
Laconic Conditional Disclosure of Secrets and Applications

Nico Döttling∗ Sanjam Garg† Vipul Goyal‡ Giulio Malavolta§

Abstract

In a Conditional Disclosure of Secrets (CDS) a verifier V wants to reveal a message m
to a prover P conditioned on the fact that x is an accepting instance of some NP-language
L. An honest prover (holding the corresponding witness w) always obtains the message m
at the end of the interaction. On the other hand, if x /∈ L we require that no PPT P ∗ can
learn the message m. We introduce laconic CDS, a two round CDS protocol with optimal
computational cost for the verifier V and optimal communication cost. More specifically,
the verifier’s computation and overall communication grows with poly(|x|, λ, log(T )), where
λ is the security parameter and T is the verification time for checking that x ∈ L (given w).
We obtain constructions of laconic CDS under standard assumptions, such as CDH or LWE.

Laconic CDS serves as a powerful tool for maliciousifying semi-honest protocols while
preserving their computational and communication complexities. To substantiate this claim,
we consider the setting of non-interactive secure computation: Alice wants to publish a short
digest corresponding to a private large input x on her web page such that (possibly many)
Bob, with a private input y, can send a short message to Alice allowing her to learn C(x, y)
(where C is a public circuit). The protocol must be reusable in the sense that Bob can
engage in arbitrarily many executions on the same digest. In this context we obtain the
following new implications.

(1) UC Secure Bob-optimized 2PC: We obtain a UC secure protocol where Bob’s compu-
tational cost and the communication cost of the protocol grows with poly(|x|, |y|, λ, d),
where d is the depth of the computed circuit C.

(2) Malicious Laconic Function Evaluation: Next, we move on to the setting where Alice’s
input x is large. For this case, UC secure protocols must have communication cost
growing with |x|. Thus, with the goal of achieving better efficiency, we consider a
weaker notion of malicious security. For this setting, we obtain a protocol for which
Bob’s computational cost and the communication cost of the protocol grows with
poly(|y|, λ, d), where d is the depth of the computed circuit C.

∗CISPA Helmholtz Center for Information Security.
†University of California, Berkeley. Supported in part from AFOSR Award FA9550-19-1-0200, AFOSR YIP

Award, NSF CNS Award 1936826, DARPA and SPAWAR under contract N66001-15-C-4065, a Hellman Award
and research grants by the Okawa Foundation, Visa Inc., and Center for Long-Term Cybersecurity (CLTC, UC
Berkeley). The views expressed are those of the authors and do not reflect the official policy or position of the
funding agencies.
‡Carnegie Mellon University. Supported in part by NSF grant 1916939, a gift from Ripple, a JP Morgan

Faculty Fellowship, and a Cylab seed funding award.
§Simons Institute for the Theory of Computing. Part of the work done while at Carnegie Mellon University.

Supported in part by NSF grant 1916939.



1 Introduction

Consider the following setting: Alice would like to publish a digest h corresponding to her
private data x on her web page. Next, Bob (with a private input y) would like to send a short
message to Alice, so that she learns C(x, y) for some public circuit C. As is standard in secure
computation, Alice and Bob want to achieve this result while keeping their respective inputs
hidden from each other. Analogous to Bob’s message, Charlie or any other party could reuse
h provided by Alice on her web page. This non-interactive nature of Alice’s message makes
this setting highly desirable and has been extensively studied in cryptography [IKO+11]. This
primitive is commonly referred to as non-interactive secure computation.

Bob-Optimization. Unfortunately, traditional cryptographic techniques for realizing the
above task require Bob’s computational complexity to grow with |C| and |x| (in addition to y),
which is undesirable in several settings. In particular, since only Alice learns the output of the
computation, Bob might find it unfair that he has to perform the computation of |C|. In other
words, Bob might be happy to see Alice learn the output of the computation, but may not be
willing to take on doing the computation himself. For example, consider the case where Alice’s
input is her genomic sequence and Bob would like to help Alice to learn how likely she is to
have cancer while keeping the logic that he is using to make predictions secret.

Making the problem more challenging, computational constraints on Bob imply additional
constraints on the sizes of Alice’s digest and Bob’s message, which must now also be small.
Constructing such Bob-optimized protocols has been the focus of several recent results such
as laconic function evaluation [QWW18] and laconic oblivious transfer [CDG+17]. Our setting
is inspired by these works. In particular, prior work on laconic function evaluation [QWW18]
also considers the problem of non-interactive secure computation, which is computationally
optimized for Bob. However, these results are limited to the semi-honest setting and need non-
falsifiable assumptions [Kil92, Mic94, Gro10, BCCT13, GGPR13] to upgrade security to the
malicious setting. This brings us to the following question:

Can we realize maliciously secure Bob-optimized non-interactive secure computation
from standard assumptions?

Bob-Optimization with Large Inputs. Next, we consider the more demanding setting,
where Alice’s input x itself might be very large. As before, Bob might be happy to see Alice
learning the output of the computation, but may find reading x himself prohibitively expensive.
This could be especially prohibitive if Bob interacts with multiple users, all playing the role of
Alice. For example, the FBI (playing as Alice) could hold a huge database of passenger names
on the no-fly list. An an airline company (playing as Bob) might want to help the FBI check if
any of the passengers on one of its flights is on the list. Here the airline company would prefer
to perform computation independent of the FBI’s database. This is a special case of the very
important and well-studied problem of private set intersection (PSI) [FNP04]. This brings us
to the following question:

Can we realize maliciously secure Bob-optimized non-interactive secure computation
when Alice has a large input from standard assumptions?

Reusablity of Alice’s Digest. We allow multiple Bob’s to be able to reuse Alice’s digest for
multiple computations. In this setting, a corrupt Bob could provide Alice with an ill-formed
message and use Alice’s output (that it may learn in some way) to cheat Alice or to learn
something about Alice’s input x. Thus, we aim for security against a malicious Bob that has
access to Alice’s outputs on its prior interactions.

2



Reverse Delegation. One can view our setting as a reverse delegation scheme. In a delegation
scheme, a user outsources its computation to an untrusted server with the goal of learning the
output (possibly while even keeping it private). In contrast, our applications allow a user (Bob)
to delegate its computation to the untrusted server (Alice) while also letting it learn the output
of the computation, and nothing beyond that.

1.1 Our Results

In this work we introduce the notion of laconic conditional disclosure of secrets (CDS). In a CDS
protocol a verifier V wants to reveal a message m to a prover P conditioned on the fact that x
is an accepting instance of some NP-languge L. An honest prover (holding the corresponding
witness w) always obtains the message m at the end of the interaction. On the other hand if
x /∈ L we require that no (possibly corrupted) P ∗ can learn the message m. CDS can be seen
as the two round analog of witness encryption [GGSW13]. The new constraint that we impose
is that the interaction has to be laconic in the sense that it should not depend on the size of
the parties inputs, and in particular on the size of the witness w. Additionally, the verifier
computation must be much smaller than recomputing the relation. More specifically, verifier’s
computation and overall communication grows with poly(|x|, λ, log(T )), where λ is the security
parameter and T is the verification time for checking that x ∈ L (given w).

Next, we obtain constructions of laconic CDS in the common reference string model under
standard assumptions, such as CDH or (standard) LWE. Laconic CDS serves as a powerful tool
for maliciousifying semi-honest protocols while preserving their computational and communi-
cation complexities. To demonstrate this power, we show application of laconic CDS to the
above-mentioned settings:

(1) Bob-optimized 2PC: We obtain a UC secure protocol where Bob’s computational cost and
the communication cost of the protocol grows with poly(|x|, |y|, λ, d), where d is the depth
of the computed circuit C. This protocol achieves UC-security [Can01] and security is
based on the LWE assumption.

(1) Malicious Laconic Function Evaluation: Next, we consider the more demanding setting
where Alice’s input x is large. For this case, UC secure protocols must have communica-
tion cost growing with |x|. Thus, with the goal of achieving better efficiency, we consider a
weaker notion of malicious security which we call context security. Context security allows
us to rewind parts of the execution while at the same time providing some form of compos-
ability and subsumes the standard notion of indistinguishability-based security. For this
setting, we obtain a protocol for which Bob’s computational cost and the communication
cost of the protocol grows with poly(|y|, λ, d), where d is the depth of the computed circuit
C. The security of this construction is based on LWE as well. This result can be seen as
the malicious variant of the recent work on laconic function evaluation [QWW18].

The above applications demonstrate the power of laconic CDS. We see laconic CDS as a natural
primitive and expect it to have other applications. As another example, laconic CDS allows
a resource-constrained client to delegate the computation of a large circuit to an untrusted
worker and to condition the payment of the worker on the fact that the provided output is the
correct one. This does not achieve the notion of verifiable computation in the traditional sense,
since the client cannot explicitly check that the output is correct. However in certain scenarios,
e.g., mining in cryptocurrencies, one is interested in rewarding under the condition that some
computation has been performed. Then miners are free to give the wrong output and not claim
the reward. However, there is no clear incentive for doing that.

3



1.2 Technical Overview

To understand and motivate our techniques it is instructive to discuss a few plausible approaches
for constructing laconic CDS and highlight the barriers that they encounter. Below we start
with such approaches.

1.2.1 Why Known Techniques Fail

If we were to omit the laconic constraint, then CDS admits a very simple two-round protocol
based on two-round oblivious transfer (OT) and Yao’s garbled circuits [Yao86]: The prover
encodes the binary representation of its witness as the choice bits in several parallel repetitions
of the OT. The verifier garbles the circuit that hardcodes the statement x and the message m
and returns m if and only if R(·, x) = 1. Then it sends the garbled circuit together with the
second message of the OT on input each pair of input label. The prover can locally recover the
labels corresponding to its witness and evaluate the circuit learning nothing beyond its output.
It is clear that such a solution satisfies our security requirements but falls short in achieving
laconic communication since the full circuit encoding of the NP-relation is exchanged between
the two parties. At a first glance this seems to be inherent to garbled-circuit based solutions
since secure two-party computation with low communication complexity usually requires more
sophisticated tools, such as fully-homomorphic encryption [Gen09].

Another plausible angle to attack the problem is to resort to techniques from the field of
succinct arguments [Kil92, Mic94]. Then the prover could simply augment a succinct proof
with a public key and the verifier would then encrypt the message if the proof correctly verifies.
Unfortunately known schemes require at least three rounds of interaction (four without assum-
ing a setup) or rely on non-falsifiable assumptions [Gro10, BCCT13, GGPR13]. Constructing
succinct arguments from standard assumptions in less than three rounds seems to hit a road-
block: It has been shown [GW11] that non-interactive succinct arguments cannot be based on
falsifiable assumptions, at least in a black-box sense.

1.2.2 Our Solution in a Nutshell

Our starting point is the classical garbled circuit-based solution. A closer look to the source
of inefficiency reveals that there are two major challenges to overcome in order to achieve our
goal: (1) We need to remove the linear dependency of the OT with respect to the size of the
witness and (2) we cannot recompute the full blown NP-relation in the garbled circuit. Our
first insight is to bypass the first obstacle using laconic OT [CDG+17]. A laconic OT allows
one to hash a long database into a small digest, then the sender can compute the second
message of an OT where the choice bit is set to be the value at an arbitrary location of the
database. The important message here is that the communication complexity is independent
of the size of the database (in our case the witness w). This primitive alone allows us to
compress the size of the first message of the CDS. However, laconic OT alone does not buy us
anything for the complexity of the second message. Overcoming the second obstacle requires
us to borrow techniques from the domain of succinct arguments. The observation here is that
checking the validity of an NP-instance does not necessarily require one to recompute the
corresponding relation: Probabilistically checkable proofs (PCP) [AS98] encode a witness into
a (longer) string such that the membership of the statement can be probabilistically verified by
querying a constant amount of bits. Such verification algorithms are inherently erroneous, but
the gap can be made negligibly small via standard amplification techniques.

This tool gives us the right leverage for a candidate laconic CDS construction: A prover can
now hash the PCP encoding of its witness via a laconic OT and send the corresponding digest to

4



Weak LOT Ind. LOT Context Secure 
LOT Laconic CDS

Malicious LFE

UC-Secure 
Bob-Opt. 2PCLaconic OT

CDH LWE PCP LFE

Figure 1: Overview of our Results

the verifier. The latter then samples a few random locations and garbles a circuit that takes as
input the bits of the PCP encoding at such locations and returns m if the PCP verifier accepts.
Then it sends the garbled circuit in plain and the input labels via the laconic OT. This allows
the prover to recover the labels corresponding to the bits of the PCP encoding, evaluate the
circuit, and eventually recover the message. This introduces a negligible soundness gap, which
does not make a difference in our settings as we rely anyway on computational assumptions.
The stretch in the size of the witness is also not a problem since the communication complexity
of a laconic OT is independent of the size of the database (in our case the PCP encoding).

While this construction seems to solve all problems at once, a closer look to the building
blocks reveals the dependency on a maliciously secure laconic OT. Currently, the only known
way to construct laconic OT resilient against active attackers is to compile a semi-honest one
with succinct arguments. Due to its compressing nature, bypassing the usage of non-falsifiable
assumptions in laconic CDS might then appear to be out of reach of current techniques. How-
ever, we have now reduced the problem of constructing laconic CDS to that of building laconic
OT: In this work we show how to construct maliciously secure laconic OT assuming the hard-
ness of CDH or (standard) LWE with polynomial modulo-to-noise ratio. Most of the technical
innovations of this work, and the remainder of this section, are devoted to instantiating mali-
cious laconic OT from standard assumptions. Looking ahead, this will allow us to construct
laconic CDS, which in turn will be used as the main technical component to build malicious
LFE and UC-secure Bob-optimized 2PC. An outline of our results is given in Figure 1.

1.2.3 Towards Malicious Laconic OT

Before we delve into the actual instantiations of malicious laconic OT we further simplify the
problem by lowering the efficiency and security requirements for a laconic OT.

Our starting point is a recent work by Döttling, Garg, Hajiabadi, Masny and Wichs [DGH+19]
which constructs maliciously secure oblivious transfer from search assumptions. The main idea
in [DGH+19] is to start with a very simple notion of security against malicious receivers and
carefully bootstrap this notion to standard simulation based notions. The weakest notion con-
sidered in [DGH+19] is called elementary OT, and our basic notion of malicious laconic OT
extends this notion to the setting of laconic OT. We refer to this primitive as weak malicious
laconic OT (when it is clear from the context we drop the term malicious). Jumping ahead,
we will then show, building on techniques developed in [DGH+19] how to generically upgrade
a laconic OT that meets these conditions to a fully efficient and fully secure one. Concretely,
we aim for the following guarantees.

(1) Weak Functionality: The sender algorithm no longer takes as input two messages (m0,m1)
to transfer but instead generates two fresh random strings (k0, k1) together with the sender

5



output c. This can be seen as the analog of key-encapsulation mechanism, where (k0, k1)
are then used as the session keys to transfer the desired messages.

(2) Weak Security: We require that, given the sender message c, no efficient polynomial-time
algorithm can output both k0 and k1 at the same time. This does not guarantee, for
instance, that an attacker cannot output the first half of k0 and the second half of k1.
This requirement is in fact identical to the notion of elementary sender security considered
in [DGH+19].

(3) Weak Efficiency: We consider a laconic OT where the only efficiency constraint is that
the receiver message is 2-to-1 compressing. That is, we do not impose any bound on the
size of the setup string and of the sender message, which are potentially as long as the
database.

1.2.4 Pitfalls of Known Constructions

A natural question to ask is whether existing constructions of semi-honest laconic OT already
satisfies any meaningful notion of security in presence of a corrupted receiver. To exemplify
the issues that arise, we briefly recall a simplified version of the hash-encryption construction
of [DG17]: The public parameters consist of a matrix of uniformly sampled group elements

crs =

(
g

(0)
1 , . . . , g

(0)
m

g
(1)
1 , . . . , g

(1)
m

)
←$G2×m

and the hash of a database D is computed as

d =
m∏
i=1

g
(D[i])
i .

To generate two keys for a position L, one samples two random random integers (r, s), computes
the ciphertext c as the concatenation of the matrices (

g
(0)
1

)r
, . . . ,

(
g

(0)
L

)r
, . . . ,

(
g

(0)
m

)r(
g

(1)
1

)r
, . . . , 1, . . . ,

(
g

(1)
m

)r


and  (
g

(0)
1

)s
, . . . , 1, . . . ,

(
g

(0)
m

)s(
g

(1)
1

)s
, . . . ,

(
g

(1)
L

)s
, . . . ,

(
g

(1)
m

)s
 ,

then sets k0 = dr and k1 = ds. Security stems from the fact that if D[L] 6= b, then the receiver
has to find a different linear combination of elements that yields the same d in order to compute
the corresponding key. This however crucially relies on the fact that the receiver always chooses
at least one group element per column of the crs. Consider the following attack where d is set

to be d = g
(0)
1 . Then the receiver can recover the keys for both b = {0, 1}, when encrypting

with respect to some L 6= 1. This is because the element
(
g

(0)
1

)r
is always given if L 6= 1, then

k0 and k1 are simply the first element of each matrix. This breaks any meaningful notion of
security and forces us to rethink even the most basic building block of the primitive.

6



1.2.5 Construction from CDH

Our approach diverges from prior works and takes a fresh look at the problem. In our scheme
the public parameters consist of a vector of group elements sampled uniformly at random

crs = (g1, . . . , gm)←$Gm

and the hash of a database D is defined as

d =

m∏
i=1

g
D[i]
i .

That is the i-th element of the vector is included in the product if D[i] = 1 and skipped if
D[i] = 0. The subtle difference with respect to previous approaches lies in the fact that even
setting d = g1 gives us a perfectly valid hash, which corresponds to the pre-image 1‖0m−1. To
generate two session keys (k0, k1) for a location L, the sender samples a random integer r and
sets the ciphertext to

c =
(
gr1, . . . , g

r
L−1, g

r
L+1, . . . , g

r
m

)
,

i.e., all powers are given except for grL. We now want to define k0 and k1 in such a way that
only kD[i] can be recovered using a pre-image D of d. To this end we set

k0 = dr and k1 = dr/grL.

Observe that if D[L] = 0, then c contains enough information to recompute

k0 = dr =
m∏
i=1

g
D[i]·r
i ,

since grL would be excluded from the product anyway. On the other hand if D[L] = 1, then one
can only recompute

k1 = dr/grL =

m∏
i=1,i 6=L

g
D[i]·r
i .

To get an intuition why the scheme is secure for any (possibly maliciously generated) image d,
observe that outputting both k0 and k1 also reveals k0/k1 = grL, regardless of the value of d.
However, grL was not given as part of the ciphertext and therefore predicting it, given only c
and crs, is as hard as solving a random instance of the CDH problem.

1.2.6 Construction from LWE

A CDH-based construction is not entirely satisfactory in terms of assumptions since most of the
applications of malicious laconic OT (and consequently of laconic CDS) are only known under
the hardness of lattice-related problems. If we were to plug in our machinery we would introduce
an additional number-theoretic assumption (i.e., CDH), which is not ideal. An additional
reason to look into lattice-based schemes is that current cryptanalytic techniques fail even in
the quantum settings, whereas there are polynomial-time quantum algorithms to solve discrete
logarithm-related problems. For these reasons, we turn our attention to constructing weak
malicious laconic OT from the hardness of the LWE problem. The basic idea of our scheme is
conceptually simple, but the noisy nature of the LWE problem introduces some complications.
The public parameters consist of a single matrix

crs = A ∈ Zn×mq

7



where m is the size of the database and n is a parameter that governs the hardness of the LWE
problem. Hashing a database D ∈ {0, 1}m (parsed as a column vector) is a simple multiplication

AD = d ∈ Znq

that is, we take a linear combination of the columns of A depending on the bits of D. For a
given location L, the sender algorithm samples a column vector s←$Znq and computes a noisy
inner product with each column of A, except for the L-th one. The sender message c consists
of the set {

sTa1 + e1, . . . , s
Tam + em

}
\
{
sTaL + eL

}
where the noise vector is sampled from a discrete Gaussian and has small norm. As before we
set the keys in such a way that it is easy to compute one, but it is hard to compute both. This
is done by setting

k0 = sTd and k1 = −sTd + sTaL + eL.

It is important to observe that k0 + k1 = sTaL + eL, which is an LWE sample but it is not
among those included in c. This suggests that outputting both values of k0 and k1 is equivalent
to predicting an LWE sample and it is going to be our central leverage to show the security of
the scheme. However, the more challenging part is how to ensure that the receiver is able to
recover kD[L]. In contrast to our previous scheme, the naive strategy fails to recover the key
due to the presence of the noise. In fact

m∑
i=1,i 6=L

ci ·D[i] = kD[L] +
m∑

i=1,i 6=L
ei ·D[i] = kD[L] + ẽ.

To overcome this issue we exploit the fact that ẽ is relatively small when compared to kD[L]. We
then partition Zq in c-many intervals and we set the actual session key to be kb (as computed
above) rounded at the closest multiple of q/c. The key property of this rounding function is
that it is resilient to small perturbations, which means that⌊

kD[L] + ẽ
⌋
c

=
⌊
kD[L]

⌋
c

with high probability, for a small enough ẽ. This strategy introduces a few issues, among
others the fact that the output of the rounding function is not long enough to argue about
unpredictability (i.e., it can be randomly guessed with high enough probability). Fortunately,
this issue can be easily circumvented with standard amplification techniques.

1.2.7 Indistinguishability Laconic OT

As discussed before, our notion of security only guarantees that the adversary cannot output
both k0 and k1 in their entirety but it does not guarantee that there exists a consistent bit b
for which the adversary can always guess kb and never kb⊕1. For example, it could be possible
that for a fixed value of d, the adversary is able to predict k0 for half of the support of c and
k1 for the complement. To fix this issue, follow the blueprint of [DGH+19] and use techniques
developed in the context of hardness amplification of puzzles [CHS05]. The key idea of this step
is to amplify the success probability of the adversary via parallel repetitions: By setting the
new key to be the concatenation of many independent instances, with high probability at least
one of elements will belong to the wrong partition of the support of c. Thus with high enough
probability, the adversary is forced to simultaneously predict two values (k0, k1).

Once this obstacle is surpassed, turning our weak laconic OT into a fully functional one
involves rather standard tools: First we turn the search problem into a decision one using

8



Goldreich-Levin hardcore predicate [GL89]. At this point we can give as input to the sender
algorithm any message pair (m0,m1) and implement the standard OT functionality by aug-
menting c with k0 ⊕m0 and k1 ⊕m1. It is easy to see that at least one of the two messages
must be hidden to the eyes of the adversary as the key kD[L]⊕1 acts as a one-time pad. At
this point, our security definition looks as follows: We define two experiments (Exp0 and Exp1)
where the adversary is allowed to choose a hash d, two messages (m0,m1), and a location L,
then the challenger flips a coin b. If b = 0 then the ciphertext c is honestly computed via the
sender algorithm on input (L,m0,m1), otherwise m0 (m1 for Exp1) is replaced with a uniformly
sampled message. The guarantee is that the adversary cannot succeed in both experiments with
non-negligible probability.

This gives us a more intuitive security notion but it is still not sufficient for constructing
laconic CDS. The reason is that we have no idea whether the adversary is going to be able to
succeed in Exp0 or Exp1, for a given value of L. This information is needed by the simulator
when using laconic OT in conjunction with garbled circuits: In a reduction against the security
of the garbling scheme we need to know in which position we should plug the challenge label, to
correctly simulate the view of the adversary. Even worse, determining whether the adversary
is successful in Exp0 or Exp1, for all locations L, corresponds to extracting the whole database
D! Recall that the hash d of a laconic OT is compressing, therefore its pre-image is not even
information-theoretically determined, let alone efficiently computable.

1.2.8 Context-Secure Laconic OT

The final challenge towards constructing malicious laconic OT boils down to extracting the
pre-image of any given (possibly maliciously computed) hash. As discussed before, the hash
does not even determine the pre-image in an information theoretic sense, so trivial solutions
are not applicable. An additional complication is that the protocol is non-interactive, i.e., the
receiver outputs a single message and goes offline. Therefore rewinding the receiver also does
not seem to help. Of course one could just assume the existence of an extractor, which would
however place our solution within the category of non-falsifiable assumptions.

