
Accountable Tracing Signatures from Lattices

San Ling, Khoa Nguyen, Huaxiong Wang, Yanhong Xu

Division of Mathematical Sciences,
School of Physical and Mathematical Sciences,
Nanyang Technological University, Singapore.

{lingsan,khoantt,hxwang,xu0014ng}@ntu.edu.sg

Abstract. Group signatures allow users of a group to sign messages
anonymously in the name of the group, while incorporating a tracing
mechanism to revoke anonymity and identify the signer of any message.
Since its introduction by Chaum and van Heyst (EUROCRYPT 1991),
numerous proposals have been put forward, yielding various improve-
ments on security, efficiency and functionality. However, a drawback of
traditional group signatures is that the opening authority is given too
much power, i.e., he can indiscriminately revoke anonymity and there
is no mechanism to keep him accountable. To overcome this problem,
Kohlweiss and Miers (PoPET 2015) introduced the notion of accountable
tracing signatures (ATS) - an enhanced group signature variant in which
the opening authority is kept accountable for his actions. Kohlweiss and
Miers demonstrated a generic construction of ATS and put forward a con-
crete instantiation based on number-theoretic assumptions. To the best
of our knowledge, no other ATS scheme has been known, and the prob-
lem of instantiating ATS under post-quantum assumptions, e.g., lattices,
remains open to date.

In this work, we provide the first lattice-based accountable tracing sig-
nature scheme. The scheme satisfies the security requirements suggested
by Kohlweiss and Miers, assuming the hardness of the Ring Short Integer
Solution (RSIS) and the Ring Learning With Errors (RLWE) problems.
At the heart of our construction are a lattice-based key-oblivious encryp-
tion scheme and a zero-knowledge argument system allowing to prove
that a given ciphertext is a valid RLWE encryption under some hidden
yet certified key. These technical building blocks may be of independent
interest, e.g., they can be useful for the design of other lattice-based
privacy-preserving protocols.

1 Introduction

Group signature is a fundamental cryptographic primitive introduced by Chaum
and van Heyst [13]. It allows members of a group to anonymously sign messages
on behalf of the group, but to prevent abuse of anonymity, there is an open-
ing authority (OA) who can identify the signer of any message. While such a
tracing mechanism is necessary to ensure user accountability, it grants too much
power to the opening authority. Indeed, in traditional models of group signatures,

e.g., [2,23,7,3,24,54,8], the OA can break users’ anonymity whenever he wants,
and we do not have any method to verify whether this trust is well placed or
not.

One existing attempt to restrict the OA’s power is the proposal of group
signatures with message-dependent opening (MDO) [53], in which the OA can
only identify the signers of messages admitted by an additional authority named
admitter. However, this solution is still unsatisfactory. Once the OA has obtained
admission to open a specific message, he can identify all the users, including
some innocent ones, who have ever issued signatures on this specific message.
Furthermore, by colluding with the admitter, the OA again is able to open all
signatures.

To tackle the discussed above problem, Kohlweiss and Miers [25] put for-
ward the notion of accountable tracing signatures (ATS), which is an enhanced
variant of group signatures that has an additional mechanism to make the OA
accountable. In an ATS scheme, the role of the OA is incorporated into that
of the group manager (GM), and there are two kinds of group users: traceable
ones and non-traceable ones. Traceable users are treated as in traditional group
signatures, i.e., their anonymity can be broken by the OA/GM. Meanwhile, it
is infeasible for anyone, including the OA/GM, to trace signatures generated
by non-traceable users. When a user joins the group, the OA/GM first has to
determine whether this user is traceable and then he issues a corresponding
(traceable/nontraceable) certificate to the user. In a later phase, the OA/GM
reveals which user he deems traceable using an “accounting” algorithm, yielding
an intriguing method to enforce his accountability.

As an example, let us consider the surveillance controls of a building, which
is implemented using an ATS scheme. On the one hand, the customers in this
building would like to have their privacy protected as much as possible. On the
other hand, the police who are conducting security check in this building would
like to know as much as they can. To balance the interests of these two parties,
the police can in advance narrow down some suspects and asks the OA/GM to
make these suspected users traceable and the remaining non-suspected users
non-traceable. To check whether the suspects entered the building, the police
can ask the OA/GM to open all signatures that were used for authentication at
the entrance. Since only the suspects are traceable, the group manager can only
identify them if they indeed entered this building. However, if a standard group
signature scheme (e.g., [1,2,6,3]) were used, then the privacy of innocent users
would be seriously violated. In this situation, one might think that a traceable
signature scheme, as suggested by Kiayias, Tsiounis and Yung [23], would work.
By requesting a user-specific trapdoor from the OA/GM, the police can trace all
the signatures created by the suspects. However, this only achieves privacy of
innocent users against the police, but not against the group authorities. In fact,
in a traceable signature scheme, the OA/GM has the full power to identify the
signers of all signatures and hence can violate the privacy of all users without
being detected. In contrast, if an ATS scheme is used, then the OA/GM must
later reveal which user he chose to be traceable, thus enabling his accountability.

2

In [25], besides demonstrating the feasibility of ATS under generic assump-
tions, Kohlweiss and Miers also presented an instantiation based on number-
theoretic assumptions, which remains the only known concrete ATS construc-
tion to date. This scheme, however, is vulnerable against quantum computers
due to Shor’s algorithm [55]. For the sake of not putting all eggs in one basket,
it is therefore tempting to build schemes based on post-quantum foundations. In
this paper, we investigate the design of accountable tracing signatures based on
lattice assumptions, which are currently among the most viable foundations for
post-quantum cryptography. Let us now take a look at the closely related and
recently active topic of lattice-based group signatures.
Lattice-based group signatures. The first lattice-based group signature
scheme was introduced by Gordon, Katz and Vaikuntanathan in 2010 [20]. Sub-
sequently, numerous schemes offering improvements in terms of security and
efficiency have been proposed [12,26,34,48,30,28,9,51]. Nevertheless, regarding
the supports of advanced functionalities, lattice-based group signatures are still
way behind their number-theoretic-based counterparts. Indeed, there have been
known only a few lattice-based schemes [32,31,28,35,36] that depart from the
BMW model [2] - which deals solely with static groups and which may be too
inflexible to be considered for a wide range of real-life applications. In partic-
ular, although there was an attempt [31] to restrict the power of the OA in
the MDO sense, the problem of making the OA accountable in the context of
lattice-based group signatures is still open. This somewhat unsatisfactory state-
of-affairs motivates our search for a lattice-based instantiation of ATS. As we
will discuss below, the technical road towards our goal is not straightforward:
there are challenges and missing building blocks along the way.

Our Results and Techniques. In this paper, we introduce the first lattice-
based accountable tracing signature scheme. The scheme satisfies the security
requirements suggested by Kohlweiss and Miers [25], assuming the hardness of
the Ring Short Integer Solution (RSIS) problem and the Ring Learning With
Errors (RLWE) problem. As all other known lattice-based group signatures, the
security of our scheme is analyzed in the random oracle model. For a security
parameter λ, our ATS scheme features group public key size and user secret
key size Õ(λ). However, the accountability of the OA/GM comes at a price: the
signature size is of order Õ(λ2) compared with Õ(λ) in a recent scheme by Ling
et al. [36].

Let us now give an overview of our techniques. First, we recall that in an or-
dinary group signature scheme [2,3], to enable traceability, the user is supposed
to encrypt his identifying information and prove the well-formedness of the re-
sulting ciphertext. In an ATS scheme, however, not all users are traceable. We
thus would need a mechanism to distinguish between traceable users and non-
traceable ones. A possible method is to let traceable users encrypt their identities
under a public key (pk) such that only the OA/GM knows the underlying secret
key (sk), while for non-traceable users, no one knows the secret key. However,
there seems to be no incentive for users to deliberately make themselves trace-
able. We hence should think of a way to choose traceable users obliviously. An

3

interesting approach is to randomize pk to a new public key epk so that it is in-
feasible to decide how these keys are related without the knowledge of the secret
key and the used randomness. More specifically, when a user joins the group, the
OA/GM first randomizes pk to epk and sends the latter to the user together with
a certificate. The difference between traceable users and non-traceable ones lies
in whether OA/GM knows the underlying secret key. Thanks to the oblivious-
ness property of the randomization, the users are unaware of whether they are
traceable. Then, when signing messages, the user encrypts his identity using his
own randomized key epk (note that this “public key” should be kept secret) and
proves the well-formedness of the ciphertext. Several questions regarding this
approach then arise. What special kind of encryption scheme should we use?
How to randomize the public key in order to get the desirable obliviousness?
More importantly, how could the user prove the honest execution of encryption
if the underlying encryption key is secret?

To address the first two questions, Kohlweiss and Miers [25] proposed the
notion of key-oblivious encryption (KOE) - a public-key encryption scheme in
which one can randomize public keys in an oblivious manner. Kohlweiss and
Miers showed that a KOE scheme can be built from a key-private homomorphic
public-key encryption scheme. They then gave an explicit construction based on
the ElGamal cryptosystem [18], where epk is obtained by multiplying pk by a ci-
phertext of 1. When adapting this idea into the lattice setting, however, one has
to be careful. In fact, we observe that an implicit condition for the underlying
key-private public-key encryption scheme is that its public key and ciphertext
should have the same algebraic form1, which is often not the case for the schemes
in the lattice setting, e.g., [52,19]. Furthermore, lattice-based encryption schemes
from the Learning with Errors (LWE) problem or its ring version RLWE often
involve noise terms that grow quickly when one performs homomorphic opera-
tions over ciphertexts. Fortunately, we could identify a suitable candidate: the
RLWE-based encryption scheme proposed by Lyubashevsky, Peiker and Regev
(LPR) [43], for which both the public key and the ciphertext consist of a pair
of ring elements. Setting the parameters carefully to control the noise growth
in LPR, we are able to adapt the blueprint of [25] into the lattice setting and
obtain a lattice-based KOE scheme.

To tackle the third question, we need a zero-knowledge (ZK) protocol for
proving well-formedness of the ciphertext under a hidden encryption key, which
is quite challenging to build in the RLWE setting. Existing ZK protocols from
lattices belong to two main families. One line of research [37,38,4,5,41,44] de-
signed very elegant approximate ZK proofs for (R)LWE and (R)SIS relations
by employing rejection sampling techniques. While these proofs are quite ef-
ficient and compact, they only handle linear relations. In other words, they
can only prove knowledge of a short vector x satisfying y = A · x mod q, for
public A and public y. This seems insufficient for our purpose. Another line
of research [33,34,14,30,29,36] developed decomposition/ extension/permutation

1 This condition is needed so that epk can be computed as pk · enc(1) (multiplicative
homomorphic) or pk + enc(0) (additive homomorphic).

4

techniques that operate in Stern’s framework [57]. Although Stern-like protocols
are less practical than those in the first family, they are much more versatile
and can even deal with quadratic relations [29]. More precisely, as demon-
strated by Libert et al. [29] one can employ Stern-like techniques to prove
knowledge of secret-and-certified A together with short secret vector x satis-
fying y = A · x mod q. Thus, Libert et al.’s work appears to be the “right”
stepping stone for our case. However, in [29], quadratic relations were consid-
ered only in the setting of general lattices, while here we have to deal with the
ring setting, for which the multiplication operation is harder to express, capture
and prove in zero-knowledge. Nevertheless we manage to adapt their techniques
into the ring lattices and obtain the desired technical building block.

As discussed so far, we have identified the necessary ingredients - the LPR
encryption scheme and Stern-like ZK protocols - for upgrading a lattice-based
ordinary group signature to a lattice-based accountable tracing signature. Next,
we need to find a lattice-based ordinary group signature scheme that is compati-
ble with the those ingredients. To this end, we work with Ling et al.’s scheme [36],
that also employs the LPR system for its tracing layer and Stern-like techniques
for proving knowledge of a valid user certificate (which is a Ducas-Micciancio
signature [15,16] based on the hardness of the Ring Short Integer Solution (RSIS)
problem). We note that the scheme from [36] achieves constant-size signatures,
which means that the signature size is independent of the number of users. As
a by-product, our signatures are also constant-size (although our constant is
larger, due to the treatment of quadratic relations).

A remaining aspect is how to enable the accountability of the OA/GM. To
this end, we let the latter reveal the choice (either traceable or non-traceable) for
a given user together with the randomness used to obtain the randomized public
key. The user then checks whether his epk was computed as claimed. However,
the OA/GM may claim a traceable user to be non-traceable by giving away
malicious randomness and accusing that the user had changed epk by himself. To
ensure non-repudiation, OA/GM is required to sign epk and the users’ identifying
information when registering the user into the group. This mechanism in fact
also prevents dishonest users from choosing non-traceable epk by themselves.

The obtained ATS scheme is then proven secure in the random oracle model
under the RSIS and RLWE assumptions, according to the security requirements
put forward by Kohlweiss and Miers [25]. On the efficiency front, as all known
lattice-based group signatures with advanced functionalities, our scheme is still
far from being practical. We, however, hope that our result will inspire more
efficient constructions in the near future.

Organization. In Section 2, we recall some background materials. In Section 3,
we describe our key-oblivious encryption scheme from lattice assumptions. Our
accountable tracing signature scheme is presented in Section 5.

5

2 Background

Notations. For a positive integer n, define the set {1, 2, . . . , n} as [n], the set
{0, 1, . . . , n} as [0, n], and the set containing all the integers from −n to n as
[−n, n]. Denote the set of all positive integers as Z+. If S is a finite set, then
x

$←− S means that x is chosen uniformly at random from S. Let a ∈ Rm1 and
b ∈ Rm2 be two vectors for positive integers m1,m2. Denote (a‖b) ∈ Rm1+m2 ,
instead of (a>,b>)>, as the concatenation of these two vectors.

2.1 Rings, RSIS and RLWE

Let q ≥ 3 be a positive integer and let Zq = [− q−1
2 , q−1

2]. In this work, let us
consider rings R = Z[X]/(Xn + 1) and Rq = (R/qR), where n is a power of 2.

Let τ be the coefficient embedding τ : Rq → Znq that maps a ring element
v = v0 +v1 ·X+. . .+vn−1 ·Xn−1 ∈ Rq to a vector τ(v) = (v0, v1, . . . , vn−1)> over
Znq . Define the ring homomorphism rot : Rq → Zn×nq that maps a ring element
a ∈ Rq to a matrix rot(a) =

[
τ(a) | τ(a ·X) | · · · | τ(a ·Xn−1)

]
over Zn×nq (see,

e.g., [45,58]). Using these two functions, the element product y = a · v over Rq
can be interpreted as the matrix-vector multiplication τ(y) = rot(a) · τ(v) over
Zq.

When working with vectors and matrices over Rq, we generalize the notations
τ and rot in the following way. For a vector v = (v1, . . . , vm)> ∈ Rmq , define
τ(v) = (τ(v1)‖ · · · ‖τ(vm)) ∈ Zmnq . For a matrix A = [a1 | · · · | am] ∈ R1×m

q ,
define rot(A) to be the matrix

rot(A) =
[
rot(a1) | · · · | rot(am)

]
∈ Zn×mnq .

Using the generalized notations, we can interpret y = A · v over Rq as matrix-
vector multiplication τ(y) = rot(A) · τ(v) over Zq.

For a = a0 + a1 ·X + . . .+ an−1 ·XN−1 ∈ R, we define ‖a‖∞ = maxi(|ai|).
Similarly, for vector b = (b1, . . . , bm)> ∈ Rm, we define ‖b‖∞ = maxj(‖bj‖∞).

We now recall the average-case problems RSIS and RLWE associated with the
rings R,Rq, as well as their hardness results.

Definition 1 ([39,50,40]). Given a uniform matrix A = [a1|a2| · · · |am] over
R1×m
q , the RSIS∞n,m,q,β problem asks to find a ring vector b = (b1, b2, . . . , bm)>

over Rm such that A · b = a1 · b1 + a2 · b2 + · · · + am · bm = 0 over Rq and
0 < ‖b‖∞ ≤ β.

For polynomial bounded m,β and q ≥ β · Õ(
√
n), it was proven that the

RSIS∞n,m,q,β problem is no easier than the SIVPγ problem in any ideal in the ring
R, where γ = β · Õ(

√
nm) (see [39,50,27]).

Definition 2 ([42,56,43]). For positive integers n,m, q ≥ 2 and a probability
distribution χ over the ring R, define a distribution As,χ over Rq×Rq for s $←− Rq
in the following way: it first samples a uniformly random element a ∈ Rq, an

6

error element e←↩ χ, and then outputs (a, a·s+e). The target of the RLWEn,m,q,χ
problem is to distinguish m samples chosen from a uniform distribution over
Rq ×Rq and m samples chosen from the distribution As,χ for s $←− Rq.

