
Systematic and Random Searches for Compact
4-Bit and 8-Bit Cryptographic S-Boxes ? ??

Christophe Clavier and Léo Reynaud

University of Limoges, France

Abstract. Obtaining compact, while cryptographically strong, S-boxes
is a challenging task required for hardware implementations of lightweight
cryptography. Contrarily to 4-bit permutations design which is somewhat
well understood, 8-bit permutations have mainly been investigated only
through structured S-boxes built from 4-bit ones by means of Feistel,
MISTY or SPN schemes. In this paper, we depart from this common
habit and search for compact designs directly in the space of 8-bit per-
mutations. We propose two methods for searching good and compact
8-bit S-boxes. One is derived from an adaptation to 8-bit circuits of a
systematic bottom-up exploration already used in previous works for 4-
bit permutations. The other is the use of a genetic algorithm that samples
solutions in the 8-bit permutations space and makes them evolve toward
predefined criteria. Contrarily to similar previous attempts, we chose to
encode permutations by their circuits rather than by their tables, which
allows to optimize non only w.r.t the cryptographic quality but also
w.r.t. compactness. We obtain results which show competitive compared
to structured designs and we provide an overview of the relation between
quality and compactness in the range of rather small 8-bit circuits.
Beside, we also exhibit a 8-gate circuit made of only AND and XOR gates
that represents a 4-bit permutation belonging to an optimal equivalence
class. This shows that such optimal class can be instantiated by threshold
implementation friendly circuits with no extra cost compared to previous
works.

Keywords: S-box design · Hardware implementation · Threshold im-
plementation · Genetic algorithms.

1 Introduction

The study presented in this paper has been initiated while designing the 8-bit S-
box of Lilliput-TBC tweakable block cipher submitted to the NIST Lightweight
Cryptography Standardization Process [18]. This 8-bit permutation has been
defined as a 3-round Feistel construction based on three 4-bit functions S1, S2,
? The research work presented in this paper has been supported by PACLIDO French
funded research project.

?? Computations needed for this research work have been realized on the CALI super-
computer funded by University of Limoges and XLIM, IPAM and GEIST institutes.

2 Christophe Clavier and Léo Reynaud

S3. While outer round functions S1 and S3 are Almost Perfect Nonlinear (APN)
functions borrowed from the SCREAM cipher [10], we focused on optimizing the
choice of the inner round permutation S2.

For finding compact 4-bit permutations with good cryptographic properties
we chose to explore circuits systematically in a bottom-up manner by starting
from the empty circuit which corresponds to the identity function, and adding
gates successively in an optimized breadth-first search. Doing so, because all
circuits are exhausted for increasing numbers of gates, when one finds a circuit
that encodes a permutation with specific properties, then this circuit is the most
compact to achieve these criteria. While this strategy has been used in previous
works [21, 8], we decided to allow only gates from the restricted set {AND,
XOR}. This choice corresponds to Boolean functions that are easy to share
when one wants to derive a Threshold Implementation (TI) of the circuit for
side-channel security. In other words, our search is directed toward finding good
permutations whose associated circuits are both as most compact as possible
(for a given quality and with this given set of gates) and TI-friendly for masked
hardware implementations. These properties also give benefits in software if one
choose to implement our S-boxes in the bit-slice manner: the reduced number
of gates makes the execution time smaller, and the TI-friendly design remains a
desirable property for software masked implementations also.

During our systematic search for compact 4-bit S-boxes we noticed that in
most interesting circuits an AND gate was quite often followed by a XOR taking
as one of its inputs the output of the AND. While we could not give any explana-
tion for this, we thought that this structure may favor the quality/compactness
goal. We thus defined a new "AND-XOR" three-input composite gate and de-
cided to extend our search to 8-bit circuits with only gates of types AND-XOR
and XOR.

Contrarily to the 4-bit case, the huge number of 8-bit permutations (256! ≈
21684) prevents our systematic approach to reach sufficiently long circuits to
obtain interesting permutations. While finding good S-boxes directly in the set
of 8-bit permutations is considered as a difficult task – it is commonly preferred
to construct 8-bit permutations from 4-bit functions by means of Feistel, MISTY,
Lai-Massey or SPN schemes – we still decided to undertake two kinds of guided
random searches for 8-bit permutations. The first approach was to modify the
systematic search tool that we used for 4-bit circuits: apart from redefining the
set of gates as explained above and the number of bits to 8, we also left apart
the systematic breadth-first approach and adopted a (still bottom-up) random
depth-first search. The second approach was to use a genetic algorithm (GA)
based on our same encoding of circuits as an ordered list of gates.

Previous Work As the S-box is the only non linear part of most encryption algo-
rithms, finding permutations with good cryptographic properties has been widely
studied. The three main principles of building such permutations are the random
generation, the algebraic and the heuristic constructions. The first one fails to
give good results as the exploration space is wide and suitable cryptographic
properties very scarce [19, Table 9.2]. The second principle consists in finding

Search for Good 4-Bit and 8-Bit Compact S-Boxes 3

expressions leading to good properties. The most illustrative design concerns
inversion in the finite field with the S-box of AES being a famous example. The
third one uses guided search in order to evolve permutations to find even better
ones. It involves notably genetic algorithms principle (see [13] for an overview
on evolutionary techniques) and other techniques such as hill climbing [16], gra-
dient descent [12] and simulated annealing [9]. All those techniques aim to find
as good as possibles permutations without considering their implementations.
From an hardware point of view, in order to reduce the implementation cost,
these techniques must be followed by an optimization phase which tries to find
a cheap implementation of a particular table. Lot of work has been done in this
path, particularly to be applied to the AES S-box (e.g. [7, 5]). While there ex-
ist some works that optimize and prove the optimality on 4-bit circuits [11, 20],
these techniques do not find the smallest circuit in general.
A different approach to fulfill compactness of a circuit is to build small cir-
cuits that instantiate S-boxes with sufficient cryptographic properties. Ullrich
et al. [21] explore systematically all 4-bit circuits of a given number of gates
before increasing this number, finding the optimal circuit for some classes of
equivalence [6, 14] with their set of gates. In order to reduce the size, Canteaut
et al. [8] build 8-bit S-boxes from optimal 4-bit ones using results of [21] in
structures like Feistel or MISTY, until they obtain satisfactory results. Other
works [3, 4] mainly reduce masking costs of such small S-boxes by decomposing
cubic permutations into quadratic ones.

Our Contribution Inspired by the work of Ullrich et al. [21] we developed our
own tool that builds 4-bit circuits by adding successive instructions (gates) to
the empty circuit. While they used {AND, OR, XOR, NOT, MOV} as their set
of instructions, we restricted our search to use only AND and XOR1. One can
wonder whether this reduced set of instructions still allows to find a represen-
tative of an optimal class with as few instructions as them. Actually we answer
positively to this question by exhibiting circuits belonging to the same optimal
class with the same smallest gate count. Our first contribution thus shows that
the TI-friendly property can be added to the more compact optimal 4-bit S-boxes
with no penalty in term of circuit area for unmasked hardware implementations.
Besides, our main contribution are two kinds of intensive search for compact
circuits directly in the 8-bit permutations space. This led to a list of best S-box
qualities that we can reach, ordered by the number of gates of their circuit. This
list – which helps the S-box designer to answer the question What cryptographic
quality can I expect for this given number of gates? – is provided in Table 1.
These "records" are not absolute (some qualities may well be reached by smaller
circuits in the future) but as far as we know this is the first attempt to provide
1 Actually, we also implicitly allow the MOV instruction, but we do not count it for 1
gate since this can been seen as a free wiring in hardware implementations.
Regarding the NOT instruction, similarly to [21], we observed that allowing it does
not result in smaller circuits. If the fixed point 0 is a concern, one can just add a
NOT gate at the beginning or at the end of the circuit at a quite small cost (even
negligible for threshold implementations).

4 Christophe Clavier and Léo Reynaud

a reference status of such a compactness-oriented search. It gives a large picture
of the relation between quality and compactness in the range of rather small
circuits for 8-bit permutations. Regarding our search by genetic algorithm, we
encoded permutations by their hardware description. To the best of our knowl-
edge, this is the first work that uses this encoding. Beside being gate count aware,
it preserves structural portions of the circuit and seems to us more relevant than
the encoding by table content of previous works.

Outline The paper is organized as follows. We define our cryptographic criteria,
affine equivalence, and give background on threshold implementations in Sec-
tion 2. Then we present our different searches for good and compact S-boxes:
the systematic bottom-up search for 4-bit S-boxes is presented in Section 3, while
Section 4 presents both the random bottom-up search and the GA-based search
for 8-bit S-boxes, as well as a comparison with already known S-boxes. Finally
Section 5 concludes this paper.

2 Preliminaries

2.1 Cryptographic Criteria to Optimize

Apart from optimizing our circuits with respect to their gate count, we also
target good cryptographic quality based on the following criteria:

Algebraic Degree Given a Boolean function f defined on Fn
2 , its algebraic

degree is defined as the maximal degree of the terms of its Algebraic Normal
Form (ANF). The algebraic degree d of a permutation S of Fn

2 is defined as
the maximum algebraic degree of all its n component functions. We want to
maximize d in order to better resist to algebraic or structural attacks.

Differential Uniformity The differential uniformity δ of a permutation S is
defined as:

δ(S) = max
a6=0,b

|δS(a, b)|

where
δS(a, b) = #{x ∈ Fn

2 : S(x⊕ a) = S(x)⊕ b}

is related to the probability that an input difference a gives an output dif-
ference b. As we want to minimize this probability in the worst case (w.r.t. a
and b) in order to make differential cryptanalysis [1] more difficult, we want
to minimize δ(S).

Linearity The linearity L of a permutation S is defined as:

L(S) = max
a,b 6=0

|WS(a, b)|

where the Walsh transform

WS(a, b) =
∑
x∈Fn

2

(−1)a·x⊕ b·S(x)

Search for Good 4-Bit and 8-Bit Compact S-Boxes 5

is related to the quality of the linear approximation fa,b(x) = a ·x ⊕ b ·S(x).
The higher |WS(a, b)| the better the approximation. As we want to minimize
the correlation in the worst case (w.r.t. a and b) in order to make linear
cryptanalysis [15] more difficult, we also want to minimize L(S).

2.2 Affine Equivalence Classes

Two S-boxes S1 and S2 are said affine equivalent if there exist two invertible
linear mappings A and B and two constants a and b such that

S1(x) = B · (S2(A · x⊕ a)⊕ b) ∀x ∈ Fn
2 .

This defines affine equivalence classes which preserve the algebraic degree, the
differential uniformity and the linearity coefficient of S-boxes. De Cannière [6]
has classified all 4-bit permutations in 302 classes. Leander et al. [14] define an
optimal S-box as one that has optimal resistance against differential and linear
cryptanalysis (minimal values of δ and L). There exist 16 optimal classes of
4-bit S-boxes which correspond to the 16 first classes of [6]. In the sequel we
borrow the notation of [3] for affine equivalence classes (Ai,Qj , Ck) which gives
the information whether the class contains affine, quadratic or cubic functions

2.3 Background on Threshold Implementations

Threshold implementation is a form of countermeasure aiming to prevent leak-
ages provoked mainly by glitches in a hardware implementation of an algo-
rithm [17, 2]. It consists in sharing variables and computations like in multiparty
computation. A TI implementation of a function F (x) = a is done as follow: the
variable x is split into sin input shares thanks to Boolean masking resulting in
the sharing x = {x1, . . . , xsin} such that x =

∑sin
i=1 xi. Then, sout component

functions Fj(x1, . . . , xsin) are calculated for j = 1, . . . , sout, each one giving an
output share such that a = {F1(x), . . . , Fsout

(x)}. A TI implementation must
fulfill the three following properties:

– Correctness: the XOR of output shares gives the intended result
∑sout

i=1 Fi(x) =
F (x),

– Non completeness: each component function should be independent of at
least one input share in order to provide first-order security,

– Uniformity: for a permutation and sin = sout, then each sharing a is given
by exactly one sharing x through functions Fj .

The first property ensures that the result is correct and the second that no
attacker is able to retrieve information about any variable when observing an
output share. Both properties are relatively easy to implement. The last prop-
erty is more difficult to fulfill but is only needed if other protected calculations
use those outputs. Uniformity of sharing of input variables is mandatory, then if
two calculations are done in a row, the first one must be uniform on its outputs

6 Christophe Clavier and Léo Reynaud

in order for the second to have uniformity on its inputs. It may require to rear-
range each output share without breaking the first two properties, or use fresh
randomness.
Notice that the TI of a function of degree d needs at least d+ 1 shares in order
to fulfill these three properties.

3 Systematic Search for Compact 4-Bit S-Boxes

We describe here the study and development of a tool dedicated to the finding
of compact 4-bit S-boxes with good cryptographic properties. Beside its cryp-
tographic quality, we also require our selected S-box to provide an easy and
efficient threshold implementation for side-channel security.

This search has been done by exploring 4-bit circuits with a small number
of gates in a systematic way, and selecting some that satisfy some given cri-
teria to use them as part of a Feistel structure. The resulting candidates for
the Lilliput-TBC 8-bit S-box were checked whether they have suitable cryp-
tographic properties. We focused on 4-bit permutations that belong to optimal
classes since these are the only ones that reach δ = 4 2.

Our systematic bottom-up approach is very similar to that described in [21].
Starting from the empty circuit that encodes identity function, we progressively
add gates to build more complex circuits. Since we investigate all possible ways
of adding a gate before adding another one – that means exhausting all kinds
of gates, and all their input and output bits –, we thus explore a tree in a
breadth-first way where each node corresponds to a circuit and each level to its
number of gates. This method implies that each equivalence class is found with
the least gate count with certainty. Note that even if a particular representative
of a class is found with a given number of gates, it is not proven that any other
representative could be expressed with the same amount of gates.

During the exploration, each node may have up to Ng ∗
(
Nr

2

)
∗Nr children,

where Ng is the number of gate types (in our case Ng = 2) and Nr is the number
of registers3. To contain the exponential grows of the exploration, we use several
tricks that either forbid some ways of adding gates, or prevent some nodes from
further exploration. For instance, a gate should be added only if the following
conditions are satisfied:

– its output should not overwrite a register that has not yet been used as input
of the current or of a previous gate,

– the result of a gate should not be 0,
– a gate should change the value of its output register.

2 According to [8] an 8-bit S-box derived from a 3-round Feistel construction can reach
δ = 8 only if both outer-round functions are APN and the inner-round function is a
4-bit permutation with differential uniformity equal to 4.

3 The notion of register is particularly relevant for software implementations. Though,
as in [21] we decided to use Nr = 5.

Search for Good 4-Bit and 8-Bit Compact S-Boxes 7

Also, we take care of the bit-permutation equivalence of circuits. We define that
two circuits C1 and C2, represented by tables T1 and T2, are bit-permutation
equivalent if there exist a permutation P1 of the input bits and a permutation
P2 of the output bits such that

T1(x) = P2 ◦ T2 ◦ P1(x) ∀x ∈ Fn
2 .

We keep only one representative circuit of each class of bit-permutation equiv-
alence. To this end, we managed to define a canonical index of a circuit such
that two circuits share the same index if and only if they are bit-permutation
equivalent. Then when a circuit is considered, we compute its index and decide
to not include it to the list of to-be-further-explored circuits if this index has
already been encountered.

Results We explored up to the 8-gate level with 5 registers with this approach,
resulting in a list of smallest circuits (up to the bit-permutation equivalence).
We then only kept circuits resulting in a permutation. As the bit-permutation
equivalence clearly does not change the affine equivalence class, we were able to
find all circuits of smallest number of gates for some affine equivalence classes.
In the limit of 8 gates, we encountered 62 affine equivalence classes among which
all quadratic ones as well as three optimal classes – namely C223, C296 and C297
– from one of which we identified a satisfactory permutation.
As we obtained many 8-gate circuits belonging to the above three optimal classes,
we decided to select one that is particularly suited for threshold implementation
(beside producing a good quality 8-bit S-box). We used the same trick as in [3] to
decompose a cubic permutation into two quadratics so that we can implement TI
with only 3 shares. From their composition table, four optimal classes – namely
C223, C266, C296 and C297 – can result from the composition of two quadratics. We
hence decided to search representatives of the 6 quadratic classes with the least
amount of gates to compose them and see if any optimal S-box can be built. As
a result Q4 is very small as it needs only 2 gates. Q12 and Q294 come next with
4 gates, and Q293, Q299 and Q300 need 6 gates. A composition of two of them
would result in either 4, 6, 8, 10 or 12 gates. Looking at their composition table,
no optimal class can result from compositions with as few as 4 or 6 gates. All
four optimal classes need a minimum of 8 gates.

Another criterion to minimize the number of gates of the TI is to make sure
that the quadratic circuits have a direct uniform sharing. This particular sharing
is the simplest and does not require additional gates or randomness unlike when
needing correction terms or re-masking. From [3] only Q4, Q294 and Q299 can be
directly shared. Using both previous observations, we composed 4-gate circuits of
the class Q294 with no permutation in between to avoid extra gates. We obtained
several permutations of the class C223, and among all these solutions we had the
opportunity to choose a permutation that results from the same quadratic circuit
used twice (see Figure 1).

8 Christophe Clavier and Léo Reynaud

a b c d

x y z t

P

Fig. 1. The inner 4-bit S-box component of Lilliput-TBC

As the search is exhaustive, there is no smaller circuit for each quadratic
class. We used two circuits of 4 gates which is the minimum according to the
composition table, and each one can be directly uniform shared resulting in
the minimum of additional cost for the thresholding. Note that 8 gates is the
minimum that we found for an optimal class without composition, C223 being
one of them. Referring to [21], they also reach this class with 8 gates (they count
9 as they include the MOV instruction) with a larger set of gates4. We thus
demonstrate that their exist TI-friendly representatives of this C223 record class
that do not need any extra gate.

Breadth-First Search with Level As we did not find all 302 classes with this
method due to memory issues brought by the size of the heap of circuits to be
explored, we chose to split the exploration on several parallel processes. This
time, each process would not start the exploration with the empty circuit, but
rather with an 8-gate portion of circuit, hence reducing the size of the heap
to explore. This results in an increased number of circuits explored as these
processes are independent and run in parallel. As a drawback, we lose some
early-abort opportunities as circuits already explored in other parallel process
are not detected. Nevertheless, this method allowed us to go as far as 10 gates
(not exhaustively) and to find more classes including optimal ones.

4 Their exemplary record circuit includes an OR gate.

Search for Good 4-Bit and 8-Bit Compact S-Boxes 9

4 Random Searches for Compact 8-Bit S-Boxes

Low implementation cost of 8-bit S-boxes is an important matter in lightweight
cryptography. A number of already used implementations are based on Feistel,
MISTY or SPN structures [8, 4]. Here we try to find interesting permutations
without these structures, directly in the 8-bit permutations space. We also keep
the TI-friendly set of gates. Unlike for 4-bit circuits, it is unfeasible to system-
atically explore 8-bit ones, even for a few gates. We therefore tried two kinds of
random explorations, a bottom-up and a genetic oriented one.
Before describing those explorations, we introduce a particular gate setting that
allows to speed up the search. A problem of generating circuits by adding random
gates is that a very low proportion of them are permutations. This becomes par-
ticularly noticeable when changing from 4-bit to 8-bit circuits. Thanks to some
observations from our 4-bit exploration, and from some S-box schemes presented
by other authors, we have noticed that AND and OR gates are very likely to be
followed by a XOR in low cost implementations. We thus chose to explore cir-
cuits using mostly a so-called "AND-XOR" gate that simply consists in a AND
followed by a XOR. This composite gate takes three inputs – two for the AND
and one for the XOR as its second input is the AND output – and gives one
output. An interesting observation is that if the third input register is the same
as the output register, then such a gate preserves the permutation property5

(see Figure 2). As this is also trivially the case for the XOR, we thus have a way
to systematically explore into the permutations space. A drawback of this trick
is that the set of reachable permutations is reduced, but this is largely compen-
sated by the advantage that we do not have to waste most of computation time
to consider non-permutation circuits.

Fig. 2. Two AND-XOR composite gates: ordinary (left), preserving the permutation
property (right)

4.1 Random Bottom-Up Search

We adapted the search tool described in Section 3. To this end, beside increas-
ing the number of bits from 4 to 8, we changed the gate set to {AND-XOR,
XOR}. Also, the search is no more a breadth-first systematic exploration, but
an in-depth random process. It consists in repeating a huge number of times the
5 If we add such a gate to a circuit that encodes a permutation, then the resulting
circuit also encodes a permutation.

10 Christophe Clavier and Léo Reynaud

generation of a random circuit, still in the bottom-up way by adding successive
gates randomly. Notice that since the AND-XOR gate already includes a XOR,
we put basic XOR gates only with a marginal probability.

We randomly built circuits using eight registers6. Each time we add a gate,
cryptographic properties are evaluated and a list of best found figures is main-
tained for each gate count. After some tries, we noticed that the probability that
a circuit gives good cryptographic results vanishes as the number of gates grows.
More precisely, consider two generated circuits of the same size, one of low qual-
ity and one of higher quality. Then if we add a same few number of random gates
to each of them, it is unlikely that the first resulting circuit becomes better than
the second one. This led us to proceed by stages. First we generate from scratch
many circuits of some size n1. We then select the better of them, and we pursue
by adding gates to these promising circuits up to size n2 > n1. We can continue
this way by progressively adding gates stage by stage.

Indeed, this strategy gives rather better results than generating long circuits
from the beginning in one shot. We had to make many runs, and try different
ways of selecting circuits, as well as different number of stages and stage levels.
After several weeks of computations on dozens of independent computing nodes,
we have obtained "record" circuits ranging from about 10 to 50 gates that are
presented in Table 1 in the "random search" column. For each gate count, the
cell gives the best cryptographic quality we obtained – in terms of differential
uniformity (δ) and linearity (L) 7. For some sizes, we obtained several record
circuits that are not comparable to each others. This happens when one circuit
is better for some criteria while the other is better for the other criteria. In such
cases, we provide all these non-comparable records.

4.2 Genetic Algorithm Search

Genetic algorithms (GA) are heuristic methods that mimic biologic processes of
the evolution of life. They aim at finding as good solutions as possible to non-
linear and possibly multi-dimensional problems that are not possible to solve
by deterministic methods. A genetic algorithm makes evolving a population of
individuals represented by chromosomes which encode a particular solution to
the problem to optimize. It typically comprises the following phases :

– Generate a random population of solutions
– Randomly draw couples of individuals based on their fitness (quality) and

create children by crossing parts of their parents (and eventually transform
these children back into solutions if it is not the case)

– Randomly mutate children
– Mimic natural selection by preferentially selecting better solutions from the

pool of parents and children and "killing" low fitness individuals
6 Actually, using the AND-XOR gate, an extra register is implicitly required to tem-
porarily store the AND output.

7 It happened that our best circuits (w.r.t. δ and L) always had maximal algebraic
degree (except for quite small ones).

Search for Good 4-Bit and 8-Bit Compact S-Boxes 11

– Iterate until a sufficiently good solution is found

Genetic algorithms rely on the fact that crossing parts of medium or good
quality individuals may give birth to a better solution by mixing together inter-
esting parts of each parent. The mean quality of each generation is thus expected
to increase over time, at least during the first generations.

A particularly important aspects of a genetic algorithm is the way chromo-
somes encode solutions to the problem to solve. Previous uses of GA [13] were
made to search good S-boxes but only focused on their cryptographic properties
and did not considered the underlying circuit. On the contrary, we have chosen to
encode S-boxes by their circuit rather than by their representative table. In our
case, a chromosome is thus the ordered list of gates that defines the circuit. We
see two advantages to proceed this way: First, it is possible to take into account
the size of the circuit in the fitness of individuals, which allows our search to
be compactness oriented. Also, there may exist structural aspects of the circuit
which make sense from a cryptographic point of view. These will be preserved
in most cases from one generation to the next.

As solutions are encoded by circuits that give permutations, the crossing
over step of two individuals is simply done by swapping parts of their circuits.
Actually, the main issue of applying GA principles to circuits is that the mating
of two parents that encode permutations, may well result in a child that is no
more a permutation. In this case we have to find a way to transform it back
into a permutation. Fortunately we did not have to mind with this issue thanks
to the use of our special kind of AND-XOR gates with particular output (XOR
gate with result in place) as swapping parts of two circuits always ends up in
permutations.

We present the main options and parameters that we used in our GA search
for permutations.

First generation The first generation is generated by random circuits of a
given length. As an option, we can also insert some good solutions found
from previous executions (or from circuits found with the random search).

Fitness The definition of the fitness is also an important feature of a genetic
algorithm. In our case, this was not straightforward as we had to solve a
multi-criteria optimization: we want to minimize the number of gates, the
differential uniformity and the linearity, and to maximize the algebraic de-
gree. We ended up using two types of fitness computation. The first is based
on the very simple weighted sum of those criteria. The second consists in
ranking individuals with a derivative of dominance, and then giving an equal
score to all individuals of a same rank. Our derivative of dominance is de-
fined as follow: given two individuals I1 and I2 and their sets of n respective
criteria {c11, . . . , cn1} and {c12, . . . , cn2}, we consider that I1 dominates I2 if
#{i : ci1 > ci2} > n

2 , that is the number of criteria for which I1 is better
to I2 is more than the half. Then individuals of rank 1 are defined as those
who are dominated by no others. Individuals of rank 2 are those who are
dominated by no other which are not of rank 1, and so on.

12 Christophe Clavier and Léo Reynaud

Selection of parents Parents are drawn thanks to two techniques. The first
one is the roulette where each individual is being attributed a probability
proportional to its fitness. Parents are then drawn repeatedly according to
this probability law, with or without the possibility that an individual may
be parent several times. The second consists in drawing uniformly two in-
dividuals, selecting the one with best fitness to be parent, and repeat until
enough parents are obtained.

Crossover The crossover is done by randomly splitting circuits in three parts.
Both intermediate parts are then swapped to give two children. Note that
we require they have same length, but not necessarily same starting index
(position in the circuit description).

Mutations Mutations are done with small probability. Four types of mutations
are considered. The first one adds a random gate at a random indice in the
circuit. The second removes a random gate. The third replaces a gate by a
random one. The last swaps two consecutive gates if this does not change
the resulting permutation.

Next generation We use an elitist selection as the next generation is composed
of the best individuals from both current generation and children. Each
generation keeps the same number of individuals.

Diversity In order to keep the diversity of the population, we sometimes remove
identical individuals, and can incorporate random individuals to be part of
the next generation.

Results We searched by using many combinations of these options and parame-
ters. We have made many tries and observed that like with the random bottom-
up search it was a good practice to use previously found good solutions. This
was done by joining some of them to random individuals for the first generation.
Overall we have dedicated a bit less computation time to the genetic algorithm
search than to the random bottom-up one. Though, interesting solutions have
also been found as depicted in the column "genetic search" of Table 1. Here also
each cell contains the best qualities (couples δ -L) that have been reached for
this number of gates. We also highlighted in bold those qualities that have been
found by one method while the other did not reached it for the same number
of gates. As we can see results are globally about the same for both methods.
Though, genetic algorithms are sightly better in the range of medium size circuits
(27 to 46 gates) while the random bottom-up search tends to show advantageous
for smaller and larger ones.
Appendices A and B present two illustrative circuits alongside with their tables.
They are the smallest ones we found that reach δ = 10 and δ = 8, with respec-
tively 37 and 40 gates. As a curiosity, notice that the circuit of Appendix B is
made of only AND-XOR gates.

Search for Good 4-Bit and 8-Bit Compact S-Boxes 13

gates algebraic diff. uniformity (δ) - linearity (L)
degree random search genetic search

8 5 128 - 256 128 - 256
9 5 128 - 256 128 - 256
10 6 128 - 256 128 - 256
11 6 128 - 256 128 - 256
12 7 128 - 256 128 - 256
13 7 128 - 256 128 - 256
14 7 128 - 256 128 - 256
15 7 128 - 256 128 - 256
16 7 64 - 128 64 - 128
17 7 64 - 128 64 - 128
18 7 64 - 128 64 - 128
19 7 64 - 128 64 - 128
20 7 64 - 128 64 - 128
21 7 64 - 128 64 - 128
22 7 48 - 128 64 - 128
23 7 48 - 128 48 - 128
24 7 32 - 128 32 - 128
25 7 32 - 128 32 - 128
26 7 32 - 128 32 - 128
27 7 32 - 96 32 - 68
28 7 32 - 76 32 - 64
29 7 16 - 128 20 - 76 32 - 68 16 - 76 24 - 68 32 - 64
30 7 16 - 76 18 - 72 32 - 64 16 - 64
31 7 16 - 72 20 - 68 32 - 64 16 - 64
32 7 16 - 64 16 - 64
33 7 16 - 64 16 - 64
34 7 16 - 64 16 - 64
35 7 16 - 64 16 - 64
36 7 12 - 64 12 - 64
37 7 12 - 64 10 - 80 12 - 64
38 7 10 - 68 12 - 64 10 - 64
39 7 10 - 64 10 - 64
40 7 10 - 64 8 - 64
41 7 10 - 64 8 - 64
42 7 10 - 64 8 - 64
43 7 10 - 64 8 - 64
44 7 10 - 64 8 - 64
45 7 10 - 60 8 - 64
46 7 10 - 60 8 - 64
47 7 8 - 64 10 - 60 8 - 64 12 - 60
48 7 8 - 64 10 - 60 8 - 64 10 - 60
· · · · · · · · · · · ·
51 7 10 - 56 8 - 64 10 - 60
· · · · · · · · · · · ·
54 7 8 - 60 8 - 64 10 - 56
· · · · · · · · · · · ·
57 7 8 - 60 8 - 60

Table 1. Best 8-bit S-boxes w.r.t. circuit size found by random and genetic searches

14 Christophe Clavier and Léo Reynaud

4.3 Comparison with Known S-Boxes

We refer to the S-box quality as the vector (d,δ,L). We only compare to relevant
S-boxes, discarding qualities that we did not reached, or S-boxes with very low
degree.

Canteaut et al. [8] built an 8-bit S-box with quality (6,8,64) in 38 gates,
counting 3×4 XOR for the 3-round Feistel structure. We found a nearly equiva-
lent solution (see Appendix B) that provides the optimal algebraic degree d = 7
at the cost of only two extra gates. Note that they particularly take into account
the number of non-linear gates, whereas we have an equal number of AND and
XOR gates.

Compared to the S-box proposed for Lilliput-TBC the picture is about the
same. It is also a 3-round Feistel that achieves the same quality as [8]. It re-
quires 39 gates but provides an optimized TI-oriented design. Again our S-box
of Appendix B gives maximal degree for about the same size.

Referring to Table 1 of [8], we can also compare to S-boxes of Robin and
Fantomas. These ciphers use (6,16,64) S-boxes that cost 36 gates while we achieve
(7,16,64) with 30 gates.

In [4], Boss et al. propose several structured S-boxes. Unfortunately, they
provide area figures rather than gate counts. We can somehow still manage to
compare with some educated guesses on their raw implementations. As we found
optimal circuits for quadratic 4-bit permutations, we will use them to estimate
their circuit sizes. SB1 uses 8 iterations ofQ294 which can be built with 4 gates. It
ends up requiring roughly 32 gates to achieve (6,16,64), while we obtain (7,16,64)
with 30 gates only. SB3 usesQ293,Q299 and a matrix multiplication in a SPN like
structure with 4 iterations. Only counting the two quadratics, both achievable in
6 gates, this results in more than 48 gates for a (7,8,60) permutation. We obtain
the same quality with 54 gates. For SB6, that has quality (7,10,60), they use the
same structure with 4 iterations. Only counting the quadratics Q293 and Q294, it
ends up with more than 40 gates while we found the same quality with 45 ones.
Again this is not counting the cost of the matrix multiplication. SB5 provides
the same quality but without matrix multiplication, and uses 9 iterations of Q4

and Q294 which results in 54 gates, but on their Table 1 its area is less than that
of SB6. We can guess that their multiplication is rather costly.

Notice that some of the above comparisons may not be totally fair. Indeed
we have compared circuit sizes for unmasked implementations only. While our
designs are TI-friendly (only AND and XOR gates), their size has not been
optimized for a masked implementation. This sometimes results in circuits with
more non-linear gates for a same gate count8, which shows disadvantageous for
protected implementations. Nevertheless we notice that in most cases, our results
compare very well with – and are sometime better than – structured dedicated
designs. We may expect that interesting results would have also been obtained if
we had chosen to optimize the cost of a first-order protected TI implementation.

8 Notably, S-box of Appendix B uses 20 non-linear gates compare to only 12 for the
S-box of [8] or that of Lilliput-TBC.

Search for Good 4-Bit and 8-Bit Compact S-Boxes 15

5 Conclusion

We have implemented and studied different methods for searching good and
compact 4-bit and 8-bit S-boxes.

For 4-bit S-boxes we adapted a systematic search that has been investigated
in previous works [21, 8] by restricting the set of gates to only AND and XOR in
order to obtain circuits for which it is easy to find a threshold implementation.
We found TI-friendly circuits of an optimal class still with the same smallest
number of gates. Such a circuit has been used in the design of the 8-bit permu-
tation of Lilliput-TBC lightweight block cipher.

For 8-bit S-boxes we chose to explore in the whole space of permutations
rather than to restrain ourselves to structured designs. Beside giving more op-
portunities to find good solutions, this allowed us to easily obtain permutations
with maximal algebraic degree. We have presented a random search that builds
circuits in the bottom-up manner, and a genetic algorithm designed to optimize
both cryptographic quality and circuit size for unmasked implementations. It
happens that both methods give results that are competitive with previously
known S-boxes. While we optimized our searches for the compactness of un-
masked implementations, we managed to generate only TI-friendly circuits. We
think that an interesting future work will be to adapt the genetic search by
modifying the definition of the fitness in order to optimize the cost of a circuit
protected by threshold implementation.

We hope that this work will convince that searching for unstructured S-boxes
may be a promising approach, and will motivate further works in this direction.

References

1. Eli Biham and Adi Shamir. Differential Cryptanalysis of DES-like Cryptosystems.
J. Cryptology, 4(1):3–72, 1991.

2. Begül Bilgin. Threshold implementations: as countermeasure against higher-order
differential power analysis. PhD thesis, University of Twente, Netherlands, May
2015.

3. Begül Bilgin, Svetla Nikova, Ventzislav Nikov, Vincent Rijmen, Natalia N.
Tokareva, and Valeriya Vitkup. Threshold Implementations of Small S-Boxes.
Cryptography and Communications, 7(1):3–33, 2015.

4. Erik Boss, Vincent Grosso, Tim Güneysu, Gregor Leander, Amir Moradi, and To-
bias Schneider. Strong 8-bit Sboxes with Efficient Masking in Hardware (extended
version). J. Cryptographic Engineering, 7(2):149–165, 2017.

5. Joan Boyar and René Peralta. New logic minimization techniques with applications
to cryptology. IACR Cryptology ePrint Archive, 2009:191, 2009.

6. Christophe De Cannière. Analysis and Design of Symmetric Encryption Algo-
rithms. PhD thesis, Katholieke Universiteit Leuven, May 2007.

7. David Canright. A Very Compact S-Box for AES. In Josyula R. Rao and Berk
Sunar, editors, Cryptographic Hardware and Embedded Systems - CHES 2005, 7th
International Workshop, Edinburgh, UK, August 29 - September 1, 2005, Proceed-
ings, volume 3659 of Lecture Notes in Computer Science, pages 441–455. Springer,
2005.

16 Christophe Clavier and Léo Reynaud

8. Anne Canteaut, Sébastien Duval, and Gaëtan Leurent. Construction of Lightweight
S-Boxes using Feistel and MISTY structures (Full Version). IACR Cryptology
ePrint Archive, 2015:711, 2015.

9. John A. Clark, Jeremy L. Jacob, and Susan Stepney. The Design of S-Boxes by
Simulated Annealing. New Generation Comput., 23(3):219–231, 2005.

10. Vincent Grosso, Gaëtan Leurent, François-Xavier Standaert, Kerem Varıcı,
François Durvaux, Lubos Gaspar, and Stéphanie Kerckhof. SCREAM v3, August
2015. Submission to the CAESAR competition.

11. Jérémy Jean, Thomas Peyrin, Siang Meng Sim, and Jade Tourteaux. Optimizing
Implementations of Lightweight Building Blocks. IACR Trans. Symmetric Cryp-
tol., 2017(4):130–168, 2017.

12. Oleksandr Kazymyrov, Valentyna Kazymyrova, and Roman Oliynykov. A Method
For Generation Of High-Nonlinear S-Boxes Based On Gradient Descent. IACR
Cryptology ePrint Archive, 2013:578, 2013.

13. Karlo Knezevic. Combinatorial Optimization in Cryptography. In Petar Biljanovic,
Marko Koricic, Karolj Skala, Tihana Galinac Grbac, Marina Cicin-Sain, Vlado
Sruk, Slobodan Ribaric, Stjepan Gros, Boris Vrdoljak, Mladen Mauher, Edvard
Tijan, and Filip Hormot, editors, 40th International Convention on Information
and Communication Technology, Electronics and Microelectronics, MIPRO 2017,
Opatija, Croatia, May 22-26, 2017, pages 1324–1330. IEEE, 2017.

14. Gregor Leander and Axel Poschmann. On the Classification of 4 Bit S-Boxes. In
Claude Carlet and Berk Sunar, editors, Arithmetic of Finite Fields, First Inter-
national Workshop, WAIFI 2007, Madrid, Spain, June 21-22, 2007, Proceedings,
volume 4547 of Lecture Notes in Computer Science, pages 159–176. Springer, 2007.

15. Mitsuru Matsui. Linear Cryptanalysis Method for DES Cipher. In Advances in
Cryptology - EUROCRYPT ’93, volume 765 of Lecture Notes in Computer Science,
pages 386–397. Springer, 1993.

16. William Millan. How to Improve the Nonlinearity of Bijective S-Boxes. In
Colin Boyd and Ed Dawson, editors, Information Security and Privacy, Third
Australasian Conference, ACISP’98, Brisbane, Queensland, Australia, July 1998,
Proceedings, volume 1438 of Lecture Notes in Computer Science, pages 181–192.
Springer, 1998.

17. Svetla Nikova, Vincent Rijmen, and Martin Schläffer. Secure Hardware Implemen-
tation of Nonlinear Functions in the Presence of Glitches. Journal of Cryptology,
24(2):292–321, Apr 2011.

18. National Institute of Standards and Technology. Lightweight Cryptography, Jan-
uary 2017. https://csrc.nist.gov/Projects/Lightweight-Cryptography.

19. Léo Perrin. Cryptanalysis, Reverse-Engineering and Design of Symmetric Crypto-
graphic Algorithms. PhD thesis, University of Luxembourg, 2017.