We address this problem by leveraging the distinguisher-dependent simulation technique re-
cently developed [JKKR17]. We introduce a new security notion called context security to pro-
vide a versatile toolkit which allows to deploy distinguisher-dependent simulation in much more
complex settings. While on a technical level we use many of the same techniques as [DGH+19],
context security allows us to use distinguisher-dependent simulation to its full effect.

We use distinguisher-dependent simulation in the following way to extract the input of a
malicious receiver: A careful look to the indistinguishability-based definition shows that, given
black-box access to a malicious receiver, we can determine the bit D[L], by approximating
the success probability in Exp0 and Exp1: For a given location L, the experiment where the
adversary is successful must correspond to the value of D[L]! Iterating over all locations, we
can recover the complete database.

Our main insight is that this technique can be applied to a setting where the overall commu-
nication between receiver and sender is too small to information-theoretically specify the input
of the receiver. This is in contrast to previous uses of this technique in [JKKR17, DGH+19].
Somewhat counterintuitively, we are able to extract the full pre-image of a short hash in poly-
nomial time without resorting to non-falsifiable assumptions. Our new notion of context context
security is crafted to precisely characterize the security guarantees we can achieve via distin-
guisher dependend simulation.

The high level idea of context security is that protocols must remain secure against any con-
text, where a context is defined as a (possibly corrupted) receiver and a distinguisher that takes

9



as input the sender’s message. Security is defined in terms of the existence of an extractor and a
simulator: The extractor (with oracle access to the distinguisher) recovers the original input of
the receiver and gives enough information to the simulator to simulate the sender message, where
the simulator only interacts with the ideal functionality. Additionally, the runtime of the extrac-
tor is independent of that of the corrupted receiver (but depends on that of the distinguisher).
This enables a meaningful notion of composability since the protocol is required to be remain
secure for any context. Since the extractor depends on the distinguisher, context-security does
not achieve the same strong guarantees of universal composability (UC) [Can01]. However, in
contrast with UC, a protocol can be context-secure even when its transcript does not determine
the inputs of the parties in an information theoretic sense. Thus we view context-security as
a meaningful relaxation of UC and a versatile tool, instrumental to construct laconic CDS. Fi-
nally, we remark that context security implies the standard notion of indistinguishability-based
secure computation.

Using ideas developed in [DGH+19] we show that any indistinguishability laconic OT is also
context secure. The argument crucially relies on rewinding the distinguisher and measuring its
success-probability.

1.2.9 Efficient Laconic OT

Equipped with a context-secure laconic OT, we can show a bootstrapping theorem in the same
spirit as [CDG+17]: Given any 2-to-1 compressing context-secure laconic OT we can construct
an equally efficient context-secure laconic OT where the size of the hash (and of the common
reference string) is independent of the size of the database. The transformation is identical
to that of [CDG+17] and works by hashing the database into a Merkle tree and using a chain
of garbled circuit to access the leaf corresponding to the location L. However, the argument
is fundamentally different since we cannot assume that the hash is honestly computed. The
usefulness of the notion of context security is demonstrated by our bootstrapping theorem. We
crucially rely on the recursive application of context extractors to extract an entire Merkle-tree.
A critical aspect in this step which avoids an exponential blowup is that the runtime of the
context-extractor is independent of the computation of the receiver.

1.3 Applications

We now discuss how laconic CDS can be used as a maliciousifier for two-round protocols: A
two round protocol consists of a message m1 from the receiver to the sender and a message
m2 from the sender to the receiver. At the end of the interaction, the receiver performs some
computation to retrieve the output of the protocol. Using laconic CDS we can turn a semi-honest
two-round protocol into a malicious one (for a corrupted receiver) by augmenting m1 with the
first message of a laconic CDS certifying that m1 is well formed. Then the sender computes the
second message of a laconic CDS where the secret is set to m2. That is, the receiver will learn
m2 if and only if m1 was well-formed. The new properties that our transformation enables are:

(1) The communication complexity of the malicious protocol is identical to that of the semi-
honest one.

(2) The computational complexity of the sender is unchanged.

This comes particularly useful when the input and the computation of the receiver are particu-
larly burdensome. As an example, a laconic CDS allows us to lift non-interactive secure compu-
tation for RAM programs [CDG+17] to the malicious settings in a very natural way. Another
interesting scenario is when the above transformation is applied to laconic function evaluation

10



(LFE). In this case we obtain the first maliciously secure Bob-optimized non-interactive secure
computation protocol where the communication complexity grows only with the depth of the
circuit and with the size of Bob’s input. In other words, the malicious protocol is (asymp-
totically) as efficient as the underlying semi-honest LFE. We can even lift the security to the
UC-settings, however at the cost of the communication growing with the size of the receiver’s
input, which is unavoidable.

Delegating Computation. A less orthodox usage of a laconic CDS is in the context of non-
interactive delegation of computation: A client wants to delegate the computation of a large
circuit to an untrusted worker and wants some insurance that the output given by the worker is
the correct one. The worker performs the computation and obtains the output z, then computes
a laconic CDS that certifies that z is indeed the correct output. On input the first message
of the laconic CDS and z, the client conditions the payment of the worker on the fact that z
is computed correctly. This protocol is not verifiable in the traditional sense since the client
cannot explicitly check that z is indeed the correct output. However we can envision scenarios
where this is not a limitation. As an example, miners of cryptocurrencies often aggregate in
pools, where each peer is rewarded basing on the amount of computation it performed. In this
case it is not critical to verify that the output is correct but we are mostly interested in the
fact that some large circuit has been computed. The miners could of course provide the wrong
output and not claim the reward, but it is unclear what would be the incentive to do that.

2 Preliminaries

We denote by λ ∈ N the security parameter. We we say that a function negl is negligible
if it vanishes faster than any polynomial. Given a set S, we denote by s←$S the uniform
sampling of an element from S. We say that an algorithm is PPT if it can be implemented by a
probabilistic Turing machine running in time polynomial in λ. We recall two useful inequalities.

Theorem 1 (Hoeffding Inequality). Let (X1, . . . , XN ) ∈ [0, 1] be i.i.d. random variable with
expectation E[X̄]. Then it holds that

Pr

[∣∣∣∣∣ 1

N

N∑
i=1

Xi − E[X̄]

∣∣∣∣∣ > δ

]
≤ 2e−2Nδ2 .

Lemma 1 (Markov Inequality for Advantages (taken from [DGH+19])). Let A(Z) and B(Z)
be two random variables depending on a random variable Z and potentially additional random
choices. Assume that |PrZ [A(Z) = 1]− PrZ [B(Z) = 1]| ≥ ε ≥ 0. Then

Pr
Z

[|Pr[A(Z) = 1]− Pr[B(Z) = 1]| ≥ ε/2] ≥ ε/2.

Proof. Let a := PrZ [|Pr[A(Z) = 1]−Pr[B(Z) = 1]| ≥ ε/2]. We have ε ≤ a× 1 + (1− a)× ε/2.
Since 0 ≤ 1− a ≤ 1, we obtain ε ≤ a+ ε/2. The inequality now follows.

2.1 Probabilistically Checkable Proofs

Probabilistic checkable proofs (PCP) [AS98] are a central tool in complexity theory. The PCP
theorem shows that any witness w for an NP-statement can be encoded into a PCP of length
poly(|w|) such that it is sufficient to probabilistically test O(1) bits of the encoded witness.

Definition 1 (Probabilistically Checkable Proofs). A PCP (PCPProve,PCPVerify) for an NP
language L is a tuple of the PPT algorithms defined as follows:

11



PCPProve(x,w) → π : On input a statement x ∈ L and the corresponding witness w, the
proving algorithm returns an encoding π.

PCPVerifyπ(x) → {0, 1} : On input a statement x and with random access to the encoding π,
the verification algorithm returns a bit {0, 1}.

Correctness is defined canonically.

Definition 2 (Correctness). A PCP (PCPProve,PCPVerify) is correct if for all (x,w) ∈ R it
holds that

Pr [PCPVerifyπ(x) = 1|π ← PCPProve(x,w)] = 1

where the probability is taken over the random coins of PCPVerify.

The central efficiency measure for a PCP is the number of queries that the verifier issues
to the encoding, i.e., the amount of bits that the verifier needs to read before producing his
output. This amount (which we denote by q) can be as low as 3 queries. We consider without
loss of generality PCPs where the verifier is non-adaptive, i.e., the bits queried do not depend on
previous answers. Note that any constant-query adaptive PCP can be turned into a constant-
query non-adaptive PCP by querying all possible bits for a given random tape (introducing
a constant factor in the query complexity). Another important parameter for a PCP is the
amount of random coins needed by the verifier, which is bounded by the PCP theorem to be at
most t = O(log(|π|)) = O(log(λ)). We now state the soundness property.

Definition 3 (Soundness). A PCP (PCPProve,PCPVerify) is sound if for all x /∈ L and for all
π it holds that

Pr [PCPVerifyπ(x) = 1] < 1/3

where the probability is taken over the random coins of PCPVerify.

It is well known that the success probability can be amplified to a negligible fraction (in the
security parameter) by parallel repetition. Additionally we say that a PCP is witness-extractable
if there exists a PPT algorithm PCPExt and a constant γ such that, on input a PCP encoding π
that passes the PCP test with probability at least (1−γ), the algorithm outputs a valid witness
w for x. This additional property can be obtained for γ = 2/3 and an explicit construction
appears in [Val08].

2.2 Intractable Problems

In the following we introduce some hard problems in cryptography that are going to be useful
for our work.

2.2.1 Computational Diffie-Hellman

We recall the search version of the classical Diffie-Hellman problem [DH76]. Let G be a (prime-
order) group generator that takes as input the security parameter and 1λ and outputs (G, p, g),
where G is the description of a multiplicative cyclic group, p is the order of the group, and g is
a generator of the group.

Definition 4 (Computational Diffie-Hellman (CDH) assumption). We say that G satisfies the
CDH assumption (or is CDH-hard) if for any PPT adversary A it holds that

Pr[A(G, p, g, ga1 , ga2) = ga1a2 ] = negl(λ)

where (G, p, g)←$G(1λ) and (a1, a2)←$Zp.

12



2.2.2 Learning with Errors

The learning with errors (LWE) problem was introduced by Regev [Reg05]. In this work we
exclusively use the decisional version, since there exists a well known reduction to the search
variant of the problem.

Definition 5 (Learning with Errors (LWE) assumption). The LWEn,ñ,q,χ problem, for (n, ñ, q)
∈ N and for a distribution χ supported over Z, is to distinguish between the distributions
(A, sA + e mod q) and (A,u), where A←$Zn×ñq , s←$Znq , e←$χñ, and u←$Zñq . Then, the
LWEn,ñ,q,χ assumption is that the two distributions are computationally indistinguishable.

The assumption is consider to hold for any ñ = poly(n, log(q)) and we denote this problem
by LWEn,q,χ. As shown in [Reg05, PRS17], the LWEn,q,χ problem with χ being the discrete
Gaussian distribution with parameter σ = αq ≥ 2

√
n (i.e. the distribution over Z where the

probability of x is proportional to e−π(|x|/σ)2), is at least as hard as approximating the shortest
independent vector problem (SIVP) to within a factor of γ = Õ(n/α) in worst case dimension n
lattices. This is proven using a quantum reduction. Classical reductions (to a slightly different
problem) exist as well [Pei09, BLP+13] but with somewhat worse parameters. The best known

(classical or quantum) algorithms for these problems run in time 2Õ(n/log(γ)), and in particular
they are conjectured to be intractable for γ = poly(n).

A discrete gaussian with parameter αq isB = αq bounded, except with negligible probability.
For parameter α the worst-to-average case reduction of [Reg05] gives a worst-case approximation
factor of Õ(n/α) for SIVP. Consequently, in terms of the bound B and the modulus q we get a
worst-case approximation factor of Õ(nq/B) for SIVP.

2.3 Pseudorandom Generator

A pseudorandom generator (PRG) [ILL89] stretches random strings into random-looking strings.

Definition 6 (Pseudorandom Generator). A PRG PRG : {0, 1}λ → {0, 1}m is pseudorandom
if m > λ and for all PPT adversaries A there exists a negligible function negl such that

|Pr [1← A(r)]− Pr [1← A(PRG(s))] | = negl(λ)

where r←$ {0, 1}m and s←$ {0, 1}λ.

2.4 Garbled Circuits

We recall the definition of Yao’s garbled circuits [Yao86]. A garbling scheme allows one to
obfuscate a circuit and provide enough information to learn a single output and nothing more.
Garbled circuits can be constructed assuming the existence of one-way functions only.

Definition 7 (Garbled Circuits). A garbling scheme is a tuple of PPT algorithms (Garble,Eval)
defined as follows:

Garble(1λ, C)→ (C̃, {`(0)
i , `

(1)
i }ni=1) : The garbling algorithm takes as input the security parame-

ter 1λ and the description of a circuit C and returns a garbled circuit C̃ and a set of labels

{`(0)
i , `

(1)
i }ni=1 for each input wire of the circuit.

Eval(C̃, {`(xi)i }ni=1) → y : The evaluation algorithm takes as input a garbled circuit C̃ and one

label per input wire `
(xi)
i and returns an output y.

The definition of correctness is given in the following.

13



Definition 8 (Correctness). A garbling scheme (Garble,Eval) is correct if for all λ ∈ N, for all
polynomial size circuits C with input length n, and for all inputs x ∈ {0, 1}n it holds that

Pr
[
C(x) = Eval(C̃, {`(xi)i }

n
i=1)

∣∣∣(C̃, {`(0)
i , `

(1)
i }

n
i=1)← Garble(1λ, C)

]
= 1

where the probability is taken over the random coins of Garble.

Security requires that the evaluation of a circuit reveals nothing beyond its output.

Definition 9 (Security). A garbling scheme (Garble,Eval) is secure if for all λ ∈ N there exists
a PPT algorithm GCSim such that for all PPT attacker A = (A1,A2) there exists a negligible
function negl such that∣∣∣∣∣∣∣∣∣

Pr

[
1← A2(C̃, {`(xi)i }ni=1, st)

∣∣∣∣∣ (C, x, st)← A1(1λ)

(C̃, {`(0)
i , `

(1)
i }ni=1)← Garble(1λ, C)

]
−

Pr

[
1← A2(C̃, {`i}ni=1, st)

∣∣∣∣ (C, x, st)← A1(1λ)

(C̃, {`i}ni=1)← GCSim(1λ, |C|, C(x))

]
∣∣∣∣∣∣∣∣∣ = negl(λ)

where the probability is taken over the random coins of A1, Garble, and GCSim.

2.5 Public Key Encryption

We recall the notion of public-key encryption [GM82].

Definition 10 (Public-Key Encryption). A public-key encryption scheme PKE = (PKEKGen,
PKEEnc,PKEDec) is defined as the following tuple of efficient algorithms.

PKEKGen(1λ) → (sk , pk) : On input the security parameter 1λ the key generation algorithm
returns a secret key sk and a public key pk.

PKEEnc(pk ,m) → c : On input a public key pk and a message m, the encryption algorithm
returns a ciphertext c.

PKEDec(sk , c) → m : On input a secret key sk and a ciphertext c, the decryption algorithm
returns a message m.

We require the scheme to be perfectly correct. It is well known that perfectly correct public-
key encryption can be constructed from CDH [ElG84] or LWE [Reg05].

Definition 11 (Correctness). A public-key encryption scheme PKE = (PKEKGen,PKEEnc,PKEDec)
is correct if for all λ ∈ N and for all messages m it holds that

Pr

[
m = PKEDec(sk , c)

∣∣∣∣ (sk , pk)← PKEKGen(1λ)
c← PKEEnc(pk ,m)

]
= 1

and the probability is taken over the random coins of PKEKGen and PKEEnc.

We recall the definition of semantic security.

Definition 12 (Security). A public-key encryption scheme PKE = (PKEKGen,PKEEnc,PKEDec)
is semantically secure if for all λ ∈ N and for all admissible PPT adversaries A = (A1,A2)
there exists a negligible function negl such that∣∣∣∣∣∣∣∣∣∣∣∣

Pr

1← A2(c, st)

∣∣∣∣∣∣
(sk , pk)← PKEKGen(1λ)
(m0,m1, st)← A1(pk)
c← PKEEnc(pk ,m0)

−
Pr

1← A2(c, st)

∣∣∣∣∣∣
(sk , pk)← PKEKGen(1λ)
(m0,m1, st)← A1(pk)
c← PKEEnc(pk ,m1)



∣∣∣∣∣∣∣∣∣∣∣∣
= negl(λ)

14



where A is admissible if m0 and m1 have equal length and the probabilities are taken over the
random coins of PKEKGen, A1, and PKEEnc.

2.6 Non-Interactive Zero-Knowledge

We define non-interactive zero-knowledge (NIZK) [BFM88]. NIZKs have been constructed from
trapdoor permutation [FLS90] or, very recently, from LWE [PS19].

Definition 13 (Non-Interactive Zero-Knowledge). A NIZK NIZK = (NIZKSetup,NIZKProve,
NIZKVerify) for an NP-language L with relation R is defined as the following tuple of algorithms.

NIZKSetup(1λ) → crs : On input the security parameter 1λ the setup algorithm returns a
common reference string crs.

NIZKProve(crs, x, w) → π : On input the common reference string crs, a statement x and a
witness w, the proving algorithm returns a proof π.

NIZKVerify(crs, x, π)→ {0, 1} : On input the common refrence string crs, a statment x, and a
proof π, the verifier algorithm returns a bit {0, 1}.

Correctness is defined in a standard way.

Definition 14 (Correctness). A NIZK scheme NIZK = (NIZKSetup,NIZKProveNIZKVerify) is
correct if for all λ ∈ N and for all pairs (x,w) ∈ R it holds that

Pr

[
1 = NIZKVerify(crs, x, π)

∣∣∣∣ crs← NIZKSetup(1λ)
π ← NIZKProve(crs, x, w)

]
= 1

and the probability is taken over the random coins of NIZKSetup and NIZKProve.

We require that proofs for statements not in the language are hard to find.

Definition 15 (Soundness). A NIZK scheme NIZK = (NIZKSetup,NIZKProve,NIZKVerify) is
sound if for all λ ∈ N, for all PPT adversaries A, and for all x /∈ L, there exists a negligible
function negl such that

Pr

[
1 = NIZKVerify(crs, x, π∗)

∣∣∣∣ crs← NIZKSetup(1λ)
π∗ ← A(crs, x)

]
= negl(λ)

and the probability is taken over the random coins of NIZKSetup and A.

We define the classical notion of simulation-based zero-knowledge.

Definition 16 (Zero-Knowledge). A NIZK scheme NIZK = (NIZKSetup,NIZKProve,NIZKVerify)
is zero-knowledge if there exists a PPT simulator NIZKSim = (NIZKSim1,NIZKSim2) such that
for all λ ∈ N, all (x,w) ∈ R, and all PPT adversaries A it holds that∣∣∣∣∣∣∣∣

Pr

[
1← A(crs, π)

∣∣∣∣ crs← NIZKSetup(1λ)
π ← NIZKProve(crs, x, w)

]
−

Pr

[
1← A(crs, π)

∣∣∣∣ (crs, td)← NIZKSim1(1λ)
π ← NIZKSim2(crs, td, x)

]
∣∣∣∣∣∣∣∣ = negl(λ)

where the probabilities are taken over the random coins of NIZKSetup, NIZKProve, NIZKSim1,
NIZKSim2, and A.

Malicious Designated Verifier NIZK. One can also consider a weakening the standard
notion of NIZK that allows a designated verifier (MDV-NIZK) to choose part of the public
parameters maliciously and remains secure for polynomially many proofs [LQR+19]. The ad-
vantage of this relaxation is that MDV-NIZK schemes are known under a larger class of assump-
tions, such as CDH [QRW19]. All of the results in this work can use NIZKs and MDV-NIZKs
interchangeably.

15



Fcrs interacts with a set of parties (P1, . . . , Pn) and an adversary and it is parametrized by a
distribution D:

(1) On input (sid , Pi, Pj) from party Pi, sample crs←$D and send (sid , crs) to Pi and
(sid , crs, Pi, Pj) to Pj .

(2) On input (sid , Pi, Pj) from party Pj , check if sid was already used and return
(sid , crs) to Pj and the adversary in case; otherwise send nothing.

Figure 2: Ideal Functionality Fcrs [CR03].

3 Universal Composability

We give a brief overview of the definition of UC-security [Can01] with static corruption and we
establish some terminology. The following assumes familiarity with the basic concepts of UC-
security and we refer the reader to [Can01] for a comprehensive discussion on the matter. We
denote the environment by Z. For a real protocol Π and an adversary A we write EXECΠ,A,Z
to denote the ensemble corresponding to the protocol execution. For an ideal functionality F
and an adversary Sim we write IDEALF ,Sim,Z to denote the distribution ensemble of the ideal
world execution.

Definition 17 (Security). A protocol Π UC-realizes a functionality F if for all PPT adversaries
A corrupting a subset of parties there exists a simulator Sim such that for all environments Z
it holds that the following ensembles

EXECΠ,A,Z ≈ IDEALF ,Sim,Z

are computationally indistinguishable.

Since all of our protocols will be in the common reference string model we define the corre-
sponding functionality in Figure 2.

3.1 Two-Round Oblivious Transfer

In the following we define the notion of UC-secure two-round oblivious transfer (OT). Two-
round OT can be realized from a wide range of assumptions, including CDH [DGH+19] and
LWE [PVW08]. The syntax is given below and the corresponding ideal functionality is shown
in Figure 3.

Definition 18 (Oblivious Transfer). A two-round string-OT OT = (OTSetup,OTSend,OTReceive,
OTDecode) is defined as the following tuple of algorithms.

OTSetup(1λ) → crs : On input the security parameter 1λ, the generation algorithm returns a
common reference string crs.

OTReceive(crs, b) → (ot1, r) : On input the common reference string crs and a bit b, the
receiver algorithm returns a first message ot1 and a state r.

OTSend(crs, ot1,m0,m1) → ot2 : On input the common reference string crs, a first message
ot1, and a pair of strings (m0,m1) ∈ {0, 1}2λ, the sender algorithm returns a second
message ot2.

16



FOT interacts with an ideal sender S and an ideal receiver R as follows:

(1) On input (sid , send ,m0,m1) from the sender, store (m0,m1).

(2) On input (sid , receive, b) from the receiver, check if some inputs (m0,m1) have been
recorded for sid . If this is the case, send mb to the receiver and sid to the adversary;
otherwise send nothing.

Figure 3: Ideal Functionality FOT.

OTDecode(crs, ot2, r)→ m : On input the common reference string crs, a second message ot2,
and the receiver state r, the decoding algorithm returns a message m.

Correctness is given in the following.

Definition 19 (Correctness). A string-OT OT = (OTSetup,OTSend,OTReceive,OTDecode) is
correct if for all λ ∈ N, for all bits b ∈ {0, 1}, and any pair of messages (m0,m1) ∈ {0, 1}2λ it
holds that

Pr

mb = OTDecode(crs, ot2, r)

∣∣∣∣∣∣
crs← OTSetup(1λ)
(ot1, r)← OTReceive(crs, b)
ot2 ← OTSend(crs, ot1,m0,m1)

 = 1

where the probability is taken over the random coins of OTSetup, OTReceive, and OTSend.

3.2 Two-Round Two-Party Computation

We define two-party computation (2PC) and we focus on the case where the protocol consists of
a single message per party. Constructing a UC-secure protocol (with sublinear communication)
is going to be one of the main objective of this work. The ideal functionality is given in Figure 4.

Definition 20 (Two-Party Computation). A 2PC protocol 2PC = (2PCSetup, 2PCReceive,
2PCSend, 2PCDecode) is defined with respect to a function f and consists of the following algo-
rithms.