Let q ≥ 2 and B = Õ(
√
n) be positive integers. χ is a distribution over R which

efficiently outputs samples e ∈ R with ‖e‖∞ ≤ B with overwhelming probability
in n. Then there is a quantum reduction from the RLWEn,m,q,χ problem to
the SIVPγ problem and the SVPγ problem in any ideal in the ring R, where
γ = Õ(

√
n · q/B) (see [42,10,27,49]). It is shown that the hardness of the RLWE

problem is preserved when the secret s is sampled from the error distribution χ
(see [42,10]).

2.2 Decompositions

We now recall the integer decomposition technique from [33]. For any pos-
itive integer B, let δB := blog2 Bc + 1 = dlog2(B + 1)e and the sequence
B1, . . . , BδB , where Bj = bB+2j−1

2j c, for any j ∈ [δB]. It is then verifiable that∑δB
j=1 Bj = B. In addition, for any integer a ∈ [0, B], one can decompose a

into a vector of the form idecB(a) = (a(1), a(2), . . . , a(δB))> ∈ {0, 1}δB , satis-
fying (B1, B2, . . . , BδB) · idecB(a) = a. The procedure of the decomposition is
presented below in a deterministic manner.

1. a′ := a
2. For j = 1 to δB do:

(i) If a′ ≥ Bj then a(j) := 1, else a(j) := 0;
(ii) a′ := a′ −Bj · a(j).

3. Output idecB(a) = (a(1), . . . , a(δB))>.

In [36], the above decomposition procedure is also utilized to deal with poly-
nomials in the ring Rq. Specifically, for B ∈ [1, q−1

2], define the injective function
rdecB that maps a ∈ Rq with ‖a‖∞ ≤ B to a ∈ RδB with ‖a‖∞ ≤ 1, which
works as follows.

1. Let τ(a) = (a0, . . . , an−1)>. For each i, let σ(ai) = 0 if ai = 0; σ(ai) = −1 if
ai < 0; and σ(ai) = 1 if ai > 0.

2. ∀i, compute wi = σ(ai) · idecB(|ai|) = (wi,1, . . . , wi,δB)> ∈ {−1, 0, 1}δB .
3. Form the vector w = (w0‖ . . . ‖wn−1) ∈ {−1, 0, 1}nδB , and let a ∈ RδB be

the vector such that τ(a) = w.
4. Output rdecB(a) = a.

To deal with ring vectors of dimension m ∈ Z+ and of infinity bound B ∈
Z+, we generalize the notion rdecB(v) in the following way: it maps a ring
vector v = (v1, . . . , vm)> ∈ Rmq such that ‖v‖∞ ≤ B to a vector rdecB(v) =(
rdecB(v1)‖ . . . ‖rdecB(vm)

)
∈ RmδB , whose coefficients are in the set {−1, 0, 1}.

7

Now, ∀m,B ∈ Z+, we define matrices HB ∈ Zn×nδB and Hm,B ∈ Znm×nmδB as

HB =

B1 . . . BδB
. . .

B1 . . . BδB

 , and Hm,B =

HB

. . .
HB

 .
Then we have

τ(a) = HB · τ(rdecB(a)) mod q and τ(v) = Hm,B · τ(rdecB(v)).

For simplicity reason, when B = q−1
2 , we will use the notation rdec instead

of rdec q−1
2

, and H instead of H q−1
2

.

2.3 A Variant of the Ducas-Micciancio Signature scheme

We recall the stateful and adaptively secure version of Ducas-Micciancio signa-
ture scheme [15,16], which is used to enroll new users in our construction.

Following [15,16], throughout this work, for any real constants c > 1 and
α0 ≥ 1

c−1 , define a series of sets Tj = {0, 1}cj of lengths cj = bα0c
jc for j ∈ [d],

where d ≥ logc(ω(logn)). For each tag t = (t0, t1, . . . , tcj)> ∈ Tj for j ∈ [d],
associate it with a ring element t(X) =

∑cj
k=0 tk ·Xk ∈ Rq. Let c0 = 0 and then

define t[i](X) =
∑ci−1
k=ci−1

tk · Xk and t[i] = (tci−1 , . . . , tci−1)> for i ∈ [j]. Then
one can check t = (t[1]‖t[2]‖ · · · ‖t[j]) and t(X) =

∑j
i=1 t[i](X).

This variant works with the following parameters.

– Let n,m, q, k be some positive integers such that n ≥ 4 is a power of 2,
m ≥ 2dlog qe + 2, and q = 3k. Define the rings R = Z[X]/(Xn + 1) and
Rq = R/qR.

– Let the message dimension be ms = poly(n). Also, let ` = blog q−1
2 c+1, and

m = m+ k and ms = ms · `.
– Let integer β = Õ(n) and integer d and sequence c0, . . . , cd be as above.
– Let S ∈ Z be a state that is 0 initially.

The public verification key consists of the following:

A,F0 ∈ R1×m
q ; A[0], . . . ,A[d] ∈ R1×k

q ; F ∈ R1×`
q ; F1 ∈ R1×ms

q ; u ∈ Rq

while the secret signing key is a Micciancio-Peikert [46] trapdoor matrix R ∈
Rm×kq .

When signing a message m ∈ Rmsq , the signer first computes m = rdec(m) ∈
Rms , whose coefficients are in the set {−1, 0, 1}. He then performs the following
steps.

– Set the tag t = (t0, t1 . . . , tcd−1)> ∈ Td, where S =
∑cd−1
j=0 2j ·tj , and compute

At = [A|A[0] +
∑d
i=1 t[i]A[i]] ∈ R

1×(m+k)
q . Update S to S + 1.

8

– Choose r ∈ Rm with ‖r‖∞ ≤ β.
– Let y = F0 · r + F1 ·m ∈ Rq and up = F · rdec(y) + u ∈ Rq.
– Employing the trapdoor matrix R, produce a ring vector v ∈ Rm+k with

At · v = up over the ring Rq and ‖v‖∞ ≤ β.
– Return the tuple (t, r,v) as a signature for the message m.

To check the validity of the tuple (t, r,v) with respect to message m ∈ Rmsq ,
the verifier first computes the matrix At as above and verifies the following
conditions: {

At · v = F · rdec(F0 · r + F1 · rdec(m)) + u,

‖r‖∞ ≤ β, ‖v‖∞ ≤ β.

He outputs 1 if all these three conditions hold and 0 otherwise.

Lemma 1 ([15,16]). Given at most polynomially bounded number of signature
queries, the above variant is existentially unforgeable against adaptive chosen
message attacks assuming the hardness of the RSIS

n,m,q,Õ(n2) problem.

2.4 Zero-Knowledge Argument of Knowledge

We will work with statistical zero-knowledge argument systems, namely, in-
teractive protocols where the ZK property holds against any cheating verifier,
while the soundness property only holds against computationally bounded cheat-
ing provers. More formally, let the set of statements-witnesses R = {(y, w)} ∈
{0, 1}∗×{0, 1}∗ be an NP relation. A two-party game 〈P,V〉 is called an interac-
tive argument system for the relation R with soundness error e if the following
two conditions hold:

– Completeness. If (y, w) ∈ R then Pr
[
〈P(y, w),V(y)〉 = 1

]
= 1.

– Soundness. If (y, w) 6∈ R, then ∀ PPT P̂: Pr[〈P̂(y, w),V(y)〉 = 1] ≤ e.

An argument system is called statistical ZK if for any V̂(y), there exists a PPT
simulator S(y) having oracle access to V̂(y) and producing a simulated transcript
that is statistically close to the one of the real interaction between P(y, w) and
V̂(y). A related notion is argument of knowledge, which, for three-move proto-
cols (commitment-challenge-response), requires the existence of a PPT extractor
taking as input a set of valid transcripts with respect to all possible values of the
“challenge” to the same “commitment” and outputting w′ such that (y, w′) ∈ R.

The statistical zero-knowledge arguments of knowledge (ZKAoK) presented
in this work are Stern-like [57] protocols. In particular, they are Σ-protocols
in the generalized sense defined in [21,4] (where 3 valid transcripts are needed
for extraction, instead of just 2). Stern’s protocol was originally proposed in
the context of code-based cryptography, and was later adapted into the lattice
setting by Kawachi et al. [22]. Subsequently, it was empowered by Ling et al. [33]

9

to handle the matrix-vector relations where the secret vectors are of small infinity
norm, and further developed to design various lattice-based schemes. Libert et
al. [28] put forward an abstraction of Stern’s protocol to capture a wider range
of lattice-based relations. Now let us recall it.
An Abstraction of Stern’s Protocol. Let integers q,K,L be positive such
that L ≥ K and q ≥ 2, and VALID ⊂ {−1, 0, 1}L. Given a finite set S, asso-
ciate every η ∈ S with a permutation Γη of L elements such that the following
conditions hold:{

w ∈ VALID ⇐⇒ Γη(w) ∈ VALID,
If w ∈ VALID and η is uniform in S, then Γη(w) is uniform in VALID.

(1)

Our target is to construct a statistical ZKAoK for the abstract relation Rabstract
of the following form:

Rabstract =
{

(M,u),w ∈ ZK×Lq × ZKq × VALID : M ·w = u mod q.
}

To obtain the desired ZKAoK protocol, one has to prove that w ∈ VALID
and w satisfies the linear equation M · w = u mod q. To prove w ∈ VALID
in a zero-knowledge manner, the prover chooses η $←− S and allows the verifier
to check Γη(w) ∈ VALID. According to the first condition in (1), the verifier
should be convinced that w is indeed from the set VALID. At the same time, the
verifier cannot learn any extra information about w due to the second condition
in (1). Furthermore, to prove in ZK that the linear equation holds, the prover
first chooses rw

$←− ZLq as a masking vector and then shows the verifier that the
equation M · (w + rw) = M · rw + u mod q holds.

In Figure 1, we describe in details the interaction between two PPT algo-
rithms prover P and verifier V. The system utilizes a statistically hiding and
computationally binding string commitment scheme COM (e.g., the RSIS-based
scheme from [22]).

Theorem 1 ([28]). Let COM be a statistically hiding and computationally bind-
ing string commitment scheme. Then the interactive protocol depicted in Figure 1
is a statistical ZKAoK with perfect completeness, soundness error 2/3, and com-
munication cost O(L log q). Specifically:

– There exists a polynomial-time simulator that on input (M,u), with proba-
bility 2/3 it outputs an accepted transcript that is within statistical distance
from the one produced by an honest prover who knows the witness.

– There exists a polynomial-time algorithm that, takes as inputs (M,u) and
three accepting transcripts on (M,u), (CMT, 1,RSP1), (CMT, 2,RSP2), and
(CMT, 3,RSP3), outputs w′ ∈ VALID such that M ·w′ = u mod q.

The details of the proof appeared in [28] and are omitted here.

10

1. Commitment: Prover chooses rw
$←− ZLq , η $←− S and randomness ρ1, ρ2, ρ3 for

COM. Then he sends CMT =
(
C1, C2, C3

)
to the verifier, where

C1 = COM(η,M · rw mod q; ρ1), C2 = COM(Γη(rw); ρ2),
C3 = COM(Γη(w + rw mod q); ρ3).

2. Challenge: V sends back a challenge Ch $←− {1, 2, 3} to P.
3. Response: According to the choice of Ch, P sends back RSP computed in the

following way:
– Ch = 1: Let tw = Γη(w), tr = Γη(rw), and RSP = (tw, tr, ρ2, ρ3).
– Ch = 2: Let η2 = η, w2 = w + rw mod q, and RSP = (η2,w2, ρ1, ρ3).
– Ch = 3: Let η3 = η, w3 = rw, and RSP = (η3,w3, ρ1, ρ2).

Verification: When receiving RSP from P, V performs as follows:

– Ch = 1: Check that tw ∈ VALID, C2 = COM(tr; ρ2), C3 = COM(tw+tr mod q; ρ3).

– Ch = 2: Check that C1 = COM(η2,M·w2−u mod q; ρ1), C3 = COM(Γη2 (w2); ρ3).

– Ch = 3: Check that C1 = COM(η3,M ·w3; ρ1), C2 = COM(Γη3 (w3); ρ2).

In each case, V returns 1 if and only if all the conditions hold.
Fig. 1: Stern-like ZKAoK for the relation Rabstract.

2.5 The Refined Permuting Techniques by Ling et al.

We next recall the permuting techniques recently suggested by Ling et al. [36],
which will be used throughout this paper.
Proving that z ∈ {−1, 0, 1}. Let b an integer. Denote the integer b′ ∈ {−1, 0, 1}
with b′ = b mod 3 as [b]3. For any z ∈ {−1, 0, 1}, define vector enc3(z) in the
following manner:

enc3(z) =
(
[z + 1]3, [z]3, [z − 1]3

)> ∈ {−1, 0, 1}3.

Namely, enc3(−1) = (0,−1, 1)>, enc3(0) = (1, 0,−1)> and enc3(1) = (−1, 1, 0)>.
Let e ∈ {−1, 0, 1}, define a permutation πe associated to e as follows. It

transforms vector v = (v(−1), v(0), v(1))> ∈ Z3 into vector

πe(v) = (v([−e−1]3), v([−e]3), v([−e+1]3))>.

It is then verifiable that, for any z, e ∈ {−1, 0, 1}, the equivalence below
holds.

v = enc3(z) ⇐⇒ πe(v) = enc3([z + e]3). (2)

In the context of Stern’s protocol, the above equivalence allows us to prove
knowledge of z ∈ {−1, 0, 1}, where z may have other constrains. Towards it, we

11

simply extend z to enc3(z), sample a uniform e ∈ {−1, 0, 1}, and then show the
verifier πe(enc3(z)) is of the form enc3([z + e]3). Due to the equivalence in (2),
the verifier should be convinced that z is in the set {−1, 0, 1}. Furthermore,
the “one time pad” e fully hides the value of z. More importantly, the above
technique is extendable so that we can employ the same e for other positions
where z appears. An example of that is to prove that z is involved in a product
t · z, which we now recall.
Proving that y = t ·z. Let b ∈ {0, 1}, denote the bit 1−b as b and the addition
operation modulo 2 as ⊕.

For any t ∈ {0, 1} and z ∈ {−1, 0, 1}, let vector ext(t, z) ∈ {−1, 0, 1}6 be of
the following form:

ext(t, z) =
(
t · [z+1]3, t · [z+1]3, t · [z]3, t · [z]3, t · [z−1]3, t · [z−1]3

)>
.

Let b ∈ {0, 1} and e ∈ {−1, 0, 1}, define the permutation ψb,e(·) associated to
b, e as follows. It transforms vector

v =
(
v(0,−1), v(1,−1), v(0,0), v(1,0), v(0,1), v(1,1))> ∈ Z6

into vector ψb,e(v) of form

ψb,e(v) =
(
v(b,[−e−1]3), v(b,[−e−1]3), v(b,[−e]3), v(b,[−e]3), v(b,[−e+1]3), v(b,[−e+1]3))>.

It can be easily checked that for any t, b ∈ {0, 1} and any z, e ∈ {−1, 0, 1},
the following equivalence is satisfied.

v = ext(t, z) ⇐⇒ ψb,e(v) = ext(t⊕ b, [z + e]3). (3)

The same as in the case z ∈ {−1, 0, 1}, the above equivalence (3) allows us
to prove knowledge of y, where y is a product of secret integers t ∈ {0, 1} and
z ∈ {−1, 0, 1}.

Next, we recall the generalizations of the above two core techniques to prove
knowledge of vector z ∈ {−1, 0, 1}m as well as vector of the form (5).
Proving that z ∈ {−1, 0, 1}m. We first generalize the notion [b]3 to [b]3 for
any b ∈ Zm, where [b]3 is the vector b′ such that b′ = b mod 3 coordinate-wise.

For z = (z1, . . . , zm)> ∈ {−1, 0, 1}m, define the following extension:

enc(z) =
(

enc3(z1) ‖ · · · ‖ enc3(zm)
)
∈ {−1, 0, 1}3m.

Let e = (e1, . . . , em)> ∈ {−1, 0, 1}m, define the permutation Πe associated
to e as follows. It maps vector v = (v1‖ . . . ‖vm) ∈ Z3m consisting of m blocks
of size 3 to vector as follows:

Πe(v) =
(
πe1(v1)‖ . . . ‖πem(vm)

)
.

