to

Appendix C. Our proofs in this section assume the results
from the construction of OT 1

4 from OT 1
2 , for clarity we make

these assumptions explicit in the security statements we give
here.
To compute XOR and AND gates we assume Party 1 has

input x ∈ {0, 1} and Party 2 has input y ∈ {0, 1}, after
sharing their inputs Party 1 holds the shares (a1,a2), and
Party 2 holds the shares (b1,b2) — that is x = a1 ⊕ b1 and
y = a2 ⊕ b2.

The protocol for an XOR gate is as follows.

Protocol 2. [XOR gate] To compute an XOR gate the parties
can compute the XOR of their shares separately, that is Party 1
evaluates a1 ⊕ a2 and Party 2 evaluates b1 ⊕ b2.

Correctness comes from the commutativity of the XOR
operation. There is no communication between the parties
in this protocol and thus security is trivially achieved.
Securely computing an AND gate is more involved. The

functionality we want to evaluate is,

functAND((a1,a2), (b1,b2)) = do {
σ ← coin;
return(σ ,σ ⊕ (a1 ⊕ b1) ∧ (a2 ⊕ b2))}

Sampling σ in the functionality results in both outputs
being uniformly distributed, failure to do this would mean
one party (in this case Party 2) would learn the result of the
computation. To realise this functionality we require OT 1

4 .

Protocol 3. [AND gate]
1. Party 1 samples σ ← {0, 1} and constructs si as follows:

b1 b2 (a1 ⊕ b1) ∧ (a2 ⊕ b2) s
0 0 α0 s0 = σ ⊕ α0
0 1 α1 s1 = σ ⊕ α1
1 0 α2 s2 = σ ⊕ α2
1 1 α3 s3 = σ ⊕ α3

2. The parties compute anOT 1
4 with input (s0, s1, s2, s3) for

Party 1 and (b1,b2) for Party 2.
3. Party 2 keeps its output of the OT 1

4 while Party 1 keeps
σ .

The protocol is correct as both parties hold a share of the
output such that when combined with xor (reconstructed)
give the desired result. Intuitively, security comes from Party
1 constructing all possible results of the computation (in Step
1) and masking it with the random sample σ and the security
of the underlying OT 1

4 . This results in party 2 receiving one
and only one value they can decrypt to form their share.

Correctness is proven analogously to the semi honest set-
ting, here we consider security of the protocol.

We refer the reader to the formalisation for details of the
proof of security for the XOR gate. Here we show security
for the AND gate.
The real and ideal views for the AND gate protocol are

given in Appendix D. For party 2 we show perfect security,
this comes from the perfect security of the OT 1

4 we use. We
can simulate the real view using the simulator for party 2
from the underlying OT 1

4 .

Theorem 9. Assume that we have perfect security for party
2 for the underlying OT 1

4 protocol used then we have.

perfect-sec-P2,AND((a1, a2), (b1, b2)).

To show security for Party 1 we show a reduction to the
security of OT 1

4 .

Theorem 10. Assume that the advantage for party 1 in the
underlying OT 1

4 protocol used is P1advOT 1
4
then we have,

adv-P1,AND ((a1,a2), (b1,b2),D) ≤ P1advOT 1
4
.

Theorems 9 and 10 show security in the semi-honest
model for the AND gate construction given in Protocol 3.

6 Formalising Malicious Security
We now consider the malicious adversary model in the two
party setting. First we formalise the definitions of malicious
security and then prove anOT 1

2 protocol secure with respect
to our definitions.

6.1 Formalising the definitions
In the malicious security model an adversary fully corrupts
one of the parties and sends all messages on its behalf. There
are however adversarial behaviours we cannot account for
even in the malicious setting:

1. A party refusing to take part in the protocol.
2. A party substituting their local input.

10

3. A party aborting the protocol early.
It is well known themalicious model has these weaknesses.

Of these behaviours the second is most interesting. In the
malicious setting it is unclear what constitutes a parties cor-
rect input to a protocol, a corrupted party may enter the
protocol with an input that is not the original input. In par-
ticular there is no way to tell what the correct local input
is compared to the input claimed by the party. For further
discussion of these limitations see [19, Section 7.2.3].

A protocol is said to be secure if the adversary’s behaviour
is limited to these three actions. We consider the malicious
security definitions from [19, Section 7.2.3] and [22, Section
2.3.1] where an ideal and real world are considered.

The ideal model uses a trusted party that provides security
by definition — we let x be the input of Party 1, y be the
input of Party 2 and z be the auxiliary input3 available to the
adversary. The ideal model is constructed as follows [22]:
• Send inputs to trusted party:The honest party sends
its input to the trusted party. The input for the cor-
rupted party is outputted by the adversary and given
to the trusted party (it could be abort, the adversary
chooses the input based on the original input and z).
• Early abort: If the trusted party receives abort from
the corrupted party it sends abort to both parties and
the execution is terminated.
• Trusted party computation: The trusted party com-
putes the functionality using the inputs provided by
both parties and sends the corrupted party its output.
• Adversary aborts or continues: The adversary in-
structs the trusted party to abort or continue. If abort
is sent the execution is terminated, if continue is sent
the trusted party sends the honest party its output.
• Outputs: The honest party outputs the output it re-
ceived from the trusted party, the corrupted party out-
puts nothing. The adversary outputs any arbitrary
function of the initial input, auxiliary input, and the
output given to it by the trusted party.

The output of the ideal model, when Party i is corrupted, is
denoted as IDEALf ,A(z),i(x, y)— the output of both parties in
the idealmodel. The output of the realmodel (REALπ ,A(z),i(x, y))
is the output of each party in a real execution of the protocol
where all messages for the corrupted party, i , are sent by
the adversary. Informally, a protocol π securely computes f
with abort in the presence of malicious adversaries if for all
A in the real model there exists a simulator S that interacts
with the ideal model such that the IDEALf ,S(z),i(x, y) and
REALπ ,A(z),i(x, y) are indistinguishable for i ∈ {1, 2}.

To make the definitions of malicious security we, as usual,
construct a locale (malicous-base) and fix the parameters we
require to to make our definitions. In this case we fix: the
functionality (funct), the protocol output (protocol), the real
view of each party (R1 and R2), and the simulators ((S11, S

2
1)

3This is a priori information.

and (S12, S
2
2)) — this is the simulator that interacts in the

ideal model. The roles of each component of the simulators
will become celar when we define their types and the ideal
model. The real view of each party is the transcript a party
sees when the adversary sends all messages in place of the
corrupted party. In contrast, the honest party follows the
instructions of the protocol. Before we define the locale we
construct some type synonyms for readability, in particular
we consider the types of the simulators.

We show the types for Party 1, the types for Party 2 are
analogous. The simulator interacts with the idea model and
has two components. We define their types separately and
then combine them. The first component of the simulator
is used in the first phase of the ideal model, that is it sends
the adversaries chosen input to the trusted party. It takes as
input the real world adversary, the input of Party 1 and the
auxiliary input and outputs the input it wishes to give to the
trusted party on behalf of Party 1. It also outputs its state,
that can be passed to the second component.

type-syn (‘AP1
real, ‘in1, ‘aux, ‘s1) S

P1
1 =

‘AP1
real ⇒ ‘in1 ⇒ ‘aux ⇒ (‘in × ‘s1) spmf

The second component of the simulator for Party 1 out-
puts the corrupted parties output. It is allowed to also see
the output of the protocol, as given to it by the trusted party
in the ideal game as well as the state outputted by the first
component of the adversary. This part of the simulator out-
puts whatever it likes — we represent this by allowing it to
output something of abstract type.

type-syn (‘AP1
real, ‘in1, ‘aux, ‘out1, ‘s1, ‘Aout1) S

P1
2 =

‘AP1
real ⇒ ‘in1 ⇒ ‘aux ⇒ ‘out1 ⇒ ‘s1 ⇒ ‘Aout1 spmf

We combine the two components of the simulator as a
tuple.

type-syn (‘AP1
real, ‘in1, ‘aux, ‘out1, ‘s1, ‘Aout1) S

P1 =

(‘Areal,P1, ‘in1, ‘aux, ‘s1) S
P1
1 ×

(‘AP1
real, ‘in1, ‘aux, ‘out1, ‘s1, ‘Aout1) S

P1
2

The locale we construct to make our malicious definitions
is as follows.

locale malicious-base =
fixes funct :: ‘in1 ⇒ ‘in2 ⇒ (‘out1 × ‘out2) spmf
and protocol :: ‘in1 ⇒ ‘in2 ⇒ (‘out1 × ‘out2) spmf
and S11 :: (‘AP1

real, ‘in1, ‘aux, ‘s1) S
P1
1

and S21 :: (‘AP1
real, ‘in1, ‘aux, ‘out1, ‘s1, ‘Aout1) S

P1
2

and R1 :: ‘in1 ⇒ ‘in2 ⇒ ‘aux ⇒ ‘AP1
real ⇒ (‘Aout1 × ‘out2) spmf

and S12 :: (‘AP2
real, ‘in2, ‘aux, ‘s2) S1,P2

and S22 :: (‘AP2
real, ‘in2, ‘aux, ‘out2, ‘s2, ‘Aout2) S

P2
2

and R2 :: ‘in1 ⇒ ‘in2 ⇒ ‘aux ⇒ ‘AP2
real ⇒ (‘out1 × ‘Aout2) spmf

11

In the same way as the semi-honest setting, for a protocol
to be correct we require funct and protocol to be equal. Unlike
in the semi-honest setting correctness and security are not
linked. When one party (out of two) is totally corrupt there
can be no guarantees that either party obtains the correct
output. However, if the protocol is run honestly we still want
the correctness property to hold.

To consider security we define the ideal model. For clarity
we define the trusted party as the functionality,

trusted-party(x, y) = funct(x, y)

, this is the action the trusted party performs.
Our formalisation of the ideal model for Party 1 is defined

by the probabilistic program ideal-model1.

ideal-model1(x, y, z,A) = do {
let (A1,A2) = A;
(x ′,auxout) ← A1(x, z);
(out1,out2) ← trusted-party(x ′,y);
out ′1 ← A2(x

′, z,out2,auxout);
return(out ′1, out2)}

We make two remarks about this definition; the first con-
cerns aborts and the second the state of the adversary.

1. We do not explicitly model the abort procedures as
they are covered by the type spmf — the adversary
can output nothing and thus terminate the program.

2. As we split the adversary into two parts it must be
allowed to pass state. We incorporate the state into
auxout in the instantiated proofs.

The ideal view in the malicious setting is defined as the
output of the ideal model when the simulator send messages
on behalf of the adversary.

Definition 6. We define the ideal view of Party 1 as,

malideal1 (x, y, z,A)

≡ ideal-model1(x, y, z, (S11(A), S
2
1 (A))).

A consists of a tuple of algorithms, one for each round of
the protocol.

As in the semi-honest case we either show perfect security
or show the views are indistinguishable — in which case we
consider the advantage a distinguisher has of distinguishing
them. For perfect security we require equality between the
views.

Definition 7 (Perfect security for Party 1).

perfect-sec-P1(x, y, z,A)

= (malreal1 (x, y, z,A) = malideal1 (x, y, z,A))

The advantage of a distinguisher is defined as follows.

Definition 8 (Advantage: Party 1).

maladv1 (x, y, z,A,D) =

|P[(malreal1 (x, y, z,A) ▷ D) = True]−

P[(malideal1 (x, y, z,A) ▷ D) = True]|

The work of Haagh et al. [21] formalises the same mali-
ciousmodel (active securitymodel) in EasyCrypt, however as
discussed in Section 1.2 a meta (paper) theorem was required
to link the formalisation to the paper definitions.

