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Abstract

A bent function is a Boolean function in even number of variables which is on the maximal
Hamming distance from the set of affine Boolean functions. It is called self-dual if it coincides
with its dual. It is called anti-self-dual if it is equal to the negation of its dual. A mapping of
the set of all Boolean functions in n variables to itself is said to be isometric if it preserves the
Hamming distance. In this paper we study isometric mappings which preserve self-duality
and anti-self-duality of a Boolean bent function. The complete characterization of these
mappings is obtained for n > 4. Based on this result, the set of isometric mappings which
preserve the Rayleigh quotient of the Sylvester Hadamard matrix, is characterized. The
Rayleigh quotient measures the Hamming distance between bent function and its dual, so
as a corollary, all isometric mappings which preserve bentness and the Hamming distance
between bent function and its dual are described.

Keywords — Boolean function, Self-dual bent, Isometric mapping, The group of auto-
morphisms, The Rayleigh quotient

1 Introduction

The term “bent function” was introduced by Oscar Rothaus in the 1960s [18]. It in known [20],
that at the same time Boolean functions with maximal ninlinearity were also studied in the
Soviet Union. The term minimal function, which is actually a counterpart of a bent function,
was proposed by the Soviet scientists Eliseev and Stepchenkov in 1962.

Bent functions have connections with such combinatorial objects as Hadamard matrices and
difference sets. Since bent functions have maximum Hamming distance to linear structures and
affine functions they deserve attention for practical applications in symmetric cryptography, in
particular, for block and stream ciphers. We refer to the survey [3] and monographies of Mes-
nager [17] and Tokareva [20] for more information concerning known results and open problems
related to bent functions.

For each bent function, its dual bent function is uniquely defined. More information about
properties of dual bent functions one can find in work [3]. A bent function that coincides with
its dual is called self-dual. There are a number of papers devoted to open problems including
characterization and description of the class of self-dual bent functions.

All equivalence classes of self-dual bent functions in 2, 4, and 6 variables and all quadratic
self-dual bent functions in 8 variables with a respect to a restricted form of affine transformation
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which preserves self-duality were given in [2]. Further, equivalence classes of cubic self-dual
bent functions in 8 variables with respect to the mentioned above restricted form of affine
transformation one can find in [7]. In [8] a classification of quadratic self-dual bent functions
was obtained. The upper bound for the cardinality of the set of self-dual bent functions was
given in [9]. New constructions of self-dual bent functions weere presented in [13, 16]. The
complete Hamming distance spectrum between self-dual Maiorana–McFarland bent functions
was obtained in [11]. Iterative constructions and metrical properties, in particular, sets of
Boolean functions which are maximally distant from the sets of self-dual and anti-self-dual bent
functions and also the questions concerning metrical regularity of the sets of self-dual and anti-
self-dual bent functions, were completely studied in [12].

Study of automorphism groups of mathematical objects deserve attention since these groups
are closely connected with the structure of the objects. There exists an essential generally non-
trivial question: how groups of automorphisms of two mathematical objects, one of which is
embedded to another one, are related.

The group of automorphisms of the set of bent functions was completely characterized by
Tokareva in [21]: it was proved that each isometric mapping of the set of Boolean functions in n
variables to itself preserving the class of bent functions is a combination of an affine transforma-
tion of coordinates and a shift by an affine function. The said group is a semidirect product of
the affine group GA (n,F2) and Fn+1

2 . A natural question arises how the automorphism group
of the set of self-dual bent functions is connected with the group of automorphisms of the set of
bent functions.

In papers [2, 7] an approach to equivalence of self-dual bent functions based on the restricted
form of affine equivalence preserving self-duality, which forms the extended orthogonal group,
was proposed. We study a question whether there exist other isometric mappings of Boolean
functions to itself which preserve the class of self-dual bent function. In this paper, we prove
that there are no other mappings satisfying such a property, thus obtaining a characterization
of the group of automorphisms of the set of self-dual bent functions.

In this paper we study isometric mappings of the set of all Boolen functions in n variables
to itself which preserve self-duality and anti-self-duality of a Boolean function. The complete
characterization of these mappings is obtained. It is proved that every such mapping has form

f(x) −→ f (L (x⊕ c))⊕ 〈c, x〉 ⊕ d,

where L is a n × n orthogonal binary matrix, c ∈ Fn2 , c has even Hamming weight, d ∈ F2.
Based on this result, the set of isometric mappings which preserve the Rayleigh quotient of the
Sylvester Hadamard matrix of every Boolean function is obtained. As a corollary all isometric
mappings which preserve bentness and the Hamming distance between bent function and its
dual are given.

The work has the following structure: basic definitions and notions concerning isometric map-
pings and groups of automorphisms are in the Sections 2 and 3. In Section 4 required material
on sign functions of (anti-)self-dual bent function, which is directly used throughout the paper,
is given. In Section 5 we characterize isometric mappings preserving self-duality (Theorem 1)
and prove that isometiric mapping preserves self-duality if and only if it preserves anti-self-
duality (Proposition 2). In Section 6 isometric mappings which define bijections between the
sets of self-dual and anti-self-dual bent functions (Theorem 2) are characterized. Section 7 is
devoted to the Rayleigh quotient of a Boolean function and isometric mappings which preserve
it (Theorem 3) and change its sign (Theorem 4) for every Boolean function. In Section 8 we
summarize results from this paper (Theorems 6 and 7), the group of automorphisms of (anti-
)self-dual bent functions is provided in Theorem 8. The conclusion is in Section 9.