Following (2), for any z, e ∈ {−1, 0, 1}m, we obtain the following equivalence:

v = enc(z) ⇐⇒ Πe(v) = enc([z + e]3). (4)

12

Handling a “mixing” vector. We now deal with a “mixing” vector of the
following form:

y =
(

z ‖ t0 · z ‖ . . . ‖ tcd−1 · z
)
, (5)

where z ∈ {−1, 0, 1}m and t = (t0, t1, . . . , tcd−1)> ∈ {0, 1}cd for m, cd ∈ Z+.
First, we define the extension vector mix(t, z) ∈ {−1, 0, 1}3m+6mcd of vector

y in the following manner:(
enc(z) ‖ ext(t0, z1) ‖ . . . ‖ ext(t0, zm) ‖ . . . ‖ ext(tcd−1, z1) ‖ . . . ‖ ext(tcd−1, zm)

)
.

Next, for b = (b0, · · · , bcd−1)> ∈ {0, 1}cd and e = (e1, . . . , em)> ∈ {−1, 0, 1}m,
we define the permutation Ψb,e that works as follows. It maps vector v ∈
Z3m+6mcd of form

v =
(
v−1 ‖ v0,1 ‖ . . . ‖ v0,m ‖ . . . ‖ vcd−1,1 ‖ . . . ‖ vcd−1,m

)
,

where block v−1 has length 3m and each block vi,j has length 6, to vector Ψb,e(v)
of form

Ψb,e(v) =
(
Πe(v−1)‖ ψb0,e1(v0,1)‖ . . . ‖ψb0,em(v0,m)‖ . . . ‖

ψbcd−1,e1(vcd−1,1)‖ . . . ‖ψbcd−1,em(vcd−1,m)
)
.

Then, for all t,b ∈ {0, 1}cd and z, e ∈ {−1, 0, 1}m, one can check the following
equivalence holds:

v = mix(t, z) ⇐⇒ Ψb,e(v) = mix(t⊕ b, [z + e]3). (6)

2.6 Zero-Knowledge Protocol for the Ducas-Micciancio Signature

We now recall the statistical zero-knowledge argument of knowledge of a valid
message-signature pair for the Ducas-Micciancio signature, as presented in [36].
Let n, q,m, k,m,ms, `, β, d, c0, . . . , cd as specified in Section 2.3. The protocol is
summarized below.

– The public input consists of

A,F0 ∈ R1×m
q ; A[0], . . . ,A[d] ∈ R1×k

q ; F ∈ R1×`
q ; F1 ∈ R1×ms

q ; u ∈ Rq.

– The secret input of the prover consists of message m ∈ Rmsq and signature
(t, r,v), where{

t = (t0, . . . , tc1−1, . . . , tcd−1 , . . . , tcd−1)> ∈ {0, 1}cd ;
r ∈ Rm; v = (s‖z) ∈ Rm+k; s ∈ Rm; z ∈ Rk;

– The goal of the prover is to prove in ZK that ‖r‖∞ ≤ β, ‖v‖∞ ≤ β, and that
the following equation

A · s + A[0] · z +
d∑
i=1

A[i] · t[i] · z = F · y + u (7)

13

holds for
{
t[i] =

∑ci−1
j=ci−1

tj ·Xj
}d
i=1 and

y = rdec (F0 · r + F1 · rdec(m)) ∈ R`. (8)

The next step is to transform the secret input into a vector w that belongs
to a specific set VALID and reduce the considered statements (7) and (8) into
M·w = u mod q for some public input M,u, in the form of the abstract protocol
from Section 2.4. To realize this, we employ the following two steps.
Decomposing-Unifying. To begin with, we utilize the notations rot and τ
from Section 2.1 and the decomposition techniques from Section 2.2.

Let s? = τ(rdecβ(s)) ∈ {−1, 0, 1}nmδβ , z? = τ(rdecβ(z)) ∈ {−1, 0, 1}nkδβ and
r? = τ(rdecβ(r)) ∈ {−1, 0, 1}nmδβ . Then, one can check that, equation (7) is
equivalent to,

[rot(A[0]) ·Hk,β] · z? +
d∑
i=1

ci−1∑
j=ci−1

[rot(A[i] ·Xj) ·Hk,β] · tj · z? +

[rot(A) ·Hm,β] · s? − [rot(F)] · τ(y) = τ(u) mod q,

and equation (8) is equivalent to

[rot(F0) ·Hm,β] · r? + [rot(F1)] · τ(rdec(m))− [H] · τ(y) = 0 mod q.

Rearrange the two derived equations using some basic algebra, we are able
to obtain the following unifying equation:

M0 ·w0 = u mod q,

where u = (τ(u) ‖ 0) ∈ Z2n
q and M0 are built from public input, and w0 =

(w1 ‖ w2) is built from secret input with w1 ∈ {−1, 0, 1}(kδβ+cdkδβ)n and w2 ∈
{−1, 0, 1}2nmδβ+n`+nms and{

w1 = (z? ‖ t0 · z? ‖ . . . ‖ tcd−1 · z?);
w2 = (s? ‖ r? ‖ τ(y) ‖ τ(rdec(m))).

Until now, we have transformed the secret input into a vector w0 whose co-
efficients are in the set {−1, 0, 1} and reduced statements (7) and (8) into
M0 ·w0 = u mod q, where M0,u are public.
Extending-Permuting. Now the target is to transform the secret vector w0 to
a vector w such that the conditions in (1) hold. Towards this goal, the extension
and permutation techniques described in Section 2.5 is employed.

We first extend w0 = (w1‖w2) as follows.

w1 7→ w′1 = mix
(
t, z?

)
∈ {−1, 0, 1}L1 ; (9)

w2 7→ w′2 = enc(w2) ∈ {−1, 0, 1}L2 .

14

Then form a new vector w = (w′1‖w′2) ∈ {−1, 0, 1}L, where L = L1 + L2 and

L1 = (kδβ + 2cdkδβ)3n; L2 = 6nmδβ + 3n`+ 3nms.

According to the extension, adding suitable zero-columns to M0 to obtain a new
matrix M ∈ Z2n×L

q such that M ·w = M0 ·w0.
We are ready to define the set VALID that consists of our transformed secret

vector w, the set S, and the associated permutations {Γη : η ∈ S}, such that
the conditions in (1) are all satisfied.
Let VALID be the set of all vectors v′ = (v′1‖v′2) ∈ {−1, 0, 1}L such that the
following conditions hold:

– v′1 = mix(t, z?) for some vectors t ∈ {0, 1}cd and z? ∈ {−1, 0, 1}nkδβ .
– v′2 = enc(w2) for vector w2 ∈ {−1, 0, 1}L2/3.

It is easy to see that w belongs to this special set VALID.
Now, define S = {0, 1}cd × {−1, 0, 1}nkδβ × {−1, 0, 1}L2/3. For each element

η = (b, e, f) ∈ S, define an associated permutation Γη as follows. It permutes
vector v? = (v?1‖v?2) ∈ ZL, where v?1 ∈ ZL1 and v?2 ∈ ZL2 , into vector of the
following form:

Γη(v?) =
(
Ψb,e(v?1) ‖ Πf (v?2)

)
.

It then follows from the equivalences in (4) and (6) that VALID, S, and Γη
satisfy the conditions in (1). Therefore, we have obtained an instance of the
abstract protocol from Section 2.4. Up to this point, running the protocol of
Figure 1 results in the desired statistical ZKAoK protocol. The protocol has
perfect completeness, soundness error 2/3, and communication cost O(L · log q),
which is of order O(n · log4 n) = Õ(λ).

2.7 Key-Oblivious Encryption

We next recall the definitions of key-oblivious encryption (KOE), as introduced
in [25]. A KOE scheme consists of the following polynomial-time algorithms.

Setup(λ): On input the security parameter λ, it outputs public parameter pp.
pp is implicit for all algorithms below if not explicitly mentioned.

KeyGen(pp): On input pp, it generates a key pair (pk, sk).
KeyRand(pk): On input the public key pk, it outputs a new public key pk′ for

the same secret key.
Enc(pk,m): On inputs pk and a message m, it outputs a ciphertext ct on this

message.
Dec(sk, ct): On inputs sk and ct, it outputs the decrypted message m′.

Correctness. The above scheme must satisfy the following correctness re-
quirement: For all λ, all pp ← Setup(λ), all (pk, sk) ← KeyGen(pp), all pk′ ←
KeyRand(pk), all m,

Dec(sk,Enc(pk′,m)) = m.

15

Security. The security requirements of a KOE scheme consist of key randomiz-
ability (KR), plaintext indistinguishability under key randomization (INDr), and
key privacy under key randomization (KPr).
Key Randomizability. KR requires that any adversary cannot determine how
public keys are related to each other without possession of secret keys. Details
are modelled in the experiment ExpKR

KOE,A(λ) in Fig 2.
Define the advantage AdvKR

KOE,A(λ) of adversary A against KR of the KOE
scheme as |2Pr[ExpKR

KOE,A(λ) = 1] − 1|. A KOE scheme is key randomizable if
the advantage of any PPT adversary A is negligible.
Plaintext indistinguishability under key randomization. INDr requires
that any adversary cannot distinguish ciphertext of one message from ciphertext
of another one even though the adversary is allowed to choose the two mes-
sages and to randomize the public key. Details are modelled in the experiment
ExpINDr

KOE,A(λ) in Fig 2.
Define the advantage AdvINDr

KOE,A(λ) of adversary A against INDr of the KOE
scheme as |2Pr[ExpINDr

KOE,A(λ) = 1] − 1|. A KOE scheme is plaintext indistin-
guishable under key randomization if the advantage of any PPT adversary A is
negligible.

ExpKR
KOE,A(λ)

b← {0, 1}, pp← Setup(λ), (pk, sk)← KeyGen(pp).
pk0 ← KeyRand(pk), (pk1, sk1)← KeyGen(pp).
b′ ← A(pk, pkb).
Return (b′ = b).
ExpINDr

KOE,A(λ)
b← {0, 1}, pp← Setup(λ), (pk, sk)← KeyGen(pp).
(pk′, r,m0,m1, st)← A(pk).
If pk′ 6= KeyRand(pk, r), then return ⊥; else ct← Enc(pk′,mb).
b′ ← A(ct, st).
Return (b′ = b).
ExpKPr

KOE,A(λ)
b← {0, 1}, pp← Setup(λ); (pk0, sk0)← KeyGen(pp), (pk1, sk1)← KeyGen(pp).
(m, pk′0, r0, pk′1, r1, st)← A(pk0, pk1).
If ∃ c such that pk′c 6= KeyRand(pkc, rc), then return ⊥; else ct← Enc(pk′b,m).
b′ ← A(ct, st).
Return (b′ = b).

Fig. 2: Experiment to define security requirements of a KOE scheme.

Key privacy under key randomization. KPr requires that any adversary
cannot distinguish ciphertext of a message under one public key from ciphertext
of the same message under another public key even though the adversary is
allowed to choose the message and to randomize the two public keys. Details are
modelled in the experiment ExpKPr

KOE,A(λ) in Fig 2.

16

Define the advantage AdvKPr
KOE,A(λ) of adversary A against INDr of the KOE

scheme as |2Pr[ExpKPr
KOE,A(λ) = 1]− 1|. A KOE scheme is key private under key

randomization if the advantage of any PPT adversary A is negligible.

2.8 Accountable Tracing Signatures

We then recall the definition of accountable tracing signature (ATS), as intro-
duced in [25]. An ATS scheme involves a group manager (GM) who also serves as
the opening authority (OA), a set of users, who are potential group members. As
a standard group signature scheme (e.g. [2,3]), GM is able to identify the signer
of a given signature. However, if GM is able to do so, there is an additional
accounting mechanism that later reveals which user he chose to trace (traceable
user). Specifically, if a user suspects that he was traceable by group manager
who had claimed non-traceability of this user, then the user can resort to this
mechanism to check whether group manager is honest/accountable or not. An
ATS scheme consists of the following polynomial-time algorithms.

Setup(λ): On input the security parameter λ, it outputs public parameter pp.
pp is implicit for all algorithms below if not explicitly mentioned.

GKeyGen(pp): This algorithm is run by GM. On input pp, GM generates group
public key gpk and group secret keys: issue key ik and opening key ok.

UKeyGen(pp): Given input pp, it outputs a user key pair (upk, usk).
Enroll(gpk, ik, upk, tr): This algorithm is run by GM. Upon receiving a user public

key upk from a user, GM determines the value of the bit tr ∈ {0, 1}, indicating
whether the user is traceable (tr = 1) or not. He then produces a certificate
cert for this user according to his choice of tr. GM then registers this user to
the group and stores the registration information and the witness wescrw to
the bit tr, and sends cert to the user.

Sign(gpk, cert, usk,M): Given the inputs gpk, cert, usk and message M , this al-
gorithm outputs a signature Σ on this message M .

Verify(gpk,M,Σ): Given the inputs gpk and the message-signature pair (M,Σ),
this algorithm outputs 1/0 indicating whether the signature is valid or not.

Open(gpk, ok,M,Σ): Given the inputs gpk, ok and the pair (M,Σ), this algo-
rithm returns a user public key upk′ and a proof Πopen demonstrating that
user upk′ indeed generated the signature Σ. In case of upk′ = ⊥, Πopen = ⊥.

Judge(gpk,M,Σ, upk′, Πopen): Given all the inputs, this algorithm outputs 1/0
indicating whether it accepts the opening result or not.

Account(gpk, cert, wescrw, tr): Given all the inputs, this algorithm returns 1 con-
firming the choice of tr and 0 otherwise.

Correctness. The above ATS scheme requires that: for any honestly generated
signature, the Verify algorithm always outputs 1. Furthermore, if the user is
traceable, then Account algorithm outputs 1 when tr = 1, and the Open algorithm
can identify the signer and generate a proof Πopen that will be accepted by the

17

Judge algorithm. On the other hand, if the user is non-traceable, then the Account
algorithm outputs 1 when tr = 0, and the Open algorithm outputs ⊥.

Remark 1. There is a minor difference between the syntax we describe here and
that presented by Kohlweiss and Miers [25]. Specifically, we omit the time epoch
when the user joins the group, since we do not consider forward and backward
tracing scenarios as in [25].

Security. The security requirements of an ATS scheme consist of anonymity
under tracing (AuT), traceability (Trace), and non-frameability (NF), anonymity
with accountability (AwA) and trace-obliviousness (TO).
Anonymity under tracing. AuT is the standard anonymity requirement of
group signatures (e.g. [2,3]). It guarantees that even when being traced, users
are anonymous to the adversary who does not hold the opening key. Details are
modelled in the experiment in Figure 3.

ExpAuT−b
ATS,A (λ)

pp← Setup(λ).
(gpk, ik, ok)← GKeyGen(pp).
b′ ← ACh,Open(gpk, ik)
Return b′.
Oracle Open(M,Σ)
If Σ ∈ Q, then return ⊥,
Else return
(upk, Π)← Open(ok,M,Σ).

Oracle Ch(cert0, cert1, usk0, usk1,M,wescrw
0 , wescrw

1 , 1)
Σ0 ← Sign(gpk, cert0, usk0,M).
Σ1 ← Sign(gpk, cert1, usk1,M).
If (Σ0 6= ⊥ ∧Σ1 6= ⊥ ∧

Account(gpk, cert0, w
escrw
0 , 1) ∧

Account(gpk, cert1, w
escrw
1 , 1))

Q← Q ∪ {Σb}
return Σb,

Else return ⊥.

Fig. 3: Experiment to define anonymity under tracing

Define the advantage AdvAuT
ATS,A(λ) of adversary A against anonymity under

tracing of the ATS scheme as |Pr[ExpAuT−1
ATS,A (λ) = 1]−Pr[ExpAuT−0

ATS,A (λ) = 1]|. An
ATS scheme is anonymous under tracing if the advantage of any PPT adversary
A is negligible.
Traceability. Traceability requires that every valid signature will trace to
someone as long as the adversary does not hold both the certificate and user
secret key of a user who is not traceable (non-traceable user). As pointed out by
Kohlweiss and Miers [25], this is slightly different from the standard traceability
game (e.g. [2,3]), where all users are being traced by GM. In an ATS scheme, when
adversary queries certificate of a user of his choice, challenger will always generate
a certificate according to tr = 1. In other words, the user of the adversary’s
choice is a traceable user. This ensures that the adversary does not hold both
certificate and user secret key for a non-traceable user. Details are modelled in
the experiment in Figure 4.