6.2 A protocol realising OT 1
2 in the malicious setting

In this section we show the definitions we provide for ma-
licious security are satisfied by the OT 1

2 protocol from [22,
p.190]. This protocol is considered in the hybrid model as it
uses a call to a Zero Knowledge Proof of Knowledge (ZKPOK)
functionality for the Diffie Helman (DH) relation (FDHZK).
The DH relation for a group G with generator д is a tu-
ple ((h,a,b), r) where a = дr and b = hr . Specifically, the
functionality is as follows,

FDHZK ((h, a, b), ((h
′, a′, b′), r)) =

return(a = gr ∧ b = hr ∧ (h, a, b) = (h′, a′, b′), _). (14)

In the context of Protocol 4, Party 1 in the functionality
is the Sender and Party 2 the Receiver. Both parties input a
tuple, these could be different as the parties may be malicious.
The functionality returns a Boolean, dependent on whether
the relation is true to Party 1, and nothing to Party 2. Party
1 also learns if the input made by Party 2 is the same as their
input.
The protocol uses a cyclic group G, with generator д,

and where the Decisional Diffie Helman (DDH) assump-
tion holds. The DDH assumption informally states that the
tuples (дa,дb ,дa ·b) and (дa,дb ,дc), where a,b, c

$
←− Z |G | , are

indistinguishable. It was formalised as part of CryptHOL.
The OT 1

2 protocol we consider is given below in Protocol
4

Protocol 4. Let Party 1 be the Sender (S) and Party 2 be the
Receiver (R).

1. S has input (m0,m1) ∈ G
2 and R has input σ ∈ {0, 1}.

2. R uniformly samples α0,α1, r ← {1, ..., |G |} and com-
putes h0 = дα0 , h1 = дα1 , a = дr , b0 = hr0 · д

σ and
b1 = h

r
1 · д

σ .
3. S checks (h0,h1,a,b0,b1) ∈ G5, otherwise it aborts.
4. Let h = h0/h1 and b = b0/b1. R proves to S that (h,a,b)

is a DH tuple, using ZKPOK. That is R proves the relation

RDH = {((h,a,b), r). a = д
r ∧ b = hr }

5. If S accepts the proof it continues and uniformly samples
u0,v0,u1,v1 ← {1, ..., |G |}, and computes (e0, e1) and
sends the tuple to R:
e0 = (w0, z0) wherew0 = au0 · дv0, z0 = b

u0
0 · h

v0
0 ·m0.

e1 = (w1, z1) wherew1 = au1 ·дv1, z1 = (
b1
д)

u1 ·hv1
1 ·m1.

12

6. R outputs zσ
wασ
σ

and S outputs nothing.

Security for the Receiver is upheld because σ is sent only
as an exponent of the generator which is masked by random
group element. The receiver can learn at most one of the
Sender’s messages due to the construction of the DDH tuple,
which the sender is satisfied with after the ZKPOK thus
security for the Sender is achieved.

6.3 Proving OT 1
2 secure in the malicious setting

In this section we discuss our formalisation of security proof
of Protocol 4. First we show correctness of the protocol.

Theorem 11. Assumem0,m1 ∈ G then,

functOT 1
2
((m0,m1),σ) = protocolOT 1

2 ,mal((m0,m1),σ).

Here protocolOT 1
2 ,mal is the probabilistic program that de-

fines the output of the protocol defined in Protocol 4. Isabelle
had to be helped more extensively in the rewriting of terms
here compared to other proofs of correctness. This was due
to the more complex constructions in the protocol.

To prove security of Protocol 4 we first formalise a variant
of the DDH assumption and prove it is at least as hard as the
traditional DDH assumption. The security of the Sender is
reduced to this assumption.

6.3.1 Variant of the DDH assumption
Traditionally the DDH assumption states that the tuples
(дx ,дy ,дz) and (дx ,дy ,дxy) are hard to distinguish, the vari-
ant we consider states that (h,дr ,hr) and (h,дr ,hr · д) are
hard to distinguish (where h ∈ G, and д is the generator of
G). We formalise this variant of the assumption and prove it
is at least as hard as the original DDH assumption.

Lemma 4.

DDH -advvar (A) ≤ DDH -adv(A) + DDH -adv(A ′(A))

WhereDDH -adv is the original DDH advantage (formalised
in [29]), DDH -advvar is the definition we make of the advan-
tage of the variant on theDDHassumption andA ′(D,a,b, c) =
D(a,b, c ⊗ д) is an adversary we construct to interact with
the DDH assumption.

6.3.2 Party 1
The simulators used to show security are as follows:

S1,P1 ((A1,A2,A3),M, z) = do {
r ,α0,α1 ← uniform(|G |);
let h0 = дα0 ;
let h1 = дα1 ;
let a = дr ;
let b0 = hr0 ;
let b1 = hr1 ⊗ д;
((in1, in2, in3), s) ← A1(M,h0,h1,a,b0,b1, z);
let (h,a,b) = (h0 ⊗ h−11 ,a,b0 ⊗ b

−1
1);

_← assert((in1, in2, in3) = (h, a, b));
(((w0, z0), (w1, z1)), s

′) ← A2(h0,h1,a,b0,b1,M, s);
let x0 = z0 ⊗w

−α0
0 ;

let x1 = z1 ⊗w
−α1
1 ;

return((x0, x1), s′)}

S2,P1 ((A1,A2,A3),M, z,out1, s
′) = A3(s

′)

The only difference between the simulator and what hap-
pens in a real execution of the protocol is that the values b0
and b1 are incorrectly generated. To show security for Party
1 we make a case split on σ and construct an adversary for
each case (DDH -Aσ=1, DDH -Aσ=0

4) that break the variant
of the DDH assumption and then use Lemma 4 to bound the
advantages by the traditional DDH assumption advantage.
We construct the DDH adversary for the case σ = 0 as fol-
lows.

DDH -Aσ=0(M, z, (A1,A2,A3),D, h, a, t) = do {
α0 ← uniform(|G |);
let h0 = дα0 ;
let h1 = h;
let b0 = aα0 ;
let b1 = t ;
((in1, in2, in3), s) ← A1(M,h0,h1,a,b0,b1, z);
_← assert(in1 = h0 ⊗ h−11 ∧ in2 = a ∧ in3 = b0 ⊗ b−11);
(((w0, z0), (w1, z1)), s

′) ← A2(h0,h1,a,b0,b1,M, s);
let x0 = z0 ⊗w

−α0
0

advout ← A3(s
′);

D(advout, x0)}

The intuition is that when the last three inputs, (h,a, t),
are a DDH tuple the adversary acts as though it is in the real
model and when the inputs are not a DDH tuple it follows
the ideal model.

Theorem 12. In the case where σ = 0 then we have

maladv1 ((m0,m1),σ , z, S1,A,D)) ≤

DDH -adv(DDH -Aσ=0((m0,m1), z,A,D))+

DDH -adv(A ′(DDH -Aσ=0((m0,m1), z,A,D)))

4Here we use 1 as an encoding for True and 0 as an encoding for False. The
adversary DDH -Aσ=1, is given in Appendix E along with some intuition
about its construction.

13

In the case where σ = 1 then we have,

maladv1 ((m0,m1),σ , z, S1,A,D)) ≤

DDH -adv(DDH -Aσ=1((m0,m1), z,A,D))+

DDH -adv(A ′(DDH -Aσ=1((m0,m1), z,A,D)))

6.3.3 Party 2
To show security for Party 2 we construct the simulator,
S2 = (S1,P2, S2,P2) and show that the real and ideal model are
equal.

S1,P2 ((A1,A2,A3),σ , z) = do {
(h0,h1,a,b0,b1) ← A1(σ);
-← assert(h0, h1, a, b0, b1 ∈ G);
((in1, in2, in3), r) ← A2(h0,h1,a,b0,b1);
let (h, a, b) = (h0h1 , a,

b0
b1
);

b, -) ← FDHZK ((h, a, b), ((in1, in2, in3), r));
-← assert(b);
let l = b0

hr0
;

return((if l = 1 then False else True), (h0, h1, a, b0, b1))}

S2,P2 ((A1,A2,A3),σ
′, z,mσ , auxout) = do {

let (h0, h1, a, b0, b1) = auxout ;
u0,v0,u1,v1 ← uniform(|G |);
((in1, in2, in3), r) ← A2(h0,h1,a,b0,b1);
let w0 = au0 ⊗ дv0 ;
let w1 = au1 ⊗ дv1 ;
let z0 = b

u0
0 ⊗ h

v0
0 ⊗ (if σ ′ then 1 else mσ);

let z1 = (b1д)
u1 ⊗ hv1

1 ⊗ (if σ ′ then mσ else 1);
A3((w0, z0), (w1, z1))}

To show equality between the real and ideal views we
consider the cases on l = b0

hr0
: l = 1, l = д, l < {1,д}. Like the

case split in the proof of Theorem 3 we must reason about a
bound variable within a probabilistic program and thus the
proof of Theorem 13 is involved and technical.

Theorem 13. Assumem0,m1 ∈ G then we have

perfect-sec-P2((m0,m1),σ , z,A).

In proving Theorem 13 we were able to closely follow the
paper proof from [22].

7 Conclusion and future work
In this paper we have formalised both the semi-honest and
malicious models and instantiated OT protocols in both as
well as the two party GMW protocol in the semi-honest
setting. Our work has shown that CryptHOL is a suitable
and usable framework for cryptographic proofs. In fact in our
work we only use parts of CryptHOLs rich formalisation,
in particular we do not require any of the machinery for
constructing complex adversaries that is used for example in
[28]. We feel this is a benefit as have shown that much can

be achieved with CryptHOL without the need to use many
of the extremely technical parts of the tool.
Achieving a proof of security for malicious GMW would

require a large proof effort and is left as future work. Signifi-
cant extensions towards a formalisation of Zero Knowledge
would need to be made to [12, 14] as well as extending this
work to the n party setting.

Acknowledgements We would like to thank the reviewers
for their detailed and helpful reviews as well as Andreas
Lochbihler for his continuous support and development of
CryptHOL. This work was supported by The Alan Turing
Institute under the EPSRC grant EP/N510129/1.

References
[1] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, François Du-

pressoir, Benjamin Grégoire, Vincent Laporte, and Vitor Pereira. 2017.
A Fast and Verified Software Stack for Secure Function Evaluation.
In ACM Conference on Computer and Communications Security. ACM,
1989–2006.

[2] David Aspinall and David Butler. 2019. Multi-Party Computation.
Archive of Formal Proofs 2019 (2019).

[3] G Barthe, B Grégoire, and S Zanella Béguelin. 2009. Formal certification
of code-based cryptographic proofs. In POPL. ACM, 90–101.

[4] G Barthe, B Grégoire, S Heraud, and S Zanella Béguelin. 2011.
Computer-Aided Security Proofs for the Working Cryptographer. In
CRYPTO (Lecture Notes in Computer Science), Vol. 6841. Springer, 71–
90.

[5] David A. Basin, Andreas Lochbihler, and S. Reza Sefidgar. 2017.
CryptHOL: Game-based Proofs in Higher-order Logic. IACR Cryptol-
ogy ePrint Archive 2017 (2017), 753.

[6] Mihir Bellare and Phillip Rogaway. 2006. The Security of Triple En-
cryption and a Framework for Code-Based Game-Playing Proofs. In
EUROCRYPT (Lecture Notes in Computer Science), Vol. 4004. Springer,
409–426.