2PCSetup(1λ)→ crs : On input the security parameter 1λ, the generation algorithm returns a
common reference string crs.

2PCReceive(crs, x)→ (m1, r) : On input the common reference string crs and an input x, the
receiver algorithm returns a first message m1 and a state r.

2PCSend(crs,m1, y) → m2 : On input the common reference string crs, a first message m1,
and an input y, the sender algorithm returns a second message m2.

2PCDecode(crs,m2, r)→ z : On input the common reference string crs, a second message m2,
and the state r, the decoding algorithm returns a message z.

Correctness is given in the following.

Definition 21 (Correctness). A 2PC protocol 2PC = (2PCSetup, 2PCReceive, 2PCSend, 2PCDecode)
is correct if for all λ ∈ N, for all inputs (x, y) it holds that

Pr

f(x, y) = 2PCDecode(crs,m2, r)

∣∣∣∣∣∣
crs← 2PCSetup(1λ)
(m1, r)← 2PCReceive(crs, x)
m2 ← 2PCSend(crs,m1, y1)

 = 1

where the probability is taken over the random coins of 2PCSetup, 2PCReceive, and 2PCSend.

17



F2PC is parametrized by a function f and interacts with an ideal pair of parties (P1, P2) as
follows:

(1) On input (sid , receive, x) from the P1, store x.

(2) On input (sid , send , y) from P2, check if some input x have been recorded for sid . If
this is the case, send f(x, y) to P1 and sid to the adversary; otherwise send nothing.

Figure 4: Ideal Functionality F2PC.

4 Laconic Cryptography

In this section we define the main objects of interest of our work. All of the primitives that we
consider are in the common reference string (CRS) model.

4.1 Laconic Oblivious Transfer

In the following we introduce laconic oblivious transfer (LOT), the main object of interest of
our work [CDG+17]. For presentation purposes, we define two variants of LOT with different
efficiency and security requirements. Looking ahead, we will show a generic transformation,
thereby simplifying the task of designing a LOT scheme to its simplest flavour.

As discussed by Cho et al. [CDG+17], we can ignore any security requirement on the receiver
side: Although some bits of the database could be leaked, any LOT scheme can be generically
upgraded to achieve receiver security through a generic transformation, i.e., by running the
LOT under a 2PC protocol. In contrast to our work, Cho et al. [CDG+17] also considers the
property of updatability for a LOT, which allows one to modify a bit of the database and update
the digest in a significantly more efficient way than computing it from scratch. Since it is not
relevant for our applications, we omit this property.

4.1.1 Weak Laconic Oblivious Transfer

A weak LOT scheme is identical to the standard LOT [CDG+17] except that the sender algo-
rithm does not take as input two messages but chooses itself two random keys (k0, k1). This
can be seen as the analogous to key encapsulation for encryption schemes. The syntax is given
in the following.

Definition 22 (Weak Laconic Oblivious Transfer). A weak LOT LOT = (Setup,Hash,KGen,Receive)
is defined as the following tuple of algorithms.

Setup(1λ) → crs : On input the security parameter 1λ, the generation algorithm returns a
common reference string crs.

Hash(crs,D)→ (d, D̃) : On input the common reference string crs and a database D ∈ {0, 1}∗,
the hashing algorithm returns a digest d and a state D̃.

KGen(crs, d, L) → (c, k0, k1) : On input the common reference string crs, a digest d, and a
location L ∈ N, the key generation algorithm returns a ciphertext c and a pair of keys
(k0, k1).

ReceiveD̃(crs, c, L) → m : On input the common reference string crs, a ciphertext c, and a
location L ∈ N, the receiver algorithm (with random access to D̃) returns a key k.

18



The definition of correctness is given in the following.

Definition 23 (Correctness). A weak LOT LOT = (Setup,Hash,KGen,Receive) is correct if
for all λ ∈ N, for all databases D of size polynomial in λ, and for all memory locations L ∈
{1, . . . , |D|} it holds that

Pr

kD[L] = ReceiveD̃(crs, c, L)

∣∣∣∣∣∣
crs← Setup(1λ)

(d, D̃)← Hash(crs,D)
(c, k0, k1)← KGen(crs, d, L)

 = 1

where the probability is taken over the random coins of Setup and KGen.

We also consider a weaker notion of correctness where the above probability is bounded
from below by 1 − 1/poly(λ), for some polynomial function poly . We refer to such notion as
(1/poly(λ))-correctness. A weak LOT is required to satisfy only a rudimental notion of sender
security that we define in the following. Loosely speaking, we require that the adversary is not
able to predict both keys (k0, k1) in their entirety.

Definition 24 (Weak Sender Security). A weak LOT LOT = (Setup,Hash,KGen,Receive) is
weakly sender secure if for all λ ∈ N and for all PPT adversaries A = (A1,A2) there exists a
negligible function negl such that

Pr

(k0, k1) = A2(c, st)

∣∣∣∣∣∣
crs← Setup(1λ)
(d, L, st)← A1(crs)
(c, k0, k1)← KGen(crs, d, L)

 = negl(λ)

where the probability is taken over the random coins of Setup, A1, and KGen.

Efficiency. For efficiency, it is only required that the size of the digest d is at most half of
that of D, i.e, the Hash function is 2-to-1 compressing. In particular, there is no bound on the
efficiency of the algorithms and on the size of the ciphertext, except for being polynomial in the
security parameter. We refer to such notion as semi-efficiency. Jumping ahead, we will show
a generic transformation from any semi-efficient LOT to a full-fledged LOT without additional
assumptions.

4.1.2 Indistinguishable Laconic Oblivious Transfer

This version of LOT is equivalent to that introduced in [CDG+17], except that we upgrade
the definition of sender security to the malicious settings. Note that we consider without loss
of generality schemes that transfer a single bit (bit-LOT), which can be turned into multi-bit
schemes (string-LOT) by simply computing multiple ciphertexts over the same digest. The
security is preserved by a standard hybrid argument.

Definition 25 (Laconic Oblivious Transfer). A LOT LOT = (Setup,Hash, Send,Receive) is
defined as the following tuple of algorithms.

Setup(1λ) → crs : On input the security parameter 1λ, the generation algorithm returns a
common reference string crs.

Hash(crs,D)→ (d, D̃) : On input the common reference string crs and a database D ∈ {0, 1}∗,
the hashing algorithm returns a digest d and a state D̃.

Send(crs, d, L,m0,m1) → c : On input the common reference string crs, a digest d, a loca-
tion L ∈ N, and a pair of messages (m0,m1) ∈ {0, 1}2, the sender algorithm returns a
ciphertext c.

19



ReceiveD̃(crs, c, L) → m : On input the common reference string crs, a ciphertext c, and a
database location L ∈ N, the receiver algorithm (with random access to D̃) returns a
message m.

The definition of correctness is given in the following.

Definition 26 (Correctness). A LOT LOT = (Setup,Hash,Send,Receive) is correct if for all
λ ∈ N, for all databases D of size polynomial in λ, for all memory locations L ∈ {1, . . . , |D|},
and any pair of messages (m0,m1) ∈ {0, 1}2 it holds that

Pr

mD[L] = ReceiveD̃(crs, c, L)

∣∣∣∣∣∣
crs← Setup(1λ)

(d, D̃)← Hash(crs,D)
c← Send(crs, d, L,m0,m1)

 = 1

where the probability is taken over the random coins of Setup and Send.

The fact that the digest of a LOT is compressing, makes even defining sender security a non-
trivial task. We put forward the following indistinguishability-based definition, which suffices
for our purposes.

Definition 27 (Sender Indistinguishability). A LOT LOT = (Setup,Hash, Send,Receive) is
sender secure if for all λ ∈ N, for all PPT adversaries A = (A1,A2), and for all polynomial
functions poly(λ) there exists a negligible function negl such that

Pr

[
ε0 >

1

poly(λ)
and ε1 >

1

poly(λ)

]
= negl(λ)

where, for β ∈ {0, 1}, εβ is defined as

εβ =

∣∣∣∣∣∣∣∣∣∣∣∣
Pr

1← A2(c, st)

∣∣∣∣∣∣
crs← Setup(1λ)
(d, L,m0,m1, st)← A1(crs)
c← Send(crs, d, L,m0,m1)

−
Pr

1← A2(c, st)

∣∣∣∣∣∣
crs← Setup(1λ)
(d, L,m0,m1, st)← A1(crs)
c← Send(crs, d, L, r0, r1)



∣∣∣∣∣∣∣∣∣∣∣∣
where rβ←$ {0, 1}, r1−β = m1−β, and the probabilities are taken over the random coins of Setup,
Send, and A1.

Efficiency. Here it is required that the size of the digest d is a fixed polynomial in the
security parameter. Furthermore, we also impose a bound on the running time of the Hash
algorithm of |D| · poly(log(|D|), λ) and on the time complexity of Setup, Encode, and Receive of
poly(log(|D|), λ). These are the same efficiency requirements of Cho et al. [CDG+17].

4.2 Laconic Function Evaluation

We define laconic function evaluation (LFE), a primitive recently introduced by Quack, Wichs,
and Wee [QWW18]. In the same work, they presented a construction assuming the sub-
exponential hardness of the LWE problem. The scheme is defined with respect to a class
of circuits parametrized by the input and the circuit size, which we denote by C.

Definition 28 (Laconic Function Evaluation). A LFE LFE = (LFESetup, LFECompress, LFEEnc,
LFEDec) is defined as the following tuple of algorithms.

20



LFESetup(1λ)→ crs : On input the security parameter 1λ, the generation algorithm returns a
common reference string crs.

LFECompress(crs, C)→ (d, r) : On input the common reference string crs and a circuit C, the
compression algorithm returns a digest d and a decoding information r.

LFEEnc(crs, d, x) → c : On input the common reference string crs, a digest d, and a message
x, the encryption algorithm returns a ciphertext c.

LFEDec(crs, c, r) → y : On input the common reference string crs, a ciphertext c, and a
decoding string y, the decoding algorithm returns a message y.

The definition of correctness is given in the following.

Definition 29 (Correctness). A LFE = (LFESetup, LFECompress, LFEEnc, LFEDec) is correct if
for all λ ∈ N, for all circuits C ∈ C, and all messages x it holds that

Pr

C(x) = LFEDec(crs, c, r)

∣∣∣∣∣∣
crs← LFESetup(1λ)
(d, r)← LFECompress(crs, C)
c← LFEEnc(crs, d, x)

 = 1

where the probability is taken over the random coins of LFESetup, LFECompress, and LFEEnc.

We require that the encryption of a message x with respect to a compressed circuit C reveals
nothing beyond C(x). Here we define directly the notion of semi-malicious security, where the
adversary is allowed to specify the random coins of for the compression of the circuit.

Definition 30 (Security). A LFE LFE = (LFESetup, LFECompress, LFEEnc, LFEDec) is (semi-
maliciously) secure if there exists a PPT simulator LFESim such that for all admissible PPT
attackers A = (A1,A2) there exists a negligible function negl such that∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Pr

1← A2(c, st)

∣∣∣∣∣∣∣∣
crs← LFESetup(1λ)
(x, C, s, st)← A1(crs)
(d, r)← LFECompress(crs, C; s)
c← LFEEnc(crs, d, x)

−

Pr

1← A2(c, st)

∣∣∣∣∣∣∣∣
crs← LFESetup(1λ)
(x, C, s, st)← A1(crs)
(d, r)← LFECompress(crs, C; s)
c← LFESim(crs, d, C, C(x))



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= negl(λ)

where the attacker is admissible if C ∈ C and the probability is taken over the random coins of
LFESetup, A1, LFECompress, LFEEnc and LFESim.

Function hiding says that the compressed version of a circuit carries no information about
the circuit itself.

Definition 31 (Function-Hiding). A LFE LFE = (LFESetup, LFECompress, LFEEnc, LFEDec)
is function-hiding if there exists a PPT simulator LFESimFH such that for all admissible PPT
attackers A = (A1,A2) there exists a negligible function negl such that∣∣∣∣∣∣∣∣∣∣∣∣

Pr

1← A2(d, st)

∣∣∣∣∣∣
crs← LFESetup(1λ)
(C, st)← A1(crs)
(d, r)← LFECompress(crs, C)

−
Pr

1← A2(d, st)

∣∣∣∣∣∣
crs← LFESetup(1λ)
(C, st)← A1(crs)
d← LFESimFH(crs,C)



∣∣∣∣∣∣∣∣∣∣∣∣
= negl(λ)

21



where the attacker is admissible if C ∈ C the probability is taken over the random coins of
LFESetup, A1, and LFESimFH.

Efficiency. The scheme is requires to be laconic in the sense that the size of crs, d, and c
must be sublinear in the size of the circuit C. In the scheme constructed in [QWW18], the size
of crs and c is independent of the circuit width (but grows with the circuit depth), on the other
hand the size of d is bounded by a fixed polynomial in the security parameter. In terms of
computation, an LFE is required to be Bob-optimized, i.e., the computational complexity of the
LFEEnc algorithm depends only on the size of its input y and in particular does not depend on
the size of the circuit (except for its depth).

4.3 Laconic Conditional Disclosure of Secrets

Conditional disclosure of secrets (CDS) [AIR01] for a language L in NP with relation R is the
two-round analog of witness encryption [GGSW13]: Given a statement x and a message m from
the sender, the receiver is able to recover m if x ∈ L, whereas m stays hidden if this is not the
case. Furthermore, the witness w for x should be kept secret from the eyes of the sender.

Definition 32 (Conditional Disclosure of Secrets). A CDS scheme CDS = (CDSSetup,CDSReceive,
CDSSend,CDSDecode) for an NP-langauge L is defined as the following tuple of algorithms.

CDSSetup(1λ)→ crs : On input the security parameter 1λ, the generation algorithm returns a
common reference string crs.

CDSReceive(crs, x, w)→ (cds1, r) : On input the common reference string crs and a statement-
witness pair (x,w), the receiver algorithm returns a first message cds1 and a state r.

CDSSend(crs, x,m, cds1)→ cds2 : On input the common reference string crs, a statement x, a
message m ∈ {0, 1}∗, a first message cds1, the sender algorithm returns a second message
cds2.

CDSDecode(crs, cds2, r) → m : On input the common reference string crs, a second message
cds2, and the receiver state r, the decoding algorithm returns a message m.

Correctness requires that the decoding is successful if x ∈ L.

Definition 33 (Correctness). A CDS scheme CDS = (CDSSetup,CDSSend,CDSReceive,CDSDecode)
is correct if for all λ ∈ N, all (x,w) ∈ R, and any message m ∈ {0, 1}∗ it holds that

Pr

m = CDSDecode(crs, cds2, r)

∣∣∣∣∣∣
crs← CDSSetup(1λ)
(cds1, r)← CDSReceive(crs, x, w)
cds2 ← CDSSend(crs, x,m, cds1)

 = 1

where the probability is taken over the random coins of CDSSetup, CDSReceive, and CDSSend.

The central requirement for a CDS scheme is that the message is hidden if the given state-
ment is not in the corresponding NP-language.

Definition 34 (Message Indistinguishability). A CDS scheme CDS = (CDSSetup,CDSSend,
CDSReceive,CDSDecode) is message-indistinguishable if for all λ ∈ N, for all admissible PPT
adversaries A = (A1,A2), for all x /∈ L there exists a negligible function negl such that∣∣∣∣∣∣∣∣∣∣∣∣

Pr

1← A2(cds2, st)

∣∣∣∣∣∣
crs← CDSSetup(1λ)
(cds1,m0,m1, st)← A1(crs)
cds2 ← CDSSend(crs, x,m0, cds1)

−
Pr

1← A2(cds2, st)

∣∣∣∣∣∣
crs← CDSSetup(1λ)
(cds1,m0,m1, st)← A1(crs)
cds2 ← CDSSend(crs, x,m1, cds1)



∣∣∣∣∣∣∣∣∣∣∣∣
= negl(λ)

22



where A is admissible if m0 and m1 have equal length and the probabilities are taken over the
random coins of CDSSetup, CDSSend, and A1.

Finally, we require that no information is leaked to the sender by the message of the receiver.

Definition 35 (Receiver Simulation). A CDS scheme CDS = (CDSSetup,CDSSend,CDSReceive,
CDSDecode) is receiver simulatable if there exists a PPT simulator CDSSim = (CDSSim1,CDSSim2)
such that for all λ ∈ N, all (x,w) ∈ R, and all PPT adversaries A it holds that∣∣∣∣∣∣∣∣

Pr

[
1← A(crs, cds1)

∣∣∣∣ crs← CDSSetup(1λ)
(cds1, ·)← CDSReceive(crs, x, w)

]
−

Pr

[
1← A(crs, cds1)

∣∣∣∣ (crs, td)← CDSSim1(1λ)
cds1 ← CDSSim2(crs, td, x)

]
∣∣∣∣∣∣∣∣ = negl(λ)

where the probabilities are taken over the random coins of CDSSetup, CDSReceive, CDSSim1,
CDSSim2, and A.

Efficiency. The standard requirement for a CDS scheme is to run in time polynomial in the
security parameter and, possibly, in the size of the statement and of the witness. We say that a
CDS is laconic if the communication complexity is a fixed polynomial poly(λ) and in particular
is independent of the size of w (up to a poly-logarithmic factor). This notion can be seen as
the equivalent of succinct arguments [Mic94, Kil92] with implicit verification.

5 Context Security

In this Section we provide our definition of context security, which is a UC-inspired security
notion [Can01]. The notion is specifically geared towards non-interactive secure computation
protocols for which the communication complexity is sublinear in the receiver’s input.

UC security ensures that a protocol is secure in any environment or context. However, the
way UC-security is formalized makes it necessary that a straight-line simulator is able to extract
the inputs of malicious parties, which immediately implies that the communication complexity
scales with the size of the inputs of the parties. An important aspect in (standard) UC-security
is that the environment is chosen after the simulator. Specialized-Simulator UC [Lin03] allows
the simulator to depend on the environment, but not on its random coins. Context security
aims for a compromise, while salvaging the original motivation of UC, namely that protocols
remain secure in any context.

Unlike other works which relax UC security, e.g., [CLP13, BDH+17], the purpose of con-
text security is not to get rid of a trusted setup. Rather, our goal is to obtain meaningful
composability guarantees in the malicious setting while allowing for round-optimal protocols
with communication complexity that is sublinear in the inputs. This is neither possible with
UC/straight-line extraction, nor in the standalone simulation framework: While rewinding does
allow to extract large inputs from protocols with small communication, it does not help in the
two message setting. Our definition will only consider the single instance setting, but is crafted
in a way that multi instance security can be dealt with via standard hybrid arguments. In this
sense, we aim for conceptual simplicity rather than generality. We start by formally defining a
context.

Definition 36 (Protocol Context). We say that a PPT machine Z = (Z1,Z2) is a context
for two message protocol Π = (Setup,R1, S,R2), if it has the following syntactic properties: The
first stage Z1 takes as input a common reference string crs (generated by Setup) and random
coins r1 and outputs a receiver message rec and a state st. The second phase Z2 takes as input

23



the state st and random coins r2. The second phase is allowed to make queries y to a sender
oracle O(y), which are answered by S(crs, rec, y) (using fresh randomness from r2). In the end
the context outputs a bit b∗. Define Z(1λ) by

• Choose random tapes r1, r2

• Compute crs← Setup(1λ)

• (st, rec)← Z1(crs, r1)

• b∗ ← ZS(crs,rec,·)
2 (st, r2)

• Output b∗

We will now provide our definition of context security.

Definition 37. Let Π = (Setup,R1, S,R2) be a two-message protocol realizing a two-party
functionality F . We say that Π is context-secure if the following holds for every Π-context
Z = (Z1,Z2). We require that there exists a context extractor ExtZ and simulators SimSetup
and Sim such that the following holds for every δ > 0:

(1) SimSetup runs in time polynomial in λ (but independent of the run-time of Z1 and Z2)
and outputs a common reference string crs and a trapdoor td.

(2) ExtZ takes as input crs, st, rec, random coins r∗ and a parameter δ and outputs a value x∗

and an auxiliary string aux. ExtZ has overhead poly(λ, p(λ)) ·T2, where T2 is the overhead
of Z2 and the polynomial is independent of Z, only depending on λ.

(3) Sim takes as input td, rec, aux and a value z and outputs a sender-message snd. We require
The overhead of Sim to be polynomial in the overhead of λ, but independent of Z1 and Z2.

(4) The experiment EZ(1λ, δ) is defined by

• Choose random tapes r1, r2

• Compute (crs, td)← SimSetup(1λ)

• (st, d)← Z1(crs, r1)

• (x∗, aux)← ExtZ(crs, st, rec, r∗, δ)

• b∗ ← ZO
′(·)

2 (st, r2), where O′(y) computes and outputs Sim(td, rec, aux,F(x∗, y))

• Output b∗

(5) (Security) It holds for every inverse polynomial ε = ε(λ) that

|Pr[Z(1λ) = 1]− Pr[EZ(1λ, ε) = 1]| < ε,

except for finitely many λ.

Note specifically that we allow the ideal experiment EZ to depend on the distinguishing
advantage ε, which looks unusual at first glance. However, it is precisely this dependence which
allows us to prove context security for protocols with sublinear communication complexity.
Specifically, this dependence will let us use the distinguisher-dependent simulation technique
[JKKR17] to construct extractors ExtZ . The extractor ExtZ has a similar syntax as a knowledge
extractor [Nao03], however the main difference is that we will be able to prove this notion under

24



standard falsifiable assumptions. An important aspect which enables context security to be used
in a meaningful way is that ExtZ does not get to see r2.

The runtime requirement for ExtZ will make this notion compose benignly, unlike knowledge
extractors [Nao03]. More specifically, it will be natural and convenient to define experiments
iteratively, and this runtime requirement will ensure that runtimes of the experiments do not
explode. An important aspect will be that extractors are not run recursively. Extractors will
only be used in the first phase of a modified context, but the extractor itself does not use the
first phase. That is, in successive uses of the technique the runtime will only grow additively,
but not multiplicatively.

Limitations. We remark that context-security has to be used with care. If a context (Z1,Z2)
is such that Z2 uses a long-term secret generated by Z1, the extractor also needs to use this
secret when simulating Z2. In particular, this means that in a hybrid proof we cannot make
any further modifications to Z1 after extracting the receiver input, as this could invalidate the
extracted input. For example, consider a functionality where the sender provides a (long term)
signing key for a signature and the receiver obtains a signature on his input. Moreover, assume
that the receiver is also given the verification key of the signature (and can therefore check the
validity of signatures). Context-security allows us to extract the inputs of the receiver, but in
order to do so the extractor needs to know the signing key. This is problematic if we later want
to argue about the unforgeability of the signature, where a reduction is not given the signing
key but only access to a signing oracle. Yet, by the observation above the context-extractor
cannot extract the signing queries without being given the signing key. Note that this issue
does not exist in the setting of UC security.

Other Properties. Finally, a very convenient property of context security is that it imme-
diately implies game-based security notions with an efficient experiment. Specifically, phrase a
game as a context Z, apply context security and reason that the advantage in EZ is 0. Via
the way we have defined context security this will immediately imply that also in the original
experiment Z the advantage is negligible. For instance, for non-interactive secure computation
(NISC) one can consider the following indistinguishability-based security definition. The ma-
licious receiver first obtains a CRS, outputs a receiver message and two randomized functions
F0 and F1 for which it holds that on any input x the distributions F0(x) and F1(x) are indis-
tinguishable. The experiment flips a bit b and provides the adversary with a sender message
which allows the receiver to evaluate Fb on his input. The adversary then has to guess b.

Any context-secure NISC scheme immediately also satisfies this notion. We can phrase the
experiment, including the adversary as a context (Z1,Z2) where Z1 outputs the receiver message
(together with a state), and Z2 chooses the random bit b and computes the sender message via
access to a sender oracle. Now, context-security lets us argue that in the experiment EZ the
actual bit b used by the experiment is hidden from the view of the adversary, as the output of
the oracle only depends on Fb(x) (which is indistinguishable from F1−b(x)) rather than on Fb.