Define the advantage AdvTrace
ATS,A(λ) of adversary A against traceability of

the ATS scheme as Pr[ExpTrace
ATS,A(λ) = 1]. An ATS scheme is traceable if the

advantage of any PPT adversary A is negligible.

18

ExpTrace
ATS,A(λ)

pp← Setup(λ).
(gpk, ik, ok)← GKeyGen(pp).
(M,Σ)← AUKG,Enroll,Sign,Open(gpk).
Return 0 if (M,Σ) ∈ Q or

Verify(gpk,M,Σ) = 0.
Else (upk, Π)← Open(ok,m,Σ).
Return 1 if upk = ⊥ or

Judge(gpk,M,Σ, upk, Π) = 0.
Else return 0.

Oracle UKG(pp)
(upk, usk)← UKeyGen(pp).
S[upk] = usk.
Return upk.

Oracle Enroll(upk, tr)
Let tr′ = (upk /∈ dom S) ∈ {0, 1}.
(cert, wescrw)← Enroll(ik, upk, tr ∨ tr′).
Return cert.
Oracle Sign(cert,M)
usk = S[cert.upk].
If (usk = ⊥), return ⊥.
Else Σ ← Sign(gpk, cert, usk,M).

Q = Q ∪ {(m,Σ)}.
return Σ.

Oracle Open(M,Σ)
(upk, Π)← Open(ok,M,Σ)
Return (upk, Π).

Fig. 4: Experiment to define traceability.

Non-frameability. It requires that the adversary cannot sign messages on
behalf of honest users, even though the adversary can corrupt GM and all other
users. This ensures that signatures signed by a traceable user (traceable signa-
tures) are non-repudiated. Details are modelled in the experiment in Figure 5.

ExpNF
ATS,A(λ)

pp← Setup(λ).
(gpk, st)← A(pp).
If gpk.pp 6= pp, return ⊥.
(M,Σ, upk, Π)← AUKG,Sign(st).
Return 1 if ((M,Σ) /∈ Q ∧

Verify(gpk,M,Σ) = 1 ∧
upk ∈ dom(S) ∧
Judge(gpk,M,Σ, upk, Π) = 1).

Oracle UKG(pp)
(upk, usk)← UKeyGen(pp),
S[upk] = usk.
Return upk.
Oracle Sign(cert,M)
usk = S[cert.upk].
If (usk = ⊥) return ⊥.
Σ ← Sign(gpk, cert, usk,M).
Q = Q ∪ {(M,Σ)}. Return Σ.

Fig. 5: Experiment to define non-frameability.

Define the advantage AdvNF
ATS,A(λ) of adversary A against non-frameability

of the ATS scheme as Pr[ExpNF
ATS,A(λ) = 1]. An ATS scheme is non-frameable if

the advantage of any PPT adversary A is negligible.
Anonymity with accountability. AwA requires that a user is anonymous
even from a corrupted group manager that has full control over the system as
long as this user is non-traceable. In other words, the certificate is generated
according to tr = 0. Details are modelled in the experiment in Figure 6.

Define the advantage AdvAwA
ATS,A(λ) of A against anonymity with account-

ability of the ATS scheme as |Pr[ExpAwA−1
ATS,A (λ) = 1] − Pr[ExpAwA−0

ATS,A (λ) = 1]|.

19

ExpAwA−b
ATS,A (λ)

pp← Setup(λ).
(gpk, st)← A(pp).
If gpk.pp 6= pp, return ⊥.
b′ ← ACh(st)
Return b′.

Oracle Ch(cert0, cert1, usk0, usk1,M,wescrw
0 , wescrw

1 , 0)
Σ0 ← Sign(gpk, cert0, usk0,M).
Σ1 ← Sign(gpk, cert1, usk1,M).
If (Σ0 6= ⊥ ∧Σ1 6= ⊥ ∧

Account(gpk, cert0, w
escrw
0 , 0) ∧

Account(gpk, cert1, w
escrw
1 , 0)),

return Σb.
Else return ⊥.

Fig. 6: Experiment to define anonymity with accountability.

An ATS scheme is anonymous with accountability if the advantage of any PPT
adversary A is negligible.
Trace-obliviousness. Trace-obliviousness requires that each user cannot de-
termine whether they are being traced or not. Details are modelled in the ex-
periment in Figure 7.

ExpTO−b
ATS,A(λ)

pp← Setup(λ).
(gpk, ik, ok)← GKeyGen(pp).
b′ ← ACh,Enroll,Open(gpk)
Return b′.

Oracle Enroll(upk, tr)
(cert, wescrw)← Enroll(ik, upk, tr).
Return cert.
Oracle Ch(upk)
(cert, wescrw)← Enroll(ik, upk, b).
U = U ∪ {upk}, Return cert.
Oracle Open(M,Σ)
(upk, Π)← Open(ok,M,Σ)
If upk ∈ U , then return ⊥; Else return (upk, Π).

Fig. 7: Experiment to define trace-obliviousness.

Define the advantage AdvTO
ATS,A(λ) of adversaryA against trace-obliviousness

of the ATS scheme as |Pr[ExpTO−1
ATS,A(λ) = 1] − Pr[ExpTO−0

ATS,A(λ) = 1]|. An ATS
scheme is trace-oblivious if the advantage of any PPT adversary A is negligible.

3 Key-Oblivious Encryption from Lattices

In [25], Kohlweiss and Miers constructed a KOE scheme based on ElGamal cryp-
tosystem [18]. To adapt their blueprint into the lattice setting, we would need
a key-private homomorphic encryption scheme whose public keys and cipher-
texts should have the same algebraic form (e.g., each of them is a pair of ring
elements). We observe that, the LPR RLWE-based encryption scheme, under ap-
propriate setting of parameters, does satisfy these conditions. We thus obtain
an instantiation of KOE which will then serve as a building block for our ATS
construction in Section 5.

20

3.1 Description of Our KOE Scheme

Our KOE scheme works as follows.

Setup(λ): Given the security parameter λ, let n = O(λ) be a power of 2 and
q = Õ(n4). Also let ` = blog q−1

2 c+ 1. Define the rings R = Z[X]/(Xn + 1)
and Rq = R/qR. Let the integer bound B be of order Õ(

√
n) and χ be a

B-bounded distribution over the ring R. This algorithm then outputs public
parameter pp = {n, q, `, R,Rq, B, χ}.

KeyGen(pp): Given the input pp, this algorithm samples s ←↩ χ, e ←↩ χ` and
a $←− R`q. Set pk = (a,b) = (a,a ·s+e) ∈ R`q×R`q and sk = s. It then returns
(pk, sk).

KeyRand(pk): Given the public key pk = (a,b), it samples g ←↩ χ, e1 ←↩ χ` and
e2 ←↩ χ`. Compute

(a′,b′) = (a · g + e1, b · g + e2) ∈ R`q ×R`q.

This algorithm then outputs randomized public key as pk′ = (a′,b′).
Enc(pk′, p): Given the public key pk′ = (a′,b′) and a message p ∈ Rq, it samples

g′ ∈ χ, e′1 ∈ χ` and e′2 ∈ χ`. Compute

(c1, c2) = (a′ · g′ + e′1, b′ · g′ + e′2 + bq/4c · rdec(p)) ∈ R`q ×R`q.

This algorithm returns ciphertext as ct = (c1, c2).
Dec(sk, ct): Given sk = s and ct = (c1, c2), the algorithm proceeds as follows.

1. It computes
p′′ = c2 − c1 · s

bq/4c .

2. For each coefficient of p′′,
– if it is closer to 0 than to −1 and 1, then round it to 0;
– if it is closer to −1 than to 0 and 1, then round it to −1;
– if it is closer to 1 than to 0 and −1, then round it to 1.

3. Denote the rounded p′′ as p′ ∈ R`q with coefficients in {−1, 0, 1}.
4. Let p′ ∈ Rq such that τ(p′) = H · τ(p′). Here, H ∈ Zn×n`q is the decom-

position matrix for elements of Rq (see Appendix 2.2).

3.2 Analysis of Our KOE Scheme

Correctness. Note that

c2 − c1 · s = b′ · g′ + e′2 + bq/4c · rdec(p)− (a′ · g′ + e′1) · s
= e · g · g′ + e2 · g′ − e1 · s · g′ + e′2 − e′1 · s+ bq/4c · rdec(p)

where s, g, g′, e, e1, e2, e′1, e′2 are B-bounded. Hence we have:

‖e ·g ·g′+e2 ·g′−e1 ·s ·g′+e′2−e′1 ·s‖∞ ≤ 3n2 ·B3 = Õ(n3.5) ≤
⌈ q

10
⌉

= Õ(n4).

21

With overwhelming probability, the rounding procedure described in the Dec
algorithm recovers rdec(p) and hence outputs p. Therefore, our KOE scheme is
correct.
Security. The security of our KOE scheme is stated in the following theorem.

Theorem 2. Under the RLWE assumption, the described key-oblivious encryp-
tion scheme satisfies: (i) key randomizability; (ii) plaintext indistinguishability
under key randomization; and (iii) key privacy under key randomization.

The proof of Theorem 2 is established by Lemma 2-4.

Lemma 2. The key-oblivious encryption scheme described in Section 3.1 is key
randomizable defined in Section 2.7 under RLWE assumption.

Proof. Notice that the samples chosen according to As,χ for some s ←↩ χ are
indistinguishable from random under the RLWE assumption. Therefore, the hon-
estly generated public key pk = (a,b) ∈ R`q ×R`q is indistinguishable from truly
random pair p̃k = (ã, b̃) ∈ R`q ×R`q. Hence, we may replace pk with p̃k and this
modification is negligible to the adversary.

Let pk0 = (ã · g + e1, b̃ · g + e2) and pk1 = (a′,a′ · s′ + e′), where pk1 is
independent of p̃k. When b = 0, adversary is given (ã, b̃, ã·g+e1, b̃·g+e2), which
are 2` samples chosen according to Ag,χ. Therefore, (p̃k, pk0) is indistinguishable
from 2` samples chosen according to U(Rq×Rq). When b = 1, adversary is given
(ã, b̃,a′,a′ · s′ + e′). Since pk1 is independent of p̃k, so we can replace pk1 with
a truly random pair. Hence, (p̃k, pk1) is also indistinguishable from 2` samples
chosen according to U(Rq×Rq). Therefore, the adversary cannot distinguish the
case b = 0 from the case b = 1.

It then follows that the advantage of any PPT adversary in the experiment
ExpKR

KOE,A(λ) is negligible and hence our KOE scheme is key randomizable.

Lemma 3. The key-oblivious encryption scheme described in Section 3.1 is
plaintext indistinguishable under key randomization defined in Section 2.7 under
RLWE assumption.

Proof. Let A be any PPT adversary attacking the plaintext indistinguishability
under key randomization with advantage ε, we will show ε = negl(λ) assum-
ing the hardness of the RLWE problem. Specifically, we construct a sequence
of indistinguishable games G0, G1, G2, G3, G4, such that, AdvA(G0) = ε and
AdvA(G4) = 0.

Game G0: This is the real experiment ExpINDr
KOE,A(λ). The challenger generates

a public key pk = (a,b) = (a,a ·s+e) honestly, sends it to the adversary A,
receives back a randomized key pair pk′ = (a·g+e1,b·g+e2), the randomness
used to generate pk′, and two messages p0, p1 ∈ Rq. The challenger first
checks whether pk′ is generated from the randomness or not. If not, the
challenger returns ⊥. Otherwise, he samples b $←− {0, 1} and encrypts the

22

message pb to ciphertext (c1, c2) = (a′ ·g′+e′1, b′ ·g′+e′2 +bq/4c · rdec(pb))
and sends (c1, c2) to the adversary A, who then outputs b′ ∈ {0, 1}. This
game outputs 1 if b′ = b or 0 otherwise. By assumption, A has advantage ε
in this game.

Game G1: In this game,we make a slight modification to the Game G0: the
public key pk is replaced with a truly random pair p̃k = (ã, b̃). By the
RLWEn,q,`,χ assumption, the adversary cannot distinguish pk = (a,b) from
uniform. It then follows that G0 is indistinguishable from G1. We addition-
ally remark that pk′ obtained from randomizing p̃k is indistinguishable from
random by the same assumption.

Game G2: In this game, we modify G1 as follows: instead of generating (c1, c2)
faithfully using the randomized public key pk′, we generate ciphertext (c1, c2)
as (ã′ ·g′+e′1, b̃′ ·g′+e′2 +bq/4c·rdec(pb)), where p̃k′ = (ã′, b̃′) is uniformly
chosen over R`q×R`q. Since pk′ obtained from randomizing p̃k is indistinguish-
able from random, this modification is indistinguishable to adversary A.

Game G3: In this game, we generate (c1, c2) as (z1, z2 +bq/4c·rdec(pb)), where
(z1, z2) ∈ R`q × R`q are uniformly random. The assumed hardness of the
RLWEn,q,`,χ problem implies that G2 and G3 are computationally indistin-
guishable.

Game G4: In the game, we make a conceptual modification to G3. Namely, we
sample uniformly random z′1 ∈ R`q and z′2 ∈ R`q and let (c1, c2) = (z′1, z′2). It
is clear that G3 and G4 are statistically indistinguishable. Moreover, since
G4 is no longer dependent on the challenger’s bit b, the advantage of A in
this game is 0.

It follows from the above construction that the advantage ε of the adversary A
is negligible. This concludes the proof.

Lemma 4. The key-oblivious encryption scheme described in Section 3.1 is key
private under key randomization defined in Section 2.7 under RLWEn,q,χ as-
sumption.

Proof. The proof of Lemma 4 is similar to that of Lemma 3, we briefly describe
it here. As in Lemma 3, we construct a sequence of indistinguishable games
G0, G1, G2, G3, such that, AdvA(G0) = AdvKPr

KOE,A(λ) and AdvA(G3) = 0.
Game G0 is the experiment ExpKPr

KOE,A(λ), Game G1 modifies Game G0 by
replacing public key pk0 with truly random pair p̃k0 while Game G2 modifies
Game G1 by replacing public key pk1 with another independent and random
pair p̃k1. By the hardness of the RLWEn,q,`,χ problem, these two modifications
are indistinguishable to any PPT adversary. In Game G3, we further modify
Game G2 by generating the ciphertext (c1, c2) using p̃k′ chosen uniformly over
R`q ×R`q as in Lemma 3. By the same argument, this change is negligible to any
PPT adversary. Furthermore, since G3 is no longer dependent on the challenger’s
bit b, the advantage of adversary in this game is 0. This ends the brief description.

23

4 Handling Quadratically Hidden RLWE Relations

In Section 4.1, we extend the refined permuting technique recalled in Section 2.5
to prove that a secret integer y is multiplication of two secret integers a ∈
{−1, 0, 1} and g ∈ {−1, 0, 1}. We then describe our zero-knowledge protocol for
handling quadratic relations in the RLWE setting in Section 4.2. Specifically, we
demonstrate how to prove in zero-knowledge that a give vector c is a correct
RLWE evaluation, i.e., c = a · g + e, where the hidden vectors a, e and element
g may satisfy additional conditions. The protocol is developed based on Libert
et al.’s work [29] on quadratic relations in the general lattice setting.

4.1 Our Extended Permuting Technique

Proving that y = a · g. For any a, g ∈ {−1, 0, 1}, define vector mult3(a, g) ∈
{−1, 0, 1}9 of the following form:

mult3(a, g) =
(
[a+ 1]3 · [g + 1]3, [a]3 · [g + 1]3, [a− 1]3 · [g + 1]3, [a+ 1]3 · [g]3,

[a]3 · [g]3, [a− 1]3 · [g]3 , [a+ 1]3 · [g − 1]3, [a]3 · [g − 1]3, [a− 1]3 · [g − 1]3
)>
.

Then for any b, e ∈ {−1, 0, 1}, we define the permutation φb,e(·) that acts in the
following way. It maps vector v of the following form

v =
(
v(−1,−1), v(0,−1), v(1,−1), v(−1,0), v(0,0), v(1,0), v(−1,1), v(0,1), v(1,1))> ∈ Z9

into vector φb,e(v) of the following form

φb,e(v) =
(
v([−b−1]3,[−e−1]3), v([−b]3,[−e−1]3), v([−b+1]3,[−e−1]3),

v([−b−1]3,[−e]3), v([−b]3,[−e]3), v([−b+1]3,[−e]3),

v([−b−1]3,[−e+1]3), v([−b]3,[−e+1]3), v([−b+1]3,[−e+1]3))>.
Then for any a, b, g, e ∈ {−1, 0, 1}, one is able to check that the following equiv-
alence is satisfied.

v = mult3(a, g)⇐⇒ φb,e(v) = mult3([a+ b]3,[g + e]3). (10)

Note that the above equivalence in (10) is essential to prove knowledge of such
secret integer y in the framework of Stern’s protocol. We first extend y to vector
v = mult3(a, g), sample uniform b ∈ {0, 1} and e ∈ {−1, 0, 1}, and then demon-
strate to the verifier φb,e(v) = mult3([a+ b]3, [g + e]3). Due to the equivalence
in (10), the verifier should be convinced of the well-formedness of y and no extra
information is revealed to him. Furthermore, the technique is extendable so that
we can use the same “one time pads” b and e at the places where a and g appear,
respectively.

Now we generalize the above technique to prove knowledge of vector of the
following expansion form. We aim to obtain equivalence similar to (10), which
is useful in Stern’s framework.

24

Handling an expansion vector. We now tackle an expansion vector y =
expd(a,g) of the form y = (y0‖ . . . ‖yn−1) ∈ {−1, 0, 1}n2`δB , where yi is of the
following form

yi = (a1 · gi,1, . . . , a1 · gi,δB , . . . , an` · gi,1 , . . . , an` · gi,δB),

g ∈ {−1, 0, 1}nδB is of the form

g = (g0,1, g0,2, . . . , g0,δB , . . . , gn−1,1, gn−1,2, . . . , gn−1,δB)>,

and a = (a1, . . . , an`)> ∈ {−1, 0, 1}n` for some positive integers n, `, δB .
Denote y = (ai · gj,k)i∈[n`],j∈[0,n−1],k∈[δB], we then define an extension of

the expansion vector y as mult(a,g) = (mult3(ai, gj,k))i∈[n`],j∈[0,n−1],k∈[δB] ∈
{−1, 0, 1}9n2`δB .

For e = (e0,1, e0,2, . . . , e0,δB , . . . , en−1,1, en−1,2, . . . , en−1,δB)> ∈ {−1, 0, 1}nδB
and b = (b1, . . . , bn`)> ∈ {−1, 0, 1}n`, we define the permutation Φb,e(·) that be-
haves as follows. It maps vector v ∈ Z9n2`δB of the following form:(

v1,0,1‖ · · · ‖v1,0,δB‖ · · · ‖vn`,0,1‖ · · · ‖vn`,0,δB‖
v1,1,1‖ · · · ‖v1,1,δB‖ · · · ‖vn`,1,1‖ · · · ‖vn`,1,δB‖
· · · ·
v1,n−1,1‖ · · · ‖v1,n−1,δB‖ · · · ‖vn`,n−1,1‖ · · · ‖vn`,n−1,δB

)
which consists of blocks of size 9, to vector Φb,e(v) of the following form:(

φb1,e0,1(v1,0,1)‖ · · · ‖φb1,e0,δB
(v1,0,δB)‖ · · · ‖

φbn`,e0,1(vn`,0,1)‖ · · · ‖φbn`,e0,δB
(vn`,0,δB)‖

φb1,e1,1(v1,1,1)‖ · · · ‖φb1,e1,δB
(v1,1,δB)‖ · · · ‖

φbn`,e1,1(vn`,1,1)‖ · · · ‖φbn`,e1,δB
(vn`,1,δB)‖

· · · ·
φb1,en−1,1(v1,n−1,1)‖ · · · ‖φb1,en−1,δB

(v1,n−1,δB)‖ · · · ‖
φbn`,en−1,1(vn`,n−1,1)‖ · · · ‖φbn`,en−1,δB

(vn`,n−1,δB)
)

For any a,b ∈ {−1, 0, 1}n` and any g, e ∈ {−1, 0, 1}nδB , it then follows from (10)
that the following equivalence holds.

v = mult(a,g) ⇐⇒ Φb,e(v) = mult([a + b]3, [g + e]3). (11)

4.2 Proving the RLWE Relation with Hidden Vector

We are going to describe our statistical ZKAoK protocol for the RLWE relation
with hidden vector. Let q, `, B be some integers and R,Rq be two rings, which
are specified as in Section 3.1. Our goal is to design a ZK argument system that

25

allows a prover P to convince a verifier V on input c ∈ R`q that P knows secrets
a ∈ R`q, g ∈ Rq and e ∈ R`q such that g and e are B-bounded and

c = a · g + e. (12)

Furthermore, this protocol should be extendable such that we are able to prove
that the secrets a, g, e satisfy other relations.

As in Section 2.6, we aim to obtain an instance of the abstract protocol from
Section 2.4.
Decomposing-Unifying. To start with, we also employ the notations rot and τ
from Section 2.1 and the decomposition techniques from Section 2.2 to transform
equation (12) into M0 ·w0 = u mod q, where M0,u are built from public input,
and vector w0 is built from secret input and coefficients of which are in the set
{−1, 0, 1}.
Let a = (a1, a2, · · · , a`)>, τ(g) = (g0, · · · , gn−1)>, a?i = τ(rdec(ai)) ∈ {−1, 0, 1}n`
∀ i ∈ [`], g? = τ(rdecB(g)) ∈ {−1, 0, 1}nδB . Let a?i = (ai,1, ai,2, · · · , ai,n`)>
∀ i ∈ [`], g? = (g0,1, · · · g0,δB , · · · , gn−1,1, · · · , gn−1,δB)>. We then have the fol-
lowing:

τ(ai · g) = rot(ai) · τ(g) = [τ(ai)|τ(ai ·X)| . . . |τ(ai ·Xn−1)] · τ(g)

=
n−1∑
j=0

τ(ai ·Xj) · gj =
n−1∑
j=0

rot(Xj) · τ(ai) · gj =
n−1∑
j=0

rot(Xj) ·H · a?i · gj

=
n−1∑
j=0

rot(Xj) ·H · (ai,1 · gj , . . . , ai,n` · gj)> mod q

Observe that, for each k ∈ [n`], we have

ai,k · gj = ai,k · (B1, . . . , BδB) · (gj,1, . . . , gj,δB)>

= (B1, . . . , BδB) · (ai,k · gj,1, . . . , ai,k · gj,δB)>

Denote yi,j ∈ {−1, 0, 1}n`δB of the following form:

yi,j = (ai,1 · gj,1, . . . , ai,1 · gj,δB , . . . , ai,n` · gj,1, . . . , ai,n` · gj,δB)>,

we then obtain

(ai,1 · gj , . . . , ai,n` · gj)> = H`,B · yi,j mod q.

Define Q0 ∈ Zn×n2`δB
q of the following form:

Q0 = [rot(X0) ·H ·H`,B | · · · |rot(Xn−1) ·H ·H`,B].

Let yi = (yi,0‖ · · · ‖yi,n−1) = expd(a?i ,g?) ∈ {−1, 0, 1}n2`δB , we then obtain:

τ(ai · g) = Q0 · yi mod q.

26

Let e? = τ(rdecB(e)) ∈ {−1, 0, 1}n`δB , Q =

Q0

Q0
. . .

Q0

 ∈ Zn`×n2`2δB
q .

Now equation (12) is equivalent to

τ(c) = (τ(a1 · g), . . . , τ(a` · g))> + τ(e)
= Q · (y1‖ · · · ‖y`) + H`,B · e? mod q

Rearrange the above equivalent form using some basic algebra, we are able
to obtain an unifying equation of the following form:

M0 ·w0 = u mod q,

where M0 is built from the public matrices Q and H`,B , u is the vector τ(c),
while w0 = (y1‖ · · · ‖y`‖e?) ∈ {−1, 0, 1}n2`2δB+n`δB .

Extending-Permuting. In this second step, we aim to transform the secret
w0 to a vector w such that it satisfies the requirements specified by the abstract
protocol from section 2.4. In the process, the techniques introduced in Section 2.5
and 4.1 are utilized.

We first extend w0 = (y1‖ · · · ‖y`‖e?) as follows.

yi 7→ y′i = mult
(
a?i ,g?

)
∈ {−1, 0, 1}9n2`δB , i ∈ [`];

e? 7→ e′? = enc(e?) ∈ {−1, 0, 1}L2 .

Notice that for each i ∈ [`], we have yi = expd(a?i ,g?). We then form vector
w = (y′1‖ · · · ‖y′`‖e′?) ∈ {−1, 0, 1}L, where

L = L1 + L2; L1 = 9n2`2δB ; L2 = 3n`δB .

According to the extension, we insert appropriate zero-columns to matrix M0,
obtaining a new matrix M ∈ Zn`×Lq such that the equation M · w = M0 · w0
holds.

We now define the set VALID that includes our secret vector w, the set S,
and the associated permutations {Γη : η ∈ S}, such that the conditions in (1)
are satisfied.
Let VALID be the set of all vectors v′ = (v′1‖ · · · ‖v′`‖v′`+1) ∈ {−1, 0, 1}L such
that the following conditions hold:

– There exist a?i ∈ {−1, 0, 1}n` for each i ∈ [`] and g? ∈ {−1, 0, 1}nδB such
that v′i = mult(a?i ,g?).

– There exists e? ∈ {−1, 0, 1}n`δB such that v′`+1 = enc(e?).

It is easy to see that the obtained vector w belongs to the set VALID.
Now let S = ({−1, 0, 1}n`)` × {−1, 0, 1}nδB × {−1, 0, 1}n`δB , and associate

every element η = (b1, . . . ,b`, f1, f2) ∈ S with permutation Γη that behaves as

27

follows. For a vector of the form v = (v1‖ · · · ‖v`‖v`+1) ∈ ZL, where vi ∈ Z9n2`δB

for each i ∈ [`] and v`+1 ∈ ZL2 , it transforms v into vector

Γη(v) =
(
Φb1,f1(v1) ‖ · · · ‖ Φb`,f1(v`) ‖ Πf2(v`+1)

)
.

It then follows from the equivalences in (4) and (11) that VALID, S, and Γη fulfill
the requirements specified in (1). Therefore, we have transformed the considered
statement to a case of the abstract protocol from Section 2.4. To obtain the
desired statistical ZKAoK protocol, it suffices for the prover and verifier to run the
interactive protocol described in Figure 1. The protocol has perfect completeness,
soundness error 2/3 and communication cost O(L · log q), which is of order O(n2 ·
log4 n) = Õ(λ2).

5 Accountable Tracing Signatures from Lattices

In this section, we construct our ATS scheme based on: (i) The Ducas-Micciancio
signature scheme (as recalled in Section 2.3); (ii) The KOE scheme described in
Section 3; and (iii) Stern-like zero-knowledge argument system that underlies our
ATS construction, which is obtained by smoothly combining previous techniques
as recalled in Section 2.6 and ours as described in Section 4.2.

5.1 The Zero-Knowledge Argument System Underlying the ATS
Scheme

Before describing our accountable tracing signature scheme in Section 5.2, let us
first present the statistical ZKAoK that will be invoked by the signer when gener-
ating group signatures. Let n, q, k, `,m,m,ms, d, c0, · · · , cd, β, B be parameters
as specified in Section 5.2. The protocol is summarized as follows.

– The public input consists of

A,F0 ∈ R1×m
q ; A[0], . . . ,A[d] ∈ R1×k

q ; F ∈ R1×`
q ;

F1 ∈ R1×ms
q ;u ∈ Rq; B ∈ Rmq ; c1,1, c1,2 ∈ R`q, c2,1, c2,2 ∈ R`q.

– The secret input of the prover consists of message m = (p‖a′1‖b′1‖a′2‖b′2)
and the corresponding Ducas-Micciancio signature (t, r,v), a user secret
key x that corresponds to the public key p, and encryption randomness
g′1, g

′
2, e′1,1, e′1,2, e′2,1, e′2,2, where

p ∈ Rq; a′1 ∈ R`q; b′1 ∈ R`q; a′2 ∈ R`q; b′2 ∈ R`q;
t = (t0, . . . , tc1−1, . . . , tcd−1 , . . . , tcd−1)> ∈ {0, 1}cd ;
r ∈ Rm; v = (s‖z) ∈ Rm+k; s ∈ Rm; z ∈ Rk;
x ∈ Rm; g′1, g

′
2 ∈ R; e′1,1, e′1,2, e′2,1, e′2,2 ∈ R`.

28

– The goal of the prover is to prove in ZK that ‖r‖∞ ≤ β, ‖v‖∞ ≤ β, ‖x‖∞ ≤
1, ‖g′i‖∞ ≤ B, ‖ei,1‖∞ ≤ B, ‖ei,2‖∞ ≤ B and that the following conditions
hold:

At · v = F · rdec (F0 · r + F1 · rdec(m)) + u,

B · x = p,

for i ∈ {1, 2}, ci,1 = a′i · g′i + e′i,1, ci,2 = b′i · g′i + e′i,2 + bq/4c · rdec(p). (13)

Since we already established the transformations for the Ducas-Micciancio sig-
nature in Section 2.6, we now focus on the transformations for other relations.

Let a′i = (a′i,1, . . . , a′i,`)>, b′i = (b′i,1, . . . , b′i,`)> for each i ∈ {1, 2}. First, we
employ the decomposition techniques in Section 2.2 to the following secrets.

– Let x? = τ(x) ∈ {−1, 0, 1}nm.
– For each i ∈ {1, 2}, each j ∈ [`], compute a?i,j = τ(rdec(a′i,j)) ∈ {−1, 0, 1}n`,

b?i,j = τ(rdec(b′i,j)) ∈ {−1, 0, 1}n`.
– For i ∈ {1, 2}, compute g?i = τ(rdecB(g′i)) ∈ {−1, 0, 1}nδB .
– For i ∈ {1, 2}, compute e?i,1 = τ(rdecB(e′i,1)) ∈ {−1, 0, 1}n`δB and e?i,2 =
τ(rdecB(e′i,2)) ∈ {−1, 0, 1}n`δB .

Then the equation B · x = p over Rq is equivalent to

[rot(B)] · x? − [H] · τ(rdec(p)) = 0n mod q. (14)

For each i ∈ {1, 2}, each j ∈ [`], let{
yi,j = expd (a?i,j , g?i) ∈ {−1, 0, 1}n2`δB ,

zi,j = expd (b?i,j , g?i) ∈ {−1, 0, 1}n2`δB .
(15)

From Section 4.2, we know that equations in (13) can be written as, for i ∈ {1, 2},{
τ(ci,1) = [Q] · (yi,1‖ · · · ‖yi,`) + [H`,B] · e?i,1;
τ(ci,2) = [Q] · (zi,1‖ · · · ‖zi,`) + [H`,B] · e?i,2 + bq/4c · τ(rdec(p)).

(16)

Following the procedure in Section 2.6, we form secret vectors w1 ∈ {−1, 0, 1}(kδβ+cdkδβ)n,
w2 ∈ {−1, 0, 1}2nmδβ+n`+nms of the form:{

w1 = (z? ‖ t0 · z? ‖ . . . ‖ tcd−1 · z?);
w2 = (s? ‖ r? ‖ τ(y) ‖ τ(rdec(m))),

where τ(rdec(m))

= (τ(rdec(p))‖τ(rdec(a′1))‖τ(rdec(b′1))‖τ(rdec(a′2))‖τ(rdec(b′1)))

= (τ(rdec(p))‖a?1,1‖ · · · ‖a?1,`‖b?1,1‖ · · · ‖b?1,`‖a?2,1‖ · · · ‖a?2,`‖b?2,1‖ · · · ‖b?2,`).

29

Since τ(rdec(p)) has been included in w2, we now combine the remaining secret
vectors appearing in equations (14), (16) into w3 ∈ {−1, 0, 1}nm+4n`δB of the
form

w3 =
(

x? ‖ e?1,1 ‖ e?1,2 ‖ e?2,1 ‖ e?2,2
)

and w4 ∈ {−1, 0, 1}4n2`2δB of the form

w4 =
(
y1,1‖ · · · ‖y1,`‖z1,1‖ · · · ‖z1,`‖y2,1‖ · · · ‖y2,`‖z2,1‖ · · · ‖z2,`

)
such that for i ∈ {1, 2}, and j ∈ [`], yi,j , zi,j satisfy the equations in (15).

For the sake of simplicity when defining our tailored set VALID and permu-
tation Γη, we rearrange our secret vectors w2,w3 into vector w2 ∈ {−1, 0, 1}L′2
of the form

w2 =
(
s? ‖r? ‖τ(y)‖τ(rdec(p))‖x? ‖e?1,1‖e?1,2‖e?2,1 ‖e?2,2

)
.

and w3 ∈ {−1, 0, 1}4n`2 of the form

w3 =
(
a?1,1 ‖ · · · ‖ a?1,` ‖ b?1,1 ‖ · · · ‖b?1,` ‖ a?2,1 ‖ · · · ‖ a?2,` ‖ b?2,1 ‖ · · · ‖ b?2,`

)
with L′2 = 2nmδβ + 2n` + nm + 4n`δB . Now we form our secret vector as
w0 = (w1‖w2‖w3‖w4).

Second, we apply the extension and permutation techniques from Section 2.5
and Section 4.1 to our secret vectors w0. Let w′1 = mix(t, z?) ∈ {−1, 0, 1}L1

be the “mixing” vector obtained in equation (9), w′2 = enc(w2) ∈ {−1, 0, 1}L2

w′3 = enc(w3) ∈ {−1, 0, 1}L3 , and w′4 = Mult(w4) ∈ {−1, 0, 1}L4 be of the
following form:(

mult(a?1,1,g?1) ‖ · · · ‖mult(a?1,`,g?1) ‖mult(b?1,1,g?1) ‖ · · · ‖mult(b?1,`,g?1) ‖
mult(a?2,1,g?2) ‖ · · · ‖mult(a?2,`,g?2) ‖mult(b?2,1,g?2) ‖ · · · ‖mult(b?2,`,g?2)

)
,

Where L1 = 3kδβ+6nkδβcd, L2 = 3L′2, L3 = 12n`2, and L4 = 36n2`2δB . Denote
L = L1 + L2 + L3 + L4. Form our extended vector w = (w′1‖w′2‖w′3‖w′4) ∈
{−1, 0, 1}L.

Following the process in Section 2.6 and Section 4.2, we are able to obtain
public matrix/vector M and u such that the considered statement is reduced
to M · w = u mod q. Therefore, we are prepared to define the set VALID that
includes our secret vector w, the set S, and the associated permutations {Γη :
η ∈ S}, such that the conditions in (1) are satisfied.
Let VALID be the set of all vectors v′ = (v′1‖v′2‖v′3‖v′4) ∈ {−1, 0, 1}L such that
the following requirements hold:

– v′1 = mix(t, z?) for some t ∈ {0, 1}cd and z? ∈ {−1, 0, 1}nkδβ .
– v′2 = enc(w2) for some w2 ∈ {−1, 0, 1}L′2 .
– For j ∈ [4`], there exists w3,j ∈ {−1, 0, 1}n` and w3 = (w3,1 · · · ‖w3,4`) ∈
{−1, 0, 1}4n`2 such that v′3 = (enc(w3,1)‖ · · · ‖enc(w3,4`)) = enc(w3).

30

– There exists g?1,g?2 ∈ {−1, 0, 1}nδB and w4 ∈ {−1, 0, 1}4n2`2δB be of the
form:

(expd(w3,1,g?1)‖ · · · ‖expd(w3,2`,g?1)‖expd(w3,2`+1,g?2)‖ · · · ‖expd(w3,4`,g?2))

such that v′4 = Mult(w4).

It is verifiable that our secret vector w belongs to VALID.
Now let S = {0, 1}cd × {−1, 0, 1}nkδβ × {−1, 0, 1}L′2 × ({−1, 0, 1}n`)4` ×

({−1, 0, 1}nδB)2, and associate every element

η = (f1, f2, f3, f4,1, . . . , f4,2`, f5,1, . . . , f5,2`, f6, f7) ∈ S

with Γη that works as follows. For a vector of form v? = (v?1‖v?2‖v?3‖v?4) ∈ ZL,
where v?i ∈ ZLi for i ∈ {1, 2}, v?3 = (v?3,1‖ · · · ‖v?3,4`) with v?3,j ∈ Z3n`, and
v?4 = (v?4,1 · · · ‖v?4,4`) with v?4,j ∈ Z9n2`δB , it transforms v? into vector Γη(v?)

(Ψf1,f2(v?1) ‖Πf3(v?2) ‖
Πf4,1(v?3,1) ‖ · · · ‖Πf4,2`(v?3,2`) ‖Πf5,1(v?3,2`+1) ‖ · · · ‖Πf5,2`(v?3,4`)‖
Φf4,1,f6(v?4,1) ‖ · · · ‖Φf4,2`,f6(v?4,2`) ‖Φf5,1,f7(v?4,2`+1) ‖ · · · ‖Φf5,2`,f7(v?4,4`))

It then follows from the equivalences in (4), (6), and (11) that VALID, S, and
Γη satisfy the conditions in (1). Therefore, we have transformed the considered
statement to a case of the abstract protocol from Section 2.4. To obtain the
desired statistical ZKAoK protocol, it suffices for the prover and verifier to run the
interactive protocol described in Figure 1. The protocol has perfect completeness,
soundness error 2/3 and communication cost O(L · log q), which is of the order
O(n2 · log3 n) = Õ(λ2).

5.2 Description of Our ATS Scheme

We assume there is a trusted setup such that it generates parameters of the
scheme. Specifically, it generates a public matrix B for generating users’ key
pairs, and two secret-public key pairs of our KOE scheme such that the secret keys
are discarded and not known by any party. The group public key then consists
of three parts: (i) the parameters from the trusted setup, (ii) a verification key
of the Ducas-Micciancio signature, (iii) two public keys of our KOE scheme such
that the group manager knows both secret keys. The issue key is the Ducas-
Micciancio signing key, while the opening key is any one of the corresponding
secret keys of the two public keys. Note that both the issue key and the opening
key are generated by the group manager.

When a user joins the group, it first generates a secret-public key pair (x, p)
such that B·x = p. It then interacts with the group manager, who will determine
whether user p is traceable or not. If the user is traceable, group manager sets
a bit tr = 1, randomizes the two public key generated by himself, and then
generates a Ducas-Micciancio signature σcert on user public key p and the two

31

randomized public keys (epk1, epk2). If the user is non-traceable, group manager
sets a bit tr = 0, randomizes the two public key generated from the trusted setup,
and then generates a signature on p and epk1, epk2. If it completes successfully,
the group manager sends certificate cert = (p, epk1, epk2, σcert) to user p, registers
this user to the group, and keeps himself the witness wescrw that was ever used
for randomization.

Once registered as a group member, the user can sign messages on behalf of
the group. To this end, the user first encrypts his public key p twice using his two
randomized public keys, and obtains ciphertexts c1, c2. The user then generates
a ZKAoK such that (i) he has a valid secret key x corresponding to p; (ii) he
possesses a Ducas-Micciancio signature on p and epk1, epk2; and (iii) c1, c2 are
correct ciphertexts of p under the randomized keys epk1, epk2, respectively. Since
the ZKAoK protocol the user employs has soundness error 2/3 in each execution,
it is repeated κ = ω(log λ) times to make the error negligibly small. Then, it is
made non-interactive via the Fiat-Shamir heuristic [17]. The signature then con-
sists of the non-interactive zero-knowledge argument of knowledge (NIZKAoK)
Πgs and the two ciphertexts. Note that the ZK argument together with double
encryption enables CCA-security of the underlying encryption scheme, which is
known as the Naor-Yung transformation [47].

To verify the validity of a signature, it suffices to verify the validity of the
argument Πgs. Should the need arises, the group manager can decrypt using his
opening key. If a user is traceable, the opening key group manager possesses can
be used to correctly identify the signer. However, if a user is non-traceable, then
his anonymity is preserved against the manager.

To prevent corrupted opening, group manager is required to generate a
NIZKAoK of correct opening Πopen. Only when Πopen is a valid argument, we
then accept the opening result. Furthermore, there is an additional accounting
mechanism for group manager to reveal which users he had chosen to be trace-
able. This is done by checking the consistency of tr and the randomized public
keys in user’s certificate with the help of the witness wescrw.

We describe the details of our scheme below.
Setup(λ): Given the security parameter λ, it generates the following public pa-

rameter.
– Let n = O(λ) be a power of 2, and modulus q = Õ(n4), where q = 3k

for k ∈ Z+. Let R = Z[X]/(Xn + 1) and Rq = R/qR.
Also, let m ≥ 2dlog qe+2, ` = blog q−1

2 c+1, ms = 4`+1, and m = m+k
and ms = ms · `.

– Let integer d and sequence c0, . . . , cd be described in Section 2.3.
– Let β = Õ(n) and B = Õ(

√
n) be two integer bounds, and χ be a

B-bounded distribution over the ring R.
– Choose a collision-resistant hash function HFS : {0, 1}∗ → {1, 2, 3}κ,

where κ = ω(log λ), which will act as a random oracle in the Fiat-Shamir
heuristic [17].

– Choose a statistically hiding and computationally binding commitment
scheme from [22], denoted as COM, which will be employed in our ZK
argument systems.

32

– Let B $←− R1×m
q , a(0)

1
$←− R`q, a(0)

2
$←− R`q, s−1, s−2 ←↩ χ, e−1, e−2 ←↩ χ`.

Compute

b(0)
1 = a(0)

1 · s−1 + e−1 ∈ R`q; b(0)
2 = a(0)

2 · s−2 + e−2 ∈ R`q.
This algorithm outputs the public parameter pp:

{ n, q, k,R,Rq, `,m,ms,m,ms, d, c0, · · · , cd,

β,B, χ,HFS, κ,COM,B, {a(0)
i ,b(0)

i }i∈{1,2} }.

pp is implicit for all algorithms below if not explicitly mentioned.
GKeyGen(pp): On input pp, GM proceeds as follows.

– Generate verification key

A,F0 ∈ R1×m
q ; A[0], . . . ,A[d] ∈ R1×k

q ; F ∈ R1×`
q ; F1 ∈ R1×ms

q ; u ∈ Rq

and signing key R ∈ Rm×kq for the Ducas-Micciancio signature from
Section 2.3.

– Initialize the Naor-Yung double-encryption mechanism [47] with the key-
oblivious encryption scheme described in Section 3.1. Specifically, sample
s1, s2 ←↩ χ, e1, e2 ←↩ χ`, a(1)

1
$←− R`q, a(1)

2
$←− R`q and compute

b(1)
1 = a(1)

1 · s1 + e1 ∈ R`q; b(1)
2 = a(1)

2 · s2 + e2 ∈ R`q.

Set the group public key gpk, the issue key ik and the opening key ok as
follows:

gpk = {pp,A, {A[j]}dj=0,F,F0,F1, u,a(1)
1 ,b(1)

1 ,a(1)
2 ,b(1)

2 },

ik = R, ok = (s1, e1).
GM then makes gpk public, sets the registration table reg = ∅ and his
internal state S = 0.

UKeyGen(pp): Given the public parameter, the user first chooses x ∈ Rm such
that the coefficients are uniformly chosen from the set {−1, 0, 1}. He then
calculates p = B · x ∈ Rq. Set upk = p and usk = x.

Enroll(gpk, ik, upk, tr): Upon receiving a user public key upk from a user, GM
determines the value of the bit tr ∈ {0, 1}, indicating whether the user is
traceable. He then does the following:
– Randomize two pairs of public keys (a(tr)

1 ,b(tr)
1) and (a(tr)

2 ,b(tr)
2) as de-

scribed in Section 3.1. Specifically, sample g1, g2 ←↩ χ, e1,1, e1,2 ←↩ χ`,
e2,1, e2,2 ←↩ χ`. For each i ∈ {1, 2}, compute

epki = (a′i,b′i) = (a(tr)
i · gi + ei,1, b(tr)

i · gi + ei,2) ∈ R`q ×R`q. (17)

– Set the tag t = (t0, t1 . . . , tcd−1)> ∈ Td, where S =
∑cd−1
j=0 2j · tj , and

compute At = [A|A[0] +
∑d
i=1 t[i]A[i]] ∈ R

1×(m+k)
q .

33

– Let m = (p‖a′1‖b′1‖a′2‖b′2) ∈ Rmsq .
– Generate a signature σcert = (t, r,v) on message rdec(m) ∈ Rms - whose

coefficients are in {−1, 0, 1} - using his issue key ik = R. As in Section 2.3,
we have r ∈ Rm, v ∈ Rm+k and{

At · v = F · rdec(F0 · r + F1 · rdec(m)) + u,

‖r‖∞ ≤ β, ‖v‖∞ ≤ β.
(18)

Set certificate cert and wescrw as follows:

cert = (p,a′1,b′1,a′2,b′2, t, r,v), wescrw = (g1, e1,1, e1,2, g2, e2,1, e2,2).

GM sends cert to the user p, stores reg[S] = (p, tr, wescrw), and updates the
state to S + 1.

Sign(gpk, cert, usk,M): To sign a message M ∈ {0, 1}∗ using the certificate
cert = (p,a′1,b′1,a′2,b′2, t, r,v) and usk = x, the user proceeds as follows.
– Encrypt the ring vector rdec(p) ∈ R`q whose coefficients are in {−1, 0, 1}

twice. Namely, sample g′1, g′2 ←↩ χ, e′1,1, e′1,2 ←↩ χ`, and e′2,1, e′2,2 ←↩ χ`.
For each i ∈ {1, 2}, compute ci = (ci,1, ci,2) ∈ R`q ×R`q as follows:

ci,1 = a′i · g′i + e′i,1; ci,2 = b′i · g′i + e′i,2 + bq/4c · rdec(p).

– Generate a NIZKAoK Πgs to demonstrate the possession of a valid tuple
ζ of the following form

ζ = (p,a′1,b′1,a′2,b′2, t, r,v,x, g′1, e′1,1, e′1,2, g′2, e′2,1, e′2,2) (19)

such that
(i) The conditions in (18) are satisfied.

(ii) c1 and c2 are correct encryptions of rdec(p) with B-bounded ran-
domness g′1, e′1,1, e′1,2 and g′2, e′2,1, e′2,2, respectively.

(iii) ‖x‖∞ ≤ 1 and B · x = p.
This is achieved by running the protocol from Section 5.1, which is re-
peated κ = ω(log λ) times and made non-interactive via Fiat-Shamir
heuristic [17] as a triple Πgs = ({CMTi}κi=1,CH, {RSPi}κi=1) where the
challenge CH is generated as CH = HFS(M, {CMTi}κi=1, ξ) with ξ of the
following form

ξ = (A,A[0], . . . ,A[d],F,F0,F1, u,B, c1, c2) (20)

– Output the group signature Σ = (Πgs, c1, c2).

Verify(gpk,M,Σ): Given the inputs, the verifier performs in the following man-
ner.
– Parse Σ as Σ =

(
{CMTi}κi=1, (Ch1, . . . , Chκ), {RSP}κi=1, c1, c2

)
.

If (Ch1, . . . , Chκ) 6= HFS
(
M, {CMTi}κi=1, ξ

)
, output 0, where ξ is as

in (20).

34

– For each i ∈ [κ], run the verification phase of the protocol in Section 5.1
to verify the validity of RSPi corresponding to CMTi and Chi. If any of
the verification process fails, output 0.

– Output 1.
Open(gpk, ok,M,Σ): Let ok = (s1, e1) and Σ = (Πgs, c1, c2). The group man-

ager proceeds as follows.
– Use s1 to decrypt c1 = (c1,1, c1,2) as in the decryption algorithm from

Section 3.1. The result is p′ ∈ Rq.
– He then searches the registration information. If reg does not include an

element p′, then return ⊥.
– Otherwise, he produces a NIZKAoK Πopen to show the knowledge of a

tuple (s1, e1,y) ∈ Rq ×R`q ×R`q such that the following conditions hold.
‖s1‖∞ ≤ B; ‖e1‖∞ ≤ B; ‖y‖∞ ≤ dq/10e;
a(1)

1 · s1 + e1 = b(1)
1 ;

c1,2 − c1,1 · s1 = y + bq/4c · rdec(p′).
(21)

Since the conditions in (21) only encounter linear secret objects with
bounded norm, we can easily handled them using the Stern-like tech-
niques from Sections 4.2 and 5.1. Therefore, we are able to have a sta-
tistical ZKAoK for the above statement. Furthermore, the protocol is re-
peated κ = ω(log λ) times and made non-interactive via the Fiat-Shamir
heuristic, resulting in a triple ΠOpen = ({CMTi}κi=1,CH, {RSP}κi=1),
where CH ∈ {1, 2, 3}κ is computed as

CH = HFS
(
{CMTi}κi=1,a

(1)
1 ,b(1)

1 ,M,Σ, p′
)
. (22)

– Output (p′, ΠOpen).
Judge(gpk,M,Σ, p′, Πopen): Given all the inputs, this algorithm does the follow-

ing.
– If Verify algorithm outputs 0 or p′ = ⊥, return 0.
– This algorithm then verifies the argument ΠOpen with respect to common

input (a(1)
1 ,b(1)

1 ,M,Σ, p′), in the same way as in the algorithm Verify. If
verification of the argument Πopen fails, output 0.

