
This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TC.2019.2940949 1

FACCT: FAst, Compact, and Constant-Time
Discrete Gaussian Sampler over Integers

Raymond K. Zhao, Ron Steinfeld, and Amin Sakzad

Abstract—The discrete Gaussian sampler is one of the fundamental tools in implementing lattice-based cryptosystems. However, a
naive discrete Gaussian sampling implementation suffers from side-channel vulnerabilities, and the existing countermeasures usually
introduce significant overhead in either the running speed or the memory consumption.
In this paper, we propose a fast, compact, and constant-time implementation of the binary sampling algorithm, originally introduced in
the BLISS signature scheme. Our implementation adapts the Rényi divergence and the transcendental function polynomial
approximation techniques. The efficiency of our scheme is independent of the standard deviation, and we show evidence that our
implementations are either faster or more compact than several existing constant-time samplers. In addition, we show the performance
of our implementation techniques applied to and integrated with two existing signature schemes: qTesla and Falcon. On the other
hand, the convolution theorems are typically adapted to sample from larger standard deviations, by combining samples with much
smaller standard deviations. As an additional contribution, we show better parameters for the convolution theorems.

Index Terms—Lattice-based crypto, discrete Gaussian sampling, constant-time, implementation, efficiency

F

1 INTRODUCTION

VARIOUS lattice-based cryptosystems require a discrete
Gaussian sampler over integers (particularly centered

at 0) as the subroutine during the implementation, includ-
ing lattice-based signature schemes [1], [2] and public-key
encryptions [3], [4], [5]. However, typical discrete Gaus-
sian sampling implementations usually suffer from side-
channel vulnerabilities. The straightforward Knuth-Yao [6]
or binary-search Cumulative Distribution Table (CDT) [7]
approaches are not constant-time, due to the branch condi-
tions. For the binary sampling algorithm from the BLISS
signature [1], the non-constant time implementation re-
cently became the target of several side-channel attacks
[8], [9], [10], [11] to recover the signing key. Therefore, it
is important to implement discrete Gaussian samplers in
cryptosystems, using constant-time algorithms.

Unfortunately, existing constant-time sampling methods
are usually inefficient in either the running speed or the
memory consumption. Let σ be the standard deviation of
the discrete Gaussian distribution. For typical countermea-
sures applied to table-based sampling algorithms, such as
the full-table access CDT approach [12], the running time
is proportional to the table size O(τσ), where τ is the tail-
cut factor (typically about 10–12). Thus, the straightforward
constant-time sampling algorithms are inefficient in both
timing and memory consumption for large σ. To handle this
scenario more efficiently, typically one employs a sampler
(called a base sampler) to generate samples from a much
smaller standard deviation σ0, then use an expander to com-
bine those samples together into a sample with the larger
standard deviation σ. However, two major approaches for
expander algorithms, namely the binary sampling imple-

• Raymond K. Zhao, Ron Steinfeld, and Amin Sakzad are with the Faculty
of Information Technology, Monash University, Clayton VIC 3800, Aus-
tralia.
E-mail: {raymond.zhao,ron.steinfeld,amin.sakzad}@monash.edu

mentation with constant-time countermeasures [9], [10], [13]
and the convolution scheme [14], [15], both have drawbacks:
For the first binary sampling expander approach, existing
constant-time countermeasures either introduce significant
overhead in the running speed [9], [10] or add large look-up
tables [13]. The convolution expander approach can achieve
σ0 about O(log log σ) in theory, but the total running time is
still relatively large in practice, due to the fact that the base
sampler needs to run 2l times to generate a sample with
standard deviation σ, where l is the number of convolution
levels. For example, in [14], [16], where σ0 ≈ 6.18 and l = 2,
the table-based base sampler has about 60 table entries,
and to generate each sample with standard deviation σ,
the sampling scheme needs to fully access this table 4
times. A recent bitslicing base sampler implementation [17]
significantly improve the running speed, but at the expense
of huge code size. Even worse, for cryptosystems requiring
samples from several different standard deviations, such as
[18], the two existing methods need to implement different
tables or base samplers for each σ.

Due to the difficulty of implementing the sampler both
efficiently and securely, some recent signature schemes [19]
moved away from using the discrete Gaussian distribution,
at the expense of larger signature size.