5.1 Some Useful Functionalities

We define the functionalities corresponding to the primitives of interest of this work, defined in
Section 4. Note that all of the functionalities that we consider are single-output, in the sense
that only one party learns an output at the end of the execution.

(1) Laconic Oblivious Transfer: The ideal functionality FLOT(D,m0,m1, L) takes as input a
database D, a pair of messages (m0,m1) and a location L. It returns (mD[L], L).

(2) Laconic Function Evaluation: The ideal functionality FLFE(C, x) takes as input a circuit
C and an input x. It returns C(x).

25



Setup(1λ) :

• Sample (G, p, g)← G(1λ).

• Sample a uniform vector (g1, . . . , g2λ)←$G2λ

• Return crs = (G, p, g, g1, . . . , g2λ).

Hash(crs,D) :

• Parse crs as (G, p, g, g1, . . . , g2λ) and D ∈ {0, 1}2λ as a bitstring.

• Compute d =
∏2λ
i=1 g

D[i]
i .

• Set D̃ = (D, d) and return (d, D̃).

KGen(crs, d, L) :

• Parse crs as (G, p, g, g1, . . . , g2λ) and d ∈ G.

• Sample a uniform r←$Zp.
• Compute the vector c = (gr1, . . . , g

r
2λ) \ grL.

• Set k0 = dr and k1 = (d/gL)r.

• Return (c, k0, k1).

ReceiveD̃(crs, c, L) :

• Parse D̃ as (D, d) and c as (h1, . . . , h2λ).

• Return
∏2λ
i=1,i 6=L h

D[i]
i .

Figure 5: CDH-based weak LOT.

(3) Laconic Conditional Disclosure of Secrets: The ideal functionality FCDS(w, x,m) is parametrized
by an NP-language L with relation R and takes as input a statement x, a witness w, and
a message m. The functionality returns m if R(w, x) = 1 and ⊥ otherwise.

6 Malicious Laconic Oblivious Transfer

In this section we present our constructions from different cryptographic hard problems. We
first construct a 2-to-1 compressing weak LOT from the CDH or the LWE assumption, then we
show how to generically bootstrap any 2-to-1 compressing weak LOT to a context-secure LOT
with an arbitrary compression factor.

6.1 From Computational Diffie-Hellman

We present our scheme for a weak LOT with malicious security assuming the hardness of the
CDH problem over a prime-order multiplicative cyclic group (G, p, g). For conceptual simplicity,
we assume that a group element can be represented using λ-many bits, but the scheme can be
generalized to arbitrary representations in a natural way. The construction is given in Figure 5.

26



6.1.1 Description

The public parameters of the scheme consist of a vector of group elements (g1, . . . , g2λ) sampled

uniformly at random. The hash of a string D is defined naturally as d =
∏2λ
i=1 g

D[i]
i , i.e., the

i-th group element is included in the product if D[i] = 1 and is omitted otherwise. Say that
we want to generate keys (k0, k1) and a ciphertext c such that c gives the adversary enough
information to compute kD[L] but not kD[L]⊕1. Then c is defined as a linear shift (for a uniform
scalar r) of the public parameters c = (gr1, . . . , g

r
2λ), except that we omit the element grL. Then

k0 is defined as dr and k1 as dr/grL.
We give some intuition why, given c is possible to recompute only one among k0 and k1: If

D[L] = 0, then c contains enough information to recompute dr =
∏2λ
i=1 g

D[i]·r
i , since grL would

be excluded from the product anyway. On the other hand if D[L] = 1, then one can recompute∏2λ
i=1,i 6=L g

D[i]·r
i = dr/grL, which is exactly the value of k1. Finally, it is very easy to see that

outputting both k1 and k0 simultaneously reveals the value of grL, which is as hard as solving
the CDH problem.

6.1.2 Analysis

We show that our scheme satisfied correctness.

Theorem 2 (Correctness). Let (G, p, g) be a prime-order multiplicative cyclic group. Then the
construction LOT = (Setup,Hash,Send,Receive) as defined in Figure 5 is correct.

Proof of Theorem 2. The proof consists in the observation that

kD[L] =

(
d

g
D[L]
L

)r
=

(∏2λ
i=1 g

D[i]
i

g
D[L]
L

)r
=

 2λ∏
i=1,i 6=L

g
D[i]
i

r

=
2λ∏

i=1,i 6=L
h
D[i]
i

which is exactly the output of the receiver.

We now argue that our scheme satisfies weak sender security.

Theorem 3 (Weak Sender Security). Let (G, p, g) be a CDH-hard group. Then the construction
LOT = (Setup,Hash,KGen,Receive) as defined in Figure 5 is weakly sender secure.

Proof of Theorem 3. The theorem is shown with a reduction to the CDH assumption. Assume
towards contradiction that there exists a PPT adversary A = (A1,A2) such that

Pr

(k0, k1) = A2(c, st)

∣∣∣∣∣∣
crs← Setup(1λ)
(d, L, st)← A1(crs)
(c, k0, k1)← KGen(crs, d, L)

 =
1

poly(λ)

for some polynomial function poly . On input a CDH challenge (G, p, g, ga1 , ga2), the reduction
samples a uniform vector (x1, . . . , x2λ)←$Z2λ

p and an index L̃←$ {1, . . . , 2λ}. Then it sets

crs = (G, p, g, gx1 , . . . , gxL−1 , ga1 , gxL+1 , . . . , gx2λ) and runs (d, L, st) ← A1(crs). If L 6= L̃
the reduction aborts, else it sets c = (ga2·x1 , . . . , ga2·xL−1 , ga2·xL+1 , . . . , ga2·x2λ). Then it runs
(k0, k1)← A2(c, st) and returns k0/k1.

The reduction runs in polynomial time and the inputs given to the adversary are identically
distributed as those in the original game. Note that if L = L̃ and the adversary correctly guesses
both k0 and k1, then we have that

k0

k1
=

da2

da2 · g−a2L

= ga2L = ga1·a2 .

Since this happens with probability at least 1
poly(λ)·2λ , it contradicts the CDH assumption.

27



6.2 From Learning with Errors

In the following we describe our weak LOT scheme assuming the hardness of the LWE problem.
Before describing the actual scheme we define some common tools which are instrumental for
our purposes.

6.2.1 The Rounding Function

Let q = c · p be an integer modulus. Define the rounding function b·cc : Zq → Zc as

bxcc = bx̄ · c/qc mod c

where x̄ ∈ Z is an arbitrary residue-class representative of x ∈ Zq. We are going to use the
following lemma about the rounding function b·cc, implicitly proven in [BPR12].

Lemma 2. Let q = c ·p be an integer modulus. Let x←$Zq be distributed uniformly at random.
Then it holds for all v ∈ {−B, . . . , B} that bx+ vcc = bxcc, except with probability (2B+1) ·c/q
over the random choice of x.

Proof of Lemma 2. Note that there are exactly c multiples of p = q/c in Zq. Thus, the proba-
bility that a uniform x ∈ Zq lands B-close from the nearest multiple of q/c is exactly

(2B + 1) · c/q.

Another property of the rounding function is that it partitions the domain Zq in c-many well
defined intervals of size exactly q/c = p. More concretely, the i-th interval is [p · (i−1), p · i−1].
This fact is going to be useful for our analysis.

6.2.2 Description

Our scheme is parametrized by the following variables:

• m : The size of the database D ∈ {0, 1}m.

• n : The dimension of the LWE problem.

• q : The modulus of the LWE problem. For ease of the analysis we are going to assume
that q is of the form c · p, for some constant c and an arbitrary integer p

• B : The bound on the absolute value of the noise, i.e., e ∈ {−B, . . . , B}.

• c : A constant that parametrizes the function b·cc, which is used in our construction.

In the analysis we set constraints on the parameters on demand. In the end of the section we
are going to show that such a set of constraints forms a satisfiable system of relations and that
the resulting LWEn,q,χ problem is still in the regime of parameters for which it is conjectured
to be hard. Our scheme is shown in Figure 6.

The scheme follows the same blueprint of the CDH-based construction but the noisy nature
of the LWE problem introduces some complications. Consider the following toy example where
the public parameters consists of a single matrix A ∈ Zn×mq : Hashing a database D ∈ {0, 1}m is
done by simply taking a linear combination of the columns of A, which results in a compressed
column vector d = AD. Take any location L, the key generation algorithm samples a column
vector s and computes a noisy inner product with each j-th column of A, i.e., bj = sTaj + ej ,

28



Setup(1λ) :

• For all i ∈ {1, . . . , λ}: Sample A(i)←$Zn×mq .

• Return crs = (A(1), . . . ,A(λ)).

Hash(crs,D) :

• Parse crs as (A(1), . . . ,A(λ)) and D ∈ {0, 1}m as a column vector.

• For all i ∈ {1, . . . , λ}: Compute d(i) = A(i)D.

• Set d = (d(1), . . . ,d(λ)), D̃ = (D, d), and return (d, D̃).

KGen(crs, d, L) :

• Parse crs as (A(1), . . . ,A(λ)) and d as (d(1), . . . ,d(λ)).

• Sample s←$Znq and parse it as a column vector.

• For all i ∈ {1, . . . , λ}:

– Parse (a
(i)
1 , . . . ,a

(i)
m ) as the columns of A(i).

– Sample (e
(i)
1 , . . . , e

(i)
m )←$χm.

– For all j ∈ {1, . . . ,m} \ {L}: Compute b
(i)
j = sTa

(i)
j + e

(i)
j .

– Set b(i) to be the row vector (b
(i)
1 , . . . , b

(i)
m−1).

– Sample (t
(i)
0 , t

(i)
1 )←$Z2

q .

– Set k
(i)
0 =

⌊
sTd(i) + t

(i)
0

⌋
c

and k
(i)
1 =

⌊
−sTd(i) + sTa

(i)
L + e

(i)
L + t

(i)
1

⌋
c
.

• Set c = ((b(1), t
(1)
0 , t

(1)
1 ), . . . , (b(λ), t

(λ)
0 , t

(λ)
1 )).

• Set k0 = k
(1)
0 ‖ . . . ‖k

(λ)
0 and k1 = k

(1)
1 ‖ . . . ‖k

(λ)
1 .

• Return (c, k0, k1).

ReceiveD̃(crs, c, L) :

• Parse c as ((b(1), t
(1)
0 , t

(1)
1 ), . . . , (b(λ), t

(λ)
0 , t

(λ)
1 )) and D̄ = D\D[L] as a column vector.

• For all i ∈ {1, . . . , λ}: Compute k(i) =
⌊
(−1)D[L] · b(i)D̄ + t

(i)
D[L]

⌋
c
.

• Return k = k(1)‖ . . . ‖k(λ).

Figure 6: LWE-based weak LOT.

except for j = L. The keys are then set to k0 = sTd and k1 = −sTd+sTaL+eL. It is important
to notice that that k0 + k1 = sTaL + eL, which is an LWE sample but it is unknown to the
eyes of the adversary. This suggests that outputting both values of k0 and k1 is equivalent to
predicting an LWE sample.

As in our previous scheme, given the row vector b = (b1, . . . , bm) one can reconstruct either
k0 or k1, depending on the value of D[L], by computing an inner product with D\D[L]. However
in this case sender cannot recover the exact value of kD[L] but only approximate it, due to the
presence of noise in b. To obviate this issue we leverage the fact that the rounding function
b·cc is resilient to small perturbations of the inputs. With this tool at hand, we set the keys to

29



be the rounded values k0 and k1 (as computed above), which the receiver can recover with very
high probability. However there are a few issues to be addressed:

(1) The output of the rounding function consists of a constant amount of bits, so there is just
not enough entropy to argue about unpredictability.

(2) The values k0 and k1 are not necessarily uniform in Zq.

We address (1) by simply repeating the protocol in parallel λ-many times. On the other hand
(2) can be solved by padding kb with a random tb, which is also given to the receiver.

6.2.3 Analysis

Note that setting m ≥ 2 · dlog(q)e · n · λ makes the first message 2-to-1 compressing. We now
argue about the (weak) correctness of our scheme.

Theorem 4 (Correctness). The construction LOT = (Setup,Hash,KGen,Receive) as defined in
Figure 6 is (1/λ2)-correct.

Proof of Theorem 4. We want to show that for all (D,L)

Pr

kD[L] = ReceiveD̃(crs, c, L)

∣∣∣∣∣∣
crs← Setup(1λ)

(d, D̃)← Hash(crs,D)
(c, k0, k1)← KGen(crs, d, L)

 ≥ 1− 1

λ2
.

For all i ∈ {1, . . . , λ}, we expand expand the product

b(i)D̄ =
∑
j 6=L

D[j] · b(i)j

=
∑
j 6=L

D[j] · (sTa
(i)
j + e

(i)
j )

=
∑
j 6=L

D[j] · sTa
(i)
j +

∑
j 6=L

D[j] · e(i)
j

= sT

∑
j 6=L

D[j] · a(i)
j

+
∑
j 6=L

D[j] · e(i)
j

= sTd(i) −D[L] · sTa
(i)
L +

∑
j 6=L

D[j] · e(i)
j

30



by linearity. Applying this equality for all i ∈ {1, . . . , λ} we obtain

k(i) =
⌊
(−1)D[L] · b(i)D̄ + t

(i)
D[L]

⌋
c

=

(−1)D[L] ·

sTd(i) −D[L] · sTa
(i)
L +

∑
j 6=L

D[j] · e(i)
j

+ t
(i)
D[L]


c

=

(−1)D[L] ·

sTd(i) −D[L] · sTa
(i)
L +

∑
j 6=L

D[j] · e(i)
j

+ t
(i)
D[L] +D[L] · e(i)

L −D[L] · e(i)
L


c

=

(−1)D[L] · sTd(i) +D[L] · sTa
(i)
L + (−1)D[L] ·

m∑
j=1

D[j] · e(i)
j + t

(i)
D[L] +D[L] · e(i)

L


c

=

(−1)D[L] · sTd(i) +D[L]
(
·sTa

(i)
L + e

(i)
L

)
+ (−1)D[L] ·

m∑
j=1

D[j] · e(i)
j︸ ︷︷ ︸

=ẽ

+t
(i)
D[L]


c

Note that the absolute value of ẽ is bounded by m ·B. Further note that t
(i)
D[L] is uniform in Zq.

Thus, by Lemma 2 we have that

k(i) =
⌊
(−1)D[L] · sTd(i) +D[L]

(
·sTa

(i)
L + e

(i)
L

)
+ ẽ+ t

(i)
D[L]

⌋
c

=
⌊
(−1)D[L] · sTd(i) +D[L]

(
·sTa

(i)
L + e

(i)
L

)
+ t

(i)
D[L]

⌋
c

= k
(i)
D[L]

except with probability
(2mB + 1) · c

q
.

Setting log(q) ≥ 3log(λ) + log(2mBc+ c) then we have that the above equality holds for all
i ∈ {1, . . . , λ} except with probability at most 1/λ3. Taking a union bound over the λ-many
parallel repetitions gives us the desired inequality.

Finally we show that our scheme satisfies weak sender security We now argue that our
scheme satisfies weak sender security.

Theorem 5 (Weak Sender Security). If the LWEn,q,χ assumption holds, then the construction
LOT = (Setup,Hash,KGen,Receive) as defined in Figure 6 is weakly sender secure.

Proof of Theorem 5. We show the claim with a reduction against the LWEn,q,χ problem. As-
sume towards contradiction that there exists a PPT adversary A = (A1,A2) such that

Pr

(k0, k1) = A2(c, st)

∣∣∣∣∣∣
crs← Setup(1λ)
(d, L, st)← A1(crs)
(c, k0, k1)← KGen(crs, d, L)

 =
1

poly(λ)
.

Then we construct a reduction (R) that solves LWEn,q,χ as follows. The reduction is given
a challenge (A,u) where A ∈ Zn×m·λq and u ∈ Zm·λq and parses A as the horizontal con-

catenation of λ-many Zn×mq matrices (A(i), . . . ,A(λ)). The adversary A1 is invoked on input

31



crs = (A(i), . . . ,A(λ)) and returns a tuple (d, L, st). For each i ∈ {1, . . . , λ}, the reduction sets
the vector b(i) to (u(i−1)m+1, . . . ,u(i−1)m+m) except that it omits the element u(i−1)m+L. Then

samples (t
(i)
0 , t

(i)
1 )←$Z2

q uniformly at random. The reduction returns to the adversary A2 the

ciphertext c = ((b(1), t
(1)
0 , t

(1)
1 ), . . . , (b(λ), t

(λ)
0 , t

(λ)
1 )) along with the state st. The adversary out-

puts a pair (k0, k1) that is parsed by the reduction as the concatenation of two λ-long vectors in

Zc: k0 = k
(1)
0 ‖ . . . ‖k

(λ)
0 and k1 = k

(1)
1 ‖ . . . ‖k

(λ)
1 . For all i ∈ {1, . . . , λ}, define R

(i)
0 as the interval

of all elements y0 ∈ Zq such that by0cc = k
(i)
0 and define R

(i)
1 analogously. Let R(i) be the set

of elements in z ∈ Zq such that there exists a y0 ∈ R(i)
0 and a y1 ∈ R(i)

1 such that y0 + y1 = z.

The reduction checks whether u(i−1)m+L + t
(i)
0 + t

(i)
1 ∈ R(i) and returns 1 if this is the case for

all i ∈ {1, . . . , λ}. Else it returns 0.

Note that all steps are efficiently computable: In particular, for all k
(i)
b ∈ Zc the correspond-

ing interval R
(i)
b consists of [p · k(i)

b , p · (k(i)
b + 1) − 1] and consequently also R(i) is trivial to

compute. We analyze the probability that the reduction outputs 1 for two separate cases.

(1) Uniform Samples: In this case it is enough to observe that all elements (uL, . . . ,u(λ−1)m+L)
are uniform in Zq and completely independent from the view of the adversary. Therefore,

for all i ∈ {1, . . . , λ}, the probability that u(i−1)m+L + t
(i)
0 + t

(i)
1 ∈ R(i) is at most

∣∣R(i)
∣∣

q
=

∣∣∣R(i)
0

∣∣∣+
∣∣∣R(i)

1

∣∣∣
q

=
2q

c
· 1

q
=

2

c
.

Setting c = 4 we obtain that the probability that the reduction outputs 1 is at most 1/2λ.

(2) LWE Samples: Note that in this case the input given to the adversary are identically
distributed as an honest run of the protocol where the keys are (implicitly) set to

k
(i)
0 =

⌊
sTd(i) + t

(i)
0

⌋
c

and k
(i)
1 =

⌊
−sTd(i) + u(i−1)m+L + t

(i)
1

⌋
c

where d(i) is part of the digest d given by the adversary. Let guess be the event that the
adversary correctly guesses both k0 and k1. Then, by the law of total probability we have

Pr [1← R] = Pr [1← R|guess] Pr [guess] + Pr [1← R| ¯guess] Pr [ ¯guess]

≥ Pr [1← R|guess] Pr [guess]

= Pr [1← R|guess] 1

poly(λ)

by initial hypothesis. Conditioned on the fact that the adversary correctly guesses both
k0 and k1, then for all i ∈ {1, . . . , λ} we have that

sTd(i) + t
(i)
0 ∈ R

(i)
0 and − sTd(i) + u(i−1)m+L + t

(i)
1 ∈ R

(i)
1

by definition, and consequently

sTd(i) + t
(i)
0 − sTd(i) + u(i−1)m+L + t

(i)
1 = u(i−1)m+L + t

(i)
1 + t

(i)
0 ∈ R

(i).

Thus the reduction outputs 1 with probability 1. It follows that Pr[1← R] ≥ 1/poly(λ).

The two bounds above show that the probability that the reduction outputs 1 differs by a non-
negligible amount depending on whether (A,u) is an LWE sample or not. This contradicts the
LWEn,q,χ assumption and concludes our proof.

32



¯Setup(1λ) : Return Setup(1λ).

¯Hash(crs,D) : Return Hash(crs,D).

¯Send(crs, d, L,m0,m1) :

• For all i ∈ {1, . . . , λ}: Sample (c(i), k
(i)
0 , k

(i)
1 )← KGen(crs, d, L).

• Set c̃ = (c(1), . . . , c(λ)), K0 = (k
(1)
0 , . . . , k

(λ)
0 ), and K1 = (k

(1)
1 , . . . , k

(λ)
1 ).

• Sample two random strings (t0, t1)←$ {0, 1}|K0|+|K1|.

• For all b ∈ {0, 1}: Compute Cb = GLEnc(Kb; tb)⊕mb.

• Return c = (c̃, C0, C1, t0, t1).

¯Receive
D̃

(crs, c, L) :

• Parse c as (c̃, C0, C1, t0, t1).

• For all i ∈ {1, . . . , λ}: Compute k(i) ← ReceiveD̃(crs, c(i), L).

• Set K = (k(1), . . . , k(λ)).

• Return GLEnc(K; tD[L])⊕ c̃.

Figure 7: From Weak to Full Sender Security.

6.2.4 Parameters

The above analysis fixes the following set of constraints:

• m ≥ 2 · dlog(q)e · n · λ

• log(q) ≥ 3log(λ) + log(2mBc+ c)

• c = 4

Ignoring the constants, the constraint O(log(q)) ≥ O(log(λ) + log(m) + log(B)) introduces a
gap polynomial in λ in the modulo-to-noise ratio, since m is polynomially bounded. Note that
the circular dependency of constraints (1) and (2) is always satisfied for a large enough q. The
parameter n is free and can be set to the regime for which LWEn,q,χ is conjectured to be hard.

6.3 Upgrading Laconic Oblivious Transfer

We first upgrade the security and then the efficiency of a LOT, through generic transformations.

6.3.1 From Weak Sender Security to Sender Indistinguishability

We show how to generically upgrade any weak LOT into a LOT with sender indistinguisha-
bility. The compiler, shown in Figure 7, heavily relies on the tools introduced by Döttling et
al. [DGH+19]: We first ensure that the adversary is not able to produce some digest d that
allows him to predict k0 for some values of c and k1 for the others. This is done by amplifying
the success probability of the adversary up to the point where it is no longer possible to be
successful consistently on two different choices for the receiver’s bit. Then we turn the search
problem into a decision one, using the standard Goldreich-Levin hard-core predicate [GL89].

Here the function GLEnc(k; t) is defined as
∑|k|

i=1 ki · ti, computed over F2.

33



The following theorem establishes our claim. The analysis is imported by the work of
Döttling et al. [DGH+19] and adapted to our syntax. For completeness, we give the proof for
the following theorem in Appendix A.

Theorem 6 (Weak to Full Sender Security). Let LOT = (Setup,Hash,KGen,Receive) be a weak
LOT. Then ¯LOT = ( ¯Setup, ¯Hash, ¯KGen, ¯Receive) as defined in Figure 7 is a standard LOT.

6.3.2 From Indistinguishability Security to Context Security

We will now show that any LOT with indistinguishabilty security also suffices context security.
To establish this, we will use distinguisher-dependent simulation. Technically, the theorem uses
the same ideas of Theorem 6.3 in [DGH+19] and some paragraphs are verbatim from [DGH+19].

Theorem 7. Assume that LOT = (Setup,Hash, Send,Receive) satisfies indistinguishability se-
curity. Then it also satisfies context security.

Proof of Theorem 7. We will prove the theorem via several lemmas. In order to do so, we will
first provide constructions of the relevant algorithms. Fix a PPT-context Z = (Z1,Z2) for LOT.
We start by defining a hybrid sender algorithm as follows:

Si(crs, d, (x∗1, . . . , x∗i ), L,m0,m1) :

• If L > i compute and output Send(crs, d, L,m0,m1)

• Otherwise, setm′x∗L
= mx∗L

andm′1−x∗L
= 0, compute and output Send(crs, d, L,m′0,m

′
1).