[7] Bruno Blanchet. 2008. A Computationally Sound Mechanized Prover
for Security Protocols. IEEE Trans. Dependable Sec. Comput. 5, 4 (2008),
193–207.

[8] Dan Bogdanov, Sven Laur, and Jan Willemson. 2008. Sharemind: A
Framework for Fast Privacy-Preserving Computations. In ESORICS
(Lecture Notes in Computer Science), Vol. 5283. Springer, 192–206.

[9] Peter Bogetoft, Dan Lund Christensen, Ivan Damgård, Martin Geisler,
Thomas P. Jakobsen, Mikkel Krøigaard, Janus Dam Nielsen, Jes-
per Buus Nielsen, Kurt Nielsen, Jakob Pagter, Michael I. Schwartzbach,
and Tomas Toft. 2009. Secure Multiparty Computation Goes Live. In
Financial Cryptography (Lecture Notes in Computer Science), Vol. 5628.
Springer, 325–343.

[10] David Butler and David Aspinall. 2019. Multi Party Computation.
Archive of Formal Proofs (2019). https://www.isa-afp.org/entries/
Multi_Party_Computation.html, Formal proof development.

[11] David Butler, David Aspinall, and Adrià Gascón. 2017. How to Simulate
It in Isabelle: Towards Formal Proof for Secure Multi-Party Computa-
tion. In ITP (Lecture Notes in Computer Science), Vol. 10499. Springer,
114–130.

[12] David Butler, David Aspinall, and Adrià Gascón. 2019. On the Formal-
isation of Σ -Protocols and Commitment Schemes. In POST (Lecture
Notes in Computer Science), Vol. 11426. Springer, 175–196.

[13] David Butler and Andreas Lochbihler. 2019. Sigma Protocols and
Commitment Schemes. Archive of Formal Proofs (2019). https://
www.isa-afp.org/entries/Sigma_Commit_Crypto.html, Formal proof
development.

14

https://www.isa-afp.org/entries/Multi_Party_Computation.html
https://www.isa-afp.org/entries/Multi_Party_Computation.html
https://www.isa-afp.org/entries/Sigma_Commit_Crypto.html
https://www.isa-afp.org/entries/Sigma_Commit_Crypto.html

[14] David Butler, Andreas Lochbihler, David Aspinall, and Adrià Gascón.
2019. Formalising Σ-Protocols and Commitment Schemes using
CryptHOL. IACR Cryptology ePrint Archive 2019 (2019), 1185.

[15] Ran Canetti. 2001. Universally Composable Security: A New Paradigm
for Cryptographic Protocols. In FOCS. IEEE Computer Society, 136–
145.

[16] Ran Canetti, Alley Stoughton, and Mayank Varia. 2019. EasyUC: Using
EasyCrypt toMechanize Proofs of Universally Composable Security. In
Proceedings of the 32nd IEEE Computer Security Foundations Symposium
(CSF 2019). IEEE Computer Society, Hoboken, NJ, USA.

[17] Shimon Even, Oded Goldreich, and Abraham Lempel. 1985. A Ran-
domized Protocol for Signing Contracts. Commun. ACM 28, 6 (1985),
637–647.

[18] Oded Goldreich. 2001. The Foundations of Cryptography - Volume 1,
Basic Techniques. Cambridge University Press.

[19] Oded Goldreich. 2004. The Foundations of Cryptography - Volume 2,
Basic Applications. Cambridge University Press.

[20] Oded Goldreich, Silvio Micali, and Avi Wigderson. 1987. How to Play
any Mental Game or A Completeness Theorem for Protocols with
Honest Majority. In STOC. ACM, 218–229.

[21] Helene Haagh, Aleksandr Karbyshev, Sabine Oechsner, Bas Spitters,
and Pierre-Yves Strub. 2018. Computer-Aided Proofs for Multiparty
Computation with Active Security. In CSF. IEEE Computer Society,
119–131.

[22] Carmit Hazay and Yehuda Lindell. 2010. Efficient Secure Two-Party
Protocols - Techniques and Constructions. Springer.

[23] John Launchbury, Dave Archer, Thomas DuBuisson, and Eric Mertens.
2014. Application-Scale Secure Multiparty Computation. In ESOP
(Lecture Notes in Computer Science), Vol. 8410. Springer, 8–26.

[24] Yehuda Lindell. 2017. How to Simulate It - A Tutorial on the Simulation
Proof Technique. In Tutorials on the Foundations of Cryptography.
Springer International Publishing, 277–346.

[25] Andreas Lochbihler. [n. d.]. CryptHOL. Archive of Formal Proofs 2017
([n. d.]).

[26] Andreas Lochbihler. 2016. Probabilistic Functions and Cryptographic
Oracles in Higher Order Logic. In ESOP (Lecture Notes in Computer
Science), Vol. 9632. Springer, 503–531.

[27] Andreas Lochbihler and S. Reza Sefidgar. [n. d.]. Constructive Cryp-
tography in HOL. Archive of Formal Proofs 2018 ([n. d.]).

[28] Andreas Lochbihler, S. Reza Sefidgar, David A. Basin, and Ueli Maurer.
2019. Formalizing Constructive Cryptography using CryptHOL. In
Computer Security Foundations (CSF 2019). IEEE, 152–166.

[29] Andreas Lochbihler, S. Reza Sefidgar, and Bhargav Bhatt. [n. d.]. Game-
based cryptography in HOL. Archive of Formal Proofs 2017 ([n. d.]).

[30] Ueli M. Maurer. 2006. Secure multi-party computation made simple.
Discrete Applied Mathematics 154, 2 (2006), 370–381.

[31] Moni Naor and Benny Pinkas. 2001. Efficient oblivious transfer proto-
cols. In SODA. ACM/SIAM, 448–457.

[32] A Petcher and G Morrisett. 2015. The Foundational Cryptography
Framework. In POST (Lecture Notes in Computer Science), Vol. 9036.
Springer, 53–72.