1.1 Contribution
In this paper, we introduce several new constant-time imple-
mentation techniques to address the above efficiency issues
in existing discrete Gaussian sampling implementations. In
particular, we make the following contributions:

• Our main contribution is to show that instead of
storing many pre-computed exp(x) evaluations [13]
or combining many Bernoulli samples [9], [10], the
exp(x) polynomial approximation techniques with
a carefully chosen precision can achieve faster and

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TC.2019.2940949 2

more compact constant-time implementations of the
binary sampling expander. To minimise the required
polynomial approximation precision, we show how
to apply the Rényi divergence analysis to the binary
sampling algorithm. Previous works on the Rényi
divergence used a different order [20], only applied
this technique to the rejection in the BLISS signing
algorithm [21], or applied to a different sampling
method [22]. As opposed to [23], where the authors
discussed the simple polynomial approximation to
the exp(x) function but discarded it as inefficient
in discrete Gaussian sampling, we show that with
carefully chosen polynomial approximation param-
eters, our constant-time implementation techniques
can actually be more efficient than other methods.

• We show that our scheme enjoys the property that
the implementation efficiency is independent of the
standard deviation. In addition, we show that our
implementation techniques are flexible to integrate
with existing cryptosystems, such as qTesla [2] and
Falcon [24].

• As an additional independent contribution, we show
how to adapt the Rényi divergence analysis to the
convolution sampling algorithm and achieve smaller
σ0 for the base sampler, compared to the exist-
ing Kullback-Leibler Divergence (KLD) based algo-
rithms [14], [16].

1.2 Comparison with Subsequent Works

In the NIST PQC Round 2 submission, qTesla implemented
a new variant of the CDT sampler [2]. To distinguish be-
tween two different sampling algorithms of qTesla submit-
ted to the NIST PQC Round 1 and Round 2, we use the
notations R1 (Round 1) and R2 (Round 2) in following
discussions, respectively. The qTesla-R2 sampling algorithm
generates a batch of randomness and sorts them with the
CDT table entries in constant-time, and the position of
randomness in the sorted table will imply the result of
samples. While this algorithm is efficient and consumes
less randomness for small σ ≈ 10.2–22.93 compared to the
previous qTesla-R1 implementation [13], however, we show
that this algorithm is not scalable in Section 5.1 since the per-
formance becomes significantly worse for larger σ ≈ 215.
On the other hand, our FACCT sampler maintains good
performance even for smaller σ, as we show in Section 5.2
that the qTesla-R2 Keygen can be accelerated by about 2.3x–
2.8x by plugging in our sampling scheme.

A recent work [25] discussed the relative errors in dis-
crete Gaussian samplers due to the floating-point arithmetic.
We acknowledge the issues in [25] and provide a compre-
hensive relative error analysis of our FACCT sampler in
Section 4.2.1. In addition, very recently a fully constant-
time implementation of the BLISS signature scheme [26]
adapted a variant of our FACCT sampling algorithm with-
out floating-point arithmetics. The polynomial approxima-
tion in this implementation has the same degree 9 as our
FACCT sampler and employs only the integer arithmetic,
which is more suitable for architectures where constant-time
hardware floating-point instructions (addition and multipli-
cation) may not be available. However, the techniques in

[26] require a different polynomial approximation for each
different σ and therefore lose the σ-independent feature of
our FACCT sampling algorithm.

2 PRELIMINARIES

Let ρσ (x) = exp
(
−x2/2σ2

)
be the (continuous) Gaussian

function with zero mean and standard deviation σ. We
denote the corresponding discrete Gaussian distribution on
integer lattices with center zero and standard deviation σ
as: DZ,σ (x) = ρσ (x) /

∑
k∈Z ρσ (k). We omit the lattice

notation (i.e. Dσ) if sampling from Z. We denote D+
σ as

the distribution of x ←↩ Dσ for all x ∈ Z+ (i.e. D+
σ (x) =

ρσ (x) /
∑
k∈Z+ ρσ (k)). In addition, we denote the uniform

distribution on set S as U(S) and the Bernoulli distribution
with bias p as Bp (i.e. the probability distribution with
Pr(X = 1) = p and Pr(X = 0) = 1 − p). A distribution is
B-bounded for some B ∈ R+, if its support is in the interval
[−B,B] [20]. Also, for a lattice Λ and any ε ∈ R+, we denote
the smoothing parameter ηε(Λ) as the smallest s ∈ R+ such
that ρ1/(s·