We will use the following notation. For an efficiently sampleable random variable T ∈ {0, 1}
we will use the shorthand “Compute an approximation µ̃ of E[T ] with error δ” to denote the
following algorithm which computes a sample average:

• Set N = dλ/δ2e

• For j = {1, . . . , N} sample tj←$T

• Output µ̃←$
1
N

∑N
j=1 tj

We also define the following bit-extraction algorithm, which extracts an approximation of the
i-th bit of the receiver’s input.

Extracti(crs, st, d, r1, (x
∗
1, . . . , x

∗
j−1), ε′) :

• Compute an approximation µ̃ of E[ZSi−1(crs,d,(x∗1,...,x
∗
i−1),·,·,·)

2 (crs, st)] with error ε′/4

• Compute an approximation µ̃0 of E[ZSi(crs,d,(x
∗
1,...,x

∗
i−1,0),·,·,·)

2 (crs, st)] with error ε′/4

• Compute an approximation µ̃1 of E[ZSi(crs,d,(x
∗
1,...,x

∗
i−1,1),·,·,·)

2 (crs, st)] with error ε′/4.

• Set δ̃i,0 ← |µ̃i,0 − µ̃i|
• Set δ̃i,1 ← |µ̃i,1 − µ̃i|
• If δ̃i,0 > ε′ and δ̃i,1 > ε′ abort and output ⊥.

• else if δ̃i,1 > 2ε′ output x∗i ← 0

• Otherwise output x∗i ← 1

We will now define the context extractor ExtZ and the simulator Sim. The setup-simulator
SimSetup will be identical to the Setup algorithm, thus we will not specify it.

34



ExtZ(crs, st, d, r∗, ε) :

• For j = {1, . . . , i}:
– Compute x∗j ← Extractj(crs, st, d, (x

∗
1, . . . , x

∗
j−1), ε′)

• Output x∗ ← (x∗1, . . . , x
∗
n)

We will set ε′ to a suitable value depending on ε

Sim(crs, d, x∗, z = (L,m)) : Setm′x∗L
= m andm′1−x∗L

= 0, compute and output Send(crs, d, L,m′0,m
′
1).

Finally, we will choose ε′(ε) = ε/n. This choice of ε′ will become meaningful in a moment. Now
assume towards contradiction that there exists an inverse polynomial ε such that it holds for
infinitely many λ that

|Pr[Z(1λ) = 1]− Pr[EZ(1λ, ε′) = 1]| > ε,

where ε′ = ε/n.

Hybrids. Consider the following sequence of hybrid experiments.

• Hybrid H0: This experiment is real context Z(1λ).

For i = {1, . . . , n} define the following sequence of hybrids.

• Hybrid Hi:

– Choose random tapes r1, r2

– Compute crs← Setup(1λ)

– Compute (st, d, aux)← Z1(crs, r1)

– For j = {1, . . . , i}:
∗ Compute x∗j ← Extractj(crs, st, d, (x

∗
1, . . . , x

∗
j−1), ε′)

– Compute b∗ ← ZOi(·,·,·)2 (st, r2), whereOi(L,m0,m1) computes Si(crs, d, (x∗1, . . . , x∗i ), L,m0,m1).

Notice that it holds that Hn is identically distributed to EZ(1λ, ε′). Consequently, it holds by
the averaging principle that there must exist an index i∗ ∈ {1, . . . , b} such that

|Pr[Hi∗ = 1]− Pr[Hi∗−1 = 1]| > ε/n.

We remark that this dictates our choices of ε′ = ε/n. We will construct an adversary against
the indistinguishability security of LOT. The algorithm Extracti∗(crs, st, d, (x

∗
1, . . . , x

∗
i∗−1), ε′)

computes approximations δ̃i∗,0 and δ̃i∗,1 of the advantages

δi∗,0 = |Pr[ZSi(crs,d,(x
∗
1,...,x

∗
i−1,0),·,·,·)

2 (crs, st) = 1]− Pr[Z
Si∗−1(crs,d,(x∗1,...,x

∗
i∗−1

),·,·,·)
2 (crs, st) = 1]|

δi∗,1 = |Pr[ZSi(crs,d,(x
∗
1,...,x

∗
i−1,1),·,·,·)

2 (crs, st) = 1]− Pr[Z
Si∗−1(crs,d,(x∗1,...,x

∗
i∗−1

),·,·,·)
2 (crs, st) = 1]|.

We will first establish that the approximations δ̃i∗,0 and δ̃i∗,1 are close to δi∗,0 and δi∗,1 respec-
tively, except with negligible probability over the coins used to compute the approximations.
We establish this by a routine application of the Hoeffding bound.

35



Lemma 3. Fix crs, st, d and x∗1, . . . , x
∗
i∗−1. Then it holds that

|δ̃i∗,0 − δi∗,0| ≤ ε′

|δ̃i∗,1 − δi∗,1| ≤ ε′

except with probability 2−λ over the choice of rExtract,i∗.

Proof of Lemma 3. The random variable µ̃i∗ is the average of N = dλ/ε′2e samples of

Y = Z
Si∗−1(crs,d,(x∗1,...,x

∗
i∗−1

),·,·,·)
2 (crs, st).

Analogously, for b ∈ {0, 1} the random variables µ̃i∗,b is the average of N = dλ/ε′2e samples of

Yb = Z
Si∗ (crs,d,(x∗1,...,x

∗
i∗−1

,b),·,·,·)
2 (crs, st).

We can thus write
δi∗,b = |E[Yb]− E[Y ]|.

Consequently, it holds by the Hoeffding inequality (Theorem 1) that

Pr[|µ̃i∗ − E[Y ]| > ε′/2] ≤ 2e−2N(ε′/2)2 ≤ 2e−λ

and for b ∈ {0, 1}
Pr[|µ̃i∗,b − E[Yb]| > ε′/2] ≤ 2e−2N(ε′/2)2 ≤ 2e−λ.

Given that

|µ̃i∗ − E[Y ]| ≤ ε′/2
|µ̃i∗,0 − E[Y0]| ≤ ε′/2
|µ̃i∗,1 − E[Y1]| ≤ ε′/2

and using that

δ̃i∗,0 = |µ̃i∗,0 − µ̃i∗ |
δ̃i∗,1 = |µ̃i∗,1 − µ̃i∗ |

we get that
|δ̃i∗,0 − δi∗,0| ≤ ε′

and
|δ̃i∗,1 − δi∗,1| ≤ ε′.

Consequently, it holds by a union-bound that

Pr
[
|δ̃i∗,0 − δi∗,0| > ε′ or |δ̃i∗,1 − δi∗,1| > ε′

]
≤ 6 · e−λ ≤ 2−λ

which concludes the proof.

Lemma 4. Assume that |Pr[Hi∗ = 1]− Pr[Hi∗−1 = 1]| ≥ ε′ for an i∗ ∈ [n]. Then there exists
a PPT adversary B which breaks the indistinguishability sender security of LOT.

Proof of Lemma 4. First note thatHi∗−1 andHi∗ are identical until x∗i∗ ← Extractj(crs, st, d, (x
∗
1, . . . , x

∗
i∗−1), ε′)

is computed in Hi∗ . We will therefore first rephrase Hi∗−1 and Hi∗ . Towards this goal, define
an alternate first stage Z ′1 by

36



Z ′1(crs, r1):

• Compute (st, d)← Z ′1(crs, r1)

• For j = {1, . . . , i∗ − 1}:
– Compute x∗j ← Extractj(crs, st, d, (x

∗
1, . . . , x

∗
j−1), ε′)

• Output (st, d, aux, (x∗1, . . . , x
∗
i∗))

We can now rephrase Hi∗−1 and Hi∗ by cutting of the common prefix.

• Hybrid H′i∗(crs, st, d, aux, (x∗1, . . . , x∗i∗−1)):

– Compute (st, d, aux, (x∗1, . . . , x
∗
i∗−1))← Z ′1(crs, r1)

– Compute b∗ ← Z ′
Si∗−1(crs,d,(x∗1,...,x

∗
i∗−1

),·,·,·)
2 (st, r2).

• Hybrid H′i∗(crs, st, d, aux, (x∗1, . . . , x∗i∗−1)):

– Compute (st, d, aux, (x∗1, . . . , x
∗
i∗−1))← Z ′1(crs, r1)

– Compute x∗i∗ ← Extracti∗(crs, st, d, (x
∗
1, . . . , x

∗
i∗−1), ε′)

– Compute b∗ ← Z ′Si∗ (crs,d,(x∗1,...,x
∗
i∗ ),·,·,·)

2 (st, r2).

Further, fix crs, st, d, (x∗1, . . . , x
∗
i∗−1) and the random tape r∗i∗ used for Extracti∗ and collect them

in a variable z. Note that the parameters in inp also determine x∗i∗ . We will now define three
events GAP(inp), APPROX(inp) and GOOD(inp) which only depend on inp.

(1) GAP(inp) holds, if and only if

|Pr[H′i∗(inp) = 1]− Pr[H′i∗−1(inp) = 1]| > 4ε′,

where the random choices are over the random coins r2 of Z2 and the random choices
made by the oracles Si∗−1 and Si∗ .

(2) Let δ̃i∗,0 and δ̃i∗,1 be the approximated values computed during the execution of Extracti∗(crs,
st, d, (x∗1, . . . , x

∗
i∗−1), ε′). APPROX(inp) holds, if and only if

|δ̃i∗,0 − δi∗,0| ≤ ε′

|δ̃i∗,1 − δi∗,1| ≤ ε′

(3) GOOD(inp) holds if and only if

δi∗,0 > ε′

δi∗,1 > ε′.

We will first elaborate on the events in more detail. The event GAP(inp) characterizes that
for the same choice of inp, the hybrids Hi∗(inp) and Hi∗−1(inp) have distance at least 4ε′.
Notice that the extracted prefix (x̄1, . . . , x̄i∗−1) is identical in both experiments Hi∗(inp) and
Hi∗−1(inp). Consequently, GAP(inp) immediately implies that none of the x∗1, . . . , x

∗
i∗−1 was

set to ⊥, as this would imply that the two experiments are identically distributed. The event
APPROX(inp) ensures that the approximations δ̃i∗,0 and δ̃i∗,1 are sufficiently close to the true
advantages.

37



Finally, the event GOOD(inp) ensures that inp is such that we will be able to mount a
successful attack against indistinguishability sender security of LOT. Our first goal will be to
show that the event GOOD(inp) holds with reasonably high probability over the choice of inp.
Once this is established, we will construct an adversary B against the indistinguishability sender
security of LOT. Observe that by Lemma 3 it holds that

Pr
inp

[¬APPROX(inp)] ≤ 2−λ. (1)

As
|Pr
inp

[Hi∗(inp) = 1]− Pr
inp

[Hi∗−1(inp) = 1]| = |Pr[Hi∗ = 1]− Pr[Hi∗−1 = 1]| ≥ 8 · ε′

it holds by the Markov inequality for advantages (Lemma 1) that

Pr
inp

[GAP(inp)] = Pr
inp

[|Pr[Hi∗(inp) = 1]− Pr[Hi∗−1(inp) = 1]| > 4ε′] ≥ 4ε′. (2)

We will now show that if GAP(inp) holds, then it must either hold GOOD(inp) or not APPROX(inp).
We will establish this by showing that ¬GOOD(inp) and APPROX(inp) imply ¬GAP(inp). Thus,
fix inp = (crs, st, d, (x∗1, . . . , x

∗
i∗−1), r∗i∗) with ¬GOOD(inp) and APPROX(inp). From ¬GOOD(inp)

it follows that there is a β ∈ {0, 1} such that

|Pr[ZSi(crs,d,(x
∗
1,...,x

∗
i−1,β),·,·,·)

2 (crs, st) = 1]− Pr[Z
Si∗−1(crs,d,(x∗1,...,x

∗
i∗−1

),·,·,·)
2 (crs, st) = 1]| ≤ ε′.

We will now show that under this condition Extracti∗(crs, st, d, (x
∗
1, . . . , x

∗
i∗−1), ε′) will be able

to identify the correct x∗i∗ . Observe that since it holds that APPROX(inp), we get that

δ̃i∗,β ≤ δi∗,β + ε′ ≤ 2ε′.

Consequently, Extracti∗(crs, st, d, (x
∗
1, . . . , x

∗
i∗−1), ε′) will not output ⊥. We will distinguish two

cases.

Case 1: In this case it holds that
δi∗,1−β ≤ 4ε′.

It follows immediately that
δi∗,x∗

i∗
≤ 4ε′,

regardless which x∗i∗ ∈ {0, 1} is chosen.

Case 2: In this case it holds that
δi∗,1−β > 4ε′.

Again since it holds that APPROX(inp), we get that

δ̃i∗,1−β ≥ δi∗,1−β − ε′ ≥ 3ε′ > 2ε′.

Consequently, Extracti∗(crs, st, d, (x
∗
1, . . . , x

∗
i∗−1), ε′) will set x̄i∗ ← β and again we can

conclude
δi∗,x∗

i∗
≤ 4ε′,

38



Further observe that since Extracti∗(crs, st, d, (x
∗
1, . . . , x

∗
i∗−1), ε′) will not output ⊥, the output of

Hi∗(inp) is distributed according to Z ′Si∗ (crs,d,(x∗1,...,x
∗
i∗ ),·,·,·)

2 (st, r2). We also know that Hi∗−1(inp)

is distributed according to Z ′
Si∗−1(crs,d,(x∗1,...,x

∗
i∗−1

),·,·,·)
2 (st, r2). This implies that

|Pr[Hi∗(inp) = 1]− Pr[Hi∗−1(inp) = 1]| =

|Z ′Si∗ (crs,d,(x∗1,...,x
∗
i∗ ),·,·,·)

2 (st, r2)−Z ′
Si∗−1(crs,d,(x∗1,...,x

∗
i∗−1

),·,·,·)
2 (st, r2)| ≤ 4ε′, (3)

which in turn implies that ¬GAP(inp). Thus, we have established that

GAP(inp)⇒ GOOD(inp) or ¬APPROX(inp). (4)

From (2), (4) and (1) we obtain that

4ε′ ≤ Pr[GAP(inp)]

≤ Pr[GOOD(inp) or ¬APPROX(inp)]

≤ Pr[GOOD(inp)] + Pr[¬APPROX(inp)]

≤ Pr[(GOOD(inp)] + 2−λ,

where the third inequality follows by the union-bound. This implies that

Pr
inp

[GOOD(inp)] ≥ 4ε′ − 2−λ > ε′.

We are now ready to construct an adversary B against the indistinguishability sender privacy
of LOT. The adversary B = (B1,B2) is given as follows. In abuse of notation, we assume that
B is stateful, i.e. the second stage B2 remembers all variables of the first stage B1. B essentially
simulatesHi∗−1, with the modification that calls to Send(crs, d, i∗, ·, ·) of Si∗−1 will be forwarded
to B’s oracle.

B1(crs; r1) :

• Compute (st, d)← Z ′1(crs, r1)

• For j = {1, . . . , i∗ − 1}:
– Compute x∗j ← Extractj(crs, st, d, (x

∗
1, . . . , x

∗
j−1), ε′)

• Output (d, i∗)

BO(·,·)
2 (st, r2) :

• Compute and output b∗ ← ZSi∗ (·,·,·)
2 , where the oracle Si∗(L,m0,m1) is implemented

as follows:

– If L > i∗ compute and output Send(crs, d, L,m0,m1)

– If L < i∗, setm′x∗L
= mx∗L

andm′1−x∗L
= 0, compute and output Send(crs, d, L,m′0,m

′
1).

– If L = i∗ query and output O(m0,m1).

Now fix crs and r1. We will distinguish 3 cases.

Case 1: In the first case, the oracle O(m0,m1) computes the function Send(crs, d, i∗,m0,m1).
It follows by inspection that in this case the output of B is distributed according to

Z
Si∗−1(crs,d,(x∗1,...,x

∗
i∗−1

),·,·,·)
2 (crs, st).

39



Case 2: In the second case, the oracle O(m0,m1) computes the function Send(crs, d, i∗,m0, 0).
It follows by inspection that in this case the output of B is distributed according to

ZSi∗ (crs,d,(x∗1,...,x
∗
i−1,0),·,·,·)

2 (crs, st).

Case 3: In the third case, the oracle O(m0,m1) computes the function Send(crs, d, i∗,m0, 1).
It follows by inspection that in this case the output of B is distributed according to

ZSi∗ (crs,d,(x∗1,...,x
∗
i−1,1),·,·,·)

2 (crs, st)

We conclude that

Advcrs,r,0LOT (B) = |Pr[ZSi∗ (crs,d,(x∗1,...,x
∗
i−1,0),·,·,·)

2 (crs, st) = 1]− Pr[Z
Si∗−1(crs,d,(x∗1,...,x

∗
i∗−1

),·,·,·)
2 (crs, st) = 1]|

Advcrs,r,1LOT (B) = |Pr[ZSi∗ (crs,d,(x∗1,...,x
∗
i−1,1),·,·,·)

2 (crs, st) = 1]− Pr[Z
Si∗−1(crs,d,(x∗1,...,x

∗
i∗−1

),·,·,·)
2 (crs, st) = 1]|.

This implies that

Pr
crs,r

[
Advcrs,r,0LOT (B; crs, r) > ε′

and Advcrs,r,1LOT (B; crs, r) > ε′

]
= Pr

crs,r,r∗
[GOOD(crs, rA, rExtract)] > ε′,

which contradicts the indistinguishability sender privacy of LOT.

6.3.3 Weak to Full Efficiency

The following construction shows that it suffices to consider LOT schemes with 2-to-1 com-
pressing Hash and algorithms Send and Receive with polynomial running times in the size of
the database. A similar statement already appeared in the work of Cho et al. [CDG+17],
however their analysis crucially relies on the semi-honest settings and does not directly ex-
tend to malicious security. In the following we recall a simplified version of the transformation
from [CDG+17]. We assume without loss of generality that the database has 2d · λ locations,
which can be indexed with strings of the form b1‖ . . . ‖bd−1‖t where the bits bi define the root-
to-leaf path and the string t define the position of the leaf. For ease of exposition we overload
the notation for the sender algorithm and we write

Send(crs, d,K) = Send(crs, d, 1, (K1
0 ,K

1
1 ))‖ . . . ‖Send(crs, d, 2λ, (K2λ

0 ,K2λ
1 ))

where K is consists of 2λ pairs of λ-bit strings. The same shortcut is used for the receiver
algorithm. The construction (given in Figure 10) consists of a chaining of garbled circuits that
allows the receiver to traverse the tree downwards via the selected path. Since the sender only
knows the root of the tree, the generation of subsequent Send algorithms is delayed by garbling
the circuit Ctrav (Figure 9). Once the leaf is reached, the choice of the message can be constrained
on the desired bit via the circuit Cread (Figure 8).

Hardwired Values: (t,m0,m1).

Input: (N1
0 ‖N1

1 , . . . , N
d−1
0 ‖N1

d−1, N
d).

• Return mNd[t]

Figure 8: Circuit Cleaf [m0,m1].

The following theorem shows that considering a LOT with 2-to-1 compression factor suffices.

40



Hardwired Values: (crs, b,K, r).

Input: (N0, N1).

• Compute e← Send(crs,Nb,K; r).

• Return e.

Figure 9: Circuit Ctrav[crs, b,K, r].

¯Setup(1λ) : Return Setup(1λ).

¯Hash(crs,D) :

• Build a Merkle tree D of D using the function Hash(crs, ·).
• Return (ρ,D), where ρ is the root of D.

¯Send(crs, d, L,m0,m1) :

• Parse L as b1‖ . . . ‖bd−1‖t
• For j = {d, . . . , 1}:

– Sample ri←$ {0, 1}λ

– If j = 1 : Compute e0 ← Send(crs, d,K1)

– If j = d : Compute (C̃d,Kd)← Garble(1λ, Cleaf [t,m0,m1])

– Otherwise, compute (C̃i,Ki)← Garble(1λ, Ctrav[crs, bi,Ki+1, ri])

• Return c = (e0, C̃1, . . . , C̃d).

¯Receive
D̃

(crs, c, L) :

• Parse c as (e0, C̃1, . . . , C̃d) and L as b1‖ . . . ‖bd−1‖t.
• Denote the end note of the path b1b2 . . . bi by Db1b2...bi .

• For all i ∈ {1, . . . , d− 1}, compute:

– M i ← Receive(crs, ei−1,Db1b2...bi−10‖Db1b2...bi−11).

– ei ← Eval(Ci,M i).

• Compute Md ← Receive(crs, ed−1,Db1b2...bd−10‖Db1b2...bd−11).

• Return m = Eval(C̃leaf , (M i, . . . ,Md)).

Figure 10: From 2-to-1 to arbitrary compression.

Theorem 8 (Weak to Full Efficiency). Let LOT = (Setup,Hash,Send,Receive) be a LOT with
2-to-1 compression. Then ¯LOT = ( ¯Setup, ¯Hash, ¯Send, ¯Receive) as defined in Figure 10 is LOT
with arbitrary compression.

Proof of Theorem 8. We start with the high-level overview. Our strategy is to associate every
node in the Merkle tree with two hybrids. In this sequence of hybrids we start in the root node
traverse the tree in such a way that it is ensure that once we reach a node ν, its parent has
already been traversed, e.g. via breadth-first search or depth-first search from the root. This

41



will ensure that once we reach hybrid Hν , the LOT message corresponding to the parent of ν
has been extracted. In each node ν, we will first switch the garbled circuit to simulation, then
extract the digest dν at this node.

There are 2d−1 nodes. Let the sequence of nodes, in the order in which they are interated be
ν0, . . . , ν2d−2. For shorthand, let ` = 2d−2. For ease of notation we will leave out random coins
in the notation of Z1,Z2 and ExtZ . We will first provide the hybrids and derive the simulators
and the extractor from the last hybrid. Now fix a context Z = (Z1,Z2).

• Hybrid H0(δ): This is the real experiment. Specifically,

– crs← Setup(1λ)

– (st, d)← Z1(crs)

– Compute and output b∗ ← ZO
(0)(·)

2 (st).

The oracle O(0)(L,m0,m1) implements ¯Send(crs, d, L,m0,m1).

• Hybrid H1(δ): In this experiment we will extract dν1 as a LOT hash (i.e. 2-to-1). First we

rephrase H0 as a context (Z(1)
1 ,Z(1)

2 ) for LOT. We will set Z(1)
1 = Z1 but interpret d = dν0

as a hash value for LOT. Moreover, we interpret ZO
(0)(·)

2 as a single machine Z(1)
2 , except

for calls byO(0) to Send(crs, d, ·), which will be implemented by oracle calls. Consequently,

ZO
(0)(·)

2 and Z(1)
2

Send(crs,d,·)
compute identical functions. Context security of LOT yields

an an extractor Ext
(1)
Z and a simulator Sim, which we will use in the construction of H1.

We can now define H1 as follows.

– crs← Setup(1λ)

– (st, d)← Z1(crs)

– Let ν1,l be the left child node of the root node ν1 and ν1,r be the right child node of
the root node ν1.

– (dν1,l‖dν1,r , aux1)← Ext
(1)
Z (crs, st, dν1 , δ)

– Compute and output b∗ ← ZO
(1)(·)

2 (st).

Furthermore, O(1) is identical to O(0), except that we replace calls to Send(crs, d,K) for
any K by calls to Sim(crs, d, auxroot,Kdνl‖dνr )

Consider the following hybrids for i = {1, . . . , 2d − 1}.

• Hybrid H2i(δ): O(2i) is identical to O(2i−1), except for the following changes. For a given
index L let ν ′1, . . . , ν

′
d be the root-to-leaf path for L, where ν ′1 is the root node and ν ′l a

lead node.

If νi = ν ′d (i.e. νi is the leaf-node in the path for index L), we replace the instruction
(C̃d,Kd)← Garble(1λ, Cleaf [t,m0,m1]) by (C̃d,Kd)← GCSim(1λ,mD[t]).

Otherwise, at node νi = ν ′j for some j we replace the instruction (C̃i,Kj) ← Garble(1λ,

Ctrav[crs, bj ,Kj+1, rj ]) by (C̃trav,Kj
νi,l‖νi,r)← GCSim(1λ,Send(crs,Nbj ,K; r)).