2 Preliminaries

Let Fn2 be a set of binary vectors of length n.
A Boolean function f in n variables is any map from Fn2 to F2. The set of Boolean functions

in n variables is denoted by Fn.
The (0, 1)-sequence defined by (f (v0) , f (v1) , ..., f (v2n−1)) is called the truth table of f ∈ Fn

, where

v0 = (0, 0, ..., 0) ∈ Fn2
v1 = (0, 0, ..., 0, 1) ∈ Fn2
...

v2n−1 = (1, 1, ..., 1) ∈ Fn2 ,

ordered by lexicographical order.
The sign function F of a Boolean function f ∈ Fn is a real-valued function F (x) = (−1)f(x),

x ∈ Fn2 . Obviously, we have (−1)f(x) = 1 − 2f(x) for any x ∈ Fn2 . We will denote the sign
function by F = (−1)f and refer to it as to a vector F =

(
(−1)f(v0), (−1)f(v1), ..., (−1)f(v2n−1)

)
from the set {±1}2

n

(it is also known as a (1,−1)-sequence of the function f ∈ Fn, see [4]).
Two Boolean functions f, g ∈ Fn are said to be affinely equivalent if g(x) = f (Ax⊕ b) ⊕

〈b, x〉 ⊕ d, where b, c ∈ Fn2 , d ∈ F2 and A is a n × n nonsingular binary matrix. If no such
transformation exists, then f, g are called inequivalent.

The Hamming weight wt(x) of the vector x ∈ Fn2 is the number of nonzero coordinates of
x. The Hamming weight wt(f) of the function f ∈ Fn is the Hamming weight of its vector of
values. The sign ⊕ denotes a sum modulo 2. The Hamming distance dist(f, g) between Boolean
functions f, g in n variables is a cardinality of the set {x ∈ Fn2 |f(x)⊕ g(x) = 1}. For x, y ∈ Fn2
denote 〈x, y〉 =

n⊕
i=1

xiyi. The Walsh-Hadamard transform (WHT) of the Boolean function f in

n variables is an integer function Wf : Fn2 → Z, defined as

Wf (y) =
∑
x∈Fn2

(−1)f(x)⊕〈x,y〉, y ∈ Fn2 .

A Boolean function f in an even number n of variables is said to be bent if

|Wf (y)| = 2n/2

for all y ∈ Fn2 . The set of bent functions in n variables is denoted by Bn.
From the definition above it follows that for any y ∈ Fn2 we have

Wf (y) = (−1)f̃(y)2n/2

for some f̃ ∈ Fn.
The Boolean function f̃ defined above is called the dual function of the bent function f . The

duality of bent functions was introduced by Dillon [6].
Some known properties of dual functions:

• Every dual function is a bent function [1];

• If f̃ is dual to f and
˜̃
f is dual to f̃ , then

˜̃
f = f [1];

• The mapping f → f̃ which acts on the set of bent functions, preserves the Hamming
distance [1].



If bent function f coincides with its dual it is said to be self-dual bent. A bent function which
coincides with the negation of its dual is called an anti-self-dual bent. The set of (anti-)self-dual
bent functions in n variables, according to [8], is denoted by SB+(n)

(
SB−(n)

)
.

Let In be the identity matrix of size n and Hn = H⊗n1 be the n-fold tensor product of the
matrix H1 with itself, where

H1 =

(
1 1
1 −1

)
.

It is known the Hadamard property of this matrix

HnH
T
n = 2nI2n ,

where HT
n is transpose of Hn (it holds HT

n = Hn by symmetricity of Hn).
Denote Hn = 2−n/2Hn, this matrix is symmetric and orthogonal. Since all rows of the matrix

Hn correspond to sign functions of all linear functions (see [4] for instance), equivalently, bent
function can be defined as a function whose sign function, say F , satisfies HnF ∈ {±1}2n .

Denote, according to [10], the orthogonal group of index n over the field F2 as

On =
{
L ∈ GL (n,F2) |LLT = In

}
,

where LT denotes the transpose of L and In is an identical matrix of order n over the field F2.

3 Isometric mappings and automorphism groups

A mapping ϕ of the set of all Boolean functions in n variables to itself is called isometric if it
preserves the Hamming distance between functions, that is

dist(ϕ(f), ϕ(g)) = dist(f, g),

for any f, g ∈ Fn. The set of all isometric mappings of the set of all Boolean functions in n
variables to itself is denoted by In.

Example 1. Composition of an affine transform of coordinates and an affine shift, that is the
mapping of the form

f(x) −→ f (Lx⊕ b)⊕ 〈c, x〉 ⊕ d, (1)

where L is a n× n nonsingular binary matrix, b, c ∈ Fn2 , d ∈ F2, is an element of In.

The general form of isometric mappings of all Boolean functions in n variables to itself is

f(x) −→ f(π(x))⊕ g(x),

where π is a permutation on the set Fn2 and g ∈ Fn [15]. The mapping of this form is denoted
by ϕπ,g ∈ In.

There is an one-to-one correspondence between In and the set of monomial matrices of
order 2n×2n with elements from the set {0,±1}. Indeed, consider arbitrary mapping ϕπ,g ∈ In.

Then for any f ∈ Fn and its sign function F ∈ {±1}2
n

the sign function F ′ ∈ {±1}2
n

of
f ′ = ϕπ,g (f) ∈ Fn can be expressed as an action of some linear mapping (operator Rn → Rn),
namely F ′ = AF , where A is a 2n × 2n matrix



π (vi)

0
...
0

vi 0 . . . 0 (−1)g(vi) 0 . . . 0
0
...
0


,



in which in the row with number (i + 1) ∈ {1, 2, ..., 2n} a nonzero element is in the (j + 1)-th
column, where j is a number with binary representation π (vi).

The group of automorphisms of a fixed subset M ⊆ Fn is the group of isometric mappings
of the set of all Boolean functions in n variables to itself preserving the set M . It is denoted by
Aut (M).

The group of automorphisms of the set of bent functions was completely characterized by
Tokareva in 2010: it was proved that every isometric mapping of the set of all Boolean functions
in an even number n of variables to itself that transforms bent functions to bent functions is a
combination of an affine transform of coordinates and an affine shift [21], in other words, it is
described by (1).

4 Sign functions of self-dual bent functions

A non-zero vector v ∈ Cn is called an eigenvector of a square n × n matrix A attached to the
eigenvalue λ ∈ C if Av = λv. A linear span of eigenvectors attached to the eigenvalue λ is called
an eigenspace associated with λ.

Consider a linear mapping ψ : Cn → Cn represented by a n×n complex matrix A. A kernel
of ψ is the set

Ker (ψ) = {x ∈ Cn|Ax = 0 ∈ Cn} ,

where 0 is a zero element of the space Cn.
Recall an orthogonal decomposition of R2n in eigenspaces of Hn from [2] (Lemma 5.2):

R2n = Ker
(
Hn + 2n/2I2n

)
⊕Ker

(
Hn − 2n/2I2n

)
,

where the symbol ⊕ denotes a direct sum of subspaces.
From the definition of self-duality it follows that sign function of any self-dual bent function

is the eigenvector of Hn attached to the eigenvalue 1, that is an element from the subspace
Ker (Hn − I2n) = Ker

(
Hn − 2n/2I2n

)
. The same holds for a sign function of any anti-self-dual

bent function, which obviously is an eigenvector of Hn attached to the eigenvalue (−1), that is
an element from the subspace Ker (Hn + I2n) = Ker

(
Hn + 2n/2I2n

)
.

It is known that

dim (Ker (Hn + I2n)) = dim (Ker (Hn − I2n)) = 2n−1,

where dim(V ) is the dimension of the subspace V ⊆ R2n . Moreover, from symmetricity of Hn
it follows that

(Ker (Hn + I2n))⊥ = Ker (Hn − I2n)

and
(Ker (Hn − I2n))⊥ = Ker (Hn + I2n) .

In [12] the following result was obtained:

Proposition 1. ([12], Theorem 2) Let n > 4, then the linear span of sign functions of (anti-
)self-dual bent functions in n variables has dimension 2n−1.

For n = 2 there are two self-dual bent functions, namely x1x2 and x1x2 ⊕ 1, which have
sign functions (1, 1, 1,−1) and (−1,−1,−1, 1) respectively. These sign functions are linearly
dependent vectors in R4. The set SB−(2) consists of functions x1x2⊕x1⊕x2 and x1x2⊕x1⊕x2⊕1
with sign functions (1,−1,−1,−1) and (−1, 1, 1, 1) respectively. These sign functions are linearly
dependent vectors in R4 as well.



5 Isometric mappings preserving self-duality

In [7] (Theorem 1) it was shown that the mapping

f(x) −→ f (L (x⊕ c))⊕ 〈c, x〉 ⊕ d,

where L ∈ On, c ∈ Fn2 , wt(c) is even, d ∈ F2, preserves self-duality of a bent function. It is
obvious that this mapping is an element from In with π(x) = L (x⊕ c) and g(x) = 〈c, x〉 ⊕ d,
x ∈ Fn2 . The group which consists of mappings of such form is called an extended orthogonal
group and denoted by On [5, 7]. It holds On 6 GL (n+ 2,F2).

Assume that n > 4 is an even integer. In this section we generalize this result within isometric
mappings from the set In.

At first the question of how the sets of isometric mapping preserving self-duality and anti-self-
duality or, in other words, automorphism groups of the sets SB+(n) and SB−(n) are connected.

Proposition 2. For isometric mapping ϕπ,g ∈ In with matrix A the following conditions are
equivalent:

1) ϕπ,g preserves self-duality;

2) ϕπ,g preserves anti-self-duality;

3) AHn = HnA.

Proof. By Proposition 1 for n > 4 within the set SB+(n) there exist a subset {fi}2
n−1

i=1 ⊆ SB+(n)

with linearly independent sign functions {Fi}2
n−1

i=1 ⊆ Ker (Hn − I2n) and a subset {gi}2
n−1

i=1 ⊆
SB−(n) with linearly independent sign functions {Gi}2

n−1

i=1 ⊆ Ker (Hn + I2n).
Prove that from the first assertions of the Proposition the second one follows. Assume ϕπ,g

preserves self-duality. Since the matrix A is a nonsingular one, the vectors {AFi}2
n−1

i=1 are also

linearly independent sign functions of self-dual bent functions {ϕπ,g (fi)}2
n−1

i=1 ⊆ SB+(n). Then
for any sign function G ∈ Ker (Hn + I2n) of g ∈ SB−(n) we have

〈AG,AFi〉 =
〈
ATAG,Fi

〉
= 〈G,Fi〉 = 0

for i = 1, 2, ..., 2n−1, hence it holds AG ∈ Ker (Hn + I2n) and immediately ϕπ,g (g) ∈ SB−(n).
That is, for every anti-self-dual bent function g its image ϕπ,g(g) is also an anti-self-dual bent
function.