[33] Adi Shamir. 1979. How to Share a Secret. Commun. ACM 22, 11 (1979),
612–613.

[34] Victor Shoup. 2004. Sequences of games: a tool for taming complexity
in security proofs. IACR Cryptology ePrint Archive 2004 (2004), 332.

[35] Andrew Chi-Chih Yao. 1982. Protocols for Secure Computations (Ex-
tended Abstract). In FOCS. IEEE Computer Society, 160–164.

[36] Andrew Chi-Chih Yao. 1986. How to Generate and Exchange Secrets
(Extended Abstract). In FOCS. IEEE Computer Society, 162–167.

A Simulator for Party 1 in the Protocol 1
The simulator used to show perfect security in Theorem 4 is
as follows.

S1,OT 1
2 ,ETP
((b0, b1), _) = do {

(α, τ) ← I ;
y0 ← S(α)
y1 ← S(α)
return((b0,b1),y0,y1)}

Here the second input to the simulator is empty (the unit
type) as there is no output for party 1 from the functionality.

B RSA instantiation
Section 4.4 showed how we instantiated the general OT 1

2
construction using ETPs for the RSA collection of functions.
Here we provide more detail on this part of the formalisation,
in particular how we formalise the RSA ETP.

To formalise this instantiationwe first fix the locale rsa-base.

locale rsa-base =
fixes prime-set :: nat set
and B :: ‘index ⇒ nat ⇒ bool

assumes prime-set ⊆ {x . prime(x) ∧ x > 2}
and finite(prime-set)
and card(prime-set) > 2

The parameter prime-set is the set of primes that the pa-
rameters of the RSA function are sampled from and B is the
HCP we fix — recall we must assume that this exists. The
assumptions we make ensure that the set of primes has the
desired properties. To define the algorithms for the RSA ETP
we first define three simple sampling algorithms we will use.

sample-primes = samp-uniform(prime-set)

sample-set-excl(Q, P) = samp-uniform(Q − P)

sample-corpime = samp-uniform(coprime-set)
where coprime-set(N) = {x . coprime(x,N) ∧ x > 1 ∧ x < N }
is the set of all natural numbers coprime to N in the desired
range.
Using these we define IRSA that samples the index and

trapdoor as follows.

IRSA = do {
P ← sample-primes;
Q ← sample-set-excl(prime-set, P);
let N = P ·Q ;
let N ′ = (P − 1) · (Q − 1);
e ← sample-corpime(N ′);
let d = invN (e);
return((N , e),d)}

Here the index is the tuple (N , e) and the trapdoor is d
where d is the multiplicative inverse of e modulo (P − 1) ·
(Q − 1).

15

It is left to define the domain and range of the RSA collec-
tion,

domain(N , e) = {0, . . . ,N }
range(N , e) = {0, . . . ,N }.

Using these algorithms we show that the RSA collection
is an instance of the etp-base locale and can realise the proof
of security in Section 4.4.

C OT 1
4 from OT 1

2
To realise the secure computation of the AND gate in the
GMW protocol we requireOT 1

4 . Here we show howOT 1
4 can

be constructed from OT 1
2 . In particular, we show how we

use the modular structure in Isabelle to assume the required
results on OT 1

2 to show security of a protocol that realises
OT 1

4 .

C.1 A protocol that realises OT 1
4

We take the protocol that realises OT 1
k from [19, Section

7.3.3] but adapt it for the case of OT 1
4 . The functionality for

OT 1
4 is defined as,

functOT 1
4
((b0,0, b0,1, b1,0, b1,1), (c0, c1)) = return((), bc0 ,c1).

The protocol is run between the sender S and the receiver
R.

Protocol 5. S has input (b0,0,b0,1,b1,0,b1,1) ∈ {0, 1}4 and R
has input (c0, c1) ∈ {0, 1}2.

1. S uniformly randomly samples Si ← {0, 1} for i ∈
{0, ..., 5}.

2. S calculates the following:
α0 = S0 ⊕ S2 ⊕ b0,0, α1 = S0 ⊕ S3 ⊕ b0,1
α2 = S1 ⊕ S4 ⊕ b1,0 , α3 = S1 ⊕ S5 ⊕ b1,1.

3. S and R then run three OT 1
2 protocols together. That is

they run,
(-, Si) ← OT 1

2 ((S0, S1), c0)
(-, S j) ← OT 1

2 ((S2, S3), c1)
(-, Sk) ← OT 1

2 ((S4, S5), c1)
4. R calculates bc0,c1 where

bc0 ,c1 = Si ⊕ (if c0 then Sk else Sj) ⊕

(if c0 then (if c1 then α3 else α2)

else (if c1 then α1 else α0)).

Correctness of the protocol comes from the assumption
of correctness of the OT 1

2 . Security comes from the masking
of the messages sent from S to R in Step 2 and the security
of the OT 1

2 .

C.2 Formalising the protocol and its security
To prove security of Protocol 5 we follow a similar procedure
as outlined in Section 4. Here we focus on the modularity of
the proof we introduce.

As in paper proofs of protocols of this kind — where one
uses the underlying security of another protocol — we would

like to reuse previous security theorems rather than con-
struct every proof from scratch. In particular, here we want
to use the security results from OT 1

2 . To achieve this we
make the assumptions on the security of OT 1

2 in the locale
OT 1

4 -base.

locale OT 1
4 -base =

fixes protocolOT 1
2
:: (bool × bool) ⇒ bool ⇒ (unit × bool) spmf

and R1,OT 1
2
:: (bool × bool) ⇒ bool ⇒ ‘view1,OT 1

2
spmf

and S1,OT 1
2
:: (bool × bool) ⇒ unit ⇒ ‘view1,OT 1

2
spmf

and R2,OT 1
2
:: (bool × bool) ⇒ bool ⇒ ‘view2,OT 1

2
spmf

and S2,OT 1
2
:: bool ⇒ bool ⇒ ‘view2,OT 1

2
spmf

and P1advOT 1
2
:: real

assumes protocolOT 1
2
((m0,m1),σ) = functOT 1

2
((m0,m1),σ)

and adv-P1,OT 1
2
((m0,m1),σ ,D) ≤ P1advOT 1

2

and perfect-sec-P2,OT 1
2
((m0,m1),σ)

On the underlying OT 1
2 , we assume: correctness, perfect

security for Party 2 and bound the advantage of Party 1.
These are the security results of the Noar Pinkas OT 1

2 which
is used in practical implementations of GMW.

Correctness of the construction given in Protocol 5 comes
from the assumed correctness of OT 1

2 .
Theorem 14.

protocolOT 1
4
(B,C) = functOT 1

4
(B,C)

The probabilistic program protocolOT 1
4
provides the output

distribution of Protocol 5 and B and C are the inputs for
Party 1 and Party 2 respectively.
To prove security of Party 1 we show a reduction to the

security for Party 1 of the underlying OT 1
2 . Protocol 5 calls

the OT 1
2 protocol three times whereas the simulator can call

the simulator the OT 1
2 protocol.

R1,OT 1
4
(B, (c0, c1)) = do {

S0, S1, S2, S3, S4, S5 ← coin;
a ← R1,OT 1

2
((S0, S1), c0);

b ← R1,OT 1
2
((S2, S3), c1);

c ← R1,OT 1
2
((S4, S5), c1);

return(B, (S0, S1, S2, S3, S4, S5),a,b, c)}

S1,OT 1
4
(B, _) = do {

S0, S1, S2, S3, S4, S5 ← coin;
a ← S1,OT 1

2
((S0, S1), _);

b ← S1,OT 1
2
((S2, S3), _);

c ← S1,OT 1
2
((S2, S3), _);

return(B, (S0, S1, S2, S3, S4, S5),a,b, c)}

Using this simulator we show the following reduction.
Theorem15. Under the assumptions given in the localeOT 1

4 -base
we have security for the sender in Protocol 5.

adv-P1,OT 1
4
(B,C,D) ≤ 3 · P1advOT 1

2
.

A paper proof would likely state that the reduction holds
because Protocol 5 uses three calls to the OT 1

2 protocol.
16

Clearly we must work harder. We prove a distinguisher
cannot distinguish between the real and simulated views
for Party 1 in the Protocol 5 with greater advantage than
3 · P1advOT 1

2
by formalising what is commonly called the hy-

brid method. Here we informally describe our proof method.
The main difference between the real and simulated view

is that the real view calls R1,OT 1
2
three times whereas the sim-

ulated view calls S1,OT 1
2
three times. To show these two are in-

distinguishable we define two intermediate views (interviewi

for i ∈ {1, 2}) that step-wise transform the real view into the
simulated view. The first intermediate view changes the first
call of R1,OT 1

2
in the real view to S1,OT 1

2
, the second further

changes the second call of R1,OT 1
2
to S1,OT 1

2
. We informally

depict this in the diagram below:

R1,OT 1
2
≺P1advOT 1

2
interview1 ≺P1advOT 1

2
interview2 ≺P1advOT 1

2
S1,OT 1

2

WhereA ≺P B denotes that we show a distinguisher has a
probability less than P of distinguishing the the probabilistic
programs A and B. Once we have proved all three parts in
turn we can combine them to show the overall probability
a distinguisher has is less than 3 · P1advOT 1

2
. In this case

Theorem 15 becomes,

R1,OT 1
2
≺3·P1advOT 1

2
S1,OT 1

2
.

To prove security for Party 2 we directly use the perfect
security result we assume for Party 2 in the OT 1

2 .

Theorem16. Under the assumptions given in the localeOT 1
4 -base

we have perfect security for the receiver in Protocol 5. That is
we can construct a simulator S2,OT 1

4
such that

perfect-sec-P2,OT 1
4
(B,C)

It was semi-technical to use the assumed result on OT 1
2

as we require the second input to the simulator to be from
the functionality for the assumption to be valid (this can be
seen after unfolding the definition of perfect-sec-P2,OT 1

2
) —

again the challenge is that this input is embedded within the
probabilistic program.
Together Theorems 15 and 16 have shown security for

Protocol 5 with respect to the assumptions on the locale
OT 1

4 -base.

D Security for AND gate
To simulate the real views in the AND gate protocol given
in Protocol 3 we call the simulator instead of the real view
from the underlying OT 1

4 . The real and simulated views are
given below for both parties.

real-view1,AND((a1,a2), (b1,b2)) = do {
σ ← coin;
let s0 = σ ⊕ (a1 ⊕ False) ∧ (b1 ⊕ False);
let s1 = σ ⊕ (a1 ⊕ False) ∧ (b1 ⊕ True);
let s2 = σ ⊕ (a1 ⊕ True) ∧ (b1 ⊕ False);
let s3 = σ ⊕ (a1 ⊕ True) ∧ (b1 ⊕ True);
V ← R1,OT 1

4
((s0, s1, s2, s3), (b1,b2));

(_, s) ← protocolOT 1
4
((s0, s1, s2, s3), (b1,b2);

return(((a1,a2),σ ,V), (σ , s))}

ideal-view1,AND((a1,a2), (b1,b2),σ) = do {
let s0 = σ ⊕ (a1 ⊕ False) ∧ (b1 ⊕ False);
let s1 = σ ⊕ (a1 ⊕ False) ∧ (b1 ⊕ True);
let s2 = σ ⊕ (a1 ⊕ True) ∧ (b1 ⊕ False);
let s3 = σ ⊕ (a1 ⊕ True) ∧ (b1 ⊕ True);
V ← S1,OT 1

4
((s0, s1, s2, s3), ());

return(((a1,a2),σ ,V), (σ ,σ ⊕ ((a1 ⊕ b1) ∧ (a2 ⊕ b2))))}

real-view2,AND((a1,a2), (b1,b2)) = do {
σ ← coin;
let s0 = σ ⊕ (a1 ⊕ False) ∧ (b1 ⊕ False);
let s1 = σ ⊕ (a1 ⊕ False) ∧ (b1 ⊕ True);
let s2 = σ ⊕ (a1 ⊕ True) ∧ (b1 ⊕ False);
let s3 = σ ⊕ (a1 ⊕ True) ∧ (b1 ⊕ True);
V ← R2,OT 1

4
((s0, s1, s2, s3), (b1,b2));

(_,out2) ← protocolOT 1
4
((s0, s1, s2, s3), (b1,b2);

return(((b1,b2),V), (σ ,out2))}

ideal-view2,AND((b1,b2), (a1,a2),out2) = do {
V ← S2,OT 1

4
((b0,b1),out2);

let s1 = out2 ⊕ (a1 ⊕ b1) ∧ (a2 ⊕ b2);
return(((b1,b2),V), (s1,out2))}

E Malicious OT 1
2 DDH adversaries

The adversaries we construct to play against the DDH as-
sumption in Section 6.3.2 are given below. For the case where
σ = 0 if (h, s, t) is a DDH tuple then (h0,h1,a,b0,b1) the ad-
versary constructs is the same as in the real view when σ = 0.
On the other hand if (h, s, t) is such that s = дr and t = д ·hr
for some r then (h0,h1,a,b0,b1) constructed by the adversary
is the same as if it were constructed by the simulator (when
σ = 0). Moreover if the adversary receives a DDH tuple then
the output x0 = z0

wα0
0

is the same as the real execution of
the protocol whereas if the adversary receives a non-DDH
tuple then output of the adversary is the same as in the ideal
model. The intuition is analogous for the case σ = 1. For
completeness we provide the adversaries for both cases here.

17

DDH -Aσ=0(M, z, (A1,A2,A3),D, h, a, t) = do {
α0 ← uniform(|G |);
let h0 = дα0 ;
let h1 = h;
let b0 = aα0 ;
let b1 = t ;
((in1, in2, in3), s) ← A1(M,h0,h1,a,b0,b1, z);
_← assert(in1 = h0 ⊗ h−11 ∧ in2 = a ∧ in3 = b0 ⊗ b−11);
(((w0, z0), (w1, z1)), s

′) ← A2(h0,h1,a,b0,b1,M, s);
let x0 = z0 ⊗w

−α0
0

advout ← A3(s
′);

D(advout, x0)}
DDH -Aσ=1(M, z, (A1,A2,A3),D, h, a, t) = do {
α1 ← uniform(|G |);
let h1 = дα1 ;
let h0 = h;
let b1 = aα1 ⊗ д;
let b0 = t ;
((in1, in2, in3), s) ← A1(M,h0,h1,a,b0,b1, z);
_← assert(in1 = h0 ⊗ h−11 ∧ in2 = a ∧ in3 = b0 ⊗ b−11);
(((w0, z0), (w1, z1)), s

′) ← A2(h0,h1,a,b0,b1,M, s);
let x1 = z1 ⊗w

−α1
1

advout ← A3(s
′);

D(advout, x1)}

F Guide to the source theory files
For brevity we only presented some of the formalisation
in the main text. However all definitions and statements
of security have been formalised in Isabelle/HOL. Here we
provide a guide to the reader to navigate the source files.

• Semi_Honest_Defs.thy formalises two party security
in the semi-honest model (Section 3).
• OT_Functionalities.thy formalises the definitions of
the variants of OT we use.
• ETP.thy formalises ETPs at an abstract level (Section
4.1).
• ETP_OT.thy formalises the general construction of
the OT 1

2 constructed from ETPs (Section 4.2).
• ETP_OT_RSA.thy formalises the RSA instantiation of
the the proof from ETP_OT.thy (Section 4.4).
• OT14.thy formalises the construction of OT 1

4 (Appen-
dix C).
• GMW.thy formalises the two party GMW protocol
(Section 5).
• Malicious_Defs.thy formalises malicious security in
the two party setting (Section 6.1).
• Malicious_OT.thy formalises the OT 1

2 construction
that provides malicious security (Section 6.3).
• Uniform_Sampling.thy formalises numerous one time
pad constructions used in our proofs.
• Cyclic_Group_Ext.thy extends the formalisation of
cyclic groups from CryptHOL, providing results we
require in this work.

• DH_Ext.thy extends the formalisation from [5, 26] of
the Diffie Helman assumption to include the variants
we require in this work.
• Number_Theory_Aux.thy formalises various results
from number theory we require.

18

	Abstract
	1 Introduction
	1.1 Contributions
	1.2 Related work
	1.3 Outline of Paper and Formalisation

	2 CryptHOL and Isabelle Background
	2.1 Isabelle
	2.2 CryptHOL

	3 Semi-honest security for MPC
	3.1 Two party protocol security
	3.2 Secret sharing schemes

	4 1-out-of-2 OT using Enhanced Trapdoor Permutations
	4.1 ETPs and HCPs
	4.2 Realising OT12 using ETPs
	4.3 Proving security
	4.4 Instantiating for RSA
	4.5 The RSA instantiation in the asymptotic setting

	5 Formalising the GMW protocol
	5.1 Secret sharing
	5.2 Securely computing AND and XOR gates

	6 Formalising Malicious Security
	6.1 Formalising the definitions
	6.2 A protocol realising OT12 in the malicious setting
	6.3 Proving OT12 secure in the malicious setting

	7 Conclusion and future work
	References
	A Simulator for Party 1 in the Protocol 1
	B RSA instantiation
	C OT14 from OT12
	C.1 A protocol that realises OT14
	C.2 Formalising the protocol and its security

	D Security for AND gate
	E Malicious OT12 DDH adversaries
	F Guide to the source theory files