√
2π)

(
Λ∗ \

{
~0
})
≤ ε, where Λ∗ is the dual lattice

of Λ: Λ∗ = {~w ∈ Rn : ∀~x ∈ Λ, ~x · ~w ∈ Z} [27]. An upper
bound on ηε (Z) is given by [27]: ηε(Z) ≤

√
ln(2 + 2/ε)/π.

Definition 1 (Relative Error). For two distributions P and
Q such that Supp(P) = Supp(Q), the relative error
between P and Q is defined as:

∆(P||Q) = max
x∈Supp(P)

|P(x)−Q(x)|
Q(x)

.

Definition 2 (Kullback-Leibler Divergence [14]). For two
discrete distributions P and Q such that Supp(P) ⊆
Supp(Q), the Kullback-Leibler divergence (KLD) is de-
fined as:

KL(P||Q) =
∑

x∈Supp(P)

P(x) ln
P(x)

Q(x)
.

Definition 3 (Rényi Divergence [20], [21]). For two discrete
distributions P and Q such that Supp(P) ⊆ Supp(Q),
the Rényi divergence (RD) of order α ∈ (1,+∞) is
defined as:

Rα(P||Q) =

 ∑
x∈Supp(P)

P(x)α

Q(x)α−1

 1
α−1

.

In addition, for α = +∞, we have:

R∞(P||Q) = max
x∈Supp(P)

P(x)

Q(x)
.

Definition 4 (Max-log Distance [15]). For two discrete dis-
tributions P and Q such that Supp(P) = Supp(Q), the
max-log distance is defined as:

ML(P||Q) = max
x∈Supp(P)

|lnP(x)− lnQ(x)| .

For tighter bounds, we use the following theorems in
this paper:
Theorem 1 (Tail-cut Bound, Adapted from [20], Thm. 2.11).

Let D′σ be the B-bounded distribution of Dσ by cut-
ting its tail. For M independent samples, we have
R∞

(
(D′σ)

M || (Dσ)
M
)
≤ exp(1) if B ≥ σ ·

√
2 ln(2M).

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TC.2019.2940949 3

Theorem 2 (Relative Error Bound, Adapted from [21],
Lemma 3 and Eq. 4). For two distributions P andQ such
that Supp(P) = Supp(Q), we have:

Rα(P||Q) ≤
(

1 +
α(α− 1) · (∆ (P||Q))

2

2(1−∆ (P||Q))α+1

) 1
α−1

.

The right-hand side is asymptotically equivalent to 1 +
α · (∆ (P||Q))

2
/2 as ∆(P||Q) → 0. In addition, if a

signature scheme using M independent samples fromQ
is (λ+ 1)-bit secure, then the signature scheme sampling
from P will be λ-bit secure if R2λ(P||Q) ≤ 1 + 1/(4M).

Typically we have M = m ·qs, where m is the dimension
of the lattice and qs is the number of queries.

3 REVIEW OF DISCRETE GAUSSIAN SAMPLING
SCHEMES

To sample from Dσ for large σ, typically one generates
samples from a base sampler with much smaller standard
deviations, then combines the samples together with an
expander. We review two commonly used expanding ap-
proaches in this section: the binary sampling algorithm [1]
and the convolution methods [14], [15].

3.1 Binary Sampling Method
The original binary sampling method was proposed by [1]
in the BLISS signature scheme. Let σ = kσ0, k ∈ Z+, and
σ0 =

√
1/ (2 ln 2). This algorithm samples from D+

σ by first
generating a sample x←↩ D+

σ0
from the base sampler and an

integer y ←↩ U ({0, . . . , k − 1}), then performing a rejection
sampling on z = kx+ y, with the acceptance rate:

p = exp

(−y(y + 2kx)

2σ2

)
. (1)

To generate negative samples, one can sample and apply
a random sign bit, with the expection of rejection with
probability 1/2 when z = 0.
Theorem 3 (Adapted from [1], Thