BlockMaze: An Efficient Privacy-Preserving Account-Model Blockchain Based on zk-SNARKs

Zhangshuang Guan, Zhiguo Wan, Yang Yang, Yan Zhou, and Butian Huang

Abstract—The disruptive blockchain technology is expected to have broad applications in many areas due to its advantages of transparency, fault tolerance, and decentralization, but the open nature of blockchain also introduces severe privacy issues. Since anyone can deduce private information about relevant accounts, different privacy-preserving techniques have been proposed for cryptocurrencies under the UTXO model, e.g., Zerocash and Monero. However, it is more challenging to protect privacy for account-model blockchains (e.g., Ethereum) since it is much easier to link accounts in the account-model blockchain. In this paper, we propose BlockMaze, an efficient privacy-preserving account-model blockchain based on zk-SNARKs. Along with dual-balance model, BlockMaze achieves strong privacy guarantees by hiding account balances, transaction amounts, and linkage between senders and recipients. Moreover, we provide formal security definitions and prove the security of BlockMaze. Finally, we implement a prototype of BlockMaze based on Libsnark and Go-Ethereum, and conduct extensive experiments to evaluate its performance. Our 300-node experiment results show that BlockMaze has high efficiency in computation and transaction throughput: one transaction verification takes about 14.2 ms, one transaction generation takes 6.1-18.6 seconds, and its throughput is around 20 TPS.

Index Terms—Blockchain, Zero-Knowledge Proof, Account-Model, Privacy-Preserving, zk-SNARK

I. INTRODUCTION

With the rise of cryptocurrencies, the blockchain has attracted tremendous interests worldwide, from IT industries, financial institutions, as well as academia. According to the statistics from BitInfoCharts [1], there are thousands of cryptocurrencies based on blockchain in the world. Among them, the market capitalization of Bitcoin [2] has exceeded \$180 billion and Ethereum [3] has exceeded \$29 billion. IT giants (e.g. Amazon, Alibaba, Google, and Facebook) and international financial institutions (e.g., JP Morgan and Goldman Sachs) also start to invest heavily on blockchains. In academia, researchers have started to investigate various issues of blockchain systems, e.g., consensus mechanisms, sharding mechanisms, and privacy protection.

From the perspective of balance representation, there are two popular models in blockchain networks: UTXO (Unspent Transaction Output) model and account model. The former is a directed graph of assets moving among users, in which the

Y. Yang is with the School of Mathematics and Computer Science, Fuzhou University, Fuzhou, 350116, China (e-mail:yang.yang.research@gmail.com).

B. Huang is with Hangzhou Yunphant Network Technology Co. Ltd., Hangzhou, 311121, China (e-mail: hbt@yunphant.com).

balance of a user is represented by all UTXOs related to that user in the blockchain system. The latter maintains a global state of all accounts and account balances that are updated whenever relevant transactions are executed. Bitcoin [2] is the first cryptocurrency based on the UTXO model, which is distributed through a proof of work "mining" process. Ethereum [3] adopts the account model with smart contract functionality to achieve Turing completeness. As shown in Table I, we briefly compare the advantages and disadvantages we have found with these two models. It shows that the primary advantages of the account model are superior programmability (i.e., smart contract) and fungibility of cryptocurrencies.

Both models achieve balance management for blockchains in different ways, and they both suffer from privacy leakage due to the openness of blockchains. Any adversary can obtain all transaction data, which contains too much privacy of the accounts. For example, the current transaction data of the Ethereum system is about 232 GB [1], which includes all transaction records from 30 July 2015 to 20 February 2020. By analyzing the transaction data in the blockchain [8], attackers can analyze the transaction relationship among different accounts. Since transactions are permanently recorded on the blockchain, which may cause an issue: once a historical transaction discloses the real identity of a user, the information of this user in all relevant transaction records will be revealed. Moreover, attackers can also use off-chain auxiliary information to infer the identity of accounts in the blockchain [9].

To solve privacy issues in UTXO-model blockchains, researchers have proposed several proposals such as Dash [10], Zerocoin [11], Zerocash [4], Monero [5], and CoinJoin [12]. However, there are very few proposals such as [13] providing limited privacy protection for the account model. Clearly, the account model is more user-friendly than the UTXO model, but it is also more challenging to protect privacy than the UTXO model. Each account is associated with a balance on the account-based blockchain, and it is updated whenever a relevant transaction is confirmed on the blockchain. Indeed, the balance of an account is the accumulated result of all transactions related to this account. In contrast, the UTXO-model blockchain does not calculate the accumulated balance for any account, and just stores the transactions on the blockchain. Hence the account model is closer to our current banking system and more user-friendly for users.

The above features of the account model make it more difficult to preserve privacy for the account-model blockchain. In the account model, one needs to not only realize private fund transfer, but also update the accumulated balances for relevant accounts. In the UTXO model, however, one can

Corresponding authors: Zhiguo Wan and Yang Yang.

Z. Guan, Z. Wan, and Y. Zhou are with the School of Computer Science and Technology, Shandong University, Qingdao, 266237, China (email:{guanzs@mail.,wanzhiguo@,yanzhousdu@mail.}sdu.edu.cn).

TABLE I: Comparison of balance models

Model	Typical projects	Smart contract	Advantages	Disadvantages	
UTXO	Bitcoin [2] Zerocash [4] Monero [5]	No	Allow multi-threads for computations; support complete transparency of asset movements; process transactions easily in parallel.	Hard to work with smart contracts; increase the computational and storage burdens.	
Account	Ethereum [3] Fabric [6] EOS [7]	Yes	Provide an intuitively clear approach of bal- ances; give a simple implementation of smart contracts; achieve Turing-complete.	Need to store all accounts states; hard to track assets; analyze the states more easily.	

generate many randomized addresses for his/her account (the actual wallet) without the trouble to accumulate them together. One straightforward way to enhance privacy is for a user to generate many random addresses, and use each of them for only once. However, holding a large number of addresses will be cumbersome for each user as well as smart contracts. Hence we aim to solve the privacy problem for blockchains where each user has only one address/account, which is much more challenging situation than the UTXO model.

Inspired by the design of the UTXO-model blockchain Zerocash, we design BlockMaze, a privacy-preserving accountmodel blockchain based on zk-SNARKs (zero-knowledge Succinct Non-interactive ARguments of Knowledge) [14]–[16]. To the best of our knowledge, BlockMaze is the first privacypreserving account-model blockchain that protects both transaction amounts and sender/recipient relationship. More specifically, we propose a *dual-balance* model for account-model blockchains, which is composed of a plaintext balance and a zero-knowledge balance for each account. Along with the zero-knowledge balance, we employ zk-SNARKs to construct privacy-preserving transactions to hide transaction amounts and account balances. To disconnect the linkage between senders and recipients, we design a two-step fund transfer procedure based on the privacy-preserving transactions.

Contributions. In summary, the main contributions of this paper are as follows:

- We present *BlockMaze*, to the best of our knowledge, the first privacy-preserving account-model blockchain that hides both transaction amounts and the sender-recipient linkage. Using zk-SNARKs, we design a *dual-balance* model and a two-step fund transfer procedure for account-model blockchains.
- We provide a formal security model for *BlockMaze*, under which we prove its security. Moreover, we give a comprehensive discussion on practical issues regarding its compatibility and scalability.
- We implement *BlockMaze* based on Libsnark [17] and Go-Ethereum [18], and conduct comprehensive experiments on a 300-node testbed to evaluate its performances. The results show that a transaction verification takes about 13.8 ms, a transaction generation takes 4.6-18.2 seconds, and its throughput is around 20 TPS.

A. Related Work

Privacy-preserving blockchains. Quite a few privacypreserving cryptocurrencies have been proposed in the literature, and they allow a user to hide transaction amounts and/or obscure the linkage between a transaction and its sender and/or recipient. We now survey typical privacy-preserving cryptocurrencies and compare them in Table II. For UTXOmodel blockchain systems, we can see that only Verge [20] supports hiding IP address using Tor and I2P [24], and others obscure the linkage between a transaction and the public wallet addresses of relevant parties. Zcash [4] offers privacy guarantees to hide the sender address, recipient address, and transaction amounts using zk-SNARK. Monero [5] achieves the same goal using CryptoNote, which is a protocol based on ring signatures. Grin [21] also solves it using MimbleWimble, which is based on elliptic curve cryptography and derived from confidential transactions based on Perdersen commitments.Moreover, Zcoin [11] utilizes Pedersen commitments and constructs corresponding zero-knowledge proofs to achieve unlinkability and untraceability. Dash [10] and Coin-Shuffle [19] employ CoinJoin, a method based on Chaum's mix idea, to obscure the linkage between a transaction and its sender and recipient.

Under the account model, DSC [13] provides an efficient NIZK scheme, utilizes homomorphic encryption to hide users' balance and transaction amount, and proves the validity of transactions with the NIZK scheme, but it does not hide the transaction senders and recipients. Moreover, compared with other solutions, the main issues with NIZK include limited functionalities and high computation cost. Zether [22] utilizes a special smart contract to realize privacy-preserving transactions based on homomorphic encryption and zero knowledge proofs. More specifically, it uses homomorphic encryption to hide fund amounts and its internal account balance, utilizes anonymous account sets to hide transaction senders and recipients, and ensures the validity of the transaction using zero-knowledge proofs. The Zether smart contract converts the underlying currency ETH (i.e., Ethereum coin) to new anonymous tokens (i.e., ZTH), and maintains multiple public tables to record the real-time status of its internal account. Anonymous fund transfers are carried out in the form of ZTH within the smart contract, and any internal account can convert its ZTH into ETH.

Similarly, ZETH [23] achieves privacy protection for Ethereum [18] by realizing Zerocash [4] with a smart contract. Just like Zerocash, ZETH creates anonymous coins under the UTXO model within the smart contract, while other operations of ZETH are equivalent to those in Zerocash. Those two proposals mentioned above achieve privacy protection based on smart contracts, their advantage is that they do not need to modify the underlying blockchain. However, compared with the approach of Zether/ZETH, it will be more convenient and efficient to achieve privacy at the underlying blockchain.

				-			• •
Model	21		Privacy guarantees P/Sender/Recipient/Amount		Techniques	Pros/Cons	
UTXO	Zcash [4]	×	\checkmark	\checkmark	\checkmark	zk-SNARK	Provide privacy protection of transaction amount and sender/recipient, but require a trust setup.
UTXO	Monero [5]	×	\checkmark	\checkmark	\checkmark	Ring Signature	Achieve unlinkability of transactions but with limited privacy protection and large transaction size.
UTXO	Zcoin [11]	Х	\checkmark	\checkmark	×	ZKP	Provide privacy protection of sender/recipient but with large proof size and high verification latency.
UTXO	Dash [10]	Х	\checkmark	\checkmark	×	Mix	Achieve untraceability of transactions, but mixing process is slow.
UTXO	CoinShuffle [19]	Х	\checkmark	\checkmark	×	Mix	Allow users to utilize Bitcoin in a truly anonymous manner without any trusted third party.
UTXO	Verge [20]	\checkmark	Х	×	×	Tor and I2P	Provide end-user identity obfuscation, but repeatedly suffer from 51% attacks.
UTXO	Grin [21]	×	\checkmark	\checkmark	\checkmark	MimbleWimble	Focus on privacy, fungibility, and scalability, but re- quire a secure communication channel.
Account	DSC [13]	×	×	×		HE and ZKP	Provide an efficient NIZK scheme, but fail to disconnect the linkage between senders and recipients.
Account	Zether [22]	×	\checkmark	\checkmark	\checkmark	HE and ZKP	Achieve privacy protection using Zether smart contract without modifying underlying blockchain systems.
Account	ZETH [23]	Х			\checkmark	zk-SNARK	Implement Zcash on Ethereum using extra smart con- tracts, but require complicated operations.

TABLE II: Comparison of privacy-preserving blockchain systems

Remark ZKP denotes Zero-Knowledge Proof, HE denotes Homomorphic Encryption, and NIZK denotes Non-Interactive Zero-Knowledge.

Privacy-preserving technologies. As shown in Table II, techniques considered for achieving privacy protection for blockchains and cryptocurrencies are summarized as follows:

- Mix: A specialized mix serves as the intermediary between multiple senders and recipients, hiding the relationship between senders and recipients (e.g., [10], [12], [19]), which is similar to Chaum's mix in the setting of untraceable emails.
- Ring signature: The genuine sender of a transaction can be hidden among several decoys using ring signature (e.g., [5]). Although miners can verify the signature, they cannot identify the genuine sender.
- Homomorphic encryption: Homomorphic encryption (mainly somewhat homomorphic encryption) is a potent tool that can be used in blockchains to preserve transaction amounts and users' balances (e.g., [13], [22], [23]). Currently, fully homomorphic encryption schemes cannot be used in blockchains for their low efficiency.
- Zero-knowledge proof: The aim of zero-knowledge proof technology is for the prover to convince the verifier that he/she does know a secret without disclosing it. There are several zero-knowledge proof systems that are employed frequently in the blockchain. A transaction sender can employ zero-knowledge proofs to prove that the transaction is valid and he/she is entitled to spend some cryptocurrencies without leaking identity information and transaction amounts (e.g., [4], [11], [13], [22], [23]).

Zero knowledge proof has been proved to be a promising solution for blockchains, and it develops very fast in recent years. The most popular zero-knowledge proof deployed in blockchain is zk-SNARK, which has been applied to preserve privacy for cryptocurrencies such as Zcash [4] and ZETH [23] due to its versatility. Concerning privacy issues in smart contracts, several proposals [25], [26] have addressed them using zk-SNARKs. Many zk-SNARK constructions [14]–[16] have been proposed in past years. However, these traditional zk-SNARKs rely on a trusted setup, which also creates 'toxic waste' that, if leaked, can be utilized to generate undetectable fake proofs. Note that the setup of those zk-SNARKs is a one-time trusted setup for the specific circuit.

To solve above drawbacks, several new SNARKs [27]–[32] are presented in the literature. Among them, Fractal [28], Halo [29] and Supersonic [30] utilize transparent setups, which are public and create a Common Reference String (CRS) without toxic waste. However, these new constructions are still impractical for blockchain applications since their proof sizes (up to 250 KB for Fractal) are larger than traditional constructions. In contrast, Sonic [27], Marlin [31] and PLONK [32] utilize universal setups, which create a Structured Reference String (SRS) with toxic waste. But the reference string is a universal and updatable SRS, that is, it supports for an unlimited number of arbitrary circuits.

Moreover, Bulletproof [33] is an efficient zero knowledge proof and range proof without trusted setup. Monero [5] has used it as the range proof to reduce transaction fee costs and transaction sizes. Zether [22] has implemented a variant of Bulletproofs for ElGamal encryption to hide transaction amount along with its sender and recipient. But its prover's computation cost and verification cost are much more than zk-SNARKs. Compared with others, zk-STARK [34] does not need a trusted setup, and it is much more efficient in computation than zk-SNARK. However, zk-STARK in the current state is not suitable for blockchains because of its large proof size (a few hundred kilobytes). Overall, Groth16 [15] is still unbeatable in terms of proof size and runtime.

B. Organization.

The remainder of the paper is structured as follows: we first provide preliminaries on our proposal, including cryptographic building blocks in Section II. Then, we give an intuition of the idea, data structures used in the system, and an overview of the system architecture in Section III. After that, we describe and construct our BlockMaze scheme with security proof in detail in Section IV. Furthermore, we give a comprehensive discussion and analysis of BlockMaze in Section V. In Section VI, we describe details on the implementation of the prototype of BlockMaze, evaluate its performance, and compare it with Zerocash. Finally, Section VII concludes this paper.

II. PRELIMINARIES

In this section, we recall zk-SNARKs and public key encryption used throughout this paper.

A. zk-SNARK

A zk-SNARK scheme [14]–[16] can be represented by a tuple of polynomial-time algorithms $\Pi_{\mathcal{Z}}$ = (Setup, KeyGen, GenProof, VerProof).

Setup $(1^{\lambda}) \rightarrow pp_{\mathbb{Z}}$. Given a security parameter λ , this algorithm generates a list of public parameters $pp_{\mathbb{Z}} = (p, e, \mathbb{G}_1, \mathcal{P}_1, \mathbb{G}_2, \mathcal{P}_2, \mathbb{G}_T, \mathbb{F}_p)$, where p is a prime; e is a bilinear map: $\mathbb{G}_1 \times \mathbb{G}_2 \rightarrow \mathbb{G}_T$; $(\mathbb{G}_1, \mathbb{G}_2, \mathbb{G}_T)$ are three cyclic groups of order p; \mathcal{P}_1 and \mathcal{P}_2 are generators of \mathbb{G}_1 and \mathbb{G}_2 respectively; \mathbb{F}_p is a finite field. All algorithms utilize $pp_{\mathbb{Z}}$ as default input public parameters.

 $\operatorname{KeyGen}(C) \to (\mathsf{pk}_{\mathcal{Z}}, \mathsf{vk}_{\mathcal{Z}})$. Given a circuit C, this algorithm utilizes the public parameters $\mathsf{pp}_{\mathcal{Z}}$ to generate a key pair $(\mathsf{pk}_{\mathcal{Z}}, \mathsf{vk}_{\mathcal{Z}})$. $\mathsf{pk}_{\mathcal{Z}}$ is a proving key for proof generation, while $\mathsf{vk}_{\mathcal{Z}}$ is a verification key for proof verification.

GenProof $(\mathsf{pk}_{\mathcal{Z}}, \vec{x}, \vec{a}) \to \pi$. The algorithm generates a zeroknowledge proof π (or \perp if GenProof fails). $\mathsf{pk}_{\mathcal{Z}}$ is a proving key, \vec{x} is a public statement which is an input of circuit C, \vec{a} is a private witness which is an auxiliary input of circuit C, and π is a zero-knowledge proof proving the relation constructed by circuit C between \vec{x} and \vec{a} . Note that \vec{x} and π are published and made available to anyone.

VerProof($vk_{\mathcal{Z}}, \vec{x}, \pi$) $\rightarrow b$. According to this algorithm, anyone can check and verify a zero-knowledge proof. The algorithm outputs b = 1 if the check is successful; otherwise it outputs b = 0. $vk_{\mathcal{Z}}$ is a verification key, π is a zero-knowledge proof generated in GenProof, and \vec{x} is public data used to generate π in GenProof.

Given a security parameter λ and any circuit C with a relation \mathcal{R}_C , the honest prover can utilize a proof π to convince the verifier for every pair $(\vec{x}, \vec{a}) \in \mathcal{R}_C$ where \vec{x} is a statement and \vec{a} is a witness. A zk-SNARK satisfies completeness, succinctness, proof of knowledge, and perfect zero-knowledge properties [35], [36].

Completeness. For each pair $(\vec{x}, \vec{a}) \in \mathcal{R}_C$, we have

$$\Pr\left[\operatorname{VerProof}(\mathsf{vk}_{\mathcal{Z}}, \vec{x}, \pi) \to 1 \left| \begin{matrix} \operatorname{KeyGen}(C) \to (\mathsf{pk}_{\mathcal{Z}}, \mathsf{vk}_{\mathcal{Z}}) \\ \operatorname{GenProof}(\mathsf{pk}_{\mathcal{Z}}, \vec{x}, \vec{a}) \to \pi \end{matrix} \right] = 1.$$

Succinctness. An honestly-generated proof π has $O_{\lambda}(1)$ bits and VerProof(vk_Z, \vec{x}, π) runs in time $O_{\lambda}(|x|)$. *Proof of knowledge (and Soundness).* For every probabilistic polynomial-time adversary A, there is a probabilistic polynomial-time witness extractor \mathcal{E} , we have

$$\Pr\left[\begin{array}{l}\exists \ i \ s.t. \ (\vec{x}_i, \vec{a}_i) \notin \mathcal{R}_C\\ \text{VerProof}(\mathsf{vk}_{\mathcal{Z}}, \vec{x}_i, \pi_i) \to 1\end{array} \middle| \begin{array}{l} \text{KeyGen}(C) \to (\mathsf{pk}_{\mathcal{Z}}, \mathsf{vk}_{\mathcal{Z}})\\ \mathcal{A}(\mathsf{pk}_{\mathcal{Z}}, \mathsf{vk}_{\mathcal{Z}}) \to (\vec{x}_i, \pi_i)\\ \mathcal{E}(\mathsf{pk}_{\mathcal{Z}}, \mathsf{vk}_{\mathcal{Z}}) \to \vec{a}_i \end{array}\right] \leq \mathsf{negl}(\lambda)$$

An amplified notion of the above property *simulation extractability* [16] is defined as follows:

$$\Pr \begin{bmatrix} \exists \ i \ s.t. \ (\vec{x}_i, \pi_i) \notin \mathcal{Q}_{(\vec{x}, \pi)} \\ (\vec{x}_i, \vec{a}_i) \notin \mathcal{R}_C \\ \text{VerProof}(\mathsf{vk}_{\mathcal{Z}}, \vec{x}_i, \pi_i) \to 1 \end{bmatrix} \begin{array}{c} \text{KeyGen}(C) \to (\mathsf{pk}_{\mathcal{Z}}, \mathsf{vk}_{\mathcal{Z}}) \\ \mathcal{A}(\mathsf{pk}_{\mathcal{Z}}, \mathsf{vk}_{\mathcal{Z}}) \to (\vec{x}_i, \pi_i) \\ \mathcal{E}(\mathsf{pk}_{\mathcal{Z}}, \mathsf{vk}_{\mathcal{Z}}) \to \vec{a}_i \end{bmatrix} \leq \mathsf{negl}(\lambda)$$

where $Q_{(\vec{x},\pi)}$ includes (\vec{x},π) -pairs generated by \mathcal{A} 's queries to the oracle.

Perfect zero-knowledge. The proof is perfect zero-knowledge if there is a simulator S such that, for every pair $(\vec{x}, \vec{a}) \in \mathcal{R}_C$ and all non-uniform polynomial time adversaries A, the following two probabilities are equal:

$$\begin{split} &\Pr\left[\mathcal{A}(\mathsf{pk}_{\mathcal{Z}},\mathsf{vk}_{\mathcal{Z}},\pi)=1 \; \middle| \begin{matrix} \operatorname{KeyGen}(C) \to (\mathsf{pk}_{\mathcal{Z}},\mathsf{vk}_{\mathcal{Z}}) \\ \operatorname{GenProof}(\mathsf{pk}_{\mathcal{Z}},\vec{x},\vec{a}) \to \pi \end{matrix} \right], \\ &\Pr\left[\mathcal{A}(\mathsf{pk}_{\mathcal{Z}},\mathsf{vk}_{\mathcal{Z}},\pi)=1 \; \middle| \begin{matrix} \mathcal{S}(\mathcal{R}_{C}) \to (\mathsf{pk}_{\mathcal{Z}},\mathsf{vk}_{\mathcal{Z}},\mathsf{trap}) \\ \mathcal{S}(\mathsf{pk}_{\mathcal{Z}},\vec{x},\mathsf{trap}) \to \pi \end{matrix} \right]. \end{split}$$

B. Encryption

A public key encryption scheme can be represented by a tuple of polynomial-time algorithms $\Pi_{\mathcal{E}}$ = (Setup, KeyGen, Enc, Dec).

Setup $(1^{\lambda}) \rightarrow pp_{\mathcal{E}}$. On input a security parameter λ , this algorithm generates a list of public parameters $pp_{\mathcal{E}}$.

KeyGen($pp_{\mathcal{E}}$) $\rightarrow (sk_{\mathcal{E}}, pk_{\mathcal{E}})$. On input a list of public parameters $pp_{\mathcal{E}}$, this algorithm generates a private/public key pair $(sk_{\mathcal{E}}, pk_{\mathcal{E}})$ for an account.

 $\operatorname{Enc}_{pk_{\mathcal{E}}}(m) \to c$. Given a public key $pk_{\mathcal{E}}$, this algorithm encrypts an input plaintext m to output a ciphertext c.

 $\operatorname{Dec}_{sk_{\mathcal{E}}}(c) \to m$. Given a private key $sk_{\mathcal{E}}$, this algorithm decrypts an input ciphertext c to get back the plaintext m.

For the sake of privacy, the pubic encryption scheme $\Pi_{\mathcal{E}}$ used in our scheme needs to satisfy the following two security properties: (i) *key indistinguishability under chosen-ciphertext attack* (IK-CCA security) [37], and (ii) *ciphertext indistinguishability under chosen-ciphertext attack* (IND-CCA security) [38].

III. SYSTEM ARCHITECTURE AND MODELS

In this section, we firstly introduce an intuition of the idea, then give data structures used in the system, finally define the system model to show how the proposed BlockMaze works.

A. Intuition of the idea

In the context of cryptocurrency, three types of privacy information need to be protected in the accountmodel blockchain: account balances, transaction amounts, and sender/recipient relationship. To preserve these types of privacy information, we present a *dual-balance* model that divides the balance of an account into two parts: a plaintext balance and a zero knowledge balance. Essentially, the zeroknowledge balance is associated with a commitment over the corresponding value, and it represents one part of the user's balance without disclosing the amount. The two types of balance can be converted to each other, and the zeroknowledge balance can be used to transfer fund to another account using zk-SNARKs.

However, the sender/recipient relationship cannot be hidden using the above approach. This problem does not exist in Zerocash [4] because Zerocash creates new accounts for each fund transfer transaction. Since the account model does not allow a user having multiple accounts, we design a twostep fund transfer procedure in BlockMaze. In the first step, the sender makes the fund transfer commitment with a Send transaction. To enforce the zero-knowledge balance update, we utilize its serial number to prevent double-spending issues based on the Send transaction. After the Send transaction is confirmed on the blockchain, the recipient collates its fund transfer commitment with other fund transfer commitments to form a Merkle tree. Then the recipient generates a zeroknowledge proof to receive the transferred fund without leaking from which transaction he/she receives the fund.

In summary, BlockMaze makes the following changes: (i) account balances and transaction amounts are hidden with a secure commitment scheme; (ii) the linkage between transactions is obscured by a two-step procedure: first, a sender computes a commitment on the transferred amount and generates a zero-knowledge transaction to transfer funds; then, the recipient recovers the transfer commitment from sender and generates a zero-knowledge transaction to deposit funds from the sender; (iii) zk-SNARK is employed to guarantee that a zero-knowledge transaction is valid and account balance can be updated legally without creating new money.

B. Data structures

Ledger. Given any time T, all users can access $Ledger_T$, which is a sequence of blocks including all transactions. For convenience, we assume that $Ledger_T$ stores $Ledger_{T'}$ for all $T' \leq T$. Each block in the ledger includes transactions and a new data set TCMSet described below. And the transactions in the ledger include both basic transactions as well as four zero-knowledge transactions. For convenience, we assume that $Ledger_T$ has stored block_N before the given time T.

Address key pair. There is an address key pair (sk, pk) instantiated for each account. sk is a private key for decrypting shared parameters and accessing private data, pk is a public key encrypting shared parameters, and addr := CRH(pk) (CRH is a collision-resistant hash function) is an account address sending and receiving payments.

Commitments. There are two types of commitments: balance commitments and fund transfer commitments.

A balance commitment is a commitment of the account balance as follows:

$$cmt_A := \text{COMM}_{bc}(addr_A, value_A, sn_A, r_A),$$

where COMM_{bc} is a statistically-hiding non-interactive commitment scheme for account balance, cmt_A is the commitment of current account balance for user A, $addr_A$ is the account address of A, $value_A$ is the plaintext balance corresponding to cmt_A , sn_A is the serial number associated with cmt_A , and r_A is a random number masking sn_A . Moreover, $sn_A := PRF(sk_A, r_A)$, where PRF is a pseudorandom function and sk_A is the private key of account A. Note that cmt_A is published and recorded on the blockchain as A's balance commitment.

A fund transfer commitment is a commitment of an amount being transferred between two parties as follows:

$$cmt_v := \text{COMM}_{tc}(addr_A, v, pk_B, r_v, sn_A),$$

where COMM_{tc} is a statistically-hiding non-interactive commitment scheme for fund transfer, cmt_v is a fund transfer commitment from sender A to recipient B, $addr_A$ is the account address of sender A, v is the plaintext amount to be transferred, pk_B is the public key of recipient B, r_v is a random number masking cmt_v , and sn_A is the serial number associated with the balance commitment cmt_A of sender A. To resist double-spending attack, serial number $sn_v := \text{PRF}(sk_B, r_v)$ associated with cmt_v must be published when recipient B spends cmt_v .

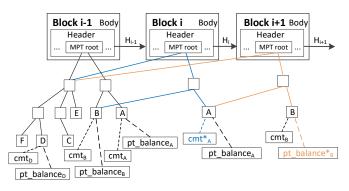
Balance. Account-model blockchains adopt Merkle Patricia Tree (MPT) [3] to record the new account balance (e.g., Ethereum). Using MPT, we design a *dual-balance* model for account balances. There are two forms of account balance: one is a plaintext balance, denoted as pt_balance, which is public and made accessible to anyone; the other one is a zeroknowledge balance, denoted as zk_balance, which hides the corresponding plaintext value using balance commitments. For example, the balance of account A is as follows:

$$pt_balance_A := the amount of plaintext balance,$$

 $zk_balance_A := (cmt_A, addr_A, value_A, sn_A, r_A)$

The asset of account A is the sum of both $pt_balance_A$ and $zk_balance_A.value_A$. Note that $zk_balance_A$ is only stored secretly by A (the owner). $value_A$, sn_A and r_A are A's private data, while $pt_balance_A$ and cmt_A are publicly recorded on MPT and made accessible to anyone.

As shown in Fig. 1, the MPT realizes both fast search and authentication of an account balance. Each path from the root to a leaf node represents the account address whose balance is recorded at the corresponding leaf nodes. One can not only quickly find the balance of a given account by searching MPT, but also authenticate the account balance by verifying whether the corresponding leaf node is on the MPT.



Note: cmt_i := zk_balance_i.cmt_i and i in {A, B, C, ...}

— The balance commitment of A is updated from cmt_A to cmt_A^*

The plaintext balance of B is updated from $pt_balance_B to pt_balance_B^*$

Fig. 1: Merkle Patricia Tree (MPT)

Data Set. There are two new types of data set to store the published one-time variables. Since that $Ledger_T$ has stored $block_N$ before the given time T, it is convenient to deduce these sets from $Ledger_T$.

- TCMSet. For any given block number N, TCMSet_N denotes the set of all transfer commitments cmt_v appearing in transactions in block_N.
- SNSet. For any given time T, SNSet_T denotes the set of all serial numbers sn_A and sn_v appearing in transactions in Ledger_T, and these serial numbers are allowed to be used only once.

Merkle tree. Given any time T, a user selects a set of block sequence numbers SEQ corresponding to randomly selected blocks. Each block contains one or more fund transfer commitments cmt_v . Based on the block whose number belongs to SEQ, all TCMSet of these blocks are set as leaf nodes to form a Merkle tree. We utilize MT_T to denote a Merkle tree over $\bigcup_{n \in SEQ} TCMSet_n$ and rt_T to denote its root. Furthermore, $Path_T(cmt_v)$ is an authentication path from the specified fund transfer commitment cmt_v appearing in TCMSet_N to rt_T at any given time T.

On-Chain transactions. Apart from basic transactions, BlockMaze defines four new types of zero-knowledge transactions using zk-SNARK as below. More details about the format of these transactions are described in Section IV-C.

- Mint. This transaction tx_{Mint} converts a plaintext amount into a zero-knowledge amount and merges the zeroknowledge amount into the current zero-knowledge balance of an account.
- Redeem. This transaction tx_{Redeem} converts a zeroknowledge amount back into a plaintext amount and merges the plaintext amount into the current plaintext balance of an account.
- Send. This transaction tx_{Send} is built to send a zeroknowledge amount from a sender to a recipient. And the transaction tx_{Send} hides the recipient's address and the transaction amount.
- Deposit. This transaction tx_{Deposit} allows a recipient to deposit a received payment into his/her account.

C. System Model

Definition 1 (Account-Model Blockchain). An account-model blockchain stores and maintains an append-only ledger LEDGER, an account list ACCOUNT and a stateful tree BALANCE as below:

LEDGER $\stackrel{\text{def}}{=} List[\texttt{transaction}]$ ACCOUNT $\stackrel{\text{def}}{=} List[\texttt{user} \Rightarrow \texttt{address}]$ BALANCE $\stackrel{\text{def}}{=} List[\texttt{address} \Rightarrow \texttt{balance}]$

Given an account-based transaction tx, we can parse it as $tx \stackrel{\text{def}}{=} \{sender, recipient, value, *\}$ where sender and recipient are the account addresses, value is the amount to be transferred and * denotes other useful fields. Note that each user has only one account address. If tx is a valid transaction, tx.value is deducted from the balance of tx.sender while tx.value is added to the balance of tx.recipient.

Given any time T and a transaction list TxList containing all transactions which are confirmed during (T - 1, T], for each $tx \in TxList$ and (u, addr) in tx, the above data structures change as follows:

$$\texttt{LEDGER}_{\mathtt{T}} = \texttt{LEDGER}_{\mathtt{T}-1} \cup \texttt{TxList}$$

$$\begin{split} & \texttt{ACCOUNT}_{\texttt{T}} = \texttt{ACCOUNT}_{\texttt{T}-1}.updateAddress(u \Rightarrow addr) \\ & \texttt{BALANCE}_{\texttt{T}} = \texttt{BALANCE}_{\texttt{T}-1}.updateBalance(addr \Rightarrow (bal\pm tx.value)) \end{split}$$

Definition 2 (Privacy-preserving Account-Model Blockchain). A privacy-preserving account-model blockchain stores and maintains an append-only ledger LEDGER, an account list ACCOUNT and a modified tree combining PT_BALANCE and ZK BALANCE defined as below:

$$\begin{split} \texttt{LEDGER} & \stackrel{\text{def}}{=} List[\texttt{zk_transaction}] \\ \texttt{ACCOUNT} \stackrel{\text{def}}{=} List[\texttt{user} \Rightarrow \texttt{address}] \\ \texttt{PT_BALANCE} \stackrel{\text{def}}{=} List[\texttt{address} \Rightarrow \texttt{pt_balance}] \\ \texttt{ZK_BALANCE} \stackrel{\text{def}}{=} List[\texttt{address} \Rightarrow \texttt{zk_balance}] \end{split}$$

Given a zero-knowledge account-based transaction tx, we can parse it as $tx \stackrel{\text{def}}{=} \{sender, cmt, proof, *\}$ where sender is an account address, cmt is a commitment of value to be transferred, proof is a zero-knowledge proof and * denotes other useful fields. Note that each user has only one account address. LEDGER, ACCOUNT, PT_BALANCE are identical to the one defined in Definition 1.

Given any time T and a transaction list TxList containing all zero-knowledge transactions which are confirmed during (T-1,T], for each $tx \in TxList$ and (u, addr) in tx, the ZK_BALANCE changes as follows:

 $ZK_BALANCE_T = ZK_BALANCE_{T-1}.updateZKBalance(addr \Rightarrow cmt).$

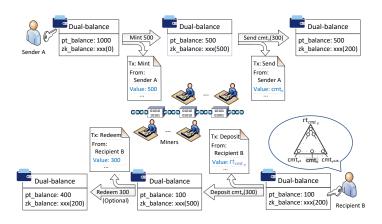


Fig. 2: System architecture and workflow of BlockMaze

As shown in Fig. 2, the system is composed of a ledger and nodes including users (i.e., senders and recipients) and miners. Users can convert plaintext amounts into zero-knowledge balances by generating Mint transactions, and vice versa (resp., Redeem transactions). Senders can transfer money to others using Send transactions, while recipients can deposit received payment from others to their accounts by building Deposit transactions with a Merkle tree. Miners are responsible for processing and confirming these zero-knowledge transactions, utilize the consensus algorithm to pack the transactions into a block, and maintain the ledger. After confirming the zeroknowledge transactions, miners update the balance of accounts as shown in Fig. 1.

IV. BLOCKMAZE SCHEME

For the sake of convenience, we suppose that there are two accounts: sender A (Alice) and recipient B (Bob), their key pairs are (sk_A, pk_A) and (sk_B, pk_B) respectively, their account addresses are $addr_A$ and $addr_B$, their plaintext balances are denoted as pt_balance_A and pt_balance_B, and their current zero-knowledge balances are represented as follows:

$$\texttt{zk_balance}_A := (cmt_A, addr_A, value_A, sn_A, r_A),\\ \texttt{zk_balance}_B := (cmt_B, addr_B, value_B, sn_B, r_B).$$

A. Description of BlockMaze

A BlockMaze scheme Π is composed of polynomial-time algorithms Π = (Setup, CreateAccount, Mint, Redeem, Send, Deposit, VerTx). It has four properties: ledger indistinguishability, transaction unlinkability, transaction nonmalleability and balance.

I) Setup $(1^{\lambda}) \rightarrow pp$. Given a security parameter λ , this algorithm generates a list of public parameters pp, which are published and made available to anyone. Note that Setup is just executed only once by a trusted party.

2) CreateAccount(pp) $\rightarrow \{addr, (sk, pk), zk_balance\}$. Given public parameters pp, this algorithm initializes an account address addr, key pair (sk, pk) and a zero-knowledge balance $zk_balance$ for a user, where sk is a private key for accessing private data (also decrypting transaction data), pk is a public key for encrypting transaction data, and addr is an account address for sending and receiving payments.

3) $\operatorname{Mint}(\operatorname{pp}, \operatorname{zk_balance}_A, \operatorname{pt_balance}_A, sk_A, v) \rightarrow \{\operatorname{zk_balance}_A^*, \operatorname{tx_{Mint}}\}$. This algorithm enables an account (say A) to convert a plaintext amount v into a zero-knowledge amount and merge it with the current zero-knowledge balance. Given public parameters pp, the current zero-knowledge balance zk_balance_A, the current plaintext balance pt_balance_A, the account private key sk_A , and a plaintext amount v to be converted into a zero-knowledge amount, account A utilizes this algorithm to mint her new zero-knowledge balance zk_balance_A^* and generate a transaction tx_{Mint}.

Once the tx_{Mint} is recorded on blockchain successfully, the state change of A is as follows:

A's state recorded on MPT before $Mint : \{pt_balance_A, cmt_A\},\$ A's state recorded on MPT after $Mint : \{pt_balance_A - v, cmt_A^*\}.$

4) Redeem(pp, zk_balance_A, $sk_A, v) \rightarrow \{zk_balance_A^*, k_b, v\}$

 tx_{Redeem} }. This algorithm enables an account (say A) to convert a zero-knowledge amount back into a plaintext balance. Given public parameters pp, the current zero-knowledge balance $zk_{balance_A}$, the account private key sk_A , and a plaintext amount v to be converted back from the zero-knowledge balance, account A utilizes this algorithm to redeem a plaintext amount v from her new zero-knowledge balance $zk_{balance_A}^*$ and generate a transaction tx_{Redeem} .

After that the tx_{Redeem} is recorded on blockchain successfully, the state change of A is as follows:

A's state recorded on MPT before $\mathbf{Redeem} : \{ \mathtt{pt_balance}_A, cmt_A \},\$

A's state recorded on MPT after
$$\mathbf{Redeem} : \{ \mathtt{pt_balance}_A + v, cmt_A^* \}.$$

5) Send(pp,zk_balance_A, $(sk_A, pk_A), pk_B, v) \rightarrow \{zk_balance_A^*, tx_{send}\}$. This algorithm enables sender A to send a

zero-knowledge amount to recipient *B*. Given public parameters pp, the current zero-knowledge balance $zk_balance_A$, account key pair (sk_A, pk_A) , recipient's public key pk_B , and a plaintext amount v to be transferred, account *A* calls this algorithm to obtain her new zero-knowledge balance $zk_balance_A^*$ and generate a transaction tx_{Send} .

After building transaction tx_{Send} , A should inform B with a hash $h_{tx_{Send}} := CRH(tx_{Send})$ such that B can retrieve and parse tx_{Send} to construct $tx_{Deposit}$. When the tx_{Send} is recorded on blockchain successfully, the state change of A is as follows:

 $A\textit{`s state recorded on MPT before } \mathbf{Send}: \{\mathtt{pt_balance}_A, cmt_A\},$

A's state recorded on MPT after **Send** : { $pt_balance_A, cmt_A^*$ }.

6) **Deposit**(Ledger_T, pp, (sk_B, pk_B) , $h_{tx_{Send}}$, $zk_{balance_B}$) \rightarrow { $zk_{balance_B}$, $tx_{Deposit}$ }. This algorithm enables recipient B to check and deposit a received payment into his account. Given the current ledger Ledger_T, public parameters pp, account key pair (sk_B , pk_B), the hash of a Send transaction $h_{tx_{Send}}$ and the current zero-knowledge balance $zk_{balance_B}$, recipient B calls **Deposit** to obtain his new zero-knowledge balance $zk_{balance_B}$ and build a transaction $tx_{Deposit}$.

Based on the hash of tx_{Send} whose sender is A, recipient B can retrieve and parse tx_{Send} to construct $tx_{Deposit}$. Once the $tx_{Deposit}$ is recorded on blockchain successfully, the state change of B is as follows:

B's state recorded on MPT before **Deposit** : { $pt_balance_B, cmt_B$ }, B's state recorded on MPT after **Deposit** : { $pt_balance_B, cmt_B^*$ }.

7) VerTx(Ledger_T, pp, tx) $\rightarrow b$. Given the current ledger Ledger_T, public parameters pp and a zero-knowledge transaction tx, miners call this algorithm to check the validity of all zero-knowledge transactions. The algorithm outputs b = 1 if tx is valid, otherwise it outputs b = 0. Miners (or nodes maintaining the blockchain) are responsible for verifying all transactions and then update the state of related accounts.

B. Security of BlockMaze

Following a similar model defined in the extended version of Zerocash [4], we define secure properties of our scheme including ledger indistinguishability, transaction unlinkability, transaction non-malleability, and balance, and extend these four properties in regard to the account model.

Definition 3 (Security). A BlockMaze scheme is *secure* if it satisfies ledger indistinguishability, transaction unlinkability, transaction non-malleability, and balance as defined below and its experiments as shown in Fig. 3.

Ledger Indistinguishability. A ledger is indistinguishable if it does not reveal new information to the adversary besides the publicly-revealed information. We say a BlockMaze scheme II is ledger indistinguishable if, for every probabilistic polynomial-time (PPT) adversary \mathcal{A} and sufficiently large λ , we have $\Pr[\text{BlockMaze}_{\Pi,\mathcal{A}}^{\text{LTMD}}(\lambda) = 1] \leq \frac{1}{2} + \text{negl}(\lambda)$, where $\Pr[\text{BlockMaze}_{\Pi,\mathcal{A}}^{\text{LTMD}}(\lambda) = 1]$ is \mathcal{A} 's winning probability in the L-IND experiment.

Transaction Unlinkability. A transaction is unlinkable if it does not leak the linkage between its sender and recipient during fund transfers. We say a BlockMaze scheme Π is

 $\mathsf{BlockMaze}_{\Pi,\mathcal{A}}^{\mathtt{L-IND}}(\lambda):$ $\mathsf{BlockMaze}_{\Pi,\mathcal{A}}^{\mathtt{TR-NM}}(\lambda):$ $\overline{ \begin{array}{c} 1. \mathsf{pp} \leftarrow \mathbf{Setup}(1^{\lambda}) \\ 2. (L_0, L_1) \leftarrow \mathcal{A}^{\mathcal{O}_0^{\mathrm{BM}}, \mathcal{O}_1^{\mathrm{BM}}}(\mathsf{pp}) \end{array} }$ 1. pp \leftarrow **Setup** (1^{λ}) 2. $L \leftarrow \mathcal{A}^{\mathcal{O}^{BM}}(pp)$ 3. $tx' \leftarrow \mathcal{A}^{\mathcal{O}^{BM}}(L)$ 3. $b \stackrel{\$}{\leftarrow} \{0, 1\}$ 4. $b \leftarrow \mathbf{VerTx}(L, \mathsf{pp}, \mathsf{tx}')$ 4. $Q \stackrel{\$}{\leftarrow} \{CreateAccount, Mint, Redeem, Send, Deposit, Insert\}$ 5. return $b \land (\exists tx \in L : tx \neq tx' \land tx.sn = tx'.sn)$ 5. $a \leftarrow Query_{L_b}(Q)$ 6. $b' \leftarrow \mathcal{A}^{\mathcal{O}_0^{\text{BM}}, \mathcal{O}_1^{\text{BM}}}(L_0, L_1, a)$ 7. return b = b' $\mathsf{BlockMaze}_{\Pi,\mathcal{A}}^{\mathtt{BAL}}(\lambda)$: 1. pp $\leftarrow \mathbf{Setup}(1^{\lambda})$ $\mathsf{BlockMaze}_{\Pi,\mathcal{A}}^{\mathtt{TR-UL}}(\lambda)$: 2. $L \leftarrow \mathcal{A}^{\mathcal{O}^{BM}}(pp)$ $\begin{array}{c} \hline 1. \ \mathsf{pp} \leftarrow \mathbf{Setup}(1^{\lambda}) \\ 2. \ L \leftarrow \mathcal{A}^{\mathcal{O}^{\mathrm{BM}}}(\mathsf{pp}) \\ 3. \ (\mathtt{tx}, \mathtt{tx}') \leftarrow \mathcal{A}^{\mathcal{O}^{\mathrm{BM}}}(L) \end{array}$ 3. $(S_{cmt_v}, \mathtt{zk_balance}^*, \mathtt{pt_balance}^*) \leftarrow \mathcal{A}^{\mathcal{O}^{\mathsf{BM}}}(L)$ 4. $(v_{\text{zk_unspent}}, v_{\text{pt_unspent}}, v_{\text{zk}:\mathcal{A} \to \text{ACCOUNT}}, v_{\text{pt}:\mathcal{A} \to \text{ACCOUNT}})$ $v_{\mathsf{zk}: \texttt{ACCOUNT} \to \mathcal{A}}, v_{\mathsf{pt}: \texttt{ACCOUNT} \to \mathcal{A}}) \leftarrow$ 4. if participantOf(tx, tx') = addrOf(\mathcal{A}) then return 0 $Compute(L, S_{cmt_v}, zk_balance^*, pt_balance^*)$ 5. if $tx = tx_{Send}$ then 5. if $(v_{zk_unspent} + v_{pt_unspent} + v_{zk:A \to ACCOUNT} + v_{pt:A \to ACCOUNT}) >$ return $tx \neq tx' \land senderOf(tx) = senderOf(tx')$ $(v_{\mathsf{zk}:\mathsf{ACCOUNT}\to\mathcal{A}} + v_{\mathsf{pt}:\mathsf{ACCOUNT}\to\mathcal{A}})$ then return 1 6. if $tx = tx_{Deposit}$ then 6. else return 0 return $tx \neq tx' \land recipientOf(tx) = recipientOf(tx')$ 7. return 0

Fig. 3: The ledger indistinguishability, transaction unlinkability, transaction non-malleability, and balance experiment for BlockMaze. In BlockMaze $_{\Pi,\mathcal{M}}^{\Pi,\mathcal{M}}(\lambda)$, participantOf denotes participants including sender and recipient of transactions, addrOf denotes the address of an account, senderOf denotes the sender of a transaction, and recipientOf denotes the recipient of a transaction. In $\mathsf{BlockMaze}_{\Pi,\mathcal{A}}^{\mathtt{BAL}}(\lambda)$, S_{cmt_v} is a table of transfer commitments, $\mathtt{zk_balance}^*$ and $\mathtt{pt_balance}^*$ are the new account balance, and Compute is a function to compute variables related to A's account balance.

transaction unlinkable if, for every PPT adversary A and sufficiently large λ , we have $\Pr\left[\mathsf{BlockMaze}_{\Pi,\mathcal{A}}^{\mathsf{TR-UL}}(\lambda) = 1\right] \leq \mathsf{negl}(\lambda)$, where $\Pr[\mathsf{BlockMaze}_{\Pi,\mathcal{A}}^{\mathrm{TR-UL}}(\lambda) = 1]$ is \mathcal{A} 's winning probability in the TR-UL experiment.

Transaction Non-malleability. A transaction is nonmalleable if no adversary can produce a new transaction different from any previous transactions but with the same revealed data (i.e., serial number of commitments). We say a BlockMaze scheme Π is transaction nonmalleable if, for every PPT adversary A and sufficiently large λ , we have $\Pr\left[\mathsf{BlockMaze}_{\Pi,\mathcal{A}}^{\mathbb{TR}\cdot\mathbb{M}}(\lambda)=1\right] \leq \mathsf{negl}(\lambda)$, where $\Pr\left[\mathsf{BlockMaze}_{\Pi,\mathcal{A}}^{\mathsf{TR-NM}}(\lambda) = 1\right]$ is \mathcal{A} 's winning probability in the TR-NM experiment.

Balance. A ledger is balanced if no adversary can spend the money more than that in his account. We say a BlockMaze scheme Π is balanced if, for every probabilistic polynomial-time (PPT) adversary A and sufficiently large λ , we have $\Pr\left[\mathsf{BlockMaze}_{\Pi,\mathcal{A}}^{\mathsf{BAL}}(\lambda) = 1\right] \leq \mathsf{negl}(\lambda)$, where $\Pr\left[\mathsf{BlockMaze}_{\Pi,\mathcal{A}}^{\mathsf{BAL}}(\lambda) = 1\right]$ is \mathcal{A} 's winning probability in the BAL experiment.

Ledger indistinguishability, which is defined by the L-IND experiment, means that no PPT adversary A can distinguish between two ledgers L_0 and L_1 , which are constructed by \mathcal{A} requesting queries to two separated BlockMaze oracles. Transaction unlinkability, which is formalized by the TR-UL experiment, means that given a valid fund transfer transaction, the adversary cannot tell: (i) who is the recipient of the transaction and (ii) who is the sender of the payment in the transaction. Transaction non-malleability, which is formalized by the TR-NM experiment, means that the adversary \mathcal{A} cannot produce a new transaction using the same serial number revealed in any previous transactions. Balance, which is defined by the BAL experiment, means that the adversary cannot obtain more money than what he minted or received via payments from others. (Please refer to Appendix A for the formal security definitions of BlockMaze.)

Theorem 1. The tuple $\Pi = ($ Setup, CreateAccount, Mint, Redeem, Send, Deposit, VerTx), as defined in Section IV-C, is a secure BlockMaze scheme. (The proof is given in Appendix B.)

C. Construction of BlockMaze

In the following description, we utilize gray background variables to denote private data (or hidden variables), which is combined into a witness. Each witness \vec{a} is taken as an auxiliary input in $\Pi_{\mathcal{Z}}$.GenProof to generate proofs. Note that hidden variables are accessible only to related account owners. For the sake of convenience, we summarize the construction of BlockMaze in Appendix C.

Setup. This algorithm generates a list of public parameters. To satisfy the requirements of zero-knowledge transactions, we build specific circuits C_i to prove the validity of these transactions (e.g., Mint, Redeem, Send, Deposit). These circuits are taken to generate a key pair (pk_{Z_i}, vk_{Z_i}) for proof generation and verification. Note that this algorithm is executed only once to output a list of public parameters. The detailed process proceeds as follows:

Setup

- inputs: a security parameter λ
- outputs: public parameters pp
- 1) Compute $pp_{\mathcal{E}} := \Pi_{\mathcal{E}}.Setup(1^{\lambda}).$
- 2) Compute $pp_{\mathcal{Z}} := \prod_{\mathcal{Z}} Setup(1^{\lambda})$.
- 3) For each $i \in {Mint, Redeem, Send, Deposit}$
 - a) Construct a circuit C_i .
 - b) Compute $(\mathsf{pk}_{\mathcal{Z}_i}, \mathsf{vk}_{\mathcal{Z}_i}) := \Pi_{\mathcal{Z}}.\mathrm{KeyGen}(C_i).$
- $\begin{array}{l} \text{4) Set } \mathsf{PK}_{\mathcal{Z}} := \bigcup \mathsf{pk}_{\mathcal{Z}_i} \text{ and } \mathsf{VK}_{\mathcal{Z}} := \bigcup \mathsf{vk}_{\mathcal{Z}_i}. \\ \text{5) Output } \mathsf{pp} := (\mathsf{pp}_{\mathcal{E}}, \mathsf{pp}_{\mathcal{Z}}, \mathsf{PK}_{\mathcal{Z}}, \mathsf{VK}_{\mathcal{Z}}). \end{array}$

CreateAccount. Based on $\Pi_{\mathcal{E}}$.KeyGen and a collisionresistant hash function CRH, this algorithm initializes an account for each user as follows:

CreateAccount inputs: public parameters pp outputs: an account address addr an address key pair (sk, pk) a new zero-knowledge balance zk_balance 1) Compute (sk, pk) := Π_ε.KeyGen(pp_ε). 2) Compute an account address addr := CRH(pk). 3) Generate a new random number r. 4) Sample a new serial number sn := PRF(sk, r). 5) Compute cmt := COMM_{bc}(addr, 0, sn, r). 6) Initialize zk_balance := (cmt, addr, 0, sn, r) 7) Output addr, (sk, pk) and zk_balance.

Mint. This algorithm builds a Mint transaction to convert a plaintext amount into the current zero-knowledge balance of an account (say A). The transaction tx_{Mint} of account A is composed of these variables:

- An account address denoted as addr_A: the sender of tx_{Mint}.
- A plaintext value denoted as v: a plaintext amount to be converted into a zero-knowledge amount.
- A serial number of the balance commitment denoted as sn_A : a unique string associated with the current balance commitment cmt_A .
- The new balance commitment denoted as cmt_A^* : the new balance commitment to be updated.
- A zero-knowledge proof denoted as prf_m: a proof generated in Π_Z.GenProof proving that the following equations hold for the circuit of tx_{Mint}, as shown in Fig. 4(a):
 - $cmt_A = COMM_{bc}(addr_A, value_A, sn_A, r_A);$
 - $sn_A = PRF(sk_A, r_A);$
 - $cmt_A^* = \text{COMM}_{bc}(addr_A, value_A + v, sn_A^*, r_A^*);$
 - $sn_A^* = \text{PRF}(sk_A, r_A^*).$

The detailed process proceeds as follows:

$\underline{\mathbf{Mint}}$

This algorithm merges a plaintext amount with the current zeroknowledge balance of an account (say A).

- inputs:
 - public parameters pp
 - the current zero-knowledge balance $\mathtt{zk_balance}_A$
 - the current plaintext balance $\mathtt{pt_balance}_A$
 - account private key sk_A
 - a plaintext amount v to be converted into a zero-knowledge amount
- outputs:
 - the new zero-knowledge balance zk_balance^{*}
- a Mint transaction tx_{Mint}
- 1) Return fail if $pt_{balance_A} < v \text{ or } v \leq 0$.
- 2) Parse $zk_balance_A$ as $(cmt_A, addr_A, value_A, sn_A, r_A)$.
- 3) Generate a new random number r_A^* .
- 4) Sample a new serial number $sn_A^* := \text{PRF}(sk_A, r_A^*)$.
- 5) Compute $cmt_A^* := \text{COMM}_{bc}(addr_A, value_A + v, sn_A^*, r_A^*).$
- 6) Set $\vec{x}_1 := (cmt_A, addr_A, sn_A, cmt_A^*, v)$.
- 7) Set $\vec{a}_1 := (value_A, r_A, sk_A, sn_A^*, r_A^*)$.
- 8) Compute $prf_m := \Pi_{\mathcal{Z}}.\text{GenProof}(\mathsf{PK}_{\mathcal{Z}}, \vec{x}_1, \vec{a}_1).$
- 9) Set $tx_{Mint} := (addr_A, v, sn_A, cmt_A^*, prf_m),$

 $\mathtt{zk_balance}_A^* := (cmt_A^*, addr_A, value_A + v, sn_A^*, r_A^*).$ 10) Output $\mathtt{zk_balance}_A^*$ and $\mathtt{tx}_{\mathtt{Mint}}.$

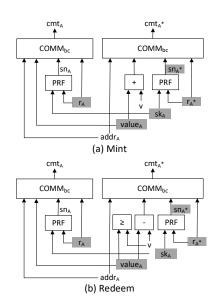


Fig. 4: Mint and Redeem circuits

Redeem. This algorithm generates a Redeem transaction to convert a zero-knowledge amount back into the plaintext balance of an account (say A). Some variables are the same as the transaction tx_{Mint} except the proof prf_r , which proves that the following equations hold for the circuit of tx_{Redeem} , as shown in Fig. 4(b):

- $cmt_A = COMM_{bc}(addr_A, value_A, sn_A, r_A);$
- $sn_A = PRF(sk_A, r_A);$
- $value_A \geq v$;
- $cmt_A^* = \text{COMM}_{bc}(addr_A, value_A v, sn_A^*, r_A^*);$
- $sn_A^* = \text{PRF}(sk_A, r_A^*).$

The detailed process proceeds as follows:

Redeem

This algorithm converts a zero-knowledge amount back into the plaintext balance of an account (say A).

- inputs:
 - public parameters pp
 - the current zero-knowledge balance $\mathtt{zk_balance}_A$
 - account private key sk_A
 - a plaintext amount v to be converted back from the zero-knowledge balance
- outputs:
 - the new zero-knowledge balance $\mathtt{zk_balance}^*_A$
- a Redeem transaction $\mathtt{tx}_{\mathtt{Redeem}}$
- 1) Parse $zk_balance_A$ as $(cmt_A, addr_A, value_A, sn_A, r_A)$.
- 2) Return fail if $value_A < v$ or $v \leq 0$.
- 3) Generate a new random number r_A^* .
- 4) Sample a new serial number $sn_A^* := \text{PRF}(sk_A, r_A^*)$.
- 5) Compute $cmt_A^* := \text{COMM}_{bc}(addr_A, value_A v, sn_A^*, r_A^*)$.
- 6) Set $\vec{x}_2 := (cmt_A, addr_A, sn_A, cmt_A^*, v)$.
- 7) Set $\vec{a}_2 := (value_A, r_A, sk_A, sn_A^*, r_A^*)$.
- 8) Compute $prf_r := \Pi_{\mathcal{Z}}.GenProof(\mathsf{PK}_{\mathcal{Z}}, \vec{x}_2, \vec{a}_2).$
- 9) Set $tx_{Redeem} := (addr_A, v, sn_A, cmt_A^*, prf_r)$,
- $\texttt{zk_balance}_A^* := (cmt_A^*, addr_A, value_A v, sn_A^*, r_A^*).$
- 10) Output $zk_{balance_A}^*$ and tx_{Redeem} .

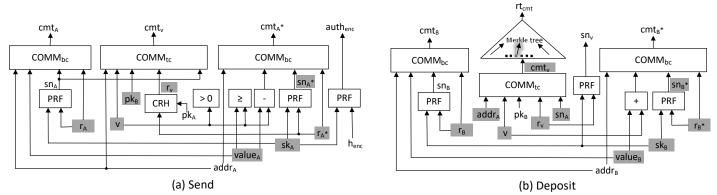


Fig. 5: Send and Deposit circuits

Send. This algorithm sends a zero-knowledge amount from a sender (say A) to a recipient (say B). The transaction tx_{Send} of account A consists of these variables as follows:

- An account address denoted as $addr_A$: the owner of tx_{Send}.
- A serial number of the balance commitment denoted as sn_A : a unique string associated with the current balance commitment cmt_A .
- The new balance commitment denoted as cmt_A^* : the new balance commitment to be updated.
- A fund transfer commitment denoted as cmt_v : a commitment of the zero-knowledge amount corresponding to v.
- A ciphertext denoted as aux_A : a ciphertext of sharing parameters using the public key of the recipient.
- An authorization for a ciphertext denoted as $auth_{enc}$: an authorization guarantees the integrity of the ciphertext.
- A zero-knowledge proof denoted as $pr f_s$: a proof generated in $\Pi_{\mathcal{Z}}$.GenProof proving that the following equations hold for the circuit of tx_{Send} , as shown in Fig. 5(a):
 - $cmt_A = COMM_{bc}(addr_A, value_A, sn_A, r_A);$
 - $sn_A = PRF(sk_A, r_A);$
 - $value_A \geq v > 0;$
 - $r_v = \text{CRH}(r_A^* \parallel pk_A);$

-
$$cmt_v = \text{COMM}_{tc}(addr_A, v, pk_B, r_v, sn_A);$$

-
$$cmt_A^* = \text{COMM}_{bc}(addr_A, value_A - v, sn_A^*, r_A^*)$$

- $sn_A^* = PRF(sk_A, r_A^*);$
- $auth_{enc} = PRF(sk_A, h_{enc}).$

The detailed process proceeds as follows:

Send

This algorithm sends a zero-knowledge amount from sender Ato recipient B.

- inputs:
 - public parameters pp
 - the current zero-knowledge balance zk_balance_A
 - account key pair (sk_A, pk_A)
 - recipient's public key pk_B
 - a plaintext amount v to be transferred -
- outputs:
 - the new zero-knowledge balance zk_balance^{*}
- a Send transaction tx_{Send}
- 1) Parse $zk_balance_A$ as $(cmt_A, addr_A, value_A, sn_A, r_A)$.
- Generate a new random number r_A^* . 2)
- Compute a new random number $r_v := \operatorname{CRH}(r_A^* || pk_A)$. 3)
- 4) Compute $cmt_v := COMM_{tc}(addr_A, v, pk_B, r_v, sn_A)$.

- 5) Set $aux_A := \prod_{\mathcal{E}} \operatorname{Enc}_{pk_B}(\{addr_A, v, r_v, sn_A\}).$ 6) Sample a new serial number $sn_A^* := \operatorname{PRF}(sk_A, r_A^*).$

- 9) Compute $auth_{enc} := PRF(sk_A, h_{enc}).$
- 10) Set $\vec{x}_3 := (cmt_A, addr_A, sn_A, pk_A, cmt_v, cmt_A^*, h_{enc}, auth_{enc})$.
- 11) Set $\vec{a}_3 := (value_A, r_A, sk_A, v, pk_B, r_v, sn_A^*, r_A^*).$
- 12) Compute $prf_s := \Pi_{\mathcal{Z}}.\text{GenProof}(\mathsf{PK}_{\mathcal{Z}}, \vec{x}_3, \vec{a}_3).$ 13)
- Set $zk_balance_A^* := (cmt_A^*, addr_A, value_A v, sn_A^*, r_A^*)$ $\mathsf{tx}_{\mathsf{Send}} := (pk_A, sn_A, cmt_A^*, cmt_v, aux_A, auth_{enc}, prf_s).$
- 14) Output $zk_balance_A^*$ and tx_{Send} .

The new plaintext value in cmt_A^* is determined by the plaintext value in both cmt_A and cmt_v . The cmt_v in the above transaction is associated with cmt_A via sn_A , i.e., the same variable sn_A is used in both cmt_v and cmt_A . Note that pk_B is visible only between two negotiating parties during Send.

Deposit. This algorithm enables a recipient (say B) to check and deposit a received payment into his account. The transaction $tx_{Deposit}$ of B is composed of these variables:

- A sequence set denoted as *seq*: a set of block numbers to get transfer commitments and construct a Merkle tree MT.
- A Merkle root denoted as rt_{cmt} : the root of MT.
- A serial number of the balance commitment denoted as sn_B : a unique string associated with the current balance commitment cmt_B .
- The new balance commitment denoted as cmt_B^* : the new balance commitment to be updated.
- A serial number of the fund transfer commitment denoted as sn_v : a unique string associated with the transfer commitment cmt_v .
- A public key denoted as pk_B : the public key of B.
- A zero-knowledge proof denoted as prf_d : a proof generated in $\Pi_{\mathcal{Z}}$.GenProof proving that the following conditions hold for the circuit of $tx_{Deposit}$, as shown in Fig. 5(b):
 - $cmt_v = COMM_{tc}(addr_A, v, pk_B, r_v, sn_A);$
 - $sn_v = PRF(sk_B, r_v);$
 - a path from cmt_v to rt_{cmt} recorded on a Merkle tree;
 - $cmt_B = \text{COMM}_{bc}(addr_B, value_B, sn_B, r_B);$
 - $sn_B = \text{PRF}(sk_B, r_B);$
 - $cmt_B^* = \text{COMM}_{bc}(addr_B, value_B + v, sn_B^*, r_B^*);$
 - $sn_B^* = \text{PRF}(sk_B, r_B^*).$

The detailed process proceeds as follows:

7) Compute $cmt_A^* := COMM_{bc}(addr_A, value_A - v, sn_A^*, r_A^*)$. 8) Compute $h_{enc} := CRH(aux_A)$.

Deposit

This algorithm enables a recipient (say B) to check and deposit a received payment into his account.

- inputs:
 - the current ledger Ledger_T
 - public parameters pp
 - account key pair (sk_B, pk_B)
 - the hash of a Send transaction $h_{\mathtt{tx}_{\mathtt{Send}}}$
 - the current zero-knowledge balance zk_balance_B
- outputs:
 - the new zero-knowledge balance zk_balance^{*}_B
 - a Deposit transaction $tx_{Deposit}$
- 1) Parse $zk_{balance_B}$ as $(cmt_B, addr_B, value_B, sn_B, r_B)$.
- 2) Obtain transaction information of $h_{tx_{Send}}$ from Ledger_T
 - the Send transaction is tx_{Send} ,
 - the block number of tx_{Send} is N.
- 3) Parse tx_{Send} as $(pk_A, sn_A, cmt_A^*, cmt_v, aux_A, auth_{enc}, prf_s)$
- 4) Compute $(addr_A, v, r_v, sn_A) := \prod_{\mathcal{E}} . \text{Dec}_{sk_B}(aux_A).$
- 5) Return fail if $cmt_v \neq \text{COMM}_{tc}(addr_A, v, pk_B, r_v, sn_A)$
- 6) Compute a serial number $sn_v := \text{PRF}(sk_B, r_v)$.
- 7) Randomly select a set $seq := \{n_1, n_2, ..., N, ..., n_9\}$ from existed block numbers.
- 8) Construct a Merkle tree MT over $\bigcup_{n \in seq} TCMSet_n$.
- 9) Compute $path := Path(cmt_v)$ and rt_{cmt} over MT.
- 10) Generate a new random number r_B^* .
- 11) Sample a new serial number $sn_B^* := \text{PRF}(sk_B, r_B^*)$.
- 12) Compute $cmt_B^* := \text{COMM}_{bc}(addr_B, value_B + v, sn_B^*, r_B^*)$.
- 13) Set $\vec{x}_4 := (pk_B, sn_v, rt_{cmt}, cmt_B, addr_B, sn_B, cmt_B^*)$,
- 14) Set $\vec{a}_4 := (\#, value_B, r_B, sk_B, sn_B^*, r_B^*, path)$ and # as $(cmt_v, addr_A, v, r_v, sn_A)$.
- 15) Compute $prf_d := \Pi_{\mathcal{Z}}.GenProof(\mathsf{PK}_{\mathcal{Z}}, \vec{x}_4, \vec{a}_4).$
- 16) Set $tx_{Deposit} := (seq, rt_{cmt}, sn_B, cmt_B^*, sn_v, pk_B, prf_d),$ $zk_balance_B^* := (cmt_B^*, addr_B, value_B + v, sn_B^*, r_B^*).$
- 17) Output $zk_{balance}^*_B$ and $tx_{Deposit}$.

Only after generating a valid proof prf_d with pk_B and sn_v can B deposit the received payment into his account address $addr_B := CRH(pk_B)$. Moreover, cmt_v associated with pk_B is organized and hidden as a Merkle tree for proof generation, thus outsiders do not know which cmt_v is taken to generate prf_d in a Deposit transaction.

VerTx. This algorithm checks all zero-knowledge transactions. Once these transactions are packed into a candidate block, each transaction must be rechecked to confirm that its related account information (e.g., serial number and new transfer commitment) has not become published, and its Merkle root is valid. If all the checks above are satisfied, then miners will: (i) replace the balance commitment of an account with the new balance commitment (i.e., changing from cmt_A to cmt_A^*); (ii) append a published serial number (e.g., sn_A , sn_v and sn_B) into SNSet_T; and (iii) add a transfer commitment (e.g., cmt_v) into TCMSet_N stored in the new block block_N. The detailed process proceeds as follows:

$\underline{\text{VerTx}}$

The algorithm checks all zero-knowledge transactions.

- inputs:
 - the current ledger $Ledger_T$
 - public parameters pp
 - a zero-knowledge transaction tx
- outputs: bit b
- 1) If given a transaction tx is tx_{Mint}

- a) Parse tx_{Mint} as $(addr_A, v, sn_A, cmt_A^*, prf_m)$. b) Obtain related information of $addr_A$ from Ledger_T the current plaintext balance is pt_balance_A, - the current balance commitment is cmt_A . c) Return 0 if pt_balance_A < v or $v \leq 0$. d) Return 0 if sn_A appears in SNSet_T. e) Set $\vec{x}_1 := (cmt_A, addr_A, sn_A, cmt_A^*, v)$. f) Output $b := \Pi_{\mathcal{Z}}$. Ver Proof (VK_Z, \vec{x}_1, prf_m). 2) If given a transaction tx is tx_{Redeem} a) Parse tx_{Redeem} as $(addr_A, v, sn_A, cmt_A^*, prf_r)$. b) Return 0 if v < 0. c) Obtain related information of $addr_A$ from Ledger_T - the current balance commitment is cmt_A . d) Return 0 if sn_A appears in SNSet_T. e) Set $\vec{x}_2 := (cmt_A, addr_A, sn_A, cmt_A^*, v)$. f) Output $b := \Pi_{\mathcal{Z}}$. VerProof(VK_Z, \vec{x}_2, prf_r). 3) If given a transaction tx is tx_{Send} a) Parse tx_{Send} as $(pk_A, sn_A, cmt_A^*, cmt_v, aux_A, auth_{enc}, pr|f_s)$. b) Compute $addr_A := CRH(pk_A)$. c) Obtain related information of $addr_A$ from Ledger_T - the current balance commitment is cmt_A . d) Return 0 if sn_A appears in SNSet_T. e) Compute $h_{enc} := CRH(aux_A)$. f) Set $\vec{x}_3 := (cmt_A, addr_A, sn_A, pk_A, cmt_v, cmt_A^*, h_{enc}, auth_{enc})$. g) Output $b := \Pi_{\mathcal{Z}}$. Ver Proof $(VK_{\mathcal{Z}}, \vec{x}_3, prf_s)$. 4) If given a transaction tx is tx_{Deposit} a) Parse $tx_{Deposit}$ as $(seq, rt_{cmt}, sn_B, cmt_B^*, sn_v, pk_B, prf_d)$ b) Compute $addr_B := CRH(pk_B)$. c) Obtain related information of $addr_B$ from Ledger_T - the current balance commitment is cmt_B . d) Return 0 if sn_B or sn_v appears in SNSet_T. e) Return 0 if rt_{cmt} is not the root over $\bigcup_{n \in seq} \text{TCMSet}_n$. f) Set $\vec{x}_4 := (pk_B, sn_v, rt_{cmt}, cmt_B, addr_B, sn_B, cmt_B^*)$.
 - g) Output $b := \prod_{\mathcal{Z}} . VerProof(VK_{\mathcal{Z}}, \vec{x}_4, prf_d).$

Note that confirming a Deposit transaction, miners first compute $addr_B := CRH(pk_B)$ and then update the new balance commitment cmt_B^* for $addr_B$, in other words, only the owner of pk_B can deposit the received payment. To confirm a Send transaction, miners do the same as above.

V. DISCUSSION AND ANALYSIS

In this section, we first discuss details of BlockMaze, then analyze its privacy protection, and finally consider its attacks.

A. Discussion

Serial number. In BlockMaze, we utilize a unique serial number to prevent the same balance from being spent more than once, which is to be discussed in the next subsection. A unique serial number sn_A associated with the balance commitment cmt_A is generated by hashing related data such as the account private key, balance, current time, random number, etc. Once cmt_A is spent and changed, sn_A is published and deemed as used. It should be replaced by a new serial number sn_A^* to unlock the account. Each account stores its sn_A^* privately until it is used. Then miners append sn_A into SNSet after confirming corresponding transactions. In the two-step fund transfer procedure, sn_v associated with the fund transfer commitment cmt_v is processed in the same manner.

Off-Chain communication. Like most blockchain systems, the public key of recipient pk_B and the hash of Send transaction $h_{tx_{Send}}$ are transmitted off-chain between both parties. Additionally, the network communication used to broadcast zero-knowledge transactions should be anonymous, to avoid leaking identity information. For instance, these issues can be addressed with I2P and Tor [24].

Sharing parameters. In BlockMaze, both parties share parameters to construct a same fund transfer commitment. When a sender A wants to share parameters with a recipient B, A can utilize B's public key pk_B to encrypt parameters (e.g., $addr_A$, v, r_v , and sn_A mentioned in Send), and put the ciphertext into tx_{Send} . Then B can retrieve and parse tx_{Send} with its hash $h_{tx_{Send}}$ obtained from A, and decrypt to get back the relevant parameters with his private key sk_B . Of course, B can also utilize sk_B to scan the ledger decrypting the ciphertext in tx_{Send} paid to him. Finally, both parties use the same parameters to compute the fund transfer commitment.

Merkle tree. Since a Merkle proof in zk-SNARK needs a Merkle tree with a fixed depth, it is particularly important to set an appropriate depth of Merkle tree. There are two ways to maintain a Merkle tree. One is organized by all cmt_v which are published in tx_{Send} recorded on Ledger_T. The other method is based on a random block number sequence set including block_N, which includes a transfer commitment cmt_v to be proved. The former must set a large depth (e.g., 32) in advance, which may bring about a long time because of proof generation. Considering efficiency and scalability, the latter applies a flexible method to construct a Merkle tree with a smaller depth (e.g., 8) using cmt_v contained in randomly selected block mentioned in Section III.

Transaction fee. Since we design a dual-balance model for BlockMaze, each account has a plaintext balance and a zeroknowledge balance. When a user generates a zero-knowledge transaction, he can utilize an amount from the plaintext balance to pay for the zero-knowledge transaction fee, which is as a reward for the miners checking the validity of the zeroknowledge transaction during the "mining" process.

Batch transfer. One drawback with BlockMaze is that it cannot transfer funds to multiple recipients in one shot. Instead, BlockMaze needs to do it sequentially, and this would be quite inefficient in some applications, e.g. payroll processing. To tackle this problem, we can modify Send and Deposit algorithms to support multiple payments within a single transaction. Then one sender can call Send algorithm to output $n \ cmt_v$ s stored in tx_{Send} for n different recipients. Similarly, one recipient can utilize the Deposit algorithm to deposit $m \ cmt_v$ s from m different senders simultaneously.

B. Privacy protection

In BlockMaze, the privacy of transaction amount and zeroknowledge balance amount is preserved. Meanwhile, the attacker cannot get the linkage of transactions.

Transaction amount. There are two types of transaction amounts: one is a fund transfer commitment in Send (and Deposit) transactions, and the other is a plaintext amount in Mint (and Redeem) transactions. Obviously, the transaction amount in Send (and Deposit) is an unknown value to outsiders due to that the transfer commitment satisfies the hiding property (see Lemma 3). Although an adversary can monitor an amount in Mint (and Redeem), he cannot utilize it to infer the specific amount associated with the zeroknowledge balance of an account since he does not know other secret data. Moreover, since the users pay with a zeroknowledge commitment in Send (and Deposit) transactions, an adversary cannot deduce the transaction amount from the transfer commitment.

Zero-knowledge balance amount. Based on a dual-balance model, each account has a plaintext balance and a zeroknowledge balance. The zero-knowledge balance is only stored secretly by its owner, while its balance commitment is publicly recorded on MPT and made accessible to anyone. After publishing its serial number, the zero-knowledge balance is spent and replaced by a new one; then its balance commitment is also replaced by the new one. Since the balance commitment satisfies the hiding property (see Lemma 3), an adversary cannot infer the specific amount from both the balance commitment and published serial numbers.

The linkage of transactions. In contrast to traditional transactions in account-model blockchains, each zero-knowledge transaction (e.g., Mint, Redeem, Send and Deposit) has a sender and no recipients. Moreover, we hide the linkage of a transaction sender and recipient with the two-step fund transfer procedure: a sender executes the Send algorithm to publish a fund transfer commitment cmt_v , and then a recipient runs Deposit algorithm to spend the corresponding cmt_v in a Merkle tree and deposit it into his account. Therefore, an adversary cannot obtain the linkage between a transaction sender and its recipient (see Appendix B).

C. Attacks

Here, we neglect the common attacks such as selfish mining attack, Sybil attack, etc. That is because these attacks are for consensus algorithms, which are not suitable for Block-Maze. In section IV-B, we define properties of BlockMaze, including *ledger indistinguishability*, *transaction unlinkability*, *transaction non-malleability*, and *balance*, where *transaction unlinkability* resists linkability attack, and *balance* resists both double-spending attack and over-spending attack. These attacks are discussed as follows.

Double-spending attack. Double-spending attack means that the same balance is spent more than once. In traditional account-model based blockchains, a nonce (i.e., a transaction counter in each account) is set in each transaction to resist this attack. In BlockMaze, we utilize a unique serial number (instead of a nonce) to address this attack. More specifically, we associate each zero-knowledge balance with a unique serial number. When each zero-knowledge balance is spent, its serial number must be published in a corresponding transaction and replaced by a new one. Then the miners confirm this transaction and insert the old serial number into the used serial number set (i.e., SNSet) to resist double-spending attack.

Over-spending attack. Over-spending attack means that an adversary spends more money than what he owns. In

BlockMaze, each zero-knowledge balance must be spent with a valid zero-knowledge proof. If the adversary attempts to spend a specific amount of money that does not belong to him, he has to forge a zero-knowledge proof from the public data. The security of zk-SNARK guarantees that the success probability of such attack is negligible.

Linkability attack. Linkability attack means that an adversary identifies the linkage between a Send transaction and its corresponding Deposit transaction. To resist this attack, we design a two-step fund transfer procedure, which we have discussed in Section V-B.

Duplicated serial numbers. In BlockMaze, the serial number is used to indicate whether a zero-knowledge fund has been used or a user's zero-knowledge balance is fresh, and it must be unique to prevent double spending. If one or more malicious senders make a recipient to generate a duplicated serial number for a zero-knowledge fund, then the recipient's Deposit transaction will be rejected by miners. For example, if a recipient *B* obtains the same random number r_v from two different cmt_v , then the recipient *B* will publish the same serial number as $sn_v := PRF(sk_B, r_v)$. Then *B* cannot deposit both funds into his account. There are two obvious cases of this attack: (i) one sender generates the same r_v twice; (ii) two senders produces the same r_v separately.

In BlockMaze, each sender creates a random number for cmt_v as $r_v := CRH(r_A^* || pk_A)$ where '||' denotes concatenation. For case (i), the sender A must use the same r_A^* to create the same r_v , but then A's new serial number $sn_A^* := PRF(sk_A, r_A^*)$, bound to cmt_A^* , will not be a unique serial number. This will lock A's account forever.

For case (ii), two malicious senders A_1 and A_2 collude to produce the same r_v , i.e., $r_{v1} := \operatorname{CRH}(r_{A_1}^* \| pk_{A_1})$ is equal to $r_{v2} := \operatorname{CRH}(r_{A_2}^* \| pk_{A_2})$. This means that A_1 and A_2 should break the collision resistance property of CRH. Moreover, to make r_A^* unique, a better way is to let $r_A^* = \operatorname{CRH}(r_A)$, then the sender proves $r_A^* = \operatorname{CRH}(r_A)$ in a zero-knowledge proof. This modification adds a new constraint to the zero-knowledge proof, only slightly increasing computation complexity of BlockMaze.

VI. IMPLEMENTATION AND PERFORMANCE EVALUATION

In this section, we first implement a prototype of Block-Maze, and then introduce how to conduct comprehensive experiments evaluating its performance.

A. Implementation

We implement our BlockMaze scheme based on Libsnark [17] and Ethereum [3], where Libsnark is a library that implements zk-SNARK schemes [14]–[16] in C++. The source code of BlockMaze is available at our GitHub repository¹, which is composed of the following two components.

zk-SNARKs for BlockMaze Transactions. For zeroknowledge transactions in BlockMaze (i.e., Mint, Redeem, Send and Deposit), we use zk-SNARKs to construct a zeroknowledge proof based on their respective circuits, as shown in Fig. 4 and Fig. 5. These circuits are composed by combining addition, subtraction, less-than, hash, merkle_tree components according to their specifications. The key pair (PK_Z , VK_Z) for zk-SNARK proof generation/verification is generated and preinstalled at each node. For zk-SNARKs, we take ALT_BN128 as the default elliptic curve and instantiate the CRH function with SHA-256 hash function, same as the one used in the Merkle tree. Regarding the Merkle tree used in Deposit, it is constructed by taking 256 cmt_v 's from the set of blocks (i.e., $block_n$ and $n \in seq$) as tree leaves.

BlockMaze supports different proving schemes including Groth16 [15], which has a malleability problem. [39] suggests four solutions for this problem in blockchains: (i) submit the zk-SNARK proof with prover's signature; (ii) set some or all of the public input in the proof as a nullifier; (iii) set prover's account address as a public input in the proof; and (iv) use other simulation-extractable proving schemes such as GM17 [16], BG18 [40] and AB19 [41]. Considering efficiency and storage cost in BlockMaze, we combine (ii) and (iii) to solve the above problem as follows: set serial numbers (i.e., sn_A , sn_B and sn_v) as nullifiers and add account addresses (i.e., $addr_A$ and $addr_B$) as part of the public inputs to generate proofs for different zero-knowledge transactions.

The Underlying Account-Model Blockchain. Our implementation is based on Go-Ethereum [18] v1.8.12 and we have made the following revisions to it: (i) add four new types of transactions (i.e., Mint, Redeem, Send and Deposit) besides the original Ethereum transactions; (ii) add functions to generate and verify different zero-knowledge transactions using the Libsnark module; (iii) implement two global tables (e.g., TCMSet and SNSet) for double spending prevention. All zero-knowledge transactions are verified with the VerTx algorithm when they are received to full nodes, while Ethereum's original transactions are processed as usual. Moreover, we adopt ECIES, a hybrid encryption scheme providing semantic security against chosen plaintext attack (CPA) and chosen ciphertext attack (CCA), to instantiate public key encryption $\Pi_{\mathcal{E}}$, and instantiate PRF, COMM_{bc}, COMM_{tc} and CRH with SHA-256 hash function.

B. Experiment Setup and Results

We design comprehensive experiments to evaluate the performance of the proposed scheme. First of all, we evaluate the performance of different zk-SNARK proof systems for zero knowledge transactions on a desktop. Then we compare BlockMaze with Zerocash in terms of computation and storage costs. At last, we establish a 270-node test network for Block-Maze, and evaluate the performance in a practical scenario.

Performance of zk-SNARKs. We embed three zk-SNARK proof systems in BlockMaze and evaluate their performance in terms of computation and storage costs on a laptop equipped with Intel Core i5-8250 CPU @1.60GHz × 8 and 24-GB RAM running 64bit Ubuntu 16.04 LTS. We first give an overview of performance of these proof systems in Table III. Among them, PGHR13 has been used in Zerocash with a 288-byte zk-SNARK proof, while Groth16 and GM17 reduce the size of proof (i.e., 128B). More importantly, Groth16 has advantages

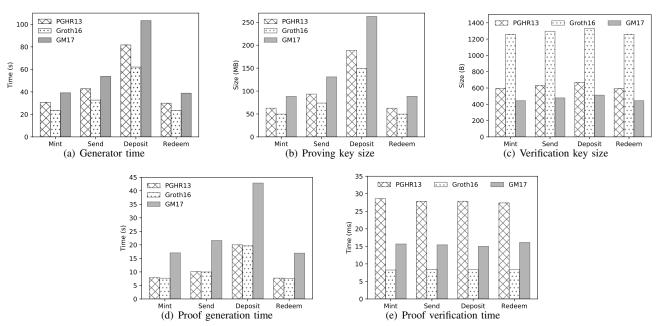


Fig. 6: The performance of zk-SNARKs used in BlockMaze.

TABLE III: Overview of zk-SNARKs used in BlockMaze

Proof system	Setup time+	Public parameters#	Proof*
PGHR13 [14]	185.078s	407MB	287B
Groth16 [15]	141.478s	323MB	128B
GM17 [16]	234.889s	571MB	128B

⁺ It denotes the time executing **Setup** using different proof systems.

[#] It denotes the size of pp produced from **Setup** algorithm.

* It denotes the size of a proof fixed in a zero-knowledge transaction.

in terms of setup time and the size of public parameters compared with the other two proof systems. To find the more efficient and suitable zk-SNARKs embedded in BlockMaze, we obtain detailed data of these proof systems and compare their different characteristics in Fig. 6. Note that the generator time means the time executing $\Pi_{\mathcal{Z}}$.Setup and $\Pi_{\mathcal{Z}}$.KeyGen for each of zk-SNARKs.

For each proof system, it is clear that the generator time is determined by the complexity of its circuit (e.g., Send circuit contains 7 SHA-256 gadgets while Deposit circuit contains 6 SHA-256 gadgets and 1 Merkle tree gadget), and the majority of the time is to generate the key pair (pk_{Z_i}, vk_{Z_i}) . Correspondingly, the generator time is approximately linear to the size of the proving key $pk_{\mathcal{Z}_i}$, which accounts for the vast majority size of public parameters pp. However, since the Setup algorithm is executed only once, it will not impact BlockMaze's performance afterwards. Similarly, proof generation time also depends on the complexity of these circuits, especially that Deposit takes the vast majority of the time to generate a Merkle proof. In contrast, the size of verification key and proof verification time are maintained at a stable value respectively, which is not affected by the circuits' complexity.

According to these bar charts, we compare them and obtain that: (i) Groth16 saves the more time in **Setup** and proof generation/verification, and reduces storage costs on the size of proving key; (ii) GM17 has the lowest size of verification key; (iii) PGHR13 has advantages on proof generation. Obviously, Groth16 is more suitable for BlockMaze for its high efficiency in computation and storage. Therefore, we only evaluate the performance of BlockMaze equipped with Groth16 to compare with Zerocash later.

Comparison with Zerocash. To compare with Zerocash, we deploy a private network consisting of 4 desktops which are all equipped with Intel Core i5-8500 CPU @3.00GHz and 8-GB RAM running 64bit Ubuntu 16.04 LTS. Note that each desktop runs one miner node and connects with other nodes to form the test blockchain network. In a duration of 1 hour, we run this test blockchain as follows: each miner node creates all types of transactions to transfer funds every 10 seconds, while it checks these transactions and mines blocks. Then we run and evaluate Zerocash v0.11.2.z0², which invokes a libzerocash³ library, in the same manner.

We provide the experiment results of two schemes in Table IV. Although these two schemes are based on different blockchain model, there are some similar features. From the functional perspective, combining our Redeem and Send algorithms are equivalent to Pour algorithm of Zerocash. For the size of public parameters pp, we neglect basic parameters of $pp_{\mathcal{E}}$ since the size of proving key dominates the size of pp in both schemes. Obviously, we can see that BlockMaze has clearly advantages on both time costs and storage sizes of Setup and CreateAccount algorithms comparing with Zerocash. Since each zero-knowledge transaction contains extra information to prevent double spending and be proved by zero-knowledge proof, its size is larger than a basic transaction in Ethereum. Combining with Fig. 6(d), we can obtain that the time of zero-knowledge transactions generation is dominated by the running time of $\Pi_{\mathcal{Z}}$.GenProof.

²https://github.com/Agzs/zcash/tree/v0.11.2.z0 ³https://github.com/Agzs/libzerocash

TADIT	TT 7	<u> </u>	• . 1	7 1
LAKLE	1.0.	Comparison	with	Zerocash
II ID DD	T	Companison	** 1111	Locusii

This wor	k (Account-	model)	Zerocash (UTXO-model)			
Setup	time	119.364s	273.153s	time	Setup	
	рр	323MB	1.87GB	рр	Setup	
Create	time	904ms	782ms	time	Create	
Account	pk	64B	343B	$addr_pk$	Address	
Account	sk	32B	319B	$addr_{sk}$	Audress	
Mint	time	6.041s	1µs	time	Mint	
wint	tx_{Mint}	357B	72B	$\mathtt{tx}_{\mathtt{Mint}}$	IVIIII	
Redeem	time	6.138s	104.385s	time	Pour	
neueem	$\mathtt{tx}_{\mathtt{Redeem}}$	357B	104.3638			
Send	time	9.758s	1004B	tx_{Pour}		
Denu	$\mathtt{tx}_{\mathtt{Send}}$	509B	1004D			
Deposit	time	18.573s	1.92ms	time	Receive	
	$\mathtt{tx}_{\mathtt{Deposit}}$	433B	1.721115		receive	
VerTx	time+	14.217ms	11.2µs	mint	Verify	
	unic	17.21/1115	29.213ms	pour	Transaction	

Remark A common transaction except payload in Ethereum is about 198B in size. We exclude the storage cost of seq in Deposit transactions (as this cost depends on the number of cmt_v). Each zero-knowledge transaction is extended with extra fields (e.g., *code*, *price*, *gasLimit* and *hash*).

+ It denotes average time cost for verifying a zero-knowledge transaction.

Processing Performance of BlockMaze.⁴ To evaluate the performance of BlockMaze, we deploy a test blockchain network consisting of 100 Aliyun ECS g6.xlarge instances which are equipped with 4 vCPU and 16 GB memory running 64bit Ubuntu 16.04 LTS. On each instance, we instantiate 3 independent docker containers as miner nodes. Note that each miner node connects with other 25 randomly selected miner nodes to form the test blockchain network. We run this 300-node test network as follows: each miner node first starts mining blocks, then it creates basic Ethereum transactions and zeroknowledge transactions periodically (every 10 seconds) with variable percentage $\alpha \in \{0\%, 20\%, 40\%, 60\%, 80\%, 100\%\}$ which denotes the proportion of zero-knowledge transactions in all transactions. In a 1-hour experiment, each miner node confirms these transactions and mines them into blocks with PoW consensus algorithm. Although the test network is relatively small in size, it can still provide meaningful insights about the performance of BlockMaze.

Fig. 7 shows the transactions per second (TPS), transaction latency, block size, and block generation and verification time of BlockMaze with different number of miner nodes and zeroknowledge transaction proportion. TPS denotes the number of transactions which each miner node can process per second, transaction latency denotes the time of a transaction from its creation to being recorded on the blockchain, and block generation/verification time denotes the average time required for each miner node mining/validating a block.

As shown in Fig. 7(a)(b), when the number of miner nodes increases, TPS sees a slight decline while transaction latency shows the opposite trend. This is mainly caused by communication between nodes and PoW consensus algorithm. About the former, each node connects with other nodes and requires to broadcast transactions and synchronize blocks. With PoW,

it requires that miners compete against each other to confirm transactions on the test network. When the test blockchain has more miner nodes, its mining would be much more competitive and it would show a higher communication load, increasing the time cost of processing transactions. Similarly, increasing the proportion of zero-knowledge transactions has an effect on TPS and transaction latency. The reason is that the size of zero-knowledge transactions is larger than that of basic Ethereum transactions (see Table IV), and each zeroknowledge transaction requires more additional checks including proof verification, serial number uniqueness validation, and merkle root computation. Overall, compared with the case of

all basic Ethereum transactions ($\alpha = 0\%$), TPS decreases by 6 transactions and transaction latency increases by 25 seconds

in the case of all zero-knowledge transactions ($\alpha = 100\%$). When we set the number of miner nodes to 300, as shown in Fig. 7(c)(d)(e)(f), increasing the proportion of different zero-knowledge transaction affects these metrics: block size, block generation time, block verification time, and transaction latency. Obviously, from $\alpha = 0\%$ to $\alpha = 100\%$, the block size sees a steady increase from 61KB ot 225KB, block generation time fluctuates between 10 and 17 seconds, block verification time shows an upward trend reaching 1.08 seconds, and transaction latency is in the range of 48-78 seconds, which means users must wait for approximately 78 seconds before spending received payments. Among four types of zero-knowledge transactions, it is clear that Send transaction requires more storage and time cost, which is caused by the Send algorithm. As mentioned above, adding additional fields related to zero-knowledge proof increases the size of zeroknowledge transactions, which results in that block size gradually rises with the increase in the number of zero-knowledge transactions. Moreover, each miner node requires to validate proof, serial number and merkle root during confirming each zero-knowledge transaction, and update the state of the dualbalance model, which all increase the time cost of block generation and verification. These are also the reasons for a marked increase in the figure for transaction latency. Overall, BlockMaze is very efficient in achieving fund transfer without leaking identity information and transaction amounts, although it requires more storage and time cost compared with basic Ethereum transactions.

VII. CONCLUSION

In this paper, we have proposed BlockMaze, a privacypreserving account-model blockchain that allows users to pay each other with strong privacy guarantees. It shows the practicability to resolve two privacy issues: transaction amounts and the linkage between a transaction sender and its recipient. To solve the above issues, we present a *dual-balance* model and design a two-step fund transfer procedure combining zk-SNARK. More importantly, we provide a concrete construction of BlockMaze to show the compatibility to account-model blockchains, and give a formal security proof. Finally, we implement BlockMaze based on Go-Ethereum and Libsnark and design comprehensive experiments to evaluate its performance. A future direction is to utilize a new non-interactive zero-

⁴This part of experiments is irrelevant of the circuit complexity w.r.t. the zero-knowledge proofs, so the performance results are unchanged although the circuits have been slightly adjusted.

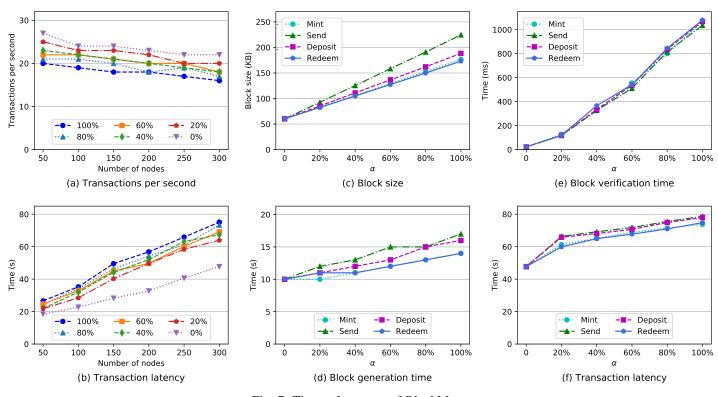


Fig. 7: The performance of BlockMaze.

knowledge scheme to achieve higher efficiency over accountmodel blockchains without the trusted setup.

REFERENCES

- [1] BitInfoCharts, "Cryptocurrency statistics," https://bitinfocharts.com/, Accessed 02/20/2020.
- [2] S. Nakamoto, "Bitcoin: A peer-to-peer electronic cash system," http://bitcoin.org/bitcoin.org/bitcoin.org/
- [3] V. Buterin, "Ethereum white paper: a next generation smart contract & decentralized application platform," https://github.com/ethereum/wiki/ wiki/White-Paper, 2013.
- [4] E. Ben-Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and M. Virza, "Zerocash: Decentralized anonymous payments from Bitcoin," in *IEEE Symposium on Security and Privacy (SP)*, 2014, pp. 459–474.
- [5] N. Nicolas Saberhagen, "Cryptonote v2.0," https://cryptonote.org/ whitepaper.pdf, 2013.
- [6] E. Androulaki et al., "Hyperledger fabric: a distributed operating system for permissioned blockchains," in Proc. 13th European Conference on Computer Systems. ACM, 2018.
- [7] I. Grigg, "EOS: an introduction," https://eos.io/documents/EOS_An_ Introduction.pdf, 2017.
- [8] M. Fleder, M. S. Kester, and S. Pillai, "Bitcoin transaction graph analysis," arXiv preprint, 2015.
- [9] J. DuPont and A. C. Squicciarini, "Toward De-Anonymizing Bitcoin by Mapping Users Location," in *Proc. 5th ACM Conference on Data and Application Security and Privacy*. ACM, 2015, pp. 139–141.
- [10] E. Duffield and D. Diaz, "Dash: A PrivacyCentric CryptoCurrency," https://github.com/dashpay/dash/wiki/Whitepaper, 2015.
- [11] I. Miers, C. Garman, M. Green, and A. D. Rubin, "Zerocoin: Anonymous Distributed E-Cash from Bitcoin," in *IEEE Symposium on Security and Privacy (SP)*, 2013, pp. 397–411.
- [12] G. Maxwell, "CoinJoin: Bitcoin privacy for the real world," https: //bitcointalk.org/index.php?topic=279249.0, 2013.
- [13] S. Ma, Y. Deng, D. He, J. Zhang, and X. Xie, "An Efficient NIZK Scheme for Privacy-Preserving Transactions over Account-Model Blockchain." *IACR Cryptology ePrint Archive*, 2017.
- [14] B. Parno, J. Howell, C. Gentry, and M. Raykova, "Pinocchio: Nearly Practical Verifiable Computation," in *IEEE Symposium on Security and Privacy (SP)*, 2013, pp. 238–252.

- [15] J. Groth, "On the size of pairing-based non-interactive arguments," in Proc. Annual International Conference on the Theory and Applications of Cryptographic Techniques. Springer, 2016, pp. 305–326.
- [16] J. Groth and M. Maller, "Snarky signatures: Minimal signatures of knowledge from simulation-extractable snarks," in *Annual International Cryptology Conference*. Springer, 2017, pp. 581–612.
- [17] SCIPR Lab, "Libsnark: a C++ library for zkSNARK proofs," https:// github.com/scipr-lab/libsnark, Accessed 02/20/2020.
- [18] Ethereum, "Official Go implementation of the Ethereum protocol," https: //github.com/ethereum/go-ethereum, Accessed 02/20/2020.
- [19] T. Ruffing, P. Moreno-Sanchez, and A. Kate, "Coinshuffle: Practical decentralized coin mixing for bitcoin," in *Proc. European Symposium* on Research in Computer Security. Springer, 2014, pp. 345–364.
- [20] CryptoRekt, "Blackpaper: Verge Currency," https://vergecurrency.com/ static/blackpaper/verge-blackpaper-v5.0.pdf, Accessed 02/20/2020.
- [21] I. Peverell, "Introduction to MimbleWimble and Grin," https://github.com/mimblewimble/grin/blob/master/doc/intro.md, Accessed 02/20/2020.
- [22] B. Bünz, S. Agrawal, M. Zamani, and D. Boneh, "Zether: Towards Privacy in a Smart Contract World," *IACR Cryptology ePrint Archive*, 2019.
- [23] A. Rondelet and M. Zajac, "ZETH: On Integrating Zerocash on Ethereum," arXiv preprint arXiv:1904.00905, 2019.
- [24] B. Conrad and F. Shirazi, "A Survey on Tor and I2P," in Proc. 9th International Conference on Internet Monitoring and Protection, 2014.
- [25] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou, "Hawk: The blockchain model of cryptography and privacy-preserving smart contracts," in *IEEE Symposium on Security and Privacy (SP)*. IEEE, 2016, pp. 839–858.
- [26] J. Eberhardt and S. Tai, "ZoKrates: Scalable Privacy-Preserving Off-Chain Computations," in *Proc. IEEE International Congress on Cybermatics*, 2018, pp. 1084–1091.
- [27] M. Maller, S. Bowe, M. Kohlweiss, and S. Meiklejohn, "Sonic: Zeroknowledge SNARKs from linear-size universal and updatable structured reference strings," in *Proceedings of the 2019 ACM SIGSAC Conference* on Computer and Communications Security, 2019, pp. 2111–2128.
- [28] A. Chiesa, D. Ojha, and N. Spooner, "Fractal: Post-quantum and transparent recursive proofs from holography," *Cryptology ePrint Archive*, 2019.
- [29] S. Bowe, J. Grigg, and D. Hopwood, "Halo: Recursive Proof Composition without a Trusted Setup," *Cryptology ePrint Archive*, 2019.

- [31] A. Chiesa, Y. Hu, M. Maller, P. Mishra, N. Vesely, and N. Ward, "Marlin: Preprocessing zksnarks with universal and updatable srs," *Cryptology ePrint Archive*, 2019.
- [32] A. Gabizon, Z. J. Williamson, and O. Ciobotaru, "PLONK: Permutations over Lagrange-bases for Oecumenical Noninteractive arguments of Knowledge," *Cryptology ePrint Archive*, 2019.
- [33] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell, "Bulletproofs: Short Proofs for Confidential Transactions and More," in *IEEE Symposium on Security and Privacy (SP)*, 2018, pp. 315–334.
- [34] E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev, "Scalable, transparent, and post-quantum secure computational integrity," *IACR Cryptology ePrint Archive*, 2018.
- [35] R. Gennaro, C. Gentry, B. Parno, and M. Raykova, "Quadratic span programs and succinct NIZKs without PCPs," in *Proc. Annual International Conference on the Theory and Applications of Cryptographic Techniques.* Springer, 2013, pp. 626–645.
- [36] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza, "Succinct Non-Interactive Zero Knowledge for a von Neumann Architecture," in *Proc.* USENIX Security Symposium, 2014, pp. 781–796.
- [37] M. Bellare, A. Boldyreva, A. Desai, and D. Pointcheval, "Key-privacy in public-key encryption," in *Proc. International Conference on the Theory* and Application of Cryptology and Information Security. Springer, 2001, pp. 566–582.
- [38] M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway, "Relations among notions of security for public-key encryption schemes," in *Proc. Annual International Cryptology Conference*. Springer, 1998, pp. 26–45.
- [39] X. Jiang, "How to Generate a Groth16 Proof for Forgery," 2019.
- [40] S. Bowe and A. Gabizon, "Making Groth's zk-SNARK Simulation Extractable in the Random Oracle Model," *IACR Cryptology ePrint Archive*, 2018.
- [41] S. Atapoor and K. Baghery, "Simulation Extractability in Groth's zk-SNARK," *IACR Cryptology ePrint Archive*, 2019.

APPENDIX A

SECURITY OF BLOCKMAZE SCHEMES

A BlockMaze scheme Π = (Setup, CreateAccount, Mint, Redeem, Send, Deposit, VerTx) is *secure* if it satisfies ledger indistinguishability, transaction unlinkability, transaction non-malleability, and balance. For each property, let λ be a security parameter, Π be a BlockMaze scheme, and \mathcal{A} be a probabilistic polynomial-time (PPT) adversary, which is formally just a (stateful) algorithm, we now formally define them here.

Following a similar model defined in Zerocash [4], we design an experiment as a game between an adversary \mathcal{A} and a challenger \mathcal{C} . Each experiment is employed depending on a stateful BlockMaze oracle \mathcal{O}^{BM} , which provides an interface for executing the algorithms defined in a BlockMaze scheme II. The oracle \mathcal{O}^{BM} stores and maintains a ledger L, a set of accounts ACCOUNT, a set of plaintext balance PT_BALANCE, and a set of zero-knowledge balance ZK_BALANCE, where the sets are initialized to be empty at the beginning. The oracle \mathcal{O}^{BM} responses to queries for different algorithms.

- Query(CreateAccount). Receiving CreateAccount query, C initializes an account address addr, a key pair (sk, pk) and a zero-knowledge balance zk_balance by calling CreateAccount algorithm, which are added to ACCOUNT and ZK_BALANCE respectively. Then, C outputs (addr, pk).
- Query(Mint, addr_A, v). Receiving Mint query, C computes (zk_balance^{*}_A, tx_{Mint}) for user A by calling Mint algorithm. Add zk_balance^{*}_A to ZK_BALANCE, pt_balance^{*}_A to PT_BALANCE, and tx_{Mint} to L, where zk_balance^{*}_A.value = zk_balance_A.value + v and pt_balance^{*}_A = pt_balance_A v.

- $Query(Redeem, addr_A, v)$. Receiving Redeem query, C computes (zk_balance^{*}_A, tx_{Redeem}) for user A by calling Redeem algorithm. Add zk_balance^{*}_A to ZK_BALANCE, pt_balance^{*}_A to PT_BALANCE, and tx_{Redeem} to L, where zk_balance^{*}_A.value = zk_balance_A.value v and pt_balance^{*}_A = pt_balance_A + v.
- Query(Send, addr_A, addr_B, v). Receiving Send query, C computes (zk_balance^{*}_A, tx_{Send}) by calling Send algorithm. Then, add zk_balance^{*}_A to ZK_BALANCE, and tx_{Send} to L, where zk_balance^{*}_A.value is equal to (zk_balance_A.value v).
- $Query(Deposit, addr_B, h_{tx_{Send}})$. Receiving Deposit query, C computes $zk_balance_B^*$ and generates $tx_{Deposit}$ for user B by executing Deposit algorithm. Then, add $tx_{Deposit}$ to L, and $zk_balance_B^*$ to $ZK_BALANCE$, where $zk_balance_B^*.value$ is equal to $(zk_balance_B.value+v)$.
- Query(Insert, tx). Receiving Insert query, C verifies the output of VerTx algorithm: if the output is 1, add the Mint/Redeem/Send/Deposit transaction tx to L; otherwise, it aborts.

A.1 Ledger Indistinguishability

We now describe a ledger indistinguishability experiment L-IND, which involves a PPT adversary A trying to attack a BlockMaze scheme. Before giving a formal experiment, we first define public consistency for a pair of queries.

Definition 4 (Public consistency). A pair of queries (Q, Q') is *publicly consistent* if both queries are of the *same* type and consistent in \mathcal{A} 's view. The public information contained in (Q, Q') must be equal including: (i) the value to be transformed; (ii) the account address; (iii) the balance commitment; (iv) the transfer commitment; and (v) published serial number. Moreover, both queries must satisfy the following restrictions for different query types:

For *CreateAccount* type, (Q, Q') are always publicly consistent since that the ledgers remain unchanged during the queries. Moreover, we require that both oracles generate the same account to reply to both queries.

For *Mint* and *Redeem* type, (Q, Q') must be mutually independent and meet the following restrictions:

- the balance commitment cmt_A in Q must correspond to zk_balance_A that appears in ZK_BALANCE;
- the zero-knowledge balance zk_balance_A must be valid,
 i.e., its serial number must never be published before;
- the account address addr_A contained in Q must match with that in zk_balance_A and zk_balance^{*}_A;
- $(zk_balance_A.value + pt_balance_A)$ is equal to $(zk_balance_A^*.value + pt_balance_A^*)$.

For **Send** type, (Q, Q') must be mutually independent and meet the following restrictions:

- the balance commitment cmt_A in Q must correspond to zk_balance_A that appears in ZK_BALANCE;
- the zero-knowledge balance zk_balance_A must be valid,
 i.e., its serial number must never be published before;
- the account address addr_A specified in Q must match with that in zk_balance_A, zk_balance^{*}_A and cmt_v;

For **Deposit** type, (Q, Q') must be mutually independent and meet the following restrictions:

- the balance commitment cmt_B in Q must correspond to zk_balance_B that appears in ZK_BALANCE;
- the zero-knowledge balance zk_balance_B must be valid,
 i.e., its serial number must never be published before;
- the transfer commitment cmt_v must be valid, i.e., it must appear in a valid transaction tx_{Send} on the corresponding oracle's ledger, and its serial number must never be published before;
- the account address addr_B in Q must match with that in zk_balance_B and zk_balance^{*}_B;
- $zk_balance_B.value + v = zk_balance_B^*.value$.

Formally, we define the ledger indistinguishability experiment $\mathsf{BlockMaze}_{\Pi,\mathcal{A}}^{\text{L-IND}}(\lambda)$ as follows:

- 1) The public parameters $pp := \mathbf{Setup}(1^{\lambda})$ is computed and given to \mathcal{A} . Two *independent* BlockMaze oracles $\mathcal{O}_0^{\text{BM}}$ and $\mathcal{O}_1^{\text{BM}}$ are initialized. A uniform bit $b \in \{0, 1\}$ is chosen.
- Whenever A sends a pair of *publicly consistent* queries (Q, Q'), answer the queries in the following way:
 - a) Provide two separate ledgers (L_b, L_{1-b}) to \mathcal{A} in each step. L_b is the current ledger in $\mathcal{O}_b^{\text{BM}}$, and L_{1-b} is the one in $\mathcal{O}_{1-b}^{\text{BM}}$.
 - b) Send Q to $\mathcal{O}_b^{\text{BM}}$ and Q' to $\mathcal{O}_{1-b}^{\text{BM}}$ to obtain two oracle answers (a_b, a_{1-b}) .
 - c) Return (a_b, a_{1-b}) to \mathcal{A} .
- Continue answering *publicly consistent* queries of A until A outputs a bit b'.
- 4) The game outputs 1 if b' = b, and 0 otherwise. If $BlockMaze_{\Pi,\mathcal{A}}^{L-IND}(\lambda) = 1$, we say that \mathcal{A} succeeds.

Definition 5 (L-IND Security). A BlockMaze scheme Π = (Setup, CreateAccount, Mint, Redeem, Send, Deposit, VerTx) is L-IND secure, if for all probabilistic polynomial-time adversaries A there is a negligible function negl such that, for security parameter λ ,

$$\Pr\left[\mathsf{BlockMaze}_{\Pi,\mathcal{A}}^{\texttt{L-IND}}(\lambda) = 1\right] \leq \frac{1}{2} + \mathsf{negl}(\lambda).$$

A.2 Transaction Unlinkability

Let \mathcal{T} be the table of zero-knowledge transactions (i.e., tx_{Send} and $tx_{Depoist}$) generated by \mathcal{O}^{BM} in response to *Send* and *Deposit* queries. We define the transaction unlinkability experiment BlockMaze^{TR-UL}_{II,A}(λ) as follows:

- The public parameters pp := Setup(1^λ) is computed and given to A. A BlockMaze oracle O^{BM} is initialized.
- 2) Whenever \mathcal{A} queries \mathcal{O}^{BM} , answer this query along with the ledger L at each step.
- 3) Continue answering queries of \mathcal{A} until \mathcal{A} sends a pair of zero-knowledge transactions (tx, tx') with the requirements: (i) $(tx, tx') \in \mathcal{T}$ are of the same type; (ii) $tx \neq tx'$; (iii) the senders of (tx, tx') are not \mathcal{A} if $tx = tx_{Send}$; (iv) the recipients of (tx, tx') are not \mathcal{A} if $tx = tx_{Deposit}$.

4) The experiment outputs 1 (indicating A wins the game) if one of the following conditions holds: (i) the recipients of payments contained in (tx, tx') are the same if tx = tx_{Send}; and (ii) the senders of payments contained in (tx, tx') are the same if tx = tx_{Deposit}. Otherwise, it outputs 0.

Definition 6 (TR-UL Security). A BlockMaze scheme Π = (Setup, CreateAccount, Mint, Redeem, Send, Deposit, VerTx) is TR-UL secure, if for all probabilistic polynomial-time adversaries A there is a negligible function negl such that, for security parameter λ ,

$$\Pr\left[\mathsf{BlockMaze}_{\Pi,\mathcal{A}}^{\mathtt{TR}\text{-}\mathtt{UL}}(\lambda) = 1\right] \leq \mathsf{negl}(\lambda).$$

A.3 Transaction Non-malleability

Let \mathcal{T} be the table of four types of zero-knowledge transactions generated by \mathcal{O}^{BM} in response to corresponding queries. We define the transaction non-malleability experiment BlockMaze^{TR-NM}_{I,A}(λ) as follows:

- The public parameters pp := Setup(1^λ) is computed and given to A. A BlockMaze oracle O^{BM} is initialized.
- 2) Whenever \mathcal{A} queries \mathcal{O}^{BM} , answer this query along with the ledger L at each step.
- Continue answering queries of A until A sends a zeroknowledge transaction tx' ∈ T.
- 4) The experiment outputs 1 if there exists tx ∈ T satisfying all following conditions: (i) tx' ≠ tx; (ii) both tx' and tx published the same serial number; and (iii) VerTx(L, pp, tx') = 1, where L is the current ledger containing tx. Otherwise, it outputs 0.

Definition 7 (TR-NM Security). A BlockMaze scheme II = (Setup, CreateAccount, Mint, Redeem, Send, Deposit, VerTx) is TR-NM secure if, for every polynomialsize adversary A and sufficiently large λ ,

$$\Pr\left[\mathsf{BlockMaze}_{\Pi,\mathcal{A}}^{\mathtt{TR-NM}}(\lambda) = 1\right] \leq \mathsf{negl}(\lambda).$$

A.4 Balance

We employ an experiment BAL, which involves a probabilistic polynomial-time adversary \mathcal{A} trying to attack a given BlockMaze scheme, where a similar definition is given in [4]. Firstly, we define eight variables for the security model of balance.

- v_{zk_unspent}, the spendable amount in zk_balance*, i.e., zk_balance*.value. The challenger C can check that zk_balance* is valid by accessing to A's balance commitment recorded on MPT on L.
- v_{pt_unspent}, the spendable amount of plaintext balance pt_balance*. The challenger C can check that pt_balance* is valid by accessing to A's account plaintext balance recorded on MPT on L.
- v_{Mint} , the total value of all plaintext amount minted by \mathcal{A} . To compute v_{Mint} , the challenger \mathcal{C} looks up all Mint transactions placed on L via *Mint* queries and sums up the values that were transformed to \mathcal{A} .

- v_{Redeem} , the total value of all zero-knowledge amount redeemed by \mathcal{A} . To compute v_{Redeem} , the challenger \mathcal{C} looks up all Redeem transactions placed on L via **Redeem** queries and sums up the values that were transformed to \mathcal{A} .
- $v_{zk:ACCOUNT \rightarrow A}$, the total value of payments received by \mathcal{A} from account addresses in ACCOUNT. To compute $v_{zk:ACCOUNT \rightarrow A}$, the challenger \mathcal{C} looks up all Deposit transactions placed on L via **Deposit** queries and sums up the values in S_{cmt_n} whose recipient is \mathcal{A} .
- $v_{\text{pt:ACCOUNT}\to\mathcal{A}}$, the total value of payments received by \mathcal{A} from account addresses in ACCOUNT. To compute $v_{\text{pt:ACCOUNT}\to\mathcal{A}}$, the challenger C looks up all plaintext transactions placed on L and sums up the values that were transferred to \mathcal{A} .
- $v_{zk:\mathcal{A}\to ACCOUNT}$, the total value of payments sent by \mathcal{A} to account addresses in ACCOUNT. To compute $v_{zk:\mathcal{A}\to ACCOUNT}$, the challenger C looks up all Send transactions placed on L via **Send** queries and sums up the values in S_{cmt_v} whose sender is \mathcal{A} .
- $v_{\text{pt}:\mathcal{A}\to \text{ACCOUNT}}$, the total value of payments sent by \mathcal{A} to account addresses in ACCOUNT. To compute $v_{\text{pt}:\mathcal{A}\to \text{ACCOUNT}}$, the challenger \mathcal{C} looks up all plaintext transactions placed on L and sums up the values whose sender is \mathcal{A} .

For an honest account u, the following equations hold:

$$\begin{split} v_{\texttt{zk_unspent}} + v_{\texttt{Redeem}} + v_{\texttt{zk}:u \to \texttt{ACCOUNT}} &= v_{\texttt{Mint}} + v_{\texttt{zk}:\texttt{ACCOUNT} \to u}, \\ v_{\texttt{pt_unspent}} + v_{\texttt{Mint}} + v_{\texttt{pt}:u \to \texttt{ACCOUNT}} &= v_{\texttt{Redeem}} + v_{\texttt{pt}:\texttt{ACCOUNT} \to u}. \end{split}$$

Add these two equations together, and we can obtain that

 $v_{zk_unspent} + v_{pt_unspent} + v_{zk:u \rightarrow ACCOUNT} + v_{pt:u \rightarrow ACCOUNT} = v_{zk:ACCOUNT \rightarrow u} + v_{pt:ACCOUNT \rightarrow u}.$

Formally, we use $\mathsf{BlockMaze}_{\Pi,\mathcal{A}}^{\mathtt{BAL}}(\lambda)$ to represent the balance experiment as follows:

- The public parameters pp := Setup(1^λ) is computed and given to A. A BlockMaze oracle O^{BM} is initialized.
- 2) Whenever \mathcal{A} queries \mathcal{O}^{BM} , answer this query along with the ledger L in each step.
- 3) Continue answering queries of \mathcal{A} until \mathcal{A} sends a table of transfer commitments S_{cmt_v} , the new account balance $zk_balance^*$ and $pt_balance^*$.
- 4) Compute the eight variables mentioned above.
- 5) The experiment outputs 1 if $(v_{zk_unspent} + v_{pt_unspent} + v_{zk:\mathcal{A}\to ACCOUNT} + v_{pt:\mathcal{A}\to ACCOUNT})$ is greater than $(v_{zk:ACCOUNT\to\mathcal{A}} + v_{pt:ACCOUNT\to\mathcal{A}})$. Otherwise, it outputs 0.

Definition 8 (BAL Security). A BlockMaze scheme II = (Setup, CreateAccount, Mint, Redeem, Send, Deposit, VerTx) is BAL secure, if for all probabilistic polynomial-time adversaries A there is a negligible function negl such that, for security parameter λ ,

$$\Pr\left[\mathsf{BlockMaze}_{\Pi,\mathcal{A}}^{\mathsf{BAL}}(\lambda) = 1\right] \leq \mathsf{negl}(\lambda).$$

Appendix B

PROOF OF SECURITY

A BlockMaze scheme $\Pi = (Setup, CreateAccount, Mint, Redeem, Send, Deposit, VerTx) is secure if it satisfies ledger indistinguishability, transaction unlinkability, transaction non-malleability, and balance.$

B.1 Proof of Ledger Indistinguishability

We now give a formal proof to prove Theorem 1, which is proved using game-based frameworks. The notations used in this proof are listed below. The adversary \mathcal{A} interacts with a challenger \mathcal{C} as in the L-IND experiment. After receiving a pair of *publicly consistent* queries (Q, Q') from \mathcal{A}, \mathcal{C} answers (Q, Q') as in the simulation ∂_{sim} . Thus, \mathcal{A} 's advantage in ∂_{sim} (represented by $\operatorname{Adv}^{\partial_{sim}}$) is 0. We now prove that $\operatorname{Adv}_{\Pi,\mathcal{A}}^{L-ND}(\lambda)$ (i.e., \mathcal{A} 's advantage in the L-IND experiment) is at most negligibly different than $\operatorname{Adv}^{\partial_{sim}}$.

TABLE V: Notations

∂ _{real}	The original L-IND experiment
\exists_i	A hybrid game with a modification of the ∂_{real}
q_{CA}	The total number of <i>CreateAccount</i> queries issued by A
q_{M}	The total number of <i>Mint</i> queries issued by A
q_{R}	The total number of Redeem queries issued by A
q_{S}	The total number of Send queries issued by A
q_{D}	The total number of Deposit queries issued by A
Adv ^{∂5}	\mathcal{A} 's advantage in game \Im
$Adv^{\Pi_{\mathcal{E}}}$	\mathcal{A} 's advantage in $\Pi_{\mathcal{E}}$'s IND-CCA and IK-CCA experiments
Adv ^{PRF}	\mathcal{A} 's advantage in distinguishing PRF from a random one
Adv^{COMM}	\mathcal{A} 's advantage against the hiding property of COMM

Firstly, we describe a simulation ∂_{sim} in which the adversary \mathcal{A} interacts with a challenger \mathcal{C} as in the queries defined in Appendix A, with the following modification: for each $i \in {\text{Mint}, \text{Redeem}, \text{Send}, \text{Deposit}}$, the zk-SNARK keys are generated as $(\text{pk}_{\mathcal{Z}_i}, \text{vk}_{\mathcal{Z}_i}, \text{trap}_i) := \mathcal{S}(C_i)$, to obtain the zeroknowledge trapdoor trap_i. After checking each query from \mathcal{A} , the challenger \mathcal{C} answers the queries as below.

- To answer *CreateAccount* queries, C does the same as in Query(CreateAccount) with the following differences: C computes $(sk, pk) := \Pi_{\mathcal{E}}.KeyGen(pp)$; then, C utilizes a random string to replace pk, and computes an account address addr := CRH(pk); moreover, C computes and obtains all remaining values as in the CreateAccount algorithm; finally, C stores (sk, pk) in a table and returns (addr, pk) to \mathcal{A} .
- To answer *Mint* queries, C makes the following modifications in $Query(Mint, addr_A, v)$: C samples a uniformly random sn_A ; if $addr_A$ is an account address created by a previous query to *CreateAccount*, then C samples a balance commitment cmt_A^* on a random input, otherwise, C computes cmt_A^* as in the Mint algorithm; moreover, C computes and obtains all remaining values as in the Mint algorithm; finally, C constructs a statement \vec{x}_1 and computes the Mint proof $prf_m := S(pk_{Z_1}, \vec{x_1}, trap_{Mint})$.
- To answer **Redeem** queries, C makes the modifications in $Query(Redeem, addr_A, v)$ as answering **Mint** queries, except for the following modification: C computes the Redeem proof $prf_r := S(pk_{Z_2}, \vec{x_2}, trap_{Redeem})$, where $\vec{x_2}$ is a statement.
- To answer Send queries, C makes the following modifications in Query(Send, addr_A, addr_B, v): C first samples a uniformly random sn_A; if addr_B is an account address created by a previous query to CreateAccount, then C does as follows: (i) sample a transfer commitment cmt_v

⁵We abuse Adv^{\bigcirc} to denote the absolute value of the difference between (i) the L-IND advantage of \mathcal{A} in \bigcirc and (ii) the L-IND advantage of \mathcal{A} in \bigcirc _{real}.

and a balance commitment cmt_A^* on random inputs, (ii) compute $(sk'_B, pk'_B) := \Pi_{\mathcal{E}}.\text{KeyGen}(pp_{\mathcal{E}})$; (iii) encrypt $aux_A := \Pi_{\mathcal{E}}.\text{Enc}_{pk'_B}(r)$, where r is a random string of appropriate length in the plaintext space of the encryption scheme; otherwise, \mathcal{C} computes (cmt_v, cmt_A^*, aux_A) as in the Send algorithm; moreover, \mathcal{C} computes and obtains all remaining values as in the Send algorithm; finally, \mathcal{C} constructs a statement \vec{x}_3 and computes the Send proof $prf_s := \mathcal{S}(pk_{Z_2}, \vec{x}_3, trap_{Send}).$

- To answer **Deposit** queries, C makes the following modifications in $Query(Deposit, addr_B, h_{tx_{Send}})$: C first samples a uniformly random sn_B ; if $addr_B$ is an account address created by a previous query to **CreateAccount**, then Csamples a balance commitment cmt_B^* on a random input, otherwise, C computes cmt_B^* as in the **Deposit** algorithm; moreover, C computes and obtains all remaining values as in the **Deposit** algorithm; finally, C computes the Deposit proof $prf_d := S(pk_{Z_4}, \vec{x_4}, trap_{Deposit})$, where $\vec{x_4}$ is a statement.
- To answer *Insert* queries, *C* does the same as in *Query*(*Insert*, tx).

Note that the answer to \mathcal{A} is computed independently of the bit b for each of the above cases. Thus, when \mathcal{A} outputs a guess b', it must be the case that $\Pr[b = b'] = 1/2$, i.e., \mathcal{A} 's advantage in \Im_{sim} is 0.

Game ∂_1 . This is the same as ∂_{real} , except for one modification: C simulates each zk-SNARK proof. For each $i \in \{\texttt{Mint}, \texttt{Redeem}, \texttt{Send}, \texttt{Deposit}\}, \text{ the } \texttt{zk-SNARK } \texttt{keys}$ are generated as $(pk_{\mathcal{Z}_i}, vk_{\mathcal{Z}_i}, trap_i) := \mathcal{S}(C_i)$ instead of $\Pi_{\mathcal{Z}}$.KeyGen, to obtain the zero-knowledge trapdoor trap_i. Then C computes $prf_i := S(pk_{Z_i}, \vec{x_i}, trap_i)$, without using any witnesses $\vec{a_i}$, instead of using $\Pi_{\mathcal{Z}}$. GenProof in the Mint, Redeem, Send, Deposit algorithms. Since the zk-SNARK is perfect zero-knowledge, the distribution of the simulated prf_i is identical to that of the proofs computed in ∂_{real} . Moreover, we also modify ∂_{real} such that: each time \mathcal{A} issues a *CreateAccount* query, the value pk associated with the returned addr is substituted with a random string of the same length. Since the $(sk, pk) := \Pi_{\mathcal{E}}$.KeyGen(pp), the distribution of the simulated (sk, pk) is identical to that of the key pairs computed in \exists_{real} . Hence $Adv^{\forall_1} = 0$.

Game $\partial_2 \cdot \partial_2$ is the same as ∂_1 with one modification: C utilizes a random string of the suitable length to replace the ciphertext in a Send transaction. If \mathcal{A} sends a *Send* query where the address $addr_B$ is an account address created by a previous query to *CreateAccount*, then C invokes $\prod_{\mathcal{E}} \cdot \text{KeyGen}(pp_{\mathcal{E}})$ to compute (sk'_B, pk'_B) and obtains $aux_A := \prod_{\mathcal{E}} \cdot \text{Enc}_{pk'_B}(r)$ for a random string r of suitable length; otherwise, C computes aux_A as in the Send algorithm. By Lemma 1 (see below), $|\text{Adv}^{\partial_2} - \text{Adv}^{\partial_1}| \leq 2 \cdot q_S \cdot \text{Adv}^{\Pi_{\mathcal{E}}}$.

Game ∂_3 . ∂_3 is the same as ∂_2 with one modification: *C* utilizes random strings of the suitable length to replace all serial numbers generated by PRF. As the subsequent results of the *Mint*, *Redeem*, *Send*, *Deposit* queries, these serial numbers (e.g., sn_A and sn_v) are respectively placed in tx_{Mint} , tx_{Redeem} , tx_{Send} , $tx_{Deposit}$. By Lemma 2 (see below), $|Adv^{\partial_3} - Adv^{\partial_2}| \leq (q_M + q_R + q_S + 2 \cdot q_D) \cdot Adv^{PRF}$. **Game** ∂_{sim} . ∂_{sim} defined above is the same as ∂_3 with one modification: C replaces all balance commitments generated by COMM with commitments to random inputs. As the subsequent results of the *Mint*, *Redeem*, *Send*, *Deposit* queries, these balance commitments (e.g., cmt_A , cmt_A^* and cmt_v) are respectively placed in t_{Mint} , t_{Redeem} , t_{Send} , $t_{Deposit}$. By Lemma 3 (see below), $|Adv^{\partial_{sim}} - Adv^{\partial_3}| \leq (q_M + q_R + 2 \cdot q_S + q_D) \cdot Adv^{COMM}$.

As mentioned above, we can obtain \mathcal{A} 's advantage in the L-IND experiment (i.e., ∂_{real}) by summing over \mathcal{A} 's advantages in all games as follows:

$$\begin{split} \mathsf{Adv}_{\Pi,\mathcal{A}}^{\text{L-IND}}(\lambda) &\leq 2 \cdot q_{\mathsf{S}} \cdot \mathsf{Adv}^{\Pi_{\mathcal{E}}} + (q_{\mathsf{M}} + q_{\mathsf{R}} + q_{\mathsf{S}} + 2 \cdot q_{\mathsf{D}}) \cdot \mathsf{Adv}^{\mathsf{PRF}} + \\ (q_{\mathsf{M}} + q_{\mathsf{R}} + 2 \cdot q_{\mathsf{S}} + q_{\mathsf{D}}) \cdot \mathsf{Adv}^{\mathsf{COMM}}. \end{split}$$

Since $\operatorname{Adv}_{\Pi,\mathcal{A}}^{L-\operatorname{IND}}(\lambda) := 2 \cdot \Pr\left[\operatorname{BlockMaze}_{\Pi,\mathcal{A}}^{L-\operatorname{IND}}(\lambda) = 1\right] - 1$ and \mathcal{A} 's advantage in the L-IND experiment is negligible in λ , we can conclude that the proof of ledger indistinguishability.

Lemma 1. Let $\operatorname{Adv}^{\Pi_{\mathcal{E}}}$ be \mathcal{A} 's advantage in $\Pi_{\mathcal{E}}$'s IND-CCA and IK-CCA experiments. If \mathcal{A} issues q_{S} *Send* queries, then $|\operatorname{Adv}^{\ominus_2} - \operatorname{Adv}^{\ominus_1}| \leq 2 \cdot q_{\mathsf{S}} \cdot \operatorname{Adv}^{\Pi_{\mathcal{E}}}$.

Proof. We utilize a hybrid \Im_H as an intermediation between \Im_1 and \Im_2 to prove that Adv^{\Im_2} is at most negligibly different than Adv^{\Im_1} .

More precisely, ∂_{H} is the same as ∂_1 with one modification: C utilizes a new public key generated by the $\Pi_{\mathcal{E}}$.KeyGen(pp_{\mathcal{E}}), instead of the public key created by a previous query to *CreateAccount*, to encrypt the same plaintext. After q_{CA} CreateAccount queries, A queries the IK-CCA challenger to obtain $pk_{\mathcal{E}} := pk_{\mathcal{E},0}$ where $pk_{\mathcal{E},0}$ is the public key in $(pk_{\mathcal{E},0}, pk_{\mathcal{E},1})$ provided by the IK-CCA challenger. At each Send query, the IK-CCA challenger encrypts the corresponding plaintext pt as $ct^* := \prod_{\mathcal{E}} . Enc_{pk_{\mathcal{E},\bar{h}}}(pt)$, where \overline{b} is the bit chosen by the IK-CCA challenger, in response to \mathcal{A} . Then \mathcal{C} sets $\mathsf{ct} := \mathsf{ct}^*$ and adds $\mathsf{tx}_{\mathsf{Send}}$ (whose aux_A is set by ct) to the ledger L. Finally, \mathcal{A} outputs a guess bit b', which is regarded as the guess in the IK-CCA experiment. Thus, if $\overline{b} = 0$ then \mathcal{A} 's view represents \Im_1 , while \mathcal{A} 's view represents ∂_{H} if $\bar{b} = 1$. Note that \mathcal{A} issues q_{S} Send queries, then he obtains the $q_{\rm S}$ ciphertexts at most. If the maximum adversarial advantage against the IK-CCA experiment is $Adv^{II\varepsilon}$, then we can conclude that $|\mathsf{Adv}^{\mathcal{D}_{\mathsf{H}}} - \mathsf{Adv}^{\mathcal{D}_{1}}| \leq q_{\mathsf{S}} \cdot \mathsf{Adv}^{\Pi_{\mathcal{E}}}$.

In a similar vein, ∂_2 is the same as ∂_H with one modification: C utilizes a random string of the appropriate length in the plaintext space to replace the plaintext computed in the *Send* query. For simplicity, we omit the formal description for IND-CCA experiment, which has a similar pattern above. If the maximum adversarial advantage against the IND-CCA experiment is $Adv^{\Pi_{\mathcal{E}}}$, then we can conclude that $|Adv^{\partial_2} - Adv^{\partial_H}| \leq q_S \cdot Adv^{\Pi_{\mathcal{E}}}$. Thus, we can sum the above \mathcal{A} 's advantages to obtain $|Adv^{\partial_2} - Adv^{\partial_1}| \leq 2 \cdot q_S \cdot Adv^{\Pi_{\mathcal{E}}}$. \Box

Lemma 2. Let $\operatorname{Adv}^{\operatorname{PRF}}$ be \mathcal{A} 's advantage in distinguishing PRF from a random function. If \mathcal{A} issues q_{M} *Mint* queries, q_{R} *Redeem* queries, q_{S} *Send* queries and q_{D} *Deposit* queries, then $|\operatorname{Adv}^{\Im_3} - \operatorname{Adv}^{\Im_2}| \leq (q_{\mathsf{M}} + q_{\mathsf{R}} + q_{\mathsf{S}} + 2 \cdot q_{\mathsf{D}}) \cdot \operatorname{Adv}^{\operatorname{PRF}}$.

Proof. We utilize a hybrid ∂_H as an intermediation between ∂_2 and ∂_3 to prove that Adv^{∂_3} is at most negligibly different

than Adv^{∂_2} .

More precisely, ∂_{H} is the same as ∂_{2} with one modification: *C* utilizes a random string of the appropriate length to replace the public key *pk* associated with the returned *addr* for *A*'s first *CreateAccount* query; then, on each subsequent *Mint*, *Redeem*, *Send*, *Deposit* queries, *C* replaces sn_A respectively with a random string of appropriate length and simulates the respective zk-SNARK proof (e.g., $prf_m, prf_r, prf_s, prf_d$) with the help of a trapdoor by the simulator *S* for tx_{Mint} , $tx_{Redeem}, tx_{Send}, tx_{Deposit}$.

Let sk be the random, secret key created by the first *Cre*ateAccount query and employed in PRF to compute $sn_A^* :=$ PRF (sk_A, r_A^*) and $sn_v :=$ PRF (sk_B, r_v) in Mint, Redeem, Send, Deposit algorithm. Note that PRF takes different random number r to publish old serial number sn for different transactions (generated by the same account). Moreover, let \mathcal{O} be an oracle that implements either PRF or a random function. Then, we utilize \mathcal{O} to generate all random strings (i.e., sn) for the two cases of \mathcal{O} in response to a distinguisher (as an experiment). If \mathcal{O} implements a random function, then it represents \Im_H , while the experiment represents \Im_2 if \mathcal{O} implements PRF. Thus, \mathcal{A} 's advantage in distinguishing PRF from a random one is at most Adv^{PRF} .

In a similar vein, we extend the above pattern to all $q_{\rm M} + q_{\rm R} + q_{\rm S} + 2 \cdot q_{\rm D}$ oracle-generated serial numbers (corresponding to what happens in \Im_3). We can obtain that \mathcal{A} 's advantage in distinguishing PRF from a random one is at most $(q_{\rm M} + q_{\rm R} + q_{\rm S} + 2 \cdot q_{\rm D}) \cdot {\rm Adv}^{\rm PRF}$. Finally, we deduce that $|{\rm Adv}^{\Im_3} - {\rm Adv}^{\Im_2}| \leq (q_{\rm M} + q_{\rm R} + q_{\rm S} + 2 \cdot q_{\rm D}) \cdot {\rm Adv}^{\rm PRF}$.

Lemma 3. Let $\operatorname{Adv}^{\operatorname{COMM}}$ be \mathcal{A} 's advantage against the hiding property of COMM. If \mathcal{A} issues q_{M} *Mint* queries, q_{R} *Redeem* queries, q_{S} *Send* queries and q_{D} *Deposit* queries, then $|\operatorname{Adv}^{\operatorname{Comm}} - \operatorname{Adv}^{\operatorname{COM}}| \leq (q_{\mathsf{M}} + q_{\mathsf{R}} + 2 \cdot q_{\mathsf{S}} + q_{\mathsf{D}}) \cdot \operatorname{Adv}^{\operatorname{COMM}}$.

Proof. This proof can be proved with the similar pattern used in Lemma 2 above. On each *Mint*, *Redeem*, *Send*, *Deposit* query, C replaces the balance commitment $cmt^* := COMM_{bc}(addr, value, sn_A^*, r^*)$ and the transfer commitment $cmt_v := COMM_{tc}(addr, v, pk, r_v, sn_A)$ with random strings of the appropriate length. Thus \mathcal{A} 's advantage in distinguishing this modified experiment from ∂_3 is at most Adv^{COMM} . If we extend it to all q_M *Mint* queries, all q_R *Redeem* queries, all q_S *Send* queries and all q_D *Deposit* queries, and utilize random strings of the suitable length to replace $q_M + q_R + 2 \cdot q_S + q_D$ commitments (i.e., cmt_A and cmt_v), then we obtain ∂_{sim} , and conclude that $|Adv^{\partial_{sim}} - Adv^{\partial_3}| \leq (q_M + q_R + 2 \cdot q_S + q_D) \cdot Adv^{COMM}$.

B.2 Proof of Transaction Unlinkability

Letting \mathcal{T} be the table of zero-knowledge transactions (i.e., tx_{Send} and $tx_{Depoist}$) generated by \mathcal{O}^{BM} in response to **Send** and **Deposit** queries. \mathcal{A} wins the TR-UL experiment whenever it outputs a pair of zero-knowledge transactions (tx, tx') if one of the following conditions holds: (i) the recipients of payments contained in (tx, tx') are the same if $tx = tx_{Send}$; and (ii) the senders of payments contained in (tx, tx') are the same if $tx = tx_{Deposit}$.

Suppose \mathcal{A} outputs a pair of Send transactions (tx_{Send}, tx'_{Send}) , where tx_{Send} satisfies the following equations:

$$\begin{split} & \texttt{tx}_{\texttt{Send}} := (pk_A, sn_A, cmt_A^*, cmt_v, aux_A, auth_{enc}, prf_s) \\ & cmt_v = \texttt{COMM}_{\texttt{tc}}(addr_A, v, pk_B, r_v, sn_A) \\ & aux_A := \Pi_{\mathcal{E}}.\texttt{Enc}_{pk_B}(\{addr_A, v, r_v, sn_A\}), \end{split}$$

and tx'_{Send} satisfies the following equations:

$$\begin{aligned} & \texttt{tx}'_{\texttt{Send}} := (pk'_A, sn'_A, cmt'_A', cmt'_v, aux'_A, auth'_{enc}, prf'_s) \\ & cmt'_v = \texttt{COMM}_{\texttt{tc}}(addr'_A, v', pk'_B, r'_v, sn'_A) \\ & aux'_A := \Pi_{\mathcal{E}}.\texttt{Enc}_{pk'_B}(\{addr'_A, v', r'_v, sn'_A\}). \end{aligned}$$

 \mathcal{A} wins the TR-UL experiment if the recipients of payments contained in (tx_{Send}, tx'_{Send}) are the same, i.e., $pk_B = pk'_B$. There are three ways for \mathcal{A} to distinguish whether $pk_B \stackrel{?}{=} pk'_B$: (i) distinguish the public keys from the ciphertexts; (ii) distinguish the public keys from the transfer commitments; (iii) distinguish the public keys from the zero-knowledge proofs.

For condition (i), \mathcal{A} must distinguish (pk_B, pk'_B) based on the different ciphertexts (aux_A, aux'_A) , which indicates that \mathcal{A} should win the IK-CCA experiment in Lemma 1. For condition (ii), \mathcal{A} must distinguish (pk_B, pk'_B) from the different commitments (cmt_v, cmt'_v) without knowing other secret values (i.e., hidden variables), which indicates that \mathcal{A} should break the *hiding* property of COMM in Lemma 3. For condition (iii), \mathcal{A} must distinguish (pk_B, pk'_B) from different zero-knowledge proof (prf_s, prf'_s) , which indicates that \mathcal{A} should break the *proof of knowledge* property of the zk-SNARK. However, since the security of Lemma 1, Lemma 3 and zk-SNARK, \mathcal{A} cannot distinguish the two recipients (i.e., public keys) from (aux_A, aux'_A) and (cmt_v, cmt'_v) .

Suppose \mathcal{A} outputs a pair of Deposit transactions $(tx_{Deposit}, tx'_{Deposit})$, where $tx_{Deposit}$ satisfies the following equations:

$$\begin{aligned} \mathtt{tx}_{\mathtt{Deposit}} &:= (seq, rt_{cmt}, sn_B, cmt_B^*, sn_v, pk_B, prf_d) \\ cmt_v &= \mathtt{COMM}_{\mathtt{tc}}(addr_A, v, pk_B, r_v, sn_A), \end{aligned}$$

and tx'_{Deposit} satisfies the following equations:

$$\begin{split} & \mathsf{tx}_{\texttt{Deposit}}' \coloneqq (seq', rt'_{cmt}, sn'_B, cmt_B^*', sn'_v, pk'_B, prf'_d) \\ & cmt'_v = \texttt{COMM}_{\texttt{tc}}(\ addr'_A \ , \ v' \ , pk'_B, \ r'_v \ , \ sn'_A \) \end{split}$$

 \mathcal{A} wins the TR-UL experiment if the senders of payments contained in $(tx_{Deposit}, tx'_{Deposit})$ are the same, i.e., $addr_A = addr'_A$. There are two ways for \mathcal{A} to distinguish whether $addr_A \stackrel{?}{=} addr'_A$: (i) distinguish the address of senders from the zero-knowledge proof; (ii) obtain the transfer commitments used in Deposit transactions from \mathcal{A} 's view, and distinguish the address of senders using previous Send transactions.

For condition (i), \mathcal{A} must distinguish $(addr_A, addr'_A)$ from different zero-knowledge proof (prf_d, prf'_d) , which indicates that \mathcal{A} should break the *proof of knowledge* property of the zk-SNARK. For condition (ii), if \mathcal{A} can analyze (cmt_v, cmt'_v) without knowing other secret values (i.e., hidden variables), then, he can distinguish $(addr_A, addr'_A)$ by seeking senders of the previous transactions (tx_{Send}, tx'_{Send}) containing (cmt_v, cmt'_v) respectively. Note that (cmt_v, cmt'_v) are not visible for anyone during the generation of $(tx_{Deposit}, tx'_{Deposit})$. There are two ways for \mathcal{A} to obtain different transfer commitments: (a) the Merkle roots; (b) the zero-knowledge proofs. For condition (a), \mathcal{A} must analyze (cmt_v, cmt'_v) from different Merkle roots (rt_{cmt}, rt'_{cmt}) , which indicates that \mathcal{A} should break the collision resistance property of CRH. For condition (b), \mathcal{A} must analyze (cmt_v, cmt'_v) from different zero-knowledge proofs (prf_d, prf'_d) , which indicates that \mathcal{A} should break the proof of knowledge property of the zk-SNARK. However, since the security of zk-SNARK and CRH, \mathcal{A} cannot neither distinguish the two senders from (prf_d, prf'_d) nor analyze (cmt_v, cmt'_v) from (rt_{cmt}, rt'_{cmt}) and (prf_d, prf'_d) .

To conclude, due to the security of zk-SNARK, CRH, COMM and encryption schemes, the adversary \mathcal{A} cannot distinguish the unlinkability from (tx_{Send}, tx'_{Send}) nor $(tx_{Deposit}, tx'_{Deposit})$.

B.3 Proof of Transaction Non-malleability

Letting \mathcal{T} be the table of four types of zero-knowledge transactions generated by \mathcal{O}^{BM} in response to corresponding queries. \mathcal{A} wins the TR-NM experiment whenever it outputs a zero-knowledge transactions \mathtt{tx}' if there exists $\mathtt{tx} \in \mathcal{T}$ satisfying all following conditions: (i) $\mathtt{tx}' \neq \mathtt{tx}$; (ii) both \mathtt{tx}' and \mathtt{tx} published the same serial number; and (iii) $\operatorname{VerTx}(L, \mathsf{pp}, \mathtt{tx}') = 1$, where L is the current ledger containing \mathtt{tx} .

We first consider the case that an adversary sends a Send transaction tx, which can be represented in the form $(pk_A, sn_A, cmt_A^*, cmt_v, aux_A, auth_{enc}, prf_s);$ set $h_{enc} :=$ $CRH(aux_A)$. Let aux'_A be the corresponding ciphertext in tx' and set $h'_{enc} := CRH(aux'_A)$. Intuitively, transaction nonmalleability of our scheme can be guaranteed by considering IND-CCA experiment in Lemma 1 and the non-malleability of the underlying zk-SNARK. If \mathcal{A} can produce tx' using the same serial number revealed in tx, then tx' and tx would have either different proof or ciphertext. For the ciphertext aux_A , A cannot modify it without changing its underlying plaintext since the encryption scheme used has IND-CCAsecurity. Moreover, the plaintext modification means that the statements for the zero-knowledge proof are changed, which result in a new proof prf'_s that must be provided. That is because any adversary who provides a proof for an instance \vec{x}_3 , such that a pair (\vec{x}_3, prf'_s) has not been computed before, has to know a corresponding witness \vec{a}_3 because of the simulationextractability of the zk-SNARK.

Formally, define $\mathcal{Q}_{CA} := \{sk_1, \dots, sk_{q_{CA}}\}, \mathcal{Q}_S = \{aux_{A,1}, \dots, aux_{A,q_S}\}$, and $\epsilon := \operatorname{Adv}_{\Pi,\mathcal{A}}^{\operatorname{TR-M}}(\lambda)$. \mathcal{Q}_{CA} is the set of account private keys in response to \mathcal{A} 's *CreateAccount* queries, and \mathcal{Q}_S is the set of the ciphertexts in response to \mathcal{A} 's *Send* queries for Send transactions. Then we talk about the cases in which \mathcal{A} wins in the following:

- case-1: there is $aux''_A \in Q_S$ such that $h_{enc} := CRH(aux''_A)$.
- case-2: the above case does not occur, and $auth_{enc} \neq PRF(sk, h_{enc})$ for all $sk \in Q_{CA}$.

Define $\epsilon_1 := \Pr[case-1]$ and $\epsilon_2 := \Pr[case-2]$. Obviously, $\epsilon = \epsilon_1 + \epsilon_2$.

If case-1 occurs, then \mathcal{A} can find a Send transaction tx that contains a ciphertext aux from \mathcal{T} , and output another transaction tx' containing a ciphertext aux' which requires that (i) $aux \neq aux''$, but (ii) CRH(aux) = CRH(aux''). This means, in particular, that \mathcal{A} finds collisions for CRH with probability ϵ_1 . However, since the CRH used is a collision-resistant hash function, ϵ_1 must be negligible in λ .

To argue that ϵ_2 is negligible in λ , we let \mathcal{E} be the zk-SNARK witness extractor for \mathcal{A} . Based on the fact that PRF is collision resistant, we want to construct an algorithm \mathcal{B} to contradict this fact like Zerocash [4]. The algorithm \mathcal{B} is set to find collisions for PRF with non-negligible probability as follows:

- 1) \mathcal{A} finds transactions from \mathcal{T} and outputs tx'.
- 2) Parse tx' as $(pk_A, sn_A, cmt_A^*, cmt_v, aux_A, auth_{enc}, prf_s)$.
- 3) Run $\mathcal{E}(\mathsf{pk}_{\mathcal{Z}_{Send}}, \mathsf{vk}_{\mathcal{Z}_{Send}})$ to extract a witness $\vec{a_3}$ for prf_s .
- 4) Set \$\vec{x}_3\$:= (cmt_A, addr_A, sn_A, pk_A, cmt_v, cmt_A^*, h_{enc}, auth_{enc}), and judge whether \$\vec{a_3}\$ is a valid witness for \$\vec{x}_3\$ or not. If \$\vec{a_3}\$ is invalid, then abort and output 0.
- 5) Parse $\vec{a_3}$ as $(value_A, r_A, sk_A, v, pk_B, r_v, sn_A^*, r_A^*)$. Since $\vec{a_3}$ is a valid witness, $sn_A = PRF(sk_A, r_A)$.
- 6) If there exists $tx \in \mathcal{T}$ containing sn_A , then let sk and \bar{r} be the values used to compute sn_A in tx (i.e., $sn_A = \text{PRF}(\bar{sk}, \bar{r})$). If $sk_A \neq \bar{sk}$, output $((sk_A, r_A), (\bar{sk}, \bar{r}))$ as a collision for PRF. Otherwise, output 0.

Thus, when *case-2* occurs, the following conditions hold:

- the serial number sn_A appears in a previous Send transaction tx ∈ T;
- the proof prf_s is valid and, with all but negligible probability, the extractable witness $\vec{a_3}$ is valid;
- since the witness $\vec{a_3}$ is valid, this means that $auth_{enc} = PRF(sk_A, h_{enc})$. As the case-2 occurs, however, it cannot be that $sk_A = sk$.

Finally, in a similar vein, we can utilize the similar structure of the argument to discuss the *case-2* for the other three transactions (i.e., Mint, Redeem, and Deposit transaction) generated by \mathcal{O}^{BM} in response to *Mint*, *Redeem* and *Deposit* queries. Overall, we conclude that \mathcal{B} finds a collision for PRF with probability $\epsilon_2 - \operatorname{negl}(\lambda)$.

B.4 Proof of Balance

The BAL experiment is changed without affecting \mathcal{A} 's view as follows: for each Deposit transaction $tx_{Deposit}$ on the ledger L, \mathcal{C} computes the zk-SNARK proof $prf_d := \Pi_{\mathcal{Z}}.GenProof(\mathsf{PK}_{\mathcal{Z}}, \vec{x}_4, \vec{a}_4)$ where \vec{x}_4 is a statement corresponding to $tx_{Deposit}$ and \vec{a}_4 is a witness for the zk-SNARK instance \vec{x}_4 , then \mathcal{C} organizes all (tx, \vec{a}) as an augmented ledger (L, \mathbf{A}) , which is a list of matched pairs $(tx_{Deposit}, \vec{a}_{4j})$ where $tx_{Deposit}$ is the *j*-th Deposit transaction in L and $\vec{a}_{4j} \in \mathbf{A}$ is the witness of $tx_{Deposit}$ for \vec{x}_{4j} .

Definition 9 (Balanced ledger). An augmented ledger (L, A) is balanced if the following conditions hold:

• Condition I. Each $(tx_{Deposit}, \vec{a_4}) \in (L, A)$ publishes openings (e.g., sn_B) of a unique balance commitment

 cmt_B , which is the output of a previous zero-knowledge transaction before $tx_{Deposit}$ on L.

- Condition II. Each $(tx_{Deposit}, \vec{a_4}) \in (L, A)$ publishes openings (e.g., sn_v and pk_B) of a unique transfer commitment cmt_v , which is the output of a previous Send transaction before $tx_{Deposit}$ on L.
- Condition III. For all $(tx_{Deposit}, \vec{a_4}) \in (L, A)$ publish distinct and unique openings (e.g., sn_v , sn_B and pk_B) of the commitment (i.e., cmt_v and cmt_B).
- Condition IV. Each cmt_B, cmt_v, cmt^{*}_B to values value_B, v, value^{*}_B (respectively) contained in (tx_{Deposit}, a₄) ∈ (L, A) satisfies the condition that value_B + v = value^{*}_B.
- Condition V. The values (i.e., $addr_A$, v, pk_B , sn_v , r_v , sn_A) used to compute cmt_v are respectively equal to the values for cmt'_v , if $cmt_v = cmt'_v$ where cmt_v is employed in $(tx_{Deposit}, \vec{a_4}) \in (L, A)$, and cmt'_v is the output of a previous Send transaction before $tx_{Deposit}$.
- Condition VI. If $(tx_{Deposit}, \vec{a_4}) \in (L, A)$ was inserted by \mathcal{A} , and cmt_v used in $tx_{Deposit}$ is the output of a previous Send transaction tx', then $addr \notin ACCOUNT$ where $addr := CRH(pk_B)$ is the recipient's account address of tx'.

One can prove that (L, \mathbf{A}) is balanced if the following equation holds: $v_{\mathtt{zk_unspent}} + v_{\mathtt{pt_unspent}} + v_{\mathtt{zk}:\mathcal{A} \to \mathtt{ACCOUNT}} + v_{\mathtt{pt}:\mathcal{A} \to \mathtt{ACCOUNT}} = v_{\mathtt{zk}:\mathtt{ACCOUNT} \to \mathcal{A}} + v_{\mathtt{pt}:\mathtt{ACCOUNT} \to \mathcal{A}}.$

For each of the above conditions, we utilize a contraction to prove that each case is in a negligible probability. Note that we suppose $\Pr \left[\mathcal{A}(\overline{Con-i}) = 1\right]$ to denote a non-negligible probability that \mathcal{A} wins but violates *Condition i*.

Violating Condition I. Each $(tx_{Deposit}, \vec{a_4}) \in (L, A)$, where $tx_{Deposit}$ was not inserted by A, must satisfy Condition I in \mathcal{O}^{BM} ; thus, $\Pr \left[\mathcal{A}(\overline{Con \cdot I}) = 1\right]$ is a probability that A inserts $tx_{Deposit}$ to construct a pair $(tx_{Deposit}, \vec{a_4}) \in (L, A)$ where cmt_B used in $tx_{Deposit}$ is not the output of any previous zero-knowledge transaction before $tx_{Deposit}$. However, each $tx_{Deposit}$ utilizes the witness $\vec{a_4}$, which must contain a balance commitment cmt_B for the serial number sn_B , to compute the proof proving the validity of $tx_{Deposit}$. Obviously, cmt_B is the output of an earlier zero-knowledge transaction and recorded on MPT in L. Therefore, if cmt_B corresponding to sn_B does not previously appear in L, then it means that this violation contradicts the binding property of COMM in Lemma 3.

Violating Condition II. Each $(tx_{Deposit}, \vec{a_4}) \in (L, A)$, where $tx_{Deposit}$ was not inserted by A, must satisfy Condition II in \mathcal{O}^{BM} ; thus, $\Pr[\mathcal{A}(\overline{Con}\cdot \vec{H}) = 1]$ is a probability that Ainserts $tx_{Deposit}$ to construct a pair $(tx_{Deposit}, \vec{a_4}) \in (L, A)$ where cmt_v used in $tx_{Deposit}$ is not the output of any previous Send transaction before $tx_{Deposit}$. However, each $tx_{Deposit}$ utilizes the witness $\vec{a_4}$, which must contain a authentication path path for a Merkle tree, to compute the proof proving the validity of $tx_{Deposit}$. Obviously, the Merkle tree, whose root rt_{cmt} is published, is constructed using the transfer commitment cmt_v of any previous Send transactions on L. More precisely, if cmt_v does not previously appear in L, then it means that path is invalid but with a valid rt_{cmt} . Therefore, this violation contradicts the collision resistance of CRH.

Violating Condition III. Each $(tx_{Deposit}, \vec{a_4}) \in (L, A)$ publishes a unique and distinct sn_v , (sn_B, pk_B) for cmt_v , cmt_B (respectively). Obviously, $\Pr\left[\mathcal{A}(\overline{Con-III}) = 1\right]$ is a probability that \mathcal{A} wins in the following two situations: (i) spending the same balance commitment cmt_B in two zeroknowledge transactions; or (ii) receiving the same transfer commitment cmt_v . In (i), it means that two Deposit transactions $tx_{Deposit}, tx'$ recorded on L spend the same balance commitment cmt_B , but publish two different serial numbers sn_B and sn'_B , furthermore, their corresponding witnesses $\vec{a_4}, \vec{a_4}'$ must contain different openings of cmt_B since both transactions are valid Deposit transactions on L. Therefore, this violation contradicts the binding property of COMM. In a similar vein, for (ii), it means that two Deposit transactions $tx_{Deposit}, tx'$ receive the same transfer commitment cmt_v but publish two different serial numbers sn_v and sn'_v . Therefore, this violation also contradicts the binding property of COMM in

Violating Condition IV. Each $(tx_{Deposit}, \vec{a_4}) \in (L, A)$ contains a proof ensuring that cmt_B , cmt_v , cmt_B^* to values $value_B$, v, $value_B^*$ (respectively) satisfy the equation $value_B + v = value_B^*$. Obviously, $\Pr[\mathcal{A}(\overline{Con}-IV) = 1]$ is a probability that the equation $value_B + v \neq value_B^*$ holds. Therefore, this violation contradicts the proof of knowledge property of the zk-SNARK.

Lemma 3.

Violating Condition V. Each $(tx_{Deposit}, \vec{a_4}) \in (L, A)$ contains values (i.e., $addr_A$, v, pk_B , sn_v , r_v , sn_A) of cmt_v , and cmt_v is a also transfer commitment to values (i.e., $addr_A$, v', pk_B , sn_v , r_v , sn_A) in a previous Send transaction. Obviously, $\Pr[A(\overline{Con-V}) = 1]$ is a probability that the equation $v \neq v'$ holds. Therefore, this violation also contradicts the binding property of COMM in Lemma 3.

Violating Condition VI. Each $(tx_{Deposit}, \vec{a_4}) \in (L, A)$ publishes a recipient's account address $addr := CRH(pk_B)$ of a transfer commitment cmt_v . Obviously, $Pr[\mathcal{A}(\overline{Con}\cdot VI) = 1]$ is a probability that an inserted Deposit transaction $tx_{Deposit}$ publishes addr of cmt_v which is the output of a previous Send transaction tx' whose recipient's account address addr lies in ACCOUNT; moreover, the witness associated to tx' contains pk such that addr = CRH(pk). Therefore, this violation contradicts the collision resistance of CRH.

Finally, we utilize the similar structure of the argument to prove balance for the other three transactions (i.e., Mint, Redeem and Send) generated by \mathcal{O}^{BM} in response to *Mint*, *Redeem* and *Send* queries, and obtain that $\Pr[\mathsf{BlockMaze}_{\mathrm{BI},\mathcal{A}}^{\mathrm{BI}}(\lambda) = 1]$ is negligible in λ .

APPENDIX C Algorithms of BlockMaze schemes

For convenience, we summarize algorithms employed in a BlockMaze scheme $\Pi = ($ Setup, CreateAccount, Mint, Redeem, Send, Deposit, VerTx) in Fig. 8.

Setup

- The algorithm generates a list of public parameters.
- inputs: a security parameter λ
- · outputs: public parameters pp
- 1) Compute $pp_{\mathcal{E}} := \Pi_{\mathcal{E}}.Setup(1^{\lambda}).$
- 2) Compute $pp_{\mathcal{Z}} := \Pi_{\mathcal{Z}} . Setup(1^{\lambda}).$
- 3) For each $i \in \{\texttt{Mint}, \texttt{Redeem}, \texttt{Send}, \texttt{Deposit}\}$ a) Construct a circuit C_i .
- b) Compute $(\mathsf{pk}_{Z_i}, \mathsf{vk}_{Z_i}) := \Pi_{\mathcal{Z}}.\mathrm{KeyGen}(C_i).$
- 4) Set $\mathsf{PK}_{\mathcal{Z}} := \bigcup \mathsf{pk}_{\mathcal{Z}_i}$ and $\mathsf{VK}_{\mathcal{Z}} := \bigcup \mathsf{vk}_{\mathcal{Z}_i}$.
- 5) Output $pp := (pp_{\mathcal{E}}, pp_{\mathcal{Z}}, PK_{\mathcal{Z}}, VK_{\mathcal{Z}}).$

CreateAccount

The algorithm creates an account address and key pair for a user.

- inputs: public parameters pp
- outputs:
 - an account address addr
 - an address key pair (sk, pk)
- a new zero-knowledge balance zk_balance
- 1) Compute $(sk, pk) := \Pi_{\mathcal{E}}.KeyGen(pp_{\mathcal{E}})$
- Compute an account address addr := CRH(pk).
- 3) Generate a new random number r.
- Sample a new serial number sn := PRF(sk, r).
- 5) Compute $cmt := COMM_{bc}(addr, 0, sn, r)$.
- 6) Initialize $zk_balance := (cmt, addr, 0, sn, r)$ Output addr, (sk, pk) and zk_balance.
- Mint
- This algorithm merges a plaintext amount with the current zero-knowledge balance of an account (say A).
- inputs
 - public parameters pp
 - the current zero-knowledge balance $\mathtt{zk_balance}_A$
 - the current plaintext balance pt_balance A
- account private key sk_A
- a plaintext amount v to be converted into a zero-knowledge amount
- outputs
 - the new zero-knowledge balance zk_balance^{*}
 - a Mint transaction tx_{Mint}

- Parse ZK_balance A as (cmtA, addrA, valueA, snA, rA).
 Generate a new random number r^A_A.
 Sample a new serial number sn^A_A := PRF(skA, r^{*}_A).
 Compute cmt^{*}_A := COMb_b(addrA, valueA + v, sn^{*}_A, r^{*}_A).
 Set x
 ⁻₁ := (cmtA, addrA, snA, cmt^{*}_A, v).
 Set x
 ⁻₁ := (valueA, rA, skA, sn^{*}_A, r^{*}_A).
 Compute prf_m := ΠZ.GenProof(PKZ, x
 ⁻₁, x
 ⁻₁, x
 ⁻₁).
 Output transform := (addrA, v snA, v snA, v f), and

- Output $\mathbf{t}_{\mathsf{K}_{\mathsf{int}}} := (addr_A, v, sn_A, cmt_A^*, prf_m)$ and $\mathsf{zk_balance}_A^* := (cmt_A^*, addr_A, value_A + v, sn_A^*, r_A^*).$ 9)

Redeem

This algorithm converts a zero-knowledge amount back into the plaintext balance of an account (say A).

- inputs:
 - public parameters pp
 - the current zero-knowledge balance $\mathtt{zk_balance}_A$
 - account private key sk_A
 - a plaintext amount v to be converted back from zero-knowledge balance
- outputs:
 - the new zero-knowledge balance zk_balance^{*}
 - a Redeem transaction tx_{Redeem}
- 1) Parse $zk_balance_A$ as $(cmt_A, addr_A, value_A, sn_A, r_A)$.
- 2) Return fail if $value_A < v$ or $v \leq 0$.
- 3) Generate a new random number r*.
 4) Sample a new serial number sn* := PRF(sk_A, r*).
- 5) Compute $cmt_{A}^{*} := COMM_{bc}(addr_{A}, value_{A} v, sn_{A}^{*}, r_{A}^{*}).$ 6) Set $\vec{x}_{2} := (cmt_{A}, addr_{A}, sn_{A}, cmt_{A}^{*}, v).$ 7) Set $\vec{a}_{2} := (value_{A}, r_{A}, sk_{A}, sn_{A}^{*}, r_{A}^{*}).$

- 8) Compute $prf_r := \Pi_{\mathcal{Z}}$. GenProof($\mathsf{PK}_{\mathcal{Z}}, \vec{x}_2, \vec{a}_2$).
- 9) Output $tx_{Redeem} := (addr_A, v, sn_A, cmt^*_A, prf_r)$ and $zk_balance_A^* := (cmt_A^*, addr_A, value_A - v, sn_A^*, r_A^*).$
- Send

This algorithm sends a zero-knowledge amount from sender A to recipient B. inputs

- public parameters pp
- the current zero-knowledge balance zk_balance_A
- account key pair (sk_A, pk_A)
- recipient's public key pk_B
- a plaintext amount v to be transferred
- outputs:
 - the new zero-knowledge balance zk_balance^{*}
 - a Send transaction tx_{Send}
- 1) Parse $zk_balance_A$ as $(cmt_A, addr_A, value_A, sn_A, r_A)$.
- 2) Generate a new random number r_A^* .
- 3) Compute a new random number $r_v := \text{CRH}(r_A^* || pk_A)$.
- 4) Compute $cmt_v := \text{COMM}_{tc}(addr_A, v, pk_B, r_v, sn_A).$
- 5) Set $aux_A := \Pi_{\mathcal{E}}.\operatorname{Enc}_{pk_B}(\{addr_A, v, r_v, sn_A\}).$

- 6) Sample a new serial number $sn_A^* := \text{PRF}(sk_A, r_A^*)$.
- Compute $cmt_A^* := \text{COMM}_{bc}(addr_A, value_A v, sn_A^*, r_A^*).$ 7)
- 8) Compute $h_{enc} := CRH(aux_A)$
- Compute $auth_{enc} := PRF(sk_A, h_{enc}).$ 9)
- 10) Set $\vec{x}_3 := (cmt_A, addr_A, sn_A, pk_A, cmt_v, cmt_A^*, h_{enc}, auth_{enc}).$

24

- 11) Set $\vec{a}_3 := (value_A, r_A, sk_A, v, pk_B, r_v, sn_A^*, r_A^*)$
- 12) Compute $prf_s := \Pi_{\mathcal{Z}}.GenProof(\mathsf{PK}_{\mathcal{Z}}, \vec{x}_3, \vec{a}_3).$
- Output zk_balance^{*}_A := (cmt^{*}_A, addr_A, value_A v, sn^{*}_A, r^{*}_A) and tx_{send} := (pk_A, sn_A, cmt^{*}_A, cmt_v, aux_A, auth_{enc}, prf_s).
- Deposit

This algorithm makes a recipient (say B) check and deposit a received payment into his account.

- inputs:
 - the current ledger $Ledger_T$
 - public parameters pp
 - account key pair (sk_B, pk_B)
 - the hash of a send transaction $h_{tx_{Send}}$ the current zero-knowledge balance $zk_{balance_B}$
- outputs:

5)

7)

VerTx

• inputs:

• outputs: bit b

- the current ledger Ledger_T - public parameters pp

1) If given a transaction tx is tx_{Mint}

2) If given a transaction tx is tx_{Redeem}

3) If given a transaction tx is tx_{Send}

b) Compute $addr_A := CRH(pk_A)$

d) Return 0 if sn_A appears in SNSet_T.

e) Compute $h_{enc} := CRH(aux_A)$.

4) If given a transaction tx is txDeposit

Fig. 8: BlockMaze main algorithms

b) Compute $addr_B := CRH(pk_B)$

b) Return 0 if $v \leq 0$.

a zero-knowledge transaction tx

numbers.

the new zero-knowledge balance zk_balance^{*}

6) Compute a serial number $sn_v := \text{PRF}(sk_B, r_v)$.

8) Construct a Merkle tree MT over $\bigcup_{n \in seq}$ TCMSet_n. 9) Compute $path := Path(cmt_v)$ and rt_{cmt} over MT.

- a Deposit transaction $tx_{Deposit}$
- - the Send transaction is tx_{Send},
- the block number of tx_{Send} is N. 3) Parse tx_{Send} as $(pk_A, sn_A, cmt_A^*, cmt_v, aux_A, auth_{enc}, prf_s)$. 4) Compute $(addr_A, v, r_v, sn_A) := \Pi_{\mathcal{E}}. Dec_{sk_B}(aux_A)$.

Return fail if $cmt_v \neq COMM_{tc}(addr_A, v, pk_B, r_v, sn_A)$

10) Generate a new random number r^{*}_B.
11) Sample a new serial number sn^{*}_B := PRF(sk_B, r^{*}_B).
12) Compute cmt^{*}_B := COMM_{bc}(addr_B, value_B + v, sn^{*}_B, r^{*}_B).

13) Set $\vec{x}_4 := (p\vec{k}_B, sn_v, rt_{cmt}, cmt_B, addr_B, sn_B, cmt_B^*)$,

This algorithm checks the validity of all zero-knowledge transactions.

a) Parse tx_{Mint} as $(addr_A, v, sn_A, cmt_A^*, prf_m)$. b) Obtain related information of $addr_A$ from Ledger_T

- the current balance commitment is cmt_A .

f) Output $b := \Pi_{\mathcal{Z}}$. VerProof (VK_Z, \vec{x}_1, prf_m).

a) Parse tx_{Redeem} as $(addr_A, v, sn_A, cmt_A^*, prf_r)$.

c) Obtain related information of $addr_A$ from Ledger_T - the current balance commitment is cmt_A .

e) Set $\vec{x}_2 := (cmt_A, addr_A, sn_A, cmt_A^*, v).$ f) Output $b := \prod_{\mathcal{Z}} .VerProof(VK_{\mathcal{Z}}, \vec{x}_2, prf_r).$

c) Obtain related information of addr_A from Ledger_T

- the current balance commitment is cmt_A.

c) Obtain related information of $addr_B$ from Ledger_T

the current balance commitment is cmt_B

d) Return 0 if sn_B or sn_v appears in SNSet_T.

a) Parse tx_{Send} as $(pk_A, sn_A, cmt_A^*, cmt_v, aux_A, auth_{enc}, prf_s)$.

 $\begin{array}{l} \text{(Source of the term of t$

a) Parse $tx_{Deposit}$ as $(seq, rt_{cmt}, sn_B, cmt_B^*, sn_v, pk_B, prf_d)$.

e) Return 0 if rt_{cmt} is not the Merkle root over $\bigcup_{n \in seq} \text{TCMSet}_n$.

 $\begin{array}{l} \text{f) Set } \vec{x}_4 := (pk_B, sn_v, rt_{cmt}, cmt_B, addr_B, sn_B, cmt_B^*).\\ \text{g) Output } b := \Pi_{\mathcal{Z}}. \text{VerProof}(\mathsf{VK}_{\mathcal{Z}}, \vec{x}_4, prf_d). \end{array}$

c) Return 0 if $pt_{balance_A} < v$ or $v \le 0$.

d) Return 0 if sn_A appears in SNSet_T. e) Set $\vec{x}_1 := (cmt_A, addr_A, sn_A, cmt_A^*, v)$

d) Return 0 if sn_A appears in SNSet_T.

- the current plaintext balance is pt_balance_A,

15) Output $tx_{Deposit} := (seq, rt_{cmt}, sn_B, cmt_B^*, sn_v, pk_B, prf_d),$

and $\mathtt{zk_balance}_B^* := (cmt_B^*, addr_B, value_B + v, sn_B^*, r_B^*).$

Randomly select a set $seq := \{n_1, n_2, ..., N, ..., n_9\}$ from existed block

 $\vec{a}_{4} := (cmt_{v}, addr_{A}, v, r_{v}, sn_{A}, value_{B}, r_{B}, sk_{B}, n_{B}^{*}, r_{B}^{*}, path).$ 14) Compute $prf_{d} := \Pi_{\mathcal{Z}}.\text{GenProof}(\mathsf{PK}_{\mathcal{Z}}, \vec{a}_{4}, \vec{a}_{4}).$