– Else output 1.
Account(gpk, cert, wescrw, tr): Let the certificate be cert = (p,a′1,b′1,a′2,b′2, t, r,v)

and witness be wescrw = (g1, e1,1, e1,2, g2, e2,1, e2,2) and the bit tr, this algo-
rithm proceeds as follows.
– It checks whether (t, r,v) is a valid Ducas-Micciancio signature on the

message (p,a′1,b′1,a′2,b′2). Specifically, it verifies whether cert satisfies
the conditions in (18). If not, output 0.

– Otherwise, it then checks if (a′1,b′1) and (a′2,b′2) are randomization of
(a(tr)

1 , (b(tr)
1) and (a(tr)

2 , (b(tr)
2) with respect to randomness (g1, e1,1, e1,2)

and (g2, e2,1, e2,2), respectively. Specifically, it verifies whether the con-
ditions in (17) hold. If not, output 0.

– Else output 1.

35

5.3 Analysis of Our ATS Scheme

Efficiency. We first analyze the efficiency of our scheme from Section 5.2 in
terms of the security parameter λ.
– The bit-size of the public key gpk is of order O(λ · log3 λ) = Õ(λ).
– The bit-size of the membership certificate cert is of orderO(λ·log2 λ) = Õ(λ).

– The bit-size of a signature Σ is determined by that of the Stern-like NIZKAoK
Πgs, which is of order O(L · log q) ·ω(log λ), where L is the bit-size of a vector
w ∈ VALID from Section 5.1. Recall O(L · log q) = O(λ2 · log3 λ). Therefore,
the bit-size of Σ is of order O(λ2 · log3 λ) · ω(log λ) = Õ(λ2).

– The bit-size of the Stern-like NIZKAoK Πopen is of order O(λ · log3 λ) ·
ω(log λ) = Õ(λ).

Correctness. For an honestly generated signature Σ for message M , we first
show that the Verify algorithm always outputs 1. Due to the honest behavior of
the user, when signing a message in the name of the group, this user possesses
a valid tuple ζ of the form (19). Therefore, Πgs will be accepted by the Verify
algorithm with probability 1 due to the perfect completeness of our argument
system.

If an honest user is traceable, then Account(gpk, cert, wescrw, 1) will output 1,
implied by the correctness of Ducas-Micciancio signature scheme and honest
behaviour of group manager. In terms of the correctness of the Open algorithm,
we observe that c1,2 − c1,1 · s1 =

(b(tr)
1 − a(tr)

1 ·s1) ·g1 ·g′1 + e1,2 ·g′1 − e1,1 ·s1 ·g′1 + e′1,2 − e′1,1 ·s1 + bq/4c · rdec(p),

denoted as ẽ + bq/4c · rdec(p). In this case, tr = 1, b(tr)
1 − a(tr)

1 · s1 = e1, and
‖ẽ‖∞ ≤

⌈
q

10
⌉
. The decryption can recover rdec(p) and hence the real signer

due to the correctness of our key-oblivious encryption from Section 3.1. Thus,
correctness of the Open algorithm follows. What is more, Πopen will be accepted
by the Judge algorithm with probability 1 due to the perfect completeness of our
argument system.

If an honest user is non-traceable, then again Account(gpk, cert, wescrw, 1) will
output 1. For the Open algorithm, since b(0)

1 − a(0)
1 · s1 = a(0)

1 · (s−1− s1) + e−1,
then we obtain

c1,2 − c1,1 · s1 = a(0)
1 · (s−1 − s1) · g1 · g′1 + ẽ + bq/4c · rdec(p),

where ‖ẽ‖∞ ≤
⌈
q

10
⌉
. Observe that a(0)

1
$←− R`q, and s−1 6= s1 with overwhelming

probability. Over the randomness of g1, g
′
1, the decryption algorithm described

in Section 3.1 will output a random element p′ ∈ Rq. Then, with overwhelming
probability, p′ is not in the registration table and the Open algorithm outputs ⊥.
It then follows that our scheme is correct.
Security. In Theorem 3, we prove that our scheme satisfies the security require-
ments of accountable tracing signatures, as specified by Kohlweiss and Miers.

36

Theorem 3. Under the RLWE and RSIS assumptions, the accountable tracing
signature scheme described in Section 5.2 satisfies the following requirements
in the random oracle model: (i) anonymity under tracing; (ii) traceability; (iii)
non-frameability; (iv) anonymity with accountability; and (v) trace-obliviousness.

For the proofs of traceability and non-frameability, the lemma below from [36]
is needed.

Lemma 5 ([36]). Let B ∈ R1×m
q , where m ≥ 2dlog qe + 2. If x is a uniform

element over Rm with ‖x‖∞ ≤ 1, then with probability at least 1 − 2−n, there
exists a different x′ ∈ Rm with ‖x′‖∞ ≤ 1 and B · x′ = B · x ∈ Rq.

The proof of the Theorem 3 follows from Lemma 6-10 given below.

Lemma 6. Assuming the hardness of the RLWE problem, in the random ora-
cle model, the given accountable tracing signature scheme is anonymous under
tracing.

Proof. We prove this lemma using a series of indistinguishable games. In the
initial game, the challenger runs the experiment ExpAuT−0

ATS,A (λ) while in the last
game, the challenger runs the experiment ExpAuT−1

ATS,A (λ). Let Wi be the event
that the adversary outputs 1 in Game i.

Game 0: This is exactly the experiment ExpAuT−0
ATS,A (λ), where the adversary

receives a challenged signature (Π∗gs, c∗1, c∗2) ← Sign(gpk, cert0, usk0,M) in
the challenge phase with p0 = B · usk0. So Pr[W0] = Pr[ExpAuT−0

ATS,A (λ) = 1].
Game 1: We modify Game 0 as follows: the challenger will keep decryption key

(s2, e2) secret (by himself) instead of erasing it. However, the view of the
adversary A is still the same as in Game 0. Therefore, Pr[W0] = Pr[W1].

Game 2: This game is the same as Game 1 with one exception: it generates
simulated proofs for the opening oracle queries by programming the random
oracle HFS. Note that the challenger still follows the original game (that is,
it uses s1 to decrypt c1) to identify the real signer. The views of A in Game
1 and Game 2 are statistically close due to the statistical zero-knowledge
property of our argument system. Therefore Pr[W1] s

≈ Pr[W2].
Game 3: This game modifies Game 2 as follows. It uses s2 instead of s1 to

answer the opening oracle queries. In other words, it now uses s2 to decrypt
c2 to identify the signer. The view of the adversary in this game is identi-
cal to that in Game 2 until event F1, where A queries the opening oracle
a valid signature (Πgs, c1, c2) with c1, c2 encrypting distinct messages, hap-
pens. Since the event F1 violates the soundness of our argument system, we
have |Pr[W2]− Pr[W3]| ≤ Pr[F1] ≤ Advsound

Πgs
(λ) = negl(λ).

Game 4: This game changes Game 3 as follows. It generates a simulated proof
Π∗gs in the challenge phase even though the challenger has the correct witness
to generate a real proof. Due to the statistical zero-knowledge property of our
argument system, this change is negligible to A. Therefore Pr[W3] s

≈ Pr[W4].

37

Game 5: In this game, we modify Game 4 by modifying the distribution of the
challenged signature Σ∗ = (Π∗gs, c∗1, c∗2) as follows. For i ∈ {0, 1}, parse
certi = (pi,a′1,i,b′1,i,a′2,i,b′2,i, ti, ri,vi). Recall that in Game 4, both c∗1
and c∗2 encrypt the same message, i.e., rdec(p0), under the randomized key
(a′1,0,b′1,0) and (a′2,0,b′2,0), respectively. Here we change c∗1 to be encryption
of rdec(p1) and keep c∗2 unchanged. By the semantic security under key ran-
domization of our key oblivious encryption scheme for public key (a(1)

1 ,b(1)
1)

(which is implied by the RLWE assumption since we no longer use s1 to open
signatures), the change made in this game is negligible to the adversary.
Therefore we have |Pr[W4]− Pr[W5]| = negl(λ).

Game 6: In this game, we further modify the distribution of the challenged
signature Σ∗. We change c∗1 to be encryption of rdec(p1) under a fresh and
then randomized key. By the property of key privacy under key randomiza-
tion of our key-oblivious encryption scheme, the change made in this game is
negligible to the adversary. Therefore we have |Pr[W5]−Pr[W6]| = negl(λ).

Game 7: In this game, we again modify the distribution of the challenged signa-
ture Σ∗. We change c∗1 to be encryption of rdec(p1) under the randomized key
(a′1,1,b′1,1). By the same argument of indistinguishability between Game 6
and Game 5, we have |Pr[W6]− Pr[W7]| = negl(λ).

Game 8: This game is the same as Game 7 with one modification: it changes
back to s1 for the opening oracle queries and erases (s2, e2) again. This
change is indistinguishable to A until event F2, where A queries a valid
signature (Πgs, c1, c2) with c1, c2 encrypting different messages to the open-
ing oracle, occurs. Since event F2 violates the simulation soundness of our
argument system, we have |Pr[W7]− Pr[W8]| ≤ Advss

Πgs
(λ) = negl(λ).

Game 9: In this game, we modify Game 8 by modifying the distribution of the
challenged signature Σ∗ = (Π∗gs, c∗1, c∗2) again. It changes c∗2 to be encryption
of rdec(p1) under the randomized key (a′2,1,b′2,1) in the challenge phase. By
the same argument of indistinguishability from Game 4 to Game 7, we have
|Pr[W8]− Pr[W9]| = negl(λ).

Game 10: Note that in Game 9, both c∗1 and c∗2 encrypt the same message, i.e.,
rdec(p1), under the randomized key (a′1,1,b′1,1) and (a′2,1,b′2,1), respectively.
Therefore, the challenger has correct witness to generate Π∗gs. In this game,
we modify Game 9 by switching back to a real proof Π∗gs in the challenge
phase. Then the views of A in Game 9 and Game 10 are statistically in-
distinguishable by the statistical zero-knowledge property of our argument
system. Hence Pr[W9] s

≈ Pr[W10].
Game 11: This game changes Game 10 in one aspect. It now generates real

proofs for the opening oracle queries. Due to the statistical zero-knowledge
property of our argument system, Game 10 and Game 11 are statistically in-
distinguishable to A. In other words, we have Pr[W10] s

≈ Pr[W11]. This is in-
deed the experiment ExpAuT−1

ATS,A (λ). Hence, we have Pr[W11] = Pr[ExpAuT−1
ATS,A (λ) =

1].

38

As a result, we obtain

|Pr[ExpAuT−1
ATS,A (λ) = 1]− Pr[ExpAuT−0

ATS,A (λ) = 1]| = negl(λ),

and hence our scheme is anonymous under tracing.

Lemma 7. Assuming the hardness of the RSIS problem, in the random oracle
model, the given accountable tracing signature scheme is traceable .

Proof. We show that the success probability ε of A against traceability is neg-
ligible by the unforgeability of the Ducas-Micciancio signature recalled in Sec-
tion 2.3, which in turn relies on the hardness of the RSIS problem, or by the
hardness of solving a RSIS instance directly.

Let C be the challenger and honestly run the experiment ExpTrace
ATS,A(λ). When

A halts, it outputs (M∗, Π∗gs, c∗1, c∗2). Let us consider the case that A wins. Parse
Π∗gs = ({CMT∗i }κi=1,CH∗, {RSP∗i }κi=1). Let

ξ∗ = (A,A[0], . . . ,A[d],F,F0,F1, u,B, c∗1, c∗2).

Then CH∗ = HFS
(
M∗, {CMT∗i }κi=1, ξ

∗) and for each i ∈ [κ], RSP∗i is a valid
response corresponding to CMT∗i and CH∗i . This is due to the fact that A wins
and hence Π∗gs passes the verification process.

We remark that A had queried the tuple
(
M∗, {CMT∗i }κi=1, ξ

∗) to the hash
oracle HFS with all but negligible probability. Since we can only guess correctly
the value HFS

(
M∗, {CMT∗i }κi=1, ξ

∗) with probability 3−κ, which is negligible.
Therefore, A had queried the tuple

(
M∗, {CMT∗i }κi=1, ξ

∗) to HFS with probabil-
ity ε′ = ε− 3−κ. Let this tuple be the θ∗-th oracle query made by A and assume
A had made QH queries in total.

Up to this point, the challenger C then replays the behaviour of A for at
most 32 · QH/ε′ times. In each new replay, A is given the same hash answers
r1, . . . , rθ∗−1 as in the original run for the first θ∗−1 hash queries while it is given
uniformly random and independent values r′θ∗ , . . . , r′QH for the remaining hash
queries. According to the forking lemma of Brickell et al. [11], with probability
≥ 1/2, B obtains 3-fork involving the same tuple

(
M∗, {CMT∗i }κi=1, ξ

∗) with
pairwise distinct hash values CH(1)

θ∗ ,CH(2)
θ∗ ,CH(3)

θ∗ ∈ {1, 2, 3}κ and corresponding
valid responses RSP(1)

θ∗ , RSP(2)
θ∗ , RSP(3)

θ∗ . We observe that with probability 1 −
(7

9)κ, there exists some j ∈ {1, 2, . . . , κ} such that {CH(1)
θ∗,j ,CH(2)

θ∗,j ,CH(3)
θ∗,j} =

{1, 2, 3}.

In other words, we obtain three valid responses RSP(1)
θ∗,j , RSP(2)

θ∗,j , RSP(3)
θ∗,j

for all the challenges 1, 2, 3 with respect to the same commitment CMT∗j . Due
to the computational binding property of the COM scheme, C is able to extract
ζ∗ of form

ζ∗ = (p∗,a∗1,b∗1,a∗2,b∗2, t∗, r∗,v∗,x∗, g∗1 , e∗1,1, e∗1,2, g∗2 , e∗2,1, e∗2,2)

39

such that t∗ ∈ Td, r∗,v∗ have infinity bound β, g∗1, e∗1,1, e∗1,2, g∗2 , e∗2,1, e∗2,2 have
infinity bound B, x∗ has infinity bound 1; and equations B · x∗ = p∗ and

At∗ · v∗ = u+ F · rdec(F0 · r∗ + F1 · rdec(p∗‖a∗1‖b∗1‖a∗2‖b∗2))

hold, and c∗1, c∗2 are ciphertexts of rdec(p∗) under the key (a∗1,b∗1) and (a∗2,b∗2)
with randomness (g∗1 , e∗1,1, e∗1,2) and (g∗2 , e∗2,1, e∗2,2), respectively.

Since A wins the game, then either (i) the Open algorithm outputs ⊥ or (ii)
the Open algorithm outputs (p′, Π∗open) with p′ 6= ⊥ but the proof Π∗open is not
accepted by the Judge algorithm.

By the unforgeability of the underlying signature scheme, with overwhelming
probability, (p∗,a∗1,b∗1,a∗2,b∗2, t∗, r∗,v∗) is a certificate returned by the Enroll
oracle. In other words, p∗ is a registered user. If p∗ is a non-traceable user, then
A does not hold the user secret key of p∗, denoted as x′. Note that this is ensured
by the definition of traceability described in Section 2.8. With probability ≥ 1/2,
x∗ 6= x′ by Lemma 5, in which case we obtain a vector y = x∗ − x′ 6= 0 so that
B·y = 0 and ‖y‖∞ ≤ ‖x∗‖∞+‖x′‖∞ ≤ 2. This solves a RSIS instance. Therefore,
the Open algorithm outputs ⊥ with negligible probability. In other words, case
(i) happens with negligible probability. On the other hand, if p∗ is a traceable
user. Then by the correctness of the underlying encryption scheme, the Open
algorithm will output p∗. Furthermore, by the honest behaviour of decryption
(performed by the honest challenger), the Judge algorithm always outputs 1. This
implies case (ii) occurs with negligible probability. This concludes the proof.

Lemma 8. Assuming the hardness of the RSIS problem, in the random oracle
model, the given accountable tracing signature scheme is non-frameable.

Proof. We show that the success probability ε of A against non-frameability is
negligible assuming the hardness of solving a RSIS instance.

Let C be the challenger and faithfully run the experiment ExpNF
ATS,A(λ). When

A halts, it outputs the tuple (M∗, Π∗gs, c∗1, c∗2, p∗, Π∗open). Let us consider the case
that A wins.