• Hybrid H2i+1(δ): In this experiment we will extract dνi as a LOT hash (i.e. 2-to-1). First

we rephrase H2i as a context for LOT. That is, we define a context Z(i)
1 which outputs

a state st′ comprising of a state st and all LOT hash preimages extracted so far. It also
outputs the hash dνi at node νi.

42



Moreover, we interpret ZO
(2i)(·)

2 as a single machine Z(i)
2 , except for calls by O(2i) to

Send(crs, dνi , ·), which will be implemented by oracle calls. Consequently, ZO
(2i)(·)

2 and

Z(i)
2

Send(crs,dνi ,·)
compute identical functions. Context security of LOT yields an an extrac-

tor Ext
(i)
Z and a simulator Sim, which we will use in the construction of H2i+1. We can

now define H2i+1 as follows.

– crs← Setup(1λ)

– (st, d)← Z1(crs)

– For j = {0, . . . , i}:
∗ Let νj,l be the left child of node νj and νj,r be the right child of node νj .

∗ (dνj,l‖dνj,r , auxj)← Ext
(j)
Z (crs, (st, (dνk , dνk,l , dνk,r , auxk)k≤j), dνj , δ)

– Compute and output b∗ ← ZO
(2i+1)(·)

2 (st).

Furthermore, O(2i+1) is identical to O(2i), except that we replace calls to Send(crs, dνi ,K)
for any K by calls to Sim(crs, d, auxi,Kdνi,l‖dνi,r )

In the last hybrid H2`+1)(δ), the oracle O2`+1 does not make any calls to Send, but only calls
to Sim. We can therefore now define the extractor ExtZ and the simulator ¯Sim.

ExtZ(crs, st, d, δ) :

• For j = {0, . . . , `}:
– Let νj,l be the left child of node νj and νj,r be the right child of node νj .

– (dνj,l‖dνj,r , auxj)← Ext
(j)
Z (crs, (st, (dνk , dνk,l , dνk,r , auxk)k≤j), dνj , δ)

– Set D = (D1, . . . , D2d)

– Set aux = (auxj)j
– Output (D, aux)

¯Sim(crs, d, aux, (L, z)) :

• Let ν ′1, . . . , ν
′
d be the root-to-leaf path corresponding to L

• Compute (C̃d,Kd
dν′
d

)← GCSim(1λ,mD[t])

• For j = {d− 1, . . . , 1}:
– Let νj,l be the left child of node ν ′j and νj,r be the right child of node ν ′j .

– Compute (C̃trav,Kj)← GCSim(1λ,Sim(crs, d, auxk,K
j+1
dνj,l‖dνj,r

)).

• Compute e← Sim(crs, d, auxk,K
1
dν0,l‖dν0,r

)

As there are 2`+1 hybrid steps, we will set δ = ε/(2`+1). Now assume towards contradiction
that there exists an inverse polynomial ε such that it holds for infinitely many 1λ that

|Pr[Z(crs) = 1]− Pr[EZ(crs, ε/(2`+ 1))]| > ε.

As H0(ε/(2`+1)) is identical to Z(crs) and H2`+1(ε/(2`+1)) is identical to EZ(crs, ε/(2`+1)),
by the averaging principle there exists an k ∈ {1, . . . , 2`+ 1} such that

|Pr[Hk(ε/(2`+ 1)) = 1]− Pr[Hk−1(ε/(2`+ 1))]| > ε/(2`+ 1).

We will now show that this leads to a contradiction for every k ∈ {1, . . . , 2`+ 1}.

43



Case k = 1: In this case we will show that this leads to a contradiction against the context-

security of LOT. For hybrid H1 we constructed an LOT context Z1 = (Z(1)
1 ),Z(1)

2 which
produces an output that is identically distributed to H0. H1 is constructed in a way such
that its output is identically distributed to that of EZ. Consequently, it holds that

|Pr[Z(1)
1 = 1]− Pr[EZ(1)(ε/(2`+ 1))) = 1]|

= |Pr[H1(ε/(2`+ 1)) = 1]− Pr[H0(ε/(2`+ 1))]|
> ε/(2`+ 1),

which contradicts the context-security of LOT.

Case k = 2i: For this case we get a contradiction via a routine application of simulation
security of the garbling scheme. In more detail, in hybrid H2i−1 there is only one set
of input labels at node νi which Z2 can obtain. Consequently, we can apply security of
the garbling scheme in a hybrid fashion, i.e. once for each call to the oracle and the
contradiction follows.

Case k = 2i + 1: In this case we will show that this leads to a contradiction against the
context-security of LOT. We proceed as in the case k = 1. More specifically, to define

hybrid H2i+1 we have rephrased H2i as a context Z(i) = (Z(i)
1 ,Z(i)

2 ) for LOT. By the way
we have constructed H2i+1 it holds that the output of H2i+1 is identically distributed to
EZ(i). Consequently, it holds that

|Pr[Z(i)
1 = 1]− Pr[EZ(i)(ε/(2`+ 1))) = 1]|

= |Pr[H2i(ε/(2`+ 1)) = 1]− Pr[H2i−1(ε/(2`+ 1))]|
> ε/(2`+ 1),

which contradicts the context-security of LOT.

This concludes the proof.

7 Laconic Conditional Disclosure of Secrets

In the following we show how to construct a laconic CDS given a context-secure LOT. As a
corollary, we obtain two concrete instantiations from CDH and LWE.

7.1 Subroutines

Before presenting the description of our scheme, we introduce some subroutines that are going
to be useful for presentation purposes. Let (PCPProve,PCPVerify) be a (non-adaptive) PCP
scheme. Since the scheme is non-adaptive it follows that fixing the random tape of the verifier
algorithm uniquely determines a set of queries (L1, . . . , Lq), where q is some constant that
denotes the query complexity of the PCP. Let O[π̄] be an oracle that has hardwired a string
π̄ ∈ {0, 1}q. For notational convenience we denote by PCPVerifyO[π̄](x; s) the execution of the
verification algorithm (fixing the random tape to s) where the i-th query is answered with π̄[i],
regardless of the location asked.

The first circuit that we define is CPCP (Figure 11) and has λ-many copies of the PCP
verifier hardwired, each executed on a fresh random tape si. The circuit takes as input a
set of q · λ bits, which are aggregated into λ-many q-bits strings π̄i, and it tests whether all
functions PCPVerifyO[π̄i](x; si) = 1. If this is the case, then it outputs some hardwired message

44



Hardwired Values: (m, s1, . . . , sλ).

Input: (π1, . . . , πq·λ).

• For all i ∈ {1, . . . , λ} :

– Set π̄i = πq(i−1)‖ . . . ‖πq(i−1)+q.

– Compute bi = PCPVerifyO[π̄i](x; si).

• If
∏λ
i=1 bi = 1, then return m.

• Else return ⊥.

Figure 11: Circuit CPCP[m, s1, . . . , sλ].

m, otherwise it returns some distinguished string ⊥. Assume for the moment that the string
π̄i is identical to the collection of answers to the queried locations (L1, . . . , Lq) of some fixed
encoding π, i.e., π̄i = π[L1]‖ . . . ‖π[Lq]. Then the circuit CPCP consists of evaluating an amplified
version of the PCP verifier.

In Figure 12 we define the circuit CLOT, which takes as input a digest d and has hardwired

a set of locations (L1, . . . , Lq·λ) and a set of label pairs (`
(0)
i , `

(1)
i ). The circuit executes several

parallel instances of the LOT transferring the label `
(D[Li])
i , where D is the pre-image of d. To

see how the two circuits are connected, one should think of the labels hardwired in CLOT as
the ones derived from the garbling of CPCP. This will allow us to run the latter circuit in a
consistent way on a very large database (looking ahead, the PCP encoding π) communicating
only the bits that we are interested in.

Hardwired Values: (crs, (L1, `
(0)
1 , `

(1)
1 ), . . . , (Lq·λ, `

(0)
q·λ, `

(1)
q·λ)).

Input: d.

• For all i ∈ {1, . . . , q · λ} : Compute ci = Send(crs, d, Li, `
(0)
i , `

(1)
i ).

• Return (c1, . . . , cq·λ).

Figure 12: Circuit CLOT[crs, {Li, `(0)
i , `

(1)
i }

q·λ
i=1].

7.2 Description

Our CDS construction CDS = (CDSSetup,CDSReceive,CDSSetup,CDSDecode) for an NP-complete
langauge L is built from the following cryptographic objects:

• A maliciously secure string-LOT (Setup,Hash,Send,Receive).

• A UC-secure 2-round string-OT (OTSetup,OTReceive,OTSend,OTDecode).

• A garbling scheme (Garble,Eval).

• A witness-extractable PCP scheme (PCPProve,PCPVerify).

We give the full description of the laconic CDS scheme in Figure 13. The construction stems
from a connection between LOT and PCPs: LOT allows one to hash a large string in such a

45



CDSSetup(1λ) :

• Compute crsLOT ← Setup(1λ) and crsOT ← OTSetup(1λ).

• Return crs = (crsOT, crsLOT).

CDSReceive(crs, x, w) :

• Parse crs as (crsOT, crsLOT).

• Compute π ← PCPProve(x,w).

• Compute (d, π̃)← Hash(crsLOT, π).

• For all i ∈ {1, . . . , |d|} : Compute (ot
(i)
1 , r(i))← OTReceive(crsOT, d[i]).

• Return cds1 = (ot
(1)
1 , . . . , ot

(|d|)
1 ) and r = (r(1), . . . , r(|d|), π̃).

CDSSend(crs, x,m, cds1) :

• Parse crs as (crsOT, crsLOT) and cds1 as (ot
(1)
1 , . . . , ot

(|d|)
1 ).

• For all i ∈ {1, . . . , λ} :

– Sample a random string si ← {0, 1}t.
– Let (Lq(i−1), . . . , Lq(i−1)+q) be the queries of the algorithm PCPVerify(x; si).

• Garble (C̃PCP, {`
(0)
i , `

(1)
i }

q·λ
i=1)← Garble(1λ, CPCP[m, s1, . . . , sλ]).

• Garble (C̃LOT, {k
(0)
i , k

(1)
i }

|d|
i=1)← Garble(1λ, CLOT[crsLOT, {Li, `

(0)
i , `

(1)
i }

q·λ
i=1]).

• For all i ∈ {1, . . . , |d|} : Compute ot
(i)
2 ← OTSend(crsOT, ot

(i)
1 , k

(0)
i , k

(1)
i ).

• Return cds2 = (C̃PCP, C̃LOT, ot
(1)
2 , . . . , ot

(|d|)
2 , L1, . . . , Lq·λ).

CDSDecode(crs, cds2, r) :

• Parse cds2 as (C̃PCP, C̃LOT, ot
(1)
2 , . . . , ot

(|d|)
2 , L1, . . . , Lq·λ) and r as (r(1), . . . , r(|d|), π̃).

• For all i ∈ {1, . . . , |d|} : Compute ki ← OTDecode(crsOT, ot
(i)
2 , r(i)).

• Compute (c1, . . . , cq·λ)← Eval(C̃LOT, {ki}
|d|
i=1).

• For all i ∈ {1, . . . , q · λ} : Compute `i ← Receiveπ̃(crsLOT, ci, Li).

• Return Eval(C̃PCP, {`i}q·λi=1).

Figure 13: Laconic Conditional Disclosure of Secrets.

way that can be accessed at individual point without parsing the full string. On the other hand
a PCP consists of an encoded string that can be queried in very few locations to check the
validity of a statement. This suggest a very natural strategy to build a laconic CDS: The prover
computes the PCP encoding of its witness and hashes it via a LOT scheme. The sender garbles
a circuit that internally runs the PCP verifier and returns the secret message if the verifier
accepts. The input of the circuit consists of the locations of the PCP encoding queried by the
verifier. Computing the LOT Send algorithm on input each pair of input labels makes sure that
the prover learns the output of the garbled circuit and nothing more. The probability that a
false statement causes the PCP verifier to accept is then decreased arbitrarily using standard
amplification techniques.

46



7.3 Efficiency

To see why the construction is laconic, observe that the first message consists of |d|-many
parallel string-OT instances (for strings of λ bits) and the size of d is a fixed polynomial in
the security parameter, regardless of the size of the database. The second message additionally
contains (q · λ)-many random locations (L1, . . . , Lq·λ) and the two garbled circuits C̃PCP and
C̃LOT. Observe that the size of the circuit CLOT depends only on q and λ and q is a constant.
On the other hand the size of CPCP is dominated by the λ parallel copies of the PCP verifier,
whose size is proportional to the size of the statement |x|.

All algorithms are clearly PPT. Of particular interest is the computational complexity of
the CDSSend algorithm, which we discuss in the following. The sender algorithm determines
a set of locations (L1, . . . Lq·) by running λ copies of the PCP verifier over the statement x.
For all of our cases of interest, the size of the statement |x| is going to be bounded by a fixed
polynomial in λ. The remainder of the computation of CDSSend is bounded by some polynomial
poly(λ, q, |d|), where q is a constant and |d| is also a fixed polynomial in λ. We can conclude
that the runtime of CDSSend is that of a fixed poly(λ).

Handling Large Statements. If the statement is not small, then the communication over-
head of our laconic CDS can be further reduced with a standard trick: Augment the statement
with the hash H(x) = h and define the new language L′ as

L′ =
{
h ∈ {0, 1}λ

∣∣∣ ∃ (w, x) : R(w, x) = 1 ∧H(x) = h
}

where R is the original NP-relation, then run the same protocol on L′. The key of the hash is
then set to be part of the common reference string. Clearly the sender has to compute the hash
at least once, but this can be delegated to an offline phase, prior to the protocol execution.

7.4 Analysis

We show that the scheme is correct.

Theorem 9 (Correctness). The construction (CDSSetup,CDSReceive,CDSSetup,CDSDecode)
as defined in Figure 13 is correct.

Proof of Theorem 9. By the correctness of the OT we have that, for all i ∈ {1, . . . , |d|},

k
(d[i])
i = OTDecode(crsOT, ot

(i)
2 , r(i)) = ki

and it follows that

Eval(C̃LOT, {k
(d[i])
i }|d|i=1) = CLOT(d) = {Send(crsLOT, d, Li, `

(0)
i , `

(1)
i )}q·λi=1 = (c1, . . . , cq·λ)

by the correctness of the garbling scheme. For all i ∈ {1, . . . , q · λ}, we have

`
(π[i])
i = Receiveπ̃(crsLOT, ci, Li) = `i

by the correctness of LOT. Finally, another invocation of the correctness of the garbling scheme
yields

Eval(C̃PCP, {`
(π[Li])
i }q·λi=1) = CPCP(π[L1], . . . , π[Lq·λ]) = m

since for all randomness s ∈ {0, 1}t and for all x ∈ L, we have that

PCPVerifyO[π[L1]‖...‖π[Lq ]](x; s) = PCPVerifyπ(x; s) = 1.

where π ← PCPProve(x,w) and (L1, . . . , Lq) is the set of queries of PCPVerify(x; s).

47



We turn to proving that the CDS construction satisfies context security.

Theorem 10 (Context Security). Let (Setup,Hash,Send,Receive) be a context-secure string-
LOT, let (OTSetup,OTReceive,OTSend,OTDecode) be a UC-secure string-OT, and let (Garble,Eval)
be a secure garbling scheme. Then the construction (CDSSetup,CDSReceive, CDSSetup,CDSDecode)
as defined in Figure 13 is context-secure.

Proof of Theorem 10. Let Z = (Z1,Z2) be a context for the CDS protocol. We will start by
defining a sequence of hybrids.

• Hybrid H0: This is the real context Z(1λ). Specifically H0 computes

– Compute crsLOT ← Setup(1λ) and crsOT ← OTSetup(1λ).

– crs← (crsOT, crsLOT).

– (st, cds1)← Z1(crs)

– b∗ ← ZCDSSend(crs,·,·,cds1)
2 (st)

• Hybrid H1: This is identical to hybrid H0, except that we give Z2 access to an oracle O1,
which makes the following modification to CDSSend. For all i ∈ {1, . . . , |d|}, we simulate

the second message of the (standard) OT protocol on input (k
(0)
i , k

(1)
i ). Furthermore, we

extract the OT-input d of the receiver.

• Hybrid H2: This is identical to hybrid H1, except that we give Z2 access to an oracle O2,
which makes the following modification to O1. The garbled circuit C̃LOT is computed via
the garbled-circuit simulator rather than using the garbling algorithm. That is, instead
of computing

(C̃LOT, {k
(0)
i , k

(1)
i }

|d|
i=1)← Garble(1λ, CLOT[crsLOT, {Li, `

(0)
i , `

(1)
i }

q·λ
i=1])

we compute

(C̃LOT, {ki}
|d|
i=1)← GCSim(1λ, |CLOT|, (c1, . . . , cq·λ)),

where the ci are computed via ci ← Send(crsLOT, d, Li, `
(0)
i , `

(1)
i ).

• Hybrid H3: First rephrase H2 as a context for LOT. That is, we represent H2 as a context
Z ′ = (Z ′1,Z ′2) where Z ′1 outputs a state st′ and a digest d and Z ′2 has oracle access to
Send(crsLOT, d, ·, ·, ·). Context security of LOT yields an extractor Ext′Z and a simulator
SimLOT. We can now define H3 as follows.

– Compute crsLOT ← Setup(1λ) and crsOT ← OTSetup(1λ).

– crs← (crsOT, crsLOT).

– (st, cds1)← Z1(crs)

– Extract the digest d from the receiver’s OT messages in cds1.

– Compute (w∗, aux = D∗)← ExtLOT
Z (crsLOT, st, d, r

∗, δ)

– b∗ ← ZO3(·)
2 (st), whereO3(·) is identical toO2, except that calls to Send(crsLOT, d, ·, ·, ·)

are replaced by calls to SimLOT(crsLOT, d, aux, ·)

• Hybrid H4: The same as hybrid H4, except that Z2 gets access to an oracle O4, which is
identical to O3, except that instead of computing

(C̃PCP, {`
(0)
i , `

(1)
i }

q·λ
i=1)← Garble(1λ, CPCP[m, s1, . . . , sλ]),

it computes
(C̃PCP, {`i}q·λi=1)← GCSim(1λ, |CPCP|,m∗).

48



We can now state the extractor ExtZ and the simulator Sim for CDS.

ExtZ(crs, st, cds1, r
∗, δ) : Parse cds1 = (ot

(1)
1 , . . . , ot

(|d|)
1 ) and run the UC-simulator OTSim (on

input the first OT messages) to extract the digest d. Parse crs = (crsOT, crsLOT) and
locally execute D∗ ← ExtLOT

Z (crsLOT, st, d, r
∗, δ). Compute w∗ ← PCPExt(D∗) and return

w∗ and aux = D∗.

We then define our simulator Sim in the following.

Sim(crs, cds1, D
∗,m∗ = {m,⊥}) : Sample λ-many uniform random tapes (s1, . . . , sλ) and define

(L1, . . . , Lq·λ) as the positions queried by the PCP verifier run on such random coins in

parallel. Call the garbling simulator to compute (C̃PCP, {`i}q·λi=1)← GCSim(1λ, |CPCP|,m∗).
For all i ∈ {1, . . . , q · λ} compute ci ← SimLOT(crsLOT, d,D

∗, (Li, `i)), then invoke once

more the garbling simulator (C̃LOT, {ki}
|d|
i=1) ← GCSim(1λ, |CLOT|, (c1, . . . , cq·λ)). Finally

compute (ot
(1)
2 , . . . , ot

(|d|)
2 ) via the UC-simulator OTSim on input (k1, . . . , k|d|). Return

cds2 = (C̃PCP, C̃LOT, ot
(1)
2 , . . . , ot

(|d|)
2 , L1, . . . , Lq·λ).

Both algorithms are PPT and the runtime of ExtZ depends only on OTSim and ExtLOT
Z and in

particular is independent of Z. We will choose δ(ε) = ε/4. Assume towards contradiction that
there exists a inverse-polynomial ε such that

|Pr[Z(1λ) = 1]− Pr[EZ(1λ, ε) = 1]| > ε.

As H0 is identically distributed to Z(1λ) and H4 is identically distributed to EZ(1λ, ε), by the
averaging principle there must exist an k ∈ {1, . . . , 4} such that

|Pr[Hk = 1]− Pr[Hk−1 = 1]| > ε/4.

We will now go through all possible cases of k.

(1) k = 1: In this case we obtain a contradiction against the sender-security of OT.

(2) k = 2: In this case we obtain a contradiction against the simulation security of the garbling
scheme, since the garbled and the simulated circuits are functionally equivalent.

(3) k = 3: In this case we will obtain a contradiction against the context security of LOT. To
see this, note that by construction of Z ′ it holds that H2 is identically distributed to Z ′
and by construction of H3 it holds that H3 is identically distributed to the experiment
EZ ′. Thus we get a contradiction against the context security of LOT.

(4) k = 4: To analyze this case we split the distribution conditioned on the event that the
extracted witness w∗ is valid or not.

(a) R(w∗, x) = 1 : By definition of the ideal functionality, m∗ = m and therefore the two
circuits are functionally equivalent by the perfect correctness of the PCP scheme.
The indistinguishability follows from the security of the garbling scheme.

(b) R(w∗, x) 6= 1 : In this case the ideal functionality sets m∗ = ⊥. Thus the two circuits
are functionally equivalent except with probability

p = Pr
[
PCPVerifyO[D∗[L1]‖...‖D∗[Lq ]](x; s1) = 1 ∧ · · · ∧ PCPVerifyO[D∗[Lq·(λ−1)]‖...‖D∗[Lq·λ]](x; sλ) = 1

]
=

λ∏
i=1

Pr
[
PCPVerifyO[D∗[Lq·(i−1)]‖...‖D∗[Lq·(i−1)+q ]](x; si) = 1

]
=

λ∏
i=1

Pr
[
PCPVerifyD

∗
(x; si) = 1

]

49



where the probability is taken over the random choice of (s1, . . . , sλ). Since w∗ is
not a valid witness, by the witness-extractability of the PCP we have that p ≤ 1/3λ.
Therefore the two circuits are functionally equivalent (they both return ⊥) with all
but negligible probability and indistinguishability is implied by the security of the
garbling scheme.

Then we obtain the following corollary.

Corollary 1 (Message-Indistinguishability). Let (Setup,Hash, Send,Receive) be a context-secure
string-LOT, let (OTSetup,OTReceive,OTSend,OTDecode) be a UC-secure string-OT, and let
(Garble,Eval) be a secure garbling scheme. Then the construction (CDSSetup,CDSReceive,
CDSSetup,CDSDecode) as defined in Figure 13 is message-indistinguishable.

Finally we show that the scheme satisfies the notion of receiver simulation. We consider
without loss of generality a notion of security that is one-time secure, in the sense that security
is guaranteed only as long as the sender’s message is well-formed. This can be generically
upgraded to the stronger notion of reusable receiver simulation by attaching (MDV-)NIZKs to
the sender’s message.

Theorem 11 (Receiver Simulation). Let (OTSetup,OTReceive,OTSend,OTDecode) be a UC-
secure string-OT. Then the construction (CDSSetup,CDSReceive,CDSSetup,CDSDecode) as de-
fined in Figure 13 is receiver simulatable.

Proof of Theorem 11. We define the following series of hybrid distributions.

• Hybrid H0 : Is identical to the scheme described in Figure 13.

• Hybrid H1 : The common reference string crsOT is replaced with a simulated common
reference string.

• Hybrid H1+i (for i ∈ {1, . . . , |d|}): The message ot
(i)
1 is replaced with the output of the

simulator OTSim.

The last hybrid is defined to be the output of the simulator CDSSim. Observe that the distri-
bution induced by CDSSim hides the witness w in an information-theoretic sense. Therefore all
is left to be shown is that the distribution induced by H1+|d| is computationally close to the
that induced by H0. Assume towards contradiction that there exists some PPT algorithm A
such that ∣∣Pr

[
1← AH0

]
− Pr

[
1← AH1+|d|

]∣∣ ≥ 1

poly(λ)
.

By a trivial reduction against the UC-security of the common reference string functionality we
have that ∣∣Pr

[
1← AH0

]
− Pr

[
1← AH1

]∣∣ = negl(λ).

It follows that there must exist an i∗ ∈ {1, . . . , d} such that∣∣Pr
[
1← AHi∗

]
− Pr

[
1← AHi∗+1

]∣∣ ≥ 1

|d| · poly(λ)
.

We show that this is not the case with a reduction to the UC-security of the string-OT scheme:

The reduction is defined to be identical to Hi∗ up to the point where ot
(i∗)
1 is computed. Then

the reduction sends the bit di∗ to the challenger and receives some ot∗1, which the reduction sets

50



to ot
(i∗)
1 = ot∗1. The remainder of the execution is identical to that of Hi∗+1. The reduction

is clearly PPT since it runs only efficient subroutines. Observe that when ot∗1 is the output of
OTReceive, then the distribution induced by the reduction is identical to that of Hi∗ . On the
other hand, when ot∗1 is simulated then the reduction perfectly reproduces Hi∗+1. It follows
that any difference in the output of A can be used to break the UC-security of the string-OT
scheme. This is a contradiction and concludes our proof.

8 UC-Secure Bob-Optimized Two-Party Computation

In the following we present a UC-secure Bob-optimized two-round 2PC for P/poly. Our con-
struction 2PC = (2PCSetup, 2PCReceive, 2PCSend, 2PCDecode) assumes the existence of the
following cryptographic primitives:

• A pseudorandom generator PRG.

• A semi-malicious LFE (LFESetup, LFECompress, LFEEnc, LFEDec).

• A perfectly correct public-key encryption scheme (PKEKGen,PKEEnc,PKEDec).

Then let L1 be the following language

L1 =

{
(crsLFE, pk , dLFE, cPKE)

∣∣∣∣ ∃ (x, s) :
dLFE = LFECompress(crsLFE, Cx;PRG(s))

∧ cPKE = PKEEnc(pk , x‖s)

}
where Cx is defined as the circuit with x hardwired that computes f(x, ·). Our protocol also
assumes the existence of:

• A laconic CDS scheme (CDSSetup,CDSReceive,CDSSend,CDSDecode) for L1.

Furthermore, let L2 be defined as follows

L2 =


(
crsLFE, crsCDS, p̃k ,
dLFE, stmt, cds1, c̃PKE

) ∣∣∣∣∣∣ ∃ (y, cLFE) :

cLFE = LFEEnc(crsLFE, dLFE, y)
∧ cds2 = CDSSend(crsCDS, stmt, cLFE, cds1)

∧ c̃PKE = PKEEnc(p̃k , y)


then the last building block for our protocol consists of:

• A NIZK1 scheme (NIZKSetup,NIZKProve,NIZKVerify) for L2.

The protocol is described in Figure 14. It is instructive to observe that if we were to settle for
semi-honest security, then a standard LFE scheme would be sufficient. The high level idea of
the construction is to compile a semi-honest LFE into a UC-secure one, without affecting the
communication or the computation complexity of the protocol. Our newly developed laconic
CDS serves exactly this purpose: The receiver message consists of a compressed circuit dLFE
plus the first message of a laconic CDS that certifies that the hash of circuit is well-formed.
The sender then encrypts its input y via cLFE ← LFEEnc(crsLFE, dLFE, y) and conditions cLFE on
the fact that hash is correctly computed. That is, the receiver can decode cLFE from the laconic
CDS if and only if it behaved honestly in the first round. Otherwise cLFE (and therefore the
output of the computation) is computationally hidden. The important point here is that the
laconic CDS does not inflate the communicate between the parties nor the computation of P2,
although the corresponding witness is very large (proportional to the circuit size).

1We use NIZK instead of MDV-NIZK in favor of a simpler presentation, however the result easily generalizes.

51



In addition to this we also have to ensure that the UC simulator can extract without rewind-
ing, which is done by including the inputs in standard extractable commitment (i.e., a perfectly
correct public-key encryption scheme). In terms of communication we pay the price of being
proportional in the size of the inputs (but not of the circuit). This seems unavoidable if one
insists with UC-security. Finally a NIZK proof is attached to the message of the sender to
prevent leakage from selective failure attacks.

2PCSetup(1λ) :

• Sample

– crsLFE ← LFESetup(1λ),

– crsCDS ← CDSSetup(1λ), and

– crsNIZK ← NIZKSetup(1λ).

• Sample two key pairs (sk , pk)← PKEKGen(1λ) and (s̃k , p̃k)← PKEKGen(1λ).

• Return crs = (crsLFE, crsCDS, crsNIZK, pk , p̃k).

2PCReceive(crs, x) :

• Parse crs as (crsLFE, crsCDS, crsNIZK, pk , p̃k).

• Sample a uniform s←$ {0, 1}λ.

• Compute

– (dLFE, rLFE)← LFECompress(crsLFE, Cx;PRG(s))

– cPKE ← PKEEnc(pk , x‖s), and

– (cds1, rCDS)← CDSReceive(crsCDS, stmt, (x, s)).
// where stmt = (crsLFE, pk , dLFE, cPKE)

• Return m1 = (dLFE, cPKE, cds1) and r = (rLFE, rCDS).

2PCSend(crs,m1, y) :

• Parse crs as (crsLFE, crsCDS, crsNIZK, pk , p̃k) and m1 as (dLFE, cPKE, cds1).

• Compute

– cLFE ← LFEEnc(crsLFE, dLFE, y),

– c̃PKE ← PKEEnc(p̃k , y),

– cds2 ← CDSSend(crsCDS, stmt, cLFE, cds1), and

– π ← NIZKProve(crsNIZK, ˜stmt, (y, cLFE)).
// where ˜stmt = (crsLFE, crsCDS, pk , dLFE, stmt, cds1, c̃PKE)

• Return m2 = (cds2, c̃PKE, π).

2PCDecode(crs,m2, r) :

• Parse crs as (crsLFE, crsCDS, crsNIZK, pk , p̃k), m2 as (cds2, c̃PKE, π), r as (rLFE, rCDS).

• If 1 6= NIZKVerify(crsNIZK, ˜stmt, π), then return ⊥.

• Else return z = LFEDec(crsLFE,CDSDecode(crsCDS, cds2, rCDS), rLFE).

Figure 14: UC-Secure Bob-Optimized 2PC protocol.

52



8.1 Efficiency

It is easy to see that all algorithms are PPT. We want to show a sharper bound on the running
time of the algorithm 2PCSend, also known as Bob. First observe that the runtime of the
subroutines LFEEnc(crsLFE, dLFE) and PKEEnc(p̃k , y) is independent of the size of the circuit
Cx, except for its depth (by definition of LFE). Note that the size of the statement for the laconic
CDS protocol is that of a fixed polynomial in λ ad therefore, as discussed in 7.3, the runtime
of CDSSend is also bounded by a fixed poly(λ). It follows that our protocol is Bob-optimized
in the following sense: The runtime of P2 depends only on λ and on the depth of f . If we
ignore the former term (which is inherited by the underlying LFE), then this is asymptotically
optimal. We now analyze the communication complexity of the protocol. Observe that the first
message m1 consists of the following variables.

• dLFE : The compressed version of the circuit Cx with the input x hardwired.

• cPKE : The encryption of the input x and of the uniform seed s.

• cds1 : The first message of a laconic CDS scheme.

Since the LFE and the CDS scheme are laconic, the size of cds1 and dLFE is a fixed polynomial
in λ. Thus the size of m1 depends only on the size of the input x and on the security parameter.
We now analyze the content of the second message m2.

• cds2 : The second message of the laconic CDS scheme.

• c̃PKE : The encryption of the input y.

• π : The NIZK proof that certifies the honest generation of the other variables.

The first two objects are clearly independent of the circuit size, whereas the size of π depends on
the circuit depth since the circuit that computes the corresponding relation contains LFEEnc as
a subroutine. We can conclude that the size of m2 is bounded by a polynomial in the size of the
inputs (x, y) and of the output z, in the depth of the circuit Cx, and in the security parameter.

8.2 Analysis

We begin by analyzing the correctness of the scheme.

Theorem 12 (Correctness). The construction (2PCSetup, 2PCReceive, 2PCSend, 2PCDecode)
as defined in Figure 14 is correct.

Proof of Theorem 12. Observe that, since all variables are honestly computed it holds that
stmt ∈ L1 and ˜stmt ∈ L2 and therefore

z = LFEDec(crsLFE,CDSDecode(crsCDS, cds2, rCDS), rLFE)

= LFEDec(crsLFE, cLFE, rLFE)

= LFEDec(crsLFE, LFEEnc(crsLFE, dLFE, y), rLFE)

= Cx(y)

= f(x, y)

since (dLFE, rLFE) = LFECompress(crsLFE, Cx).

We now show that the protocol is secure.

53



Theorem 13 (Security). Let PRG be a pseudorandom generator, let (LFESetup, LFECompress,
LFEEnc, LFEDec) be a semi-malicious secure and function-hiding LFE, let (PKEKGen,PKEEnc,
PKEDec) be a semantically secure and perfectly correct public-key encryption scheme, let (CDSSetup,
CDSReceive,CDSSend,CDSDecode) by a message-indistinguishable and receiver simulatable la-
conic CDS, and let (NIZKSetup,NIZKProve,NIZKVerify) be a sound NIZK. Then the construc-
tion (2PCSetup, 2PCReceive, 2PCSend, 2PCDecode) as defined in Figure 14 UC-realizes F2PC.

Proof of Theorem 13. We show that the protocol is UC-secure by analyzing the case of each
corrupted party separately.

(1) Corrupted P1 : Fix a real-world adversary A. The simulator 2PCSim works as follows.

• 2PCSim : The simulator samples two honestly generated strings crsLFE ← LFESetup(1λ)
and crsCDS ← CDSSetup(1λ), then it samples a simulated string crsNIZK ← NIZKSetup(1λ)
and two fresh key pairs (sk , pk)← PKEKGen(1λ) and (s̃k , p̃k)← PKEKGen(1λ). The
common reference string crs is set to (crsLFE, crsCDS, crsNIZK, pk , p̃k). WhenA replies
with a message (dLFE, cPKE, cds1) the simulator decrypts x̃‖s̃ ← PKEDec(sk , cPKE)
and checks whether

dLFE = LFECompress(crsLFE, Cx̃;PRG(s̃)). (5)

If this is not the case, the simulator computes cds2 ← CDSSend(crsCDS, stmt, 0|cLFE|, cds1)
and returns to A the tuple (cds2,PKEEnc(p̃k , 0|y|), π), where π is a simulated proof.
On the other hand, if the equality holds, then the simulator sends x̃ to the ideal func-
tionality and receives z in response. Then it computes cLFE ← LFESim(crsLFE, dLFE, Cx̃, z)
are returns toA the tuple (cds2,PKEEnc(p̃k , 0|y|), π), where cds2 is honestly computed
and π is a simulated proof.

The simulator is clearly PPT. We show that it is also indistinguishable from the real
world execution by defining a series of hybrid experiments where we gradually change the
simulation until we recover the original protocol. We also show that each modification is
indistinguishable to the eyes of the adversary.

• Hybrid H0 : Identical to the simulator 2PCSim.

• HybridH1 : If Equation (1) holds, then the simulator computes the ciphertext cLFE ←
LFEEnc(crsLFE, dLFE, y), where y is the input of P2.

Note that z = f(x̃, y) = Cx̃(y), thus the indistinguishability follows from the semi-
malicious security of the LFE scheme. Recall that here the adversary is allowed to choose
the random coins for the compression function, which the reduction sets to PRG(s̃).

• Hybrid H2 : If Equation (1) does not hold, then the simulator computes cds2 as
CDSSend(crsCDS, stmt, cLFE, cds1), where cLFE is computed as in H1.

Since Equation (1) does not hold and the public-key encryption scheme is perfectly correct,
then it must be the case that stmt /∈ L1. Thus, this modification is indistinguishable by
the message-indistinguishability of the CDS scheme.

• Hybrid H3 : The simulator no longer decrypts cPKE, does not check the validity of
Equation (1) and it behaves as if Equation (1) holds.

This change is only syntactical since the behavior of the simulator in H2 is identical
regardless on whether Equation (1) holds or not.

54



• Hybrid H4 : The simulator computes c̃PKE as PKEEnc(p̃k , y).

This change is indistinguishable by the semantic security of the public-key encryption
scheme. Note that the decryption key s̃k is never used in H3.

• Hybrid H5 : The common reference string crsNIZK is sampled from the honest domain
and the proof π is honestly computed using the correct witness (y, cLFE).

This change is indistinguishable by the zero-knowledge property of the NIZK scheme.
Finally, observe that the distribution induced by H5 is identical to that of the real-world
protocol. This concludes our proof for the case of a corrupted P1.

(2) Corrupted P2 : Fix a real-world adversary A. We define a simulator in the following.

• 2PCSim : The simulator samples a simulated common reference string (crsCDS, td)←
CDSSim1(1λ) and sets crs = (crsLFE, crsCDS, crsNIZK, pk , p̃k) where all other variables
are honestly generated. It then gives crs as an input to A. When P1 engages in a
protocol run in the ideal world, the simulator computes dLFE ← LFESimFH(crs,C) and
cds1 ← CDSSim2(crsCDS, td, stmt). Then it sends (dLFE, cds1,PKEEnc(pk , 0|x|+|s|)) to
A. When A returns a tuple (cds2, c̃PKE, π), the simulator checks that π correctly
verifies. If this is the case, the simulator computes ỹ ← PKEDec(s̃k , c̃PKE) and
returns ỹ to the ideal functionality. Otherwise it returns nothing.

It is easy to see that the algorithm is PPT. We now argue that the inputs of A generated by
the simulator are computationally indistinguishable from that of the real world protocol.

• Hybrid H0 : Identical to the simulator 2PCSim.

• Hybrid H1 : The simulator computes dLFE ← LFECompress(crsLFE, Cx; s̃), where x is
the input of P1 and s̃ is a uniform random tape of the appropriate length.

The two hybrids are computationally close by the function-hiding of the LFE scheme.

• HybridH2 : The simulator computes (dLFE, rLFE)← LFECompress(crsLFE, Cx;PRG(s)),
where s is a uniform λ-bit string.

Indistinguishability follows from a simple invocation of the pseudorandomness of PRG.

• Hybrid H3 : Here cPKE is computed as PKEEnc(pk , x‖s).

Indistinguishability follows from a simple reduction to the semantic security of the public-
key encryption scheme.

• Hybrid H4 : The variable crsCDS is sampled honestly and the variable cds1 is com-
puted via CDSReceive(crsCDS, stmt, (x, s))

Note that at this point stmt ∈ L1 and the simulator has a valid witness for stmt. Thus
indistinguishability follows from a reduction to the receiver simulatability of the CDS.

• Hybrid H5 : The simulator no longer decrypts c̃PKE to extract ỹ but sets the output
of P1 to z computed as in the real world protocol.

55



By the soundness of the NIZK scheme we have that

z = LFEDec(crsLFE,CDSDecode(crsCDS, cds2, rCDS), rLFE)

= LFEDec(crsLFE,CDSDecode(crsCDS,CDSSend(crsCDS, stmt, cLFE, cds1), rCDS), rLFE)

= LFEDec(crsLFE, cLFE, rLFE)

= LFEDec(crsLFE, LFEEnc(crsLFE, dLFE,PKEDec(sk , c̃PKE)), rLFE)

= LFEDec(crsLFE, LFEEnc(crsLFE, LFECompress(crsLFE, Cx),PKEDec(sk , c̃PKE)), rLFE)

= Cx(PKEDec(sk , c̃PKE))

= Cx(ỹ) = f(x, ỹ)

except with negligible probability, since the encryption scheme is perfectly correct. Thus
with the same probability, the output of P1 is identical in both hybrids. Note that the
distribution induced by H5 is identical to that of the real world protocol.

This concludes our proof.

9 Malicious Laconic Function Evaluation

Here we lift LFE in the malicious settings without any additional assumption. We construct a
protocol where the communication complexity is independent of the size of the circuit (suppress-
ing a factor that depends on the depth of the circuit representation of C) and is Bob-optimized.
Since straight-line extraction (and therefore UC-security) is information theoretically impossi-
ble in these settings, we settle for the weaker security notion of context security. We stress
that such a definition implies the standard indistinguishability-based security. Our scheme is
constructed from the following ingredients:

• A semi-malicious LFE (LFESetup, LFECompress, LFEEnc, LFEDec).

• A perfectly correct public-key encryption scheme (PKEKGen,PKEEnc,PKEDec).

• A laconic CDS scheme (CDSSetup,CDSReceive,CDSSend,CDSDecode) for L1.

• A NIZK scheme (NIZKSetup,NIZKProve,NIZKVerify) for L2.

Where L1 is defined as

L1 =
{

(crsLFE, dLFE)
∣∣ ∃ (C, s) : dLFE = LFECompress(crsLFE, C; s)

}
and L2 is defined as follows

L2 =


(
crsLFE, crsCDS, pk ,
dLFE, stmt, cds1, cPKE

) ∣∣∣∣∣∣ ∃ (y, cLFE) :
cLFE = LFEEnc(crsLFE, dLFE, y)

∧ cds2 = CDSSend(crsCDS, stmt, cLFE, cds1)
∧ cPKE = PKEEnc(pk , y)

 .

The construction is given in Figure 15. The scheme is a minor modification of what already
shown in Section 8: The only difference is that the receiver no longer commits to its input
(which in this cases consists of the whole circuit C) via the public-key encryption scheme. This
improves the communication complexity but results in a weaker notion of security. Looking
ahead, our proof will crucially rely on the context-security of the laconic CDS to extract C.

56



¯LFESetup(1λ) :

• Sample

– crsLFE ← LFESetup(1λ),

– crsCDS ← CDSSetup(1λ), and

– crsNIZK ← NIZKSetup(1λ).

• Sample a key pair (sk , pk)← PKEKGen(1λ).

• Return crs = (crsLFE, crsCDS, crsNIZK, pk).

¯LFECompress(crs, C) :

• Parse crs as (crsLFE, crsCDS, crsNIZK, pk).

• Sample a uniform random tape s.

• Compute

– (dLFE, rLFE)← LFECompress(crsLFE, C; s) and

– (cds1, rCDS)← CDSReceive(crsCDS, stmt, (x, s)).
// where stmt = (crsLFE, dLFE)

• Return d = (dLFE, cds1) and r = (rLFE, rCDS).

¯LFEEnc(crs, d, y) :

• Parse crs as (crsLFE, crsCDS, crsNIZK, pk) and d as (dLFE, cds1).

• Compute

– cLFE ← LFEEnc(crsLFE, dLFE, y),

– cPKE ← PKEEnc(pk , y),

– cds2 ← CDSSend(crsCDS, stmt, cLFE, cds1), and

– π ← NIZKProve(crsNIZK, ˜stmt, (y, cLFE)).
// where ˜stmt = (crsLFE, crsCDS, pk , dLFE, stmt, cds1, cPKE)

• Return c = (cds2, cPKE, π).

¯LFEDec(crs, c, r) :

• Parse crs as (crsLFE, crsCDS, crsNIZK, pk), c as (cds2, cPKE, π), and r as (rLFE, rCDS).

• If 1 6= NIZKVerify(crsNIZK, ˜stmt, π), then return ⊥.

• Else return z = LFEDec(crsLFE,CDSDecode(crsCDS, cds2, rCDS), rLFE).

Figure 15: Malicious LFE Protocol.

9.1 Efficiency

The efficiency analysis follows along the lines of that of Section 8.1, except that in this case the
secret input of the receiver (the circuit C) is not given in a committed form. This means that
both in terms of computation and communication, our protocol is (asymptotically) as efficient
as the underlying LFE. In particular:

• The communication complexity depends only on λ, the depth of C, and Bob’s input.

57



• The computation is Bob-optimized (in the same sense as the underlying LFE).

We stress that the dependency with respect to the circuit depth is only present in the underlying
LFE and not in the other building blocks of our protocol.

9.2 Analysis

The argument for correctness is also identical to that of Theorem 12. The security of our scheme
is analyzed in the following.

Theorem 14 (Security). Let (LFESetup, LFECompress, LFEEnc, LFEDec) be a semi-malicious
LFE, let (CDSSetup,CDSReceive,CDSSend,CDSDecode) be a context-secure laconic CDS, and
let (NIZKSetup,NIZKProve,NIZKVerify) be a NIZK. Then the construction ( ¯LFESetup, ¯LFECompress,

¯LFEEnc, ¯LFEDec) as defined in Figure 15 is context secure.

Proof of Theorem 14. Let Z = (Z1,Z2) be a context for our LFE protocol. We first define a
sequence of hybrids.

• Hybrid H0: This is the real experiment. In particular H0 computes

– crsLFE ← LFESetup(1λ)

– crsCDS ← CDSSetup(1λ)

– crsNIZK ← NIZKSetup(1λ)

– (sk , pk)← PKEKGen(1λ)

– Set crs = (crsLFE, crsCDS, crsNIZK, pk)

– Compute (st, d)← Z1(crs)

– Compute and return b∗ ← Z
¯LFEEnc(crs,d,·)

2 (st).

• Hybrid H1: This hybrid is identical to H0, except that we compute (crsNIZK, td) by
NIZKSim1(1λ) and we give Z2 access to an oracleO1, which behaves identical to ¯LFEEnc(crs, d, ·)
except that it computes π as NIZKSim2(crsNIZK, ˜stmt, td).

• HybridH2: Identical toH1 except that we give Z2 access to an oracle O2 which is identical
to O1 except that it computes cPKE ← PKEEnc(pk , 0|y|).

• Hybrid H3: We first express H3 as a context Z ′ = (Z ′1,Z ′2) for CDS. Specifically, Z ′1 takes
as input crsCDS, generates crsLFE, crsNIZK and pk itself, runs Z1(crs) and outputs a state
st′ and a digest cds1 for CDS. Z ′2 has oracle access to CDSSend(crsCDS, stmt, ·, cds1) and

computes ZO2(·)
2 , where it simulatesO2 but replaces calls ofO2 to CDSSend(crsCDS, stmt, ·, cds1)

by calls to its own oracle. Context security yields an extractor ExtCDS
Z and a simulator

SimCDS. We now define H3 as follows.

– crsLFE ← LFESetup(1λ)

– crsCDS ← CDSSetup(1λ)

– (crsNIZK, td)← NIZKSim1(1λ)

– (sk , pk)← PKEKGen(1λ)

– Set crs = (crsLFE, crsCDS, crsNIZK, pk)

– Compute (st, d)← Z1(crs)

– Parse d as (dLFE, cds1) and include all other values in a Z ′ state st′

58



– Compute aux = w∗ = (C∗, s∗)← ExtCDS
Z (crs, st′, cds1, δ)

– Compute and return b∗ ← ZO3
2 (st), where O3 is identical to O2 but replaces calls to

CDSSend(crsCDS, stmt, ·, cds1) by SimCDS(crsCDS, cds1, (C∗, s∗), cLFE).

• HybridH4: Identical toH3 except that we give Z2 access to an oracle O4 which is identical
to O3 except that it checks whether

dLFE = LFECompress(crsLFE, C∗; s∗)

and computes cLFE ← LFESim(crsLFE, dLFE, C∗, C∗(y)) if this is the case and sets cLFE = ⊥
otherwise.

We can now define the extractor ExtZ and the simulator Sim.

ExtZ(crs, st, d, r∗, δ) : Parse d = (dLFE, cds1) and run w∗ ← ExtCDS
Z (crsCDS, st, cds1, r

∗, δ). Re-
turn aux = w∗ = (C∗, s∗).

Let SimCDS be the simulator given by the context security of the laconic CDS scheme and let
td be the trapdoor generated by the simulated crsNIZK. We then define our simulator Sim in
the following.