20. Ko Stoffelen. Optimizing S-Box Implementations for Several Criteria Using SAT
Solvers. In Thomas Peyrin, editor, Fast Software Encryption - 23rd Interna-
tional Conference, FSE 2016, Bochum, Germany, March 20-23, 2016, Revised Se-
lected Papers, volume 9783 of Lecture Notes in Computer Science, pages 140–160.
Springer, 2016.

21. Markus Ullrich, Christophe De Canniere, Sebastiaan Indesteege, Özgül Küçük,
Nicky Mouha, and Bart Preneel. Finding Optimal Bitsliced Implementations of 4×
4-bit S-Boxes. In SKEW 2011 Symmetric Key Encryption Workshop, Copenhagen,
Denmark, pages 16–17, 2011.

Search for Good 4-Bit and 8-Bit Compact S-Boxes 17

A S-Box Reaching 7-10-80 Quality with 37 Gates

The 8-bit S-box of Table 2 reaches δ = 10 and L = 80 with a maximal algebraic
degree d = 7. Figure 3 presents a 37-gate TI-friendly circuit of this S-box.

0 1 2 3 4 5 6 7 8 9 A B C D E F
00 00 63 02 11 06 BD 04 93 0B 09 08 5A 85 14 87 6F
10 30 13 52 21 DB 91 B8 DE 5B 39 38 0A AD 2C EE 16
20 20 01 64 FD EF 07 C3 A2 6B 6A AF 37 5E BC 40 4E
30 31 10 ED 74 EA 92 7B 2A 1A 1B 47 FF 84 17 23 5C
40 44 BE CC 27 22 43 E1 C2 CF 75 46 CD A3 58 60 6D
50 54 CE DC 77 7F 2E 49 3B BF 65 36 DD 4A C0 7C 41
60 EC 45 62 53 42 61 AC A9 26 AE 28 19 C1 78 3D 86
70 55 FC 03 12 4D 3F 05 90 FE 76 29 18 E0 69 DF 15
80 99 A8 9A 1F 1E E6 1D 9C 83 96 81 A0 8C 8A 8F 25
90 2D 1C 6E EB 57 9F 35 A4 D7 E2 B5 94 B0 67 D2 89
A0 DA 88 3E C4 A5 0F 4B 59 A1 D6 E5 BB 24 B1 F9 70
B0 3C 0E D0 CA 56 8D F5 B6 82 95 4F F1 9D 98 E8 51
C0 7D E4 C5 6C D9 CB 2B 7A C7 FB 7E F2 68 D5 BA 50
D0 E9 F0 D1 F8 71 32 F6 B7 B3 2F AA A6 F4 79 73 C8
E0 A7 4C B9 5F FA AB E7 34 5D B2 E3 80 48 F7 66 9E
F0 D8 F3 8B 0D 72 33 0C 8E C6 C9 B4 97 3A D4 D3 9B

Table 2. Table representation of an S-box with d = 7, δ = 10 and L = 80.

18 Christophe Clavier and Léo Reynaud

x7 x6 x5 x4 x3 x2 x1 x0

y7 y6 y5 y4 y3 y2 y1 y0

Fig. 3. A 37-gate TI-friendly circuit of the 7-10-80 S-box of Table 2

Search for Good 4-Bit and 8-Bit Compact S-Boxes 19

B S-Box Reaching 7-8-64 Quality with 40 Gates

The 8-bit S-box of Table 3 reaches δ = 8 and L = 64 with a maximal algebraic
degree d = 7. Figure 4 presents a 40-gate TI-friendly circuit of this S-box.

0 1 2 3 4 5 6 7 8 9 A B C D E F
00 00 01 02 1A 04 05 A7 15 08 8C 0B 7B 0C 89 AE D9
10 10 11 1B 03 BF BE 14 A6 79 D4 77 2E 5B D6 F4 8A
20 20 67 22 70 A5 4A 06 53 AD CF 0F 99 28 63 2B 36
30 31 7F 3A 61 1F FD B4 EC 54 93 FA C9 56 9C 58 C4
40 40 47 46 51 4C EA EB F2 68 C3 6F 3C E5 EF 42 B2
50 50 5E 5F 41 F3 5D 5C 4D 18 96 12 65 B6 B8 1C E9
60 60 21 66 3B ED A4 4B B5 44 A9 E2 F7 48 2D 4F 74
70 71 30 7E 23 52 1E FC 07 BC F8 16 AA 33 DA 39 8F
80 80 84 82 9F 85 81 26 B0 88 09 8B 76 8D 0D 2F F5
90 B1 34 BA 27 9E BB 35 83 D8 78 D7 0A 7A 5A D5 AF
A0 A2 DC A0 CA 87 DF 24 E6 8E BD 2C E3 AB 32 A8 4E
B0 9B 6D 90 72 95 E1 3E D1 DB 45 75 17 F9 49 F6 38
C0 F1 D3 FF CC D2 F0 7D C1 B9 13 B3 69 97 1D 3D E4
D0 C0 6A C7 7C CD C6 6B FE E8 6E EE 19 64 43 C2 B7
E0 DE 86 D0 94 DD A3 73 9A 37 0E 9D 55 98 2A 92 57
F0 E7 3F E0 25 CB 91 6C A1 62 FB C5 AC CE 59 C8 29

Table 3. Table representation of an S-box with d = 7, δ = 8 and L = 64.

20 Christophe Clavier and Léo Reynaud

x7 x6 x5 x4 x3 x2 x1 x0

y7 y6 y5 y4 y3 y2 y1 y0

Fig. 4. A 40-gate TI-friendly circuit of the 7-8-64 S-box of Table 3