The fact that A wins the game implies (Π∗gs, c∗1, c∗2) is a valid signature of
the message M∗ that was not obtained from queries. By the same extraction
technique as in Lemma 7, we can extract witness x′ ∈ Rmq and p′ ∈ Rq such
that ‖x′‖∞ ≤ 1, B ·x′ = p′ and c∗1, c∗2 are correct encryptions of rdec(p′). By the
correctness of the underlying encryption scheme, c∗1 will be decrypted to p′.

The fact that A wins the game also implies Π∗open passes the verification
process of the Judge algorithm. Due to the soundness of the argument system
that is used to generate Π∗open, c∗1 will be decrypted to p∗. Hence we have p′ = p∗.
We observe that A wins the game also implies that A does not know the user
secret key x∗ that corresponds to p∗. Thus we obtain: B · x′ = p′ = p∗ = B · x∗,
where ‖x∗‖∞ ≤ 1. Lemma 5 implies that x′ 6= x∗ with probability at least 1/2.
If they are not equal, we obtain a vector y = x′−x∗ 6= 0 such that B ·y = 0 and
‖y‖∞ ≤ ‖x∗‖∞+‖x′‖∞ ≤ 2. However, under the hardness of the RSIS problem,
the success probability of A is negligible. This concludes the proof.

40

Lemma 9. Assuming the hardness of the RLWE problem, in the random ora-
cle model, the given accountable tracing signature scheme is anonymous with
accountability.

Proof. The proof of this lemma is similar to Lemma 6 except that we do not need
to switch between two decryption keys. This is because the randomized keys in
the certificate of the challenged users are obtained from the pairs (a(0)

1 ,b(0)
1) and

(a(0)
2 ,b(0)

2), which are not related to the opening key. The details are omitted
here.

Lemma 10. Assuming the hardness of the RLWE problem, in the random oracle
model, the given accountable tracing signature scheme is trace-oblivious.

Proof. We proceed through a sequence of hybrids. Let Wi be the event that
adversary outputs 1 in Game i.

Game 0: Let this game be the experiment ExpTO−0
ATS,A(λ), where the adversary

receives cert for user p of his choice. Parse cert as (p,a′1,b′1,a′2,b′2, t, r,v).
Note that (a′1,b′1) and (a′2,b′2) are randomized keys from (a(0)

1 ,b(0)
1) and

(a(0)
2 ,b(0)

2), respectively. We then have Pr[W0] = Pr[ExpTO−0
ATS,A(λ) = 1].

Game 1: We modify Game 0 by replacing (a′1,b′1) with a new fresh key (ã1, b̃1)
generated by the KeyGen algorithm of our KOE scheme. It then follows from
the key randomizability of our encryption scheme, this modification is neg-
ligible to the adversary. Therefore, we have |Pr[W0]− Pr[W1]| = negl(λ).

Game 2: We modify Game 1 by replacing (a′2,b′2) with a new fresh key (ã2, b̃2)
as in Game 1. By the same argument, we have |Pr[W1]−Pr[W2]| = negl(λ).

Game 3: We change Game 2 by replacing (ã2, b̃2) with (a′2,b′2) that are ran-
domized key from (a(1)

2 ,b(1)
2). By the key randomizability of our encryption

scheme, we have |Pr[W2]− Pr[W3]| = negl(λ).
Game 4: We change Game 3 by replacing (ã1, b̃1) with (a′1,b′1) that are ran-

domized key from (a(1)
1 ,b(1)

1). We then have |Pr[W3] − Pr[W4]| = negl(λ).
This is exactly the experiment ExpTO−1

ATS,A(λ). Therefore, we obtain Pr[W4] =
Pr[ExpTO−1

ATS,A(λ) = 1].

Therefore, we obtain |Pr[ExpTO−1
ATS,A(λ) = 1] − Pr[ExpTO−0

ATS,A(λ) = 1]| = negl(λ).
This implies that our scheme is trace-oblivious.

Acknowledgements

The research is supported by Singapore Ministry of Education under Research
Grant MOE2016-T2-2-014(S). Khoa Nguyen is also supported by the Gopalakr-
ishnan – NTU Presidential Postdoctoral Fellowship 2018.

41

References

1. G. Ateniese, J. Camenisch, M. Joye, and G. Tsudik. A practical and provably
secure coalition-resistant group signature scheme. In CRYPTO 2000, volume 1880
of LNCS, pages 255–270. Springer, 2000.

2. M. Bellare, D. Micciancio, and B. Warinschi. Foundations of group signatures: For-
mal definitions, simplified requirements, and a construction based on general as-
sumptions. In EUROCRYPT 2003, volume 2656 of LNCS, pages 614–629. Springer,
2003.

3. M. Bellare, H. Shi, and C. Zhang. Foundations of group signatures: The case of
dynamic groups. In CT-RSA 2005, volume 3376 of LNCS, pages 136–153. Springer,
2005.

4. F. Benhamouda, J. Camenisch, S. Krenn, V. Lyubashevsky, and G. Neven. Better
zero-knowledge proofs for lattice encryption and their application to group sig-
natures. In ASIACRYPT 2014, volume 8873 of LNCS, pages 551–572. Springer,
2014.

5. F. Benhamouda, S. Krenn, V. Lyubashevsky, and K. Pietrzak. Efficient zero-
knowledge proofs for commitments from learning with errors over rings. In ES-
ORICS 2015, volume 9326 of LNCS, pages 305–325. Springer, 2015.

6. D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In CRYPTO 2004,
volume 3152 of LNCS, pages 41–55. Springer, 2004.

7. D. Boneh and H. Shacham. Group signatures with verifier-local revocation. In
CCS 2004, pages 168–177. ACM, 2004.

8. J. Bootle, A. Cerulli, P. Chaidos, E. Ghadafi, and J. Groth. Foundations of fully
dynamic group signatures. In ACNS 2016, volume 9696 of LNCS, pages 117–136,
2016.

9. C. Boschini, J. Camenisch, and G. Neven. Floppy-sized group signatures from
lattices. In ACNS 2018, volume 10892 of LNCS, pages 163–182. Springer, 2018.

10. Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (leveled) fully homomorphic
encryption without bootstrapping. In ITCS 2012, pages 309–325. ACM, 2012.

11. E. F. Brickell, D. Pointcheval, S. Vaudenay, and M. Yung. Design validations for
discrete logarithm based signature schemes. In PKC 2000, volume 1751 of LNCS,
pages 276–292. Springer, 2000.

12. J. Camenisch, G. Neven, and M. Rückert. Fully anonymous attribute tokens from
lattices. In SCN 2012, volume 7485 of LNCS, pages 57–75. Springer, 2012.

13. D. Chaum and E. van Heyst. Group signatures. In EUROCRYPT 1991, volume
547 of LNCS, pages 257–265. Springer, 1991.

14. S. Cheng, K. Nguyen, and H. Wang. Policy-based signature scheme from lattices.
Des. Codes Cryptography, 81(1):43–74, 2016.

15. L. Ducas and D. Micciancio. Improved short lattice signatures in the standard
model. In CRYPTO 2014, volume 8616 of LNCS, pages 335–352. Springer, 2014.

16. L. Ducas and D. Micciancio. Improved short lattice signatures in the standard
model. IACR Cryptology ePrint Archive, 2014:495, 2014.

17. A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In CRYPTO 1986, volume 263 of LNCS, pages 186–194.
Springer, 1986.

18. T. E. Gamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. In CRYPTO 1984, volume 196 of LNCS, pages 10–18, 1984.

19. C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard lattices and
new cryptographic constructions. In STOC 2008, pages 197–206. ACM, 2008.

42

20. S. D. Gordon, J. Katz, and V. Vaikuntanathan. A group signature scheme from
lattice assumptions. In ASIACRYPT 2010, volume 6477 of LNCS, pages 395–412.
Springer, 2010.

21. A. Jain, S. Krenn, K. Pietrzak, and A. Tentes. Commitments and efficient zero-
knowledge proofs from learning parity with noise. In ASIACRYPT 2012, volume
7658 of LNCS, pages 663–680. Springer, 2012.

22. A. Kawachi, K. Tanaka, and K. Xagawa. Concurrently secure identification
schemes based on the worst-case hardness of lattice problems. In ASIACRYPT
2008, volume 5350 of LNCS, pages 372–389. Springer, 2008.

23. A. Kiayias, Y. Tsiounis, and M. Yung. Traceable signatures. In EUROCRYPT
2004, volume 3027 of LNCS, pages 571–589. Springer, 2004.

24. A. Kiayias and M. Yung. Secure scalable group signature with dynamic joins and
separable authorities. Int. Journal of Security and Networks, 1(1):24–45, 2006.

25. M. Kohlweiss and I. Miers. Accountable metadata-hiding escrow: A group signature
case study. PoPETs, 2015(2):206–221, 2015.

26. F. Laguillaumie, A. Langlois, B. Libert, and D. Stehlé. Lattice-based group sig-
natures with logarithmic signature size. In ASIACRYPT 2013, volume 8270 of
LNCS, pages 41–61. Springer, 2013.

27. A. Langlois and D. Stehlé. Worst-case to average-case reductions for module lat-
tices. Des. Codes Cryptography, 75(3):565–599, 2015.

28. B. Libert, S. Ling, F. Mouhartem, K. Nguyen, and H. Wang. Signature schemes
with efficient protocols and dynamic group signatures from lattice assumptions. In
ASIACRYPT 2016, volume 10032 of LNCS, pages 373–403. Springer, 2016.

29. B. Libert, S. Ling, F. Mouhartem, K. Nguyen, and H. Wang. Zero-knowledge
arguments for matrix-vector relations and lattice-based group encryption. In ASI-
ACRYPT 2016, volume 10032 of LNCS, pages 101–131. Springer, 2016.

30. B. Libert, S. Ling, K. Nguyen, and H. Wang. Zero-knowledge arguments for lattice-
based accumulators: Logarithmic-size ring signatures and group signatures without
trapdoors. In EUROCRYPT 2016, volume 9666 of LNCS, pages 1–31. Springer,
2016.

31. B. Libert, F. Mouhartem, and K. Nguyen. A lattice-based group signature scheme
with message-dependent opening. In ACNS 2016, volume 9696 of LNCS, pages
137–155. Springer, 2016.

32. S. Ling, K. Nguyen, A. Roux-Langlois, and H. Wang. A lattice-based group signa-
ture scheme with verifier-local revocation. Theor. Comput. Sci., 730:1–20, 2018.

33. S. Ling, K. Nguyen, D. Stehlé, and H. Wang. Improved zero-knowledge proofs of
knowledge for the ISIS problem, and applications. In PKC 2013, volume 7778 of
LNCS, pages 107–124. Springer, 2013.

34. S. Ling, K. Nguyen, and H. Wang. Group signatures from lattices: Simpler, tighter,
shorter, ring-based. In PKC 2015, volume 9020 of LNCS, pages 427–449. Springer,
2015.

35. S. Ling, K. Nguyen, H. Wang, and Y. Xu. Lattice-based group signatures: Achiev-
ing full dynamicity with ease. In ACNS 2017, volume 10355 of LNCS, pages
293–312. Springer, 2017.

36. S. Ling, K. Nguyen, H. Wang, and Y. Xu. Constant-size group signatures from
lattices. In PKC 2018, volume 10770 of LNCS, pages 58–88. Springer, 2018.

37. V. Lyubashevsky. Fiat-shamir with aborts: Applications to lattice and factoring-
based signatures. In ASIACRYPT 2009, volume 5912 of LNCS, pages 598–616.
Springer, 2009.

38. V. Lyubashevsky. Lattice signatures without trapdoors. In EUROCRYPT 2012,
volume 7237 of LNCS, pages 738–755. Springer, 2012.

43

39. V. Lyubashevsky and D. Micciancio. Generalized compact knapsacks are collision
resistant. In ICALP 2006, volume 4052 of LNCS, pages 144–155. Springer, 2006.

40. V. Lyubashevsky, D. Micciancio, C. Peikert, and A. Rosen. SWIFFT: A modest
proposal for FFT hashing. In FSE 2008, volume 5086 of LNCS, pages 54–72.
Springer, 2008.

41. V. Lyubashevsky and G. Neven. One-shot verifiable encryption from lattices. In
EUROCRYPT 2017, volume 10210 of LNCS, pages 293–323. Springer, 2017.

42. V. Lyubashevsky, C. Peikert, and O. Regev. On ideal lattices and learning with
errors over rings. In EUROCRYPT 2010, volume 6110 of LNCS, pages 1–23.
Springer, 2010.

43. V. Lyubashevsky, C. Peikert, and O. Regev. On ideal lattices and learning with
errors over rings. J. ACM, 60(6):43:1–43:35, 2013.

44. V. Lyubashevsky and G. Seiler. Short, invertible elements in partially splitting
cyclotomic rings and applications to lattice-based zero-knowledge proofs. In EU-
ROCRYPT 2018, volume 10820 of LNCS, pages 204–224. Springer, 2018.

45. D. Micciancio. Generalized compact knapsacks, cyclic lattices, and efficient one-
way functions. Computational Complexity, 16(4):365–411, 2007.

46. D. Micciancio and C. Peikert. Trapdoors for lattices: Simpler, tighter, faster,
smaller. In EUROCRYPT 2012, volume 7237 of LNCS, pages 700–718. Springer,
2012.

47. M. Naor and M. Yung. Public-key cryptosystems provably secure against chosen
ciphertext attacks. In STOC 1990, pages 427–437. ACM, 1990.

48. P. Q. Nguyen, J. Zhang, and Z. Zhang. Simpler efficient group signatures from
lattices. In PKC 2015, volume 9020 of LNCS, pages 401–426. Springer, 2015.

49. C. Peikert, O. Regev, and N. Stephens-Davidowitz. Pseudorandomness of ring-lwe
for any ring and modulus. In STOC 2017, pages 461–473. ACM, 2017.

50. C. Peikert and A. Rosen. Efficient collision-resistant hashing from worst-case as-
sumptions on cyclic lattices. In TCC 2006, volume 3876 of LNCS, pages 145–166.
Springer, 2006.

51. R. D. Pino, V. Lyubashevsky, and G. Seiler. Lattice-based group signatures and
zero-knowledge proofs of automorphism stability. IACR Cryptology ePrint Archive,
2018:779, 2018. Accepted to ACM CCS 2018.

52. O. Regev. On lattices, learning with errors, random linear codes, and cryptography.
In STOC 2005, pages 84–93. ACM, 2005.

53. Y. Sakai, K. Emura, G. Hanaoka, Y. Kawai, T. Matsuda, and K. Omote. Group
signatures with message-dependent opening. In Pairing 2012, volume 7708 of
LNCS, pages 270–294. Springer, 2012.

54. Y. Sakai, J. C. N. Schuldt, K. Emura, G. Hanaoka, and K. Ohta. On the security
of dynamic group signatures: Preventing signature hijacking. In PKC 2012, volume
7293 of LNCS, pages 715–732. Springer, 2012.

55. P. W. Shor. Algorithms for quantum computation: Discrete logarithms and fac-
toring. In FOCS 1994, pages 124–134. IEEE Computer Society, 1994.

56. D. Stehlé, R. Steinfeld, K. Tanaka, and K. Xagawa. Efficient public key encryption
based on ideal lattices. In ASIACRYPT 2009, volume 5912 of LNCS, pages 617–
635. Springer, 2009.

57. J. Stern. A new paradigm for public key identification. IEEE Trans. Information
Theory, 42(6):1757–1768, 1996.

58. K. Xagawa. Improved (hierarchical) inner-product encryption from lattices. IACR
Cryptology ePrint Archive, 2015:249, 2015.

44

	Accountable Tracing Signatures from Lattices
	Introduction
	Background
	Rings, RSIS and RLWE
	Decompositions
	A Variant of the Ducas-Micciancio Signature scheme
	Zero-Knowledge Argument of Knowledge
	The Refined Permuting Techniques by Ling et al.
	Zero-Knowledge Protocol for the Ducas-Micciancio Signature
	Key-Oblivious Encryption
	Accountable Tracing Signatures

	Key-Oblivious Encryption from Lattices
	Description of Our KOE Scheme
	Analysis of Our KOE Scheme

	Handling Quadratically Hidden RLWE Relations
	Our Extended Permuting Technique
	Proving the RLWE Relation with Hidden Vector

	Accountable Tracing Signatures from Lattices
	The Zero-Knowledge Argument System Underlying the ATS Scheme
	Description of Our ATS Scheme
	Analysis of Our ATS Scheme