Sim(crs, d, (C∗, s∗), C∗(y), td) : Parse d = (dLFE, cds1), then check whether

dLFE = LFECompress(crsLFE, C∗; s∗). (6)

If this is the case compute cLFE ← LFESim(crsLFE, dLFE, C∗, C∗(y)), else set cLFE = ⊥.
Compute cds2 ← SimCDS(crsCDS, cds1, (C∗, s∗), cLFE). Then set cPKE ← PKEEnc(pk , 0|y|)
and simulate π ← NIZKSim2(crsNIZK, td, ˜stmt). Return c = (cds2, cPKE, π).

Both algorithms are clearly PPT and in particular the runtime of ExtZ is identical to that of
ExtCDS
Z . We will choose δ(ε) = ε/4. Assume towards contradiction that there exists a inverse-

polynomial ε such that

|Pr[Z(1λ) = 1]− Pr[EZ(1λ, ε) = 1]| > ε.

As H0 is identically distributed to Z(1λ) and H4 is identically distributed to EZ(1λ, ε), by the
averaging principle there must exist an k ∈ {1, . . . , 4} such that

|Pr[Hk = 1]− Pr[Hk−1 = 1]| > ε/4.

We will now go through all possible cases of k.

(1) k = 1: The two hybrids are indistinguishable by an invocation of the zero-knowledge
property of NIZK.

(2) k = 2: The two hybrids are computationally indistinguishable by the semantic security of
the public key encryption scheme. Note that the simulator never uses the secret key sk .

(3) k = 3: In this case we will obtain a contradiction against the context security of CDS. To
see this, note that by construction of Z ′ it holds that H2 is identically distributed to Z ′
and by construction of H3 it holds that H3 is identically distributed to the experiment
EZ ′. Thus we get a contradiction against the context security of CDS.

59



(4) k = 4: Observe that if Equation (6) is true, then it holds that the digest dLFE is honestly
computed with randomness s∗, which is known by the simulator. This change is unde-
tectable by a reduction against the semi-malicious security of the underlying LFE scheme
where the reduction sets the random coins to s∗.

The next theorem shows that the scheme is UC-secure for a corrupted sender (Bob). This
implies the notion of (reusable) function hiding.

Theorem 15 (Bob UC-Security). Let (LFESetup, LFECompress, LFEEnc, LFEDec) be a function-
hiding LFE, let (PKEKGen,PKEEnc,PKEDec) be a semantically secure and perfectly correct
public-key encryption scheme, let (CDSSetup,CDSReceive,CDSSend,CDSDecode) be a receiver
simulatable laconic CDS, and let (NIZKSetup,NIZKProve,NIZKVerify) be a sound NIZK. Then
the construction ( ¯LFESetup, ¯LFECompress, ¯LFEEnc, ¯LFEDec) as defined in Figure 15 UC-realizes
F2PC for a corrupted Bob.

Proof of Theorem 15. The analysis is identical to the case of corrupted P2 in the proof of The-
orem 13.

References

[AIR01] William Aiello, Yuval Ishai, and Omer Reingold. Priced oblivious transfer: How to
sell digital goods. In Birgit Pfitzmann, editor, Advances in Cryptology – EURO-
CRYPT 2001, volume 2045 of Lecture Notes in Computer Science, pages 119–135,
Innsbruck, Austria, May 6–10, 2001. Springer, Heidelberg, Germany.

[AS98] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: A new charac-
terization of NP. Journal of the ACM (JACM), 45(1):70–122, 1998.

[BCCT13] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recursive com-
position and bootstrapping for SNARKS and proof-carrying data. In Dan Boneh,
Tim Roughgarden, and Joan Feigenbaum, editors, 45th Annual ACM Symposium
on Theory of Computing, pages 111–120, Palo Alto, CA, USA, June 1–4, 2013.
ACM Press.

[BDH+17] Brandon Broadnax, Nico Döttling, Gunnar Hartung, Jörn Müller-Quade, and
Matthias Nagel. Concurrently composable security with shielded super-polynomial
simulators. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, Advances
in Cryptology – EUROCRYPT 2017, Part I, volume 10210 of Lecture Notes in
Computer Science, pages 351–381, Paris, France, April 30 – May 4, 2017. Springer,
Heidelberg, Germany.

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and
its applications (extended abstract). In 20th Annual ACM Symposium on Theory
of Computing, pages 103–112, Chicago, IL, USA, May 2–4, 1988. ACM Press.

[BLP+13] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé.
Classical hardness of learning with errors. In Dan Boneh, Tim Roughgarden, and
Joan Feigenbaum, editors, 45th Annual ACM Symposium on Theory of Computing,
pages 575–584, Palo Alto, CA, USA, June 1–4, 2013. ACM Press.

60



[BPR12] Abhishek Banerjee, Chris Peikert, and Alon Rosen. Pseudorandom functions and
lattices. In David Pointcheval and Thomas Johansson, editors, Advances in Cryp-
tology – EUROCRYPT 2012, volume 7237 of Lecture Notes in Computer Science,
pages 719–737, Cambridge, UK, April 15–19, 2012. Springer, Heidelberg, Germany.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 42nd Annual Symposium on Foundations of Computer Science, pages
136–145, Las Vegas, NV, USA, October 14–17, 2001. IEEE Computer Society Press.

[CDG+17] Chongwon Cho, Nico Döttling, Sanjam Garg, Divya Gupta, Peihan Miao,
and Antigoni Polychroniadou. Laconic oblivious transfer and its applications.
In Jonathan Katz and Hovav Shacham, editors, Advances in Cryptology –
CRYPTO 2017, Part II, volume 10402 of Lecture Notes in Computer Science, pages
33–65, Santa Barbara, CA, USA, August 20–24, 2017. Springer, Heidelberg, Ger-
many.

[CHS05] Ran Canetti, Shai Halevi, and Michael Steiner. Hardness amplification of weakly
verifiable puzzles. In Joe Kilian, editor, TCC 2005: 2nd Theory of Cryptography
Conference, volume 3378 of Lecture Notes in Computer Science, pages 17–33, Cam-
bridge, MA, USA, February 10–12, 2005. Springer, Heidelberg, Germany.

[CLP13] Ran Canetti, Huijia Lin, and Rafael Pass. From unprovability to environmentally
friendly protocols. In 54th Annual Symposium on Foundations of Computer Science,
pages 70–79, Berkeley, CA, USA, October 26–29, 2013. IEEE Computer Society
Press.

[CR03] Ran Canetti and Tal Rabin. Universal composition with joint state. In Dan Boneh,
editor, Advances in Cryptology – CRYPTO 2003, volume 2729 of Lecture Notes in
Computer Science, pages 265–281, Santa Barbara, CA, USA, August 17–21, 2003.
Springer, Heidelberg, Germany.

[DG17] Nico Döttling and Sanjam Garg. Identity-based encryption from the Diffie-Hellman
assumption. In Jonathan Katz and Hovav Shacham, editors, Advances in Cryptology
– CRYPTO 2017, Part I, volume 10401 of Lecture Notes in Computer Science,
pages 537–569, Santa Barbara, CA, USA, August 20–24, 2017. Springer, Heidelberg,
Germany.

[DGH+19] Nico Döttling, Sanjam Garg, Mohammad Hajiabadi, Daniel Masny, and Daniel
Wichs. Two-round oblivious transfer from CDH or LPN. Cryptology ePrint Archive,
Report 2019/414, 2019. https://eprint.iacr.org/2019/414.

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE
Transactions on Information Theory, 22(6):644–654, 1976.

[ElG84] Taher ElGamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. In G. R. Blakley and David Chaum, editors, Advances in Cryptology
– CRYPTO’84, volume 196 of Lecture Notes in Computer Science, pages 10–18,
Santa Barbara, CA, USA, August 19–23, 1984. Springer, Heidelberg, Germany.

[FLS90] Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple non-interactive zero knowl-
edge proofs based on a single random string (extended abstract). In 31st Annual
Symposium on Foundations of Computer Science, pages 308–317, St. Louis, MO,
USA, October 22–24, 1990. IEEE Computer Society Press.

61



[FNP04] Michael J. Freedman, Kobbi Nissim, and Benny Pinkas. Efficient private matching
and set intersection. In Christian Cachin and Jan Camenisch, editors, Advances
in Cryptology – EUROCRYPT 2004, volume 3027 of Lecture Notes in Computer
Science, pages 1–19, Interlaken, Switzerland, May 2–6, 2004. Springer, Heidelberg,
Germany.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael Mitzen-
macher, editor, 41st Annual ACM Symposium on Theory of Computing, pages 169–
178, Bethesda, MD, USA, May 31 – June 2, 2009. ACM Press.

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic
span programs and succinct NIZKs without PCPs. In Thomas Johansson and
Phong Q. Nguyen, editors, Advances in Cryptology – EUROCRYPT 2013, volume
7881 of Lecture Notes in Computer Science, pages 626–645, Athens, Greece, May 26–
30, 2013. Springer, Heidelberg, Germany.

[GGSW13] Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Witness encryption and
its applications. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors,
45th Annual ACM Symposium on Theory of Computing, pages 467–476, Palo Alto,
CA, USA, June 1–4, 2013. ACM Press.

[GL89] Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way func-
tions. In 21st Annual ACM Symposium on Theory of Computing, pages 25–32,
Seattle, WA, USA, May 15–17, 1989. ACM Press.

[GM82] Shafi Goldwasser and Silvio Micali. Probabilistic encryption and how to play mental
poker keeping secret all partial information. In 14th Annual ACM Symposium on
Theory of Computing, pages 365–377, San Francisco, CA, USA, May 5–7, 1982.
ACM Press.

[Gro10] Jens Groth. Short pairing-based non-interactive zero-knowledge arguments. In
Masayuki Abe, editor, Advances in Cryptology – ASIACRYPT 2010, volume 6477
of Lecture Notes in Computer Science, pages 321–340, Singapore, December 5–9,
2010. Springer, Heidelberg, Germany.

[GW11] Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments
from all falsifiable assumptions. In Lance Fortnow and Salil P. Vadhan, editors,
43rd Annual ACM Symposium on Theory of Computing, pages 99–108, San Jose,
CA, USA, June 6–8, 2011. ACM Press.

[IKO+11] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Manoj Prabhakaran, and Amit
Sahai. Efficient non-interactive secure computation. In Kenneth G. Paterson, editor,
Advances in Cryptology – EUROCRYPT 2011, volume 6632 of Lecture Notes in
Computer Science, pages 406–425, Tallinn, Estonia, May 15–19, 2011. Springer,
Heidelberg, Germany.

[ILL89] Russell Impagliazzo, Leonid A. Levin, and Michael Luby. Pseudo-random generation
from one-way functions (extended abstracts). In 21st Annual ACM Symposium on
Theory of Computing, pages 12–24, Seattle, WA, USA, May 15–17, 1989. ACM
Press.

[JKKR17] Abhishek Jain, Yael Tauman Kalai, Dakshita Khurana, and Ron Rothblum.
Distinguisher-dependent simulation in two rounds and its applications. In Jonathan

62



Katz and Hovav Shacham, editors, Advances in Cryptology – CRYPTO 2017,
Part II, volume 10402 of Lecture Notes in Computer Science, pages 158–189, Santa
Barbara, CA, USA, August 20–24, 2017. Springer, Heidelberg, Germany.

[Kil92] Joe Kilian. A note on efficient zero-knowledge proofs and arguments (extended
abstract). In 24th Annual ACM Symposium on Theory of Computing, pages 723–
732, Victoria, BC, Canada, May 4–6, 1992. ACM Press.

[Lin03] Yehuda Lindell. General composition and universal composability in secure multi-
party computation. In 44th Annual Symposium on Foundations of Computer Sci-
ence, pages 394–403, Cambridge, MA, USA, October 11–14, 2003. IEEE Computer
Society Press.

[LQR+19] Alex Lombardi, Willy Quach, Ron D. Rothblum, Daniel Wichs, and David J.
Wu. New Constructions of Reusable Designated-Verifier NIZKs. Cryptology ePrint
Archive, Report 2019/242, 2019. https://eprint.iacr.org/2019/242.

[Mic94] Silvio Micali. CS proofs (extended abstracts). In 35th Annual Symposium on Foun-
dations of Computer Science, pages 436–453, Santa Fe, NM, USA, November 20–22,
1994. IEEE Computer Society Press.

[Nao90] Moni Naor. Bit commitment using pseudo-randomness. In Gilles Brassard, editor,
Advances in Cryptology – CRYPTO’89, volume 435 of Lecture Notes in Computer
Science, pages 128–136, Santa Barbara, CA, USA, August 20–24, 1990. Springer,
Heidelberg, Germany.

[Nao03] Moni Naor. On cryptographic assumptions and challenges (invited talk). In Dan
Boneh, editor, Advances in Cryptology – CRYPTO 2003, volume 2729 of Lecture
Notes in Computer Science, pages 96–109, Santa Barbara, CA, USA, August 17–21,
2003. Springer, Heidelberg, Germany.

[Pei09] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector prob-
lem: extended abstract. In Michael Mitzenmacher, editor, 41st Annual ACM Sym-
posium on Theory of Computing, pages 333–342, Bethesda, MD, USA, May 31 –
June 2, 2009. ACM Press.

[PRS17] Chris Peikert, Oded Regev, and Noah Stephens-Davidowitz. Pseudorandomness
of ring-LWE for any ring and modulus. In Hamed Hatami, Pierre McKenzie, and
Valerie King, editors, 49th Annual ACM Symposium on Theory of Computing, pages
461–473, Montreal, QC, Canada, June 19–23, 2017. ACM Press.

[PS19] Chris Peikert and Sina Shiehian. Noninteractive Zero Knowledge for NP from
(Plain) Learning With Errors. Cryptology ePrint Archive, Report 2019/158, 2019.
https://eprint.iacr.org/2019/158.

[PVW08] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient
and composable oblivious transfer. In David Wagner, editor, Advances in Cryptology
– CRYPTO 2008, volume 5157 of Lecture Notes in Computer Science, pages 554–
571, Santa Barbara, CA, USA, August 17–21, 2008. Springer, Heidelberg, Germany.

[QRW19] Willy Quach, Ron D. Rothblum, and Daniel Wichs. Reusable Designated-Verifier
NIZKs for all NP from CDH. Cryptology ePrint Archive, Report 2019/235, 2019.
https://eprint.iacr.org/2019/235.

63



[QWW18] Willy Quach, Hoeteck Wee, and Daniel Wichs. Laconic function evaluation and
applications. In Mikkel Thorup, editor, 59th Annual Symposium on Foundations of
Computer Science, pages 859–870, Paris, France, October 7–9, 2018. IEEE Com-
puter Society Press.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptogra-
phy. In Harold N. Gabow and Ronald Fagin, editors, 37th Annual ACM Symposium
on Theory of Computing, pages 84–93, Baltimore, MA, USA, May 22–24, 2005.
ACM Press.

[Val08] Paul Valiant. Incrementally verifiable computation or proofs of knowledge imply
time/space efficiency. In Ran Canetti, editor, TCC 2008: 5th Theory of Cryptog-
raphy Conference, volume 4948 of Lecture Notes in Computer Science, pages 1–18,
San Francisco, CA, USA, March 19–21, 2008. Springer, Heidelberg, Germany.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract).
In 27th Annual Symposium on Foundations of Computer Science, pages 162–167,
Toronto, Ontario, Canada, October 27–29, 1986. IEEE Computer Society Press.

A Proof of Theorem 6

A LOT should satisfy the notions of correctness and sender security and we analyze the two
property separately.

Correctness. If the underlying weak LOT is perfectly correct, then so is the resulting LOT.
On the other hand, if the weak LOT is only (1/p)-correct, for some polynomial p, then the
resulting scheme is (λ/p)-correct by a union bound. When considering string-LOT, if p = λ2

we can pre-process the message with an error-correcting code to reduce the error probability to
1/2λ. This can be further lifted to a perfectly correct scheme using Naor’s trick [Nao90]. Note
that these transformations are information-theoretic and do not add any additional assumption.

Sender Security. We show that ¯LOT is sender secure, under the assumption that LOT is
weakly sender secure. For the analysis it is useful to recall the following lemma from [CHS05].

Lemma 5 (Hardness Amplification [CHS05]). Let Y be some distribution over pairs of puzzles
and solutions (puzzle, solution) and let Solve be an algorithm such that

Pr
[
Solve(puzzle(1), . . . , puzzle(λ)) = (solution(1), . . . , solution(λ))

]
≥ 1

poly(λ)

where each pair (puzzle(i), solution(i)) is uniformly sampled from Y and poly is some polynomial
function. Then for all constants c > 0 there exists a PPT algorithm Amp such that

Pr
[
AmpSolve,Y(1λ, puzzle∗) = solution∗

]
≥ c

where (puzzle∗, solution∗) is uniformly sampled from Y.

Before proving the main statement of the theorem, we put forward the following claim.
Intuitively, this states that the adversary cannot predict the value of both K0 and K1 for a
fixed digest d.

64



Claim 15.1. Let LOT = (Setup,Hash,KGen,Receive) be a weak LOT. Then for all λ ∈ N,
for all PPT adversaries A = (A1,A2), and for all polynomial functions poly(λ) there exists a
negligible function negl such that

Pr

[
ε0 >

1

poly(λ)
and ε1 >

1

poly(λ)

]
= negl(λ)

where, for β ∈ {0, 1}, εβ is defined as

εβ = Pr

A2(c(1), . . . , c(λ), st, β) = (k
(1)
β , . . . , k

(λ)
β )

∣∣∣∣∣∣
crs← Setup(1λ)
(d, L, st)← A1(crs)

(c(1), . . . , c(λ))←$KGen(crs, d, L)


where the probabilities are taken over the random coins of Setup, KGen, and A1.

Proof of Claim 15.1. Assume the contrary, i.e., that there is an adversary A = (A1,A2) such
that

Pr

[
ε0 >

1

poly(λ)
and ε1 >

1

poly(λ)

]
=

1

poly(λ)

for some polynomial function poly . Let S be the set of random coins of the algorithms Setup
and A1 for which

Pr

A2(c(1), . . . , c(λ), st, β) = (k
(1)
β , . . . , k

(λ)
β )

∣∣∣∣∣∣
crs← Setup(1λ)
(d, L, st)← A1(crs)

(c(1), . . . , c(λ))←$KGen(crs, d, L)

 > 1

poly(λ)

for all β ∈ {0, 1} simultaneously, where the probabilities are taken over the random coins of
Send. Fix an element s ∈ S and note that such choice fixes also the tuple (d, L, st) output by
A1. By construction we have that

Pr
[
A2(c(1), . . . , c(λ), st, β) = (k

(1)
β , . . . , k

(λ)
β )
]
>

1

poly(λ)

for all β ∈ {0, 1}, where (c(1), . . . , c(λ))←$KGen(crs, d, L). By Lemma 5, we have that

Pr
[
AmpA2(·,st,β),KGen(c) = kβ

]
≥ 3/4

for all β ∈ {0, 1}, where c←$KGen(crs, d, L). Define A∗ to run AmpA2(·,st,β),KGen, for all β ∈
{0, 1}, and output whatever the algorithms output. Then

Pr [A∗(c, st) = (k0, k1)] ≥ 1−
∑
β

Pr
[
AmpA2(·,st,β),KGen(c) 6= kβ

]
≥ 1/2

where c←$KGen(crs, d, L) and the last inequality is by a union bound. It follows that A∗ breaks
the weak sender security of LOT with probability at least 1

2·poly(λ) . This proves our claim.

Before completing the proof of the theorem, we recall the central lemma of the result of
Goldreich and Levin [GL89] that shows an efficient decoder for Hadamard codes.

Lemma 6 (Goldreich-Levin Decoding [GL89]). There exists a PPT algorithm GLDec and a
polynomial poly ′ such that for any (n, `) ∈ N and for any t ∈ {0, 1}n, and any function f :
{0, 1}n → {0, 1} such that

Pr

[
f(t) =

n∑
i=1

xi · ti

]
≥ 1/2 + 1/`

65



(over the random choice of t) then it holds that

Pr
[
GLDecf (1n, 1`) = x

]
≥ 1

poly ′(n, `)
.

We are now in the position of proving our main theorem. Assume towards contradiction
that there eixsts an adversary A = (A1,A2) that breaks the sender security of ¯LOT, i.e.,

Pr

[
ε0 >

1

poly(λ)
and ε1 >

1

poly(λ)

]
=

1

poly(λ)

where εβ is defined as in Definition 27. Let S be the set of random coins of the algorithms ¯Setup
and A1 for which the above event happens. By assumption, sampling random tapes yields an
element of S with probability at least 1

poly(λ) . Fix an s ∈ S and observe that this also fixes

(m0,m1, d, L, st). For such an s we have that

|Pr [A2(c̃, C0, C1, t0, t1, st, β = 0) = 1]− Pr [A2(c̃, R0, C1, t0, t1, st, β = 0) = 1]| ≥ 1

poly(λ)

|Pr [A2(c̃, C0, C1, t0, t1, st, β = 1) = 1]− Pr [A2(c̃, C0, R1, t0, t1, st, β = 1) = 1]| ≥ 1

poly(λ)

where the probability is taken over the random choice of ¯Send(crs, d, L,m0,m1) andRb←$ {0, 1},
for all b ∈ {0, 1}. Recall that Cb = GLEnc(Kb; tb)⊕mb, for all b ∈ {0, 1}. Since (for a single bit)
distinguishing implies predicting, it follows that there exists a PPT algorithm Af such that

Pr
[
Af (c̃, t0, t1, C1, st, β = 0) = GLEnc(K0; t0)

]
≥ 1/2 +

1

2 · poly(λ)

Pr
[
Af (c̃, t0, t1, C0, st, β = 1) = GLEnc(K1; t1)

]
≥ 1/2 +

1

2 · poly(λ)

where the probabilities are taken over the random coins of the ¯Send algorithm, as above. Let Z0

be the set of random variables z0 = (crs, c̃,K0,K1, t1) such that the LHS of the first equation
is ≥ 1/2 + 1

4·poly(λ) and let Z1 be defined analogously. By Markov inequality, for any s ∈ S, the

probability that a random zb ∈ Zb is ≥ 1
4·poly(λ) , for all b ∈ {0, 1}. By Lemma 6, there exists a

PPT decoder GLDec and a polynomial poly ′ such that, for any fixed z0 ∈ Z0 and z1 ∈ Z1, we
have

Pr [GLDec(c̃, t1, C1, st, β = 0) = K0] ≥ 1

poly(λ)′

Pr [GLDec(c̃, t0, C0, st, β = 1) = K1] ≥ 1

poly(λ)′

over the internal coins of GLDec. LetA∗(c̃, st, β) be an adversary that outputs GLDec(c̃, t1−β, C1−β,
st, β) for randomly sampled (t1−β, C1−β). Then for all values in z0 ∈ Z0 and z1 ∈ Z1 we have
that

Pr [A∗(c̃, st, β = 0; t1) = K0] ≥ 1

2 · poly(λ)′

Pr [A∗(c̃, st, β = 1; t0) = K1] ≥ 1

2 · poly(λ)′

66



fixing t1−β and over the random coins of A∗. Here the factor 1/2 in the loss of probability comes
from guessing the correct value of C1−β. It follows that

Pr [A∗(c̃, st, β = 0) = K0] ≥ 1

4 · poly(λ) · 2 · poly(λ)′

Pr [A∗(c̃, st, β = 1) = K1] ≥ 1

4 · poly(λ) · 2 · poly(λ)′

over the coins of A∗ and the random choices of (c̃, K0,K1). Expanding we have that both events

Pr
[
A∗((c(1), . . . , c(λ)), st, β = 0) = (k

(1)
0 , . . . , k

(λ)
0 )
]
≥ 1

4 · poly(λ) · 2 · poly(λ)′

Pr
[
A∗((c(1), . . . , c(λ)), st, β = 1) = (k

(1)
1 , . . . , k

(λ)
1 )
]
≥ 1

4 · poly(λ) · 2 · poly(λ)′

happen with probability at least 1
poly(λ) , over the random choices of Setup, KGen, and A1. This

contradicts Claim 15.1 and concludes our proof.

67