By using the same arguments one can show that from the second assertions the first one
follows as well, and we can conclude that the first and the second ones are equivalent.

Now prove the equivalence of the first and the third assertions. If AHn = HnA, then for any
sign functions F of f ∈ SB+(n) it holds

Hn (AF ) = A (HnF ) = AF,

hence the mapping preserves self-duality.
Denote B = HnA−AHn and assume that the mapping with matrix A preserves self-duality

and, as proved above, anti-self-duality. In particular, for i = 1, 2, ..., 2n−1 it holds

Hn (AFi) = AFi

and
Hn (AGi) = −AGi.

For i = 1, 2, ..., 2n−1 we have:

(HnA−AHn)Fi = Hn (AFi)−A (HnFi) = Hn (AFi)−AFi = BFi.



Then BFi = 0 ∈ R2n for every i = 1, 2, ..., 2n−1. From the fact that the set {Fi}2
n−1

i=1 forms a
basis of the subspace Ker (Hn − I2n) it follows that all rows of the matrix B are vectors from
the subspace (Ker (Hn − I2n))⊥ = Ker (Hn + I2n).

For i = 1, 2, ..., 2n−1 we also have

(HnA−AHn)Gi = Hn (AGi)−A (HnGi) = Hn (AGi) +AGi = BGi.

In this case BGi = 0 ∈ R2n for every i = 1, 2, ..., 2n−1. Since the set {Gi}2
n−1

i=1 forms a basis of
the subspace Ker (Hn + I2n) we can conclude that all rows of the matrix B are vectors from the
subspace (Ker (Hn + I2n))⊥ = Ker (Hn − I2n).

Thus we have proved that all rows of the matrix B lie in Ker (Hn + I2n) ∩ Ker (Hn − I2n)
but the intersection of orthogonal subspaces consists only of the zero element of the space Rn.
Therefore the matrix B is zero matrix.

Corollary 1. It holds
Aut

(
SB+(n)

)
= Aut

(
SB−(n)

)
.

From this Proposition it follows that the problem of characterization of isometric mappings
with considered properties is directly linked with the problem of enumerating all monomial
matrices of order 2n × 2n with elements from the set {0,±1}, which commute with the matrix
Hn. The solution of this problem is given by the following

Theorem 1. Isometric mapping ϕπ,g ∈ In preserves (anti-)self-duality if and only if

π(x) = L (x⊕ c) , x ∈ Fn2 ,

and
g(x) = 〈c, x〉 ⊕ d, x ∈ Fn2 ,

where L ∈ On, c ∈ Fn2 , wt(c) is even, d ∈ F2.

Proof. The opposite direction immediately comes from [7] (Theorem 1).
Assume that A is a matrix of the mapping ϕπ,g ∈ In preserving (anti-)self-duality. Let Ta,r

be a sign function of an affine function l(x) = 〈a, x〉⊕ r, where a, x ∈ Fn2 , r ∈ F2. In other words
Ta,r is equal to some row (column) of the matrix Hn if r = 0 or (−Hn) in the case r = 1. From
Proposition 2 it follows that AHn = HnA hence

Hn (ATa,r) = A (HnTa,r) = 2n/2σ ·Aek = 2n/2σ′ · ek′ ,

where k, k′ ∈ {1, 2, ..., 2n} , σ, σ′ ∈ {±1}. Then

ATa,r = 2n/2σ′ · Hnek′ = Ta′,r′

for some a′ ∈ Fn2 , r′ ∈ F2.
Thus, the considered mapping transforms the set of all affine functions in n variables to itself

hence it has form
f(x) −→ f (Lx⊕ b)⊕ 〈c, x〉 ⊕ d,

where L is a n× n nonsingular binary matrix, b, c ∈ Fn2 , d ∈ F2, see [14], for example.
Now consider the relation AHn = HnA in details. Recall that

Hn =


(−1)〈v0,v0〉 (−1)〈v0,v1〉 . . . (−1)〈v0,v2n−1〉

(−1)〈v1,v0〉 (−1)〈v1,v1〉 . . . (−1)〈v1,v2n−1〉

...
...

. . .
...

(−1)〈v2n−1,v0〉 (−1)〈v2n−1,v1〉 . . . (−1)〈v2n−1,v2n−1〉

 .



and A is the matrix 

Lvi ⊕ b
0
...
0

vi 0 . . . 0 (−1)〈c,vi〉⊕d 0 . . . 0
0
...
0


,

in which in the row with number (i + 1) ∈ {1, 2, ..., 2n} a nonzero element is in the (j + 1)-th
column, where j is a number with binary representation Lvi ⊕ b.

Fix arbitrary i, j ∈ {0, 1, ..., 2n − 1}. Write explicitly

(AHn)i+1,j+1 = (−1)〈c,vi〉⊕〈Lvi⊕b,vj〉⊕d.

In order to obtain (HnA)i+1,j+1 rewrite matrix A in the following form



vj

0
...
0

L−1 (vj ⊕ b) 0 . . . 0 (−1)〈c,L−1(vj⊕b)〉⊕d 0 . . . 0
0
...
0


.

Then it clear that

(HnA)i+1,j+1 = (−1)〈vi,L−1(vj⊕b)〉⊕〈c,L−1(vj⊕b)〉⊕d.

Since AHn = HnA implies (AHn)i+1,j+1 = (HnA)i+1,j+1 for any i, j ∈ {0, 1, ..., 2n − 1}, the
following relation must hold

(−1)〈c,vi〉⊕〈Lvi⊕b,vj〉⊕d = (−1)〈vi,L−1(vj⊕b)〉⊕〈c,L−1(vj⊕b)〉⊕d,

or, equivalently,

〈c, x〉 ⊕ 〈Lx⊕ b, y〉 ⊕ d =
〈
x, L−1 (y ⊕ b)

〉
⊕
〈
c, L−1 (y ⊕ b)

〉
⊕ d (2)

for any x, y ∈ Fn2 .
Put zero vector y ∈ Fn2 in (2). Then

〈c, x〉 =
〈
x, L−1b

〉
⊕
〈
c, L−1b

〉
,〈

x, L−1b⊕ c
〉

=
〈
c, L−1b

〉
for any x ∈ Fn2 . Then {

L−1b⊕ c = 0,〈
c, L−1b

〉
= 0,{

b = Lc,

wt (c) is even.
(3)



Return to (2) and take (3) into account:

〈c, x〉 ⊕ 〈Lx⊕ Lc, y〉 =
〈
x, L−1 (y ⊕ Lc)

〉
⊕
〈
c, L−1 (y ⊕ Lc)

〉
,

〈c, x〉 ⊕ 〈Lx, y〉 ⊕ 〈Lc, y〉 =
〈
x, L−1y

〉
⊕ 〈x, c〉 ⊕

〈
c, L−1y

〉
⊕ 〈c, c〉 ,

〈Lx, y〉 ⊕ 〈Lc, y〉 =
〈
x, L−1y

〉
⊕
〈
c, L−1y

〉
,

〈L (x⊕ c) , y〉 =
〈(
L−1

)T
(x⊕ c) , y

〉
.

for any x, y ∈ Fn2 . In this case

L (x⊕ c) =
(
L−1

)T
(x⊕ c)

for any x ∈ Fn2 that is

L(z) =
(
L−1

)T
(z)

for any z ∈ Fn2 . It holds if and only if

L =
(
L−1

)T
. (4)

Thus, combining (3) and (4) we obtain
L−1 = LT ,

b = Lc,

wt (c) is even.

Corollary 2. It holds
Aut

(
SB+(n)

)
= On.

It can be concluded that from Proposition 2 and Theorem 1 it follows that the group of au-
tomorphisms of the set of (anti-)self-dual bent functions coincides with the extended orthogonal
group, that is

Aut
(
SB+(n)

)
= Aut

(
SB−(n)

)
= On.

5.1 Sets of (anti-)self-dual bent function in two variables

The case n = 2 is out of the ordinary, because, in particular, Propositions 1 and 2 do not hold.
Indeed, consider isometric mapping ϕπ,g ∈ I2 with the followong matrix:

A =


0 −1 0 0
0 0 0 1
−1 0 0 0
0 0 1 0

 .

It transforms sign function (1, 1, 1,−1) of self-dual bent function f (x1, x2) = x1x2 to its negation
(−1,−1,−1, 1) and sign function (1,−1,−1,−1) of anti-self-dual bent function f (x1, x2) =
x1x2 ⊕ x1 ⊕ x2 to itself, that is this isometric mapping preserves both self-duality and anti-self-
duality. But we have

AHn =


−1 1 −1 1
1 −1 −1 1
−1 −1 −1 −1
1 1 −1 −1

 , HnA =


−1 −1 1 1
−1 −1 −1 −1
1 −1 −1 1
1 −1 1 −1.

 ,



and AHn 6= HnA.
Consider another isometric mapping ϕπ′,g′ ∈ I2 with the followong matrix:

A′ =


0 0 1 0
0 0 0 −1
0 1 0 0
−1 0 0 0

 .

It transforms sign function (1, 1, 1,−1) of self-dual bent function f (x1, x2) = x1x2 to itself
but sign function (1,−1,−1,−1) of anti-self-dual bent function f (x1, x2) = x1x2 ⊕ x1 ⊕ x2 it
transforms to sign function (−1, 1,−1,−1) of bent function f (x1, x2) = x1x2 ⊕ x2 ⊕ 1 which is
neither self-dual nor anti-self-dual, that is this isometric mapping preserves self-duality but does
not preserve anti-self-duality.

6 Isometric bijections between self-dual and anti-self-dual bent
functions

It is known [2] (Theorems 5.1, 5.3) that there exists a bijection between SB+(n) and SB−(n),
based on the decomposition of sign functions of (anti-)self-dual bent functions. Also note that
from the existence of such bijection it follows that

∣∣SB+(n)
∣∣ =

∣∣SB−(n)
∣∣.

Namely, let (Y,Z) ∈ {±1}2
n

, where Y,Z ∈ {±1}2
n−1

, be a sign function for some f ∈ SB+(n).
Then a vector (Z,−Y ) ∈ {±1}2

n

is a sign function for some function from SB−(n). In terms of
isometric mappings the mentioned transform can be represented as

f(x) −→ f (x⊕ c)⊕ 〈c, x〉 ,

where c = (1, 0, 0, ..., 0) ∈ Fn2 .
In paper [8] it was mentioned that the more general form of this mapping

f(x) −→ f (x⊕ c)⊕ 〈c, x〉 ,

where c ∈ Fn2 , wt(c) is odd, is a bijection between SB+(n) and SB−(n). It is obvious that this
mapping is an element from In.

Assume that n > 4 is an even integer. In this section we generalize these results within
isometric mappings from the set In.

Proposition 3. Isometric mapping ϕπ,g ∈ In with matrix A is a bijection between SB+(n) and
SB−(n) if and only if AHn = −HnA.

Proof. If HnA = −AHn, then for any sign functions F,G of f ∈ SB+(n) and g ∈ SB−(n)
respectively it holds

Hn (AF ) = −A (HnF ) = −AF,

Hn (AG) = −A (HnG) = AG,

hence the mapping is a bijection between SB+(n) and SB−(n).

Take {fi}2
n−1

i=1 ⊆ SB+(n) with linearly independent sign functions {Fi}2
n−1

i=1 ⊆ Ker (Hn − I2n)

and {gi}2
n−1

i=1 ⊆ SB−(n) with linearly independent sign functions {Gi}2
n−1

i=1 ⊆ Ker (Hn + I2n)
from the proof of the Proposition 2. Denote B = HnA + AHn and assume that the mapping
with matrix A is a bijection between SB+(n) and SB−(n). In particular, for i = 1, 2, ..., 2n−1 it
holds

Hn (AFi) = −AFi
and

Hn (AGi) = AGi.



For i = 1, 2, ..., 2n−1 we have

(HnA+AHn)Fi = Hn (AFi) +A (HnFi) = Hn (AFi) +AFi = BFi.

Then BFi = 0 ∈ R2n for every i = 1, 2, ..., 2n−1. Since the set {Fi}2
n−1

i=1 forms a basis of the
subspace Ker (Hn − I2n), it can be deduced that all rows of the matrix B are vectors from the
subspace (Ker (Hn − I2n))⊥ = Ker (Hn + I2n).

For i = 1, 2, ..., 2n−1 we also have:

(HnA+AHn)Gi = Hn (AFi) +A (HnGi) = Hn (AGi)−AGi = BGi.

In this case BGi = 0 ∈ R2n for every i = 1, 2, ..., 2n−1. Since the set {Gi}2
n−1

i=1 forms a basis of
the subspace Ker (Hn + I2n) we can conclude that all rows of the matrix B are vectors from the
subspace (Ker (Hn + I2n))⊥ = Ker (Hn − I2n).

Thus we have proved that all rows of the matrix B lie in Ker (Hn + I2n) ∩ Ker (Hn − I2n)
but the intersection of orthogonal subspaces consists only of the zero element of the space Rn.
Therefore the matrix B is zero matrix.

Theorem 2. Isometric mapping ϕπ,g ∈ In is a bijection between SB+(n) and SB−(n) if and
only if

π(x) = L (x⊕ c) , x ∈ Fn2 ,

and
g(x) = 〈c, x〉 ⊕ d, x ∈ Fn2 ,

where L ∈ On, c ∈ Fn2 , wt(c) is odd, d ∈ F2.

Proof. Let f ∈ SB+(n) ∪ SB−(n) that is f̃ = f ⊕ ε for some ε ∈ F2. Consider a function
g(x) = f (L (x⊕ c)) ⊕ 〈c, x〉 ⊕ d, where L ∈ On, c ∈ Fn2 , wt(c) is odd, d ∈ F2. Its Walsh-
Hadamard transform is

Wg(y) =
∑
x∈Fn2

(−1)〈x,y〉⊕g(x) =
∑
x∈Fn2

(−1)〈x,y〉⊕f(L(x⊕c))⊕〈c,x〉⊕d =

= (−1)d
∑
x∈Fn2

(−1)〈x,y⊕c〉⊕f(L(x⊕c)) = (−1)d
∑
z∈Fn2

(−1)〈L−1z⊕c,y⊕c〉⊕f(z) =

= (−1)d⊕〈c,y〉⊕〈c,c〉
∑
z∈Fn2

(−1)〈z,L(y⊕c)〉⊕f(z) =

= (−1)d⊕〈c,y〉⊕12n/2(−1)f̃(L(y⊕c)) = 2n/2(−1)f(L(y⊕c))⊕〈c,y〉⊕d⊕ε⊕1 =

= 2n/2(−1)g(y)⊕ε⊕1 = 2n/2(−1)g̃(y),

hence g̃(y) = g(y)⊕ ε⊕ 1 for any y ∈ Fn2 . The opposite direction has been proved.
By using the same arguments as in the proof of the Theorem 1 it can be deduced that the

considered isometric mapping preserves affinity of a Boolean function and therefore has form

f(x) −→ f (Lx⊕ b)⊕ 〈c, x〉 ⊕ d,

where L is a n× n nonsingular binary matrix, b, c ∈ Fn2 , d ∈ F2.
From Proposition 3 it follows that AHn = −HnA. Recall from the proof of the Theorem 1

that
(AHn)i+1,j+1 = (−1)〈c,vi〉⊕〈Lvi⊕b,vj〉⊕d,

(HnA)i+1,j+1 = (−1)〈vi,L−1(vj⊕b)〉⊕〈c,L−1(vj⊕b)〉⊕d

for any i, j ∈ {0, 1, ..., 2n − 1}.



Since AHn = −HnA implies (AHn)i+1,j+1 = − (HnA)i+1,j+1 for any i, j ∈ {0, 1, ..., 2n − 1},
the following relation must hold

(−1)〈c,vi〉⊕〈Lvi⊕b,vj〉⊕d = (−1)〈vi,L−1(vj⊕b)〉⊕〈c,L−1(vj⊕b)〉⊕d⊕1,

or, equivalently,

〈c, x〉 ⊕ 〈Lx⊕ b, y〉 ⊕ d =
〈
x, L−1 (y ⊕ b)

〉
⊕
〈
c, L−1 (y ⊕ b)

〉
⊕ d⊕ 1 (5)

for any x, y ∈ Fn2 .
Put zero vector y ∈ Fn2 in (5). Then

〈c, x〉 =
〈
x, L−1b

〉
⊕
〈
c, L−1b

〉
⊕ 1,〈

x, L−1b⊕ c
〉

=
〈
c, L−1b

〉
⊕ 1

for any x ∈ Fn2 . Then {
L−1b⊕ c = 0,〈
c, L−1b

〉
= 1,{

b = Lc,

wt (c) is odd.
(6)

Return to (5) and take (6) into account:

〈c, x〉 ⊕ 〈Lx⊕ Lc, y〉 =
〈
x, L−1 (y ⊕ Lc)

〉
⊕
〈
c, L−1 (y ⊕ Lc)

〉
⊕ 1,

〈c, x〉 ⊕ 〈Lx, y〉 ⊕ 〈Lc, y〉 =
〈
x, L−1y

〉
⊕ 〈x, c〉 ⊕

〈
c, L−1y

〉
⊕ 〈c, c〉 ⊕ 1,

〈Lx, y〉 ⊕ 〈Lc, y〉 =
〈
x, L−1y

〉
⊕
〈
c, L−1y

〉
,

〈L (x⊕ c) , y〉 =
〈(
L−1

)T
(x⊕ c) , y

〉
for any x, y ∈ Fn2 . It holds if and only if

L =
(
L−1

)T
. (7)

Thus, combining (6) and (7) we obtain
L−1 = LT ,

b = Lc,

wt (c) is odd.

7 Isometric mappings and the Rayleigh quotient of the Sylvester
Hadamard matrix

In this section isometric mappings from the set In, which preserve and change the sign of the
Rayleigh quotient (Rayleigh ratio) of the Sylvester Hadamard matrix defined for every Boolean
function in n variables, are studied.



7.1 Definition and characterization

In [2] the Rayleigh quotient Sf of a Boolean function f ∈ Fn was defined as

Sf =
∑

x,y∈Fn2

(−1)f(x)⊕f(y)⊕〈x,y〉 =
∑
y∈Fn2

(−1)f(y)Wf (y).

For any f ∈ Bn the normalized Rayleigh quotient Nf is a number

Nf =
∑
x∈Fn2

(−1)f(x)⊕f̃(x) = 2−n/2Sf .

In [2] (Theorem 3.1) it was proved that for any f ∈ Fn the absolute value of Sf is at most
23n/2 with equality if and only if f is self-dual

(
+23n/2

)
and anti-self-dual

(
−23n/2

)
bent function.

In the article [5] the operations on Boolean functions that preserve bentness and the Rayleigh
quotient were given. Namely, it was proved that for any f ∈ Bn, L ∈ On, c ∈ Fn2 , d ∈ F2 the
functions g, h ∈ Bn defined as g(x) = f (Lx)⊕ d and h(x) = f (x⊕ c)⊕ 〈c, x〉 provide Ng = Nf

and Nh = (−1)〈c,c〉Nf .
One can notice that the mentioned operations are isometric mappings from In.
Assume that n > 4 is an even integer. In the following subsections we generalize these results

within isometric mappings from the set In.

7.2 Isometric mappings preserving the Rayleigh quotient

Theorem 3. Isometric mapping ϕπ,g ∈ In preserves the Rayleigh quotient if and only if it
preserves self-duality.

Proof. For straight direction it is enough to mention that Sf = +23n/2 if and only if f ∈ SB+(n)
([2], Theorem 3.1).

Assume that the mapping ϕπ,g preserves self-duality. Let A be its matrix. Then by Propo-
sition 2 we have AHn = HnA. Take arbitrary f ∈ Fn and rewrite the Rayleigh quotient in the
following form:

Sf =
∑

x,y∈Fn2

(−1)f(x)⊕f(y)⊕〈x,y〉 = 〈F,HnF 〉 ,

where F is a sign function of f . The mapping preserves the Rayleigh quotient if

Sϕπ,g(f) = 〈AF,Hn (AF )〉 = 〈F,HnF 〉 = Sf .

Consider

〈AF,Hn (AF )〉 = 〈AF,A (HnF )〉 =
〈
ATAF,HnF

〉
= 〈F,HnF 〉 ,

therefore ϕπ,g preserves the Rayleigh quotient.

Corollary 3. Isometric mapping ϕπ,g ∈ In preserves the Rayleigh quotient if and only if

π(x) = L (x⊕ c) , x ∈ Fn2 ,

and
g(x) = 〈c, x〉 ⊕ d, x ∈ Fn2 ,

where L ∈ On, c ∈ Fn2 , wt(c) is even, d ∈ F2.



7.3 Isometric mappings changing the sign of the Rayleigh quotient

Theorem 4. Isometric mapping ϕπ,g ∈ In changes the sign of the Rayleigh quotient if and only
if it is a bijection between SB+(n) and SB−(n).

Proof. For straight direction it is enough to mention that Sf = +23n/2 if and only if f ∈ SB+(n)
and Sf = −23n/2 if and only if f ∈ SB−(n) ([2], Theorem 3.1).

Assume that the mapping ϕπ,g is a bijection between SB+(n) and SB−(n). Let A be its
matrix. Then by Proposition 3 we have AHn + HnA = 0. Take arbitrary f ∈ Fn and rewrite
the Rayleigh quotient in the following form:

Sf =
∑

x,y∈Fn2

(−1)f(x)⊕f(y)⊕〈x,y〉 = 〈F,HnF 〉 ,

where F is a sign function of f . The mapping changes the sign of the Rayleight quotient if

Sϕπ,g(f) = 〈AF,Hn (AF )〉 = −〈F,HnF 〉 = −Sf .

Consider

〈AF,Hn (AF )〉 = 〈AF,−A (HnF )〉 = −
〈
ATAF,HnF

〉
= −〈F,HnF 〉 ,

therefore ϕπ,g changes the sign of the Rayleigh quotient.

Corollary 4. Isometric mapping ϕπ,g ∈ In changes the sign of the Rayleigh quotient if and only
if

π(x) = L (x⊕ c) , x ∈ Fn2 ,

and
g(x) = 〈c, x〉 ⊕ d, x ∈ Fn2 ,

where L ∈ On, c ∈ Fn2 , wt(c) is odd, d ∈ F2.

From Theorems 3 and 4 it follows

Corollary 5. Isometric mapping ϕπ,g ∈ In, which preserves the Rayleigh quotient or changes
the sign of the Rayleigh quotient, also preserves bentness.

7.4 Isometric mappings preserving the Hamming distance between bent func-
tion and its dual

The Rayleigh quotient characterizes the Hamming distance between a bent-function and its
dual. Indeed, let f ∈ Bn, then

dist
(
f, f̃
)

= 2n−1 − 1

2n/2+1
Sf = 2n−1 − 1

2
Nf .

Theorem 5. Isometric mapping ϕπ,g ∈ In preserves bentness and the Hamming distance be-
tween any bent function in n variables and its dual if and only if it preserves (anti-)self-duality.

Proof. If ϕπ,g preserves the Hamming distance between any bent function in n variables and its
dual then it preserves (anti-)self-duality.

If ϕπ,g preserves (anti-)self-duality then by Theorem 3 it preserves the Rayleigh quotient and
from Theorem 1 it follows that this mapping preserves bentness. The characterization of the
Hamming distance between bent function and its dual in terms of the Rayleigh quotient yields
the result.

The form of such mappings is described by Theorem 1.



8 Summary

In this section we summarize and group results from the paper.
Assume that n > 4 is an even integer.
Let ϕπ,g be an isometric mapping of the set of all Boolean functions in n variables to itself

with matrix A, namely
ϕπ,g : f(x) −→ f (π(x))⊕ g(x),

where π is a permutation in Fn2 and g ∈ Fn. The matrix A is the following



π (vi)

0
...
0

vi 0 . . . 0 (−1)g(vi) 0 . . . 0
0
...
0


,

where in the row with number (i + 1) ∈ {1, 2, ..., 2n} a nonzero element is in the (j + 1)-th
column, where j is a number with binary representation π (vi).

Theorem 6. The following conditions are equivalent:

1) ϕπ,g preserves self-duality;

2) ϕπ,g preserves anti-self-duality;

3) ϕπ,g preserves the Rayleigh quotient of every Boolean function;

4) ϕπ,g preserves bentness and the Hamming distance between any bent function and its dual;

5) π(x) = L (x⊕ c) , g(x) = 〈c, x〉 ⊕ d, where L ∈ On, c ∈ Fn2 , wt(c) is even, d ∈ F2;

6) AHn = HnA.

Theorem 7. The following conditions are equivalent:

1) ϕπ,g is a bijection between SB+(n) and SB−(n);

2) ϕπ,g changes sign of the Rayleigh quotient of every Boolean function;

3) π(x) = L (x⊕ c) , g(x) = 〈c, x〉 ⊕ d, where L ∈ On, c ∈ Fn2 , wt(c) is odd, d ∈ F2;

4) AHn = −HnA.

Recall that the extended orthogonal group On consists of mappings of all Boolean functions
in n variables to itself which have form

f(x) −→ f (L (x⊕ c))⊕ 〈c, x〉 ⊕ d,

where L ∈ On, c ∈ Fn2 , wt(c) is even, d ∈ F2.
The group of automorphisms of (anti-)self-dual bent functions is characterized by the fol-

lowing

Theorem 8. It holds
Aut

(
SB+(n)

)
= Aut

(
SB−(n)

)
= On.

From the obtained results it follows that an approach to equivalence of self-dual bent func-
tions in n > 4 variables based on the restricted form of affine equivalence proposed in arti-
cles [2, 7] is the most general within isometric mappings of the set of all Boolean functions in n
variables to itself.



9 Conclusion

In current paper isometric mappings of all Boolean functions in n > 4 variables to itself pre-
serving self-duality and anti-self-duality of Boolean bent function were completely studied. The
obtained results were used to determine isometric mappings preserving the Rayleigh quotient of
a Boolean function and isometric mappings preserving bentness and the Hamming distance be-
tween any bent function and its dual. The group of automorphisms of the set of (anti-)self-dual
bent functions is obtained.

An interesting open problem is to characterize isometric mappings preserving self-duality
which are not necessarily isometric mappings of the set of all Boolean functions.
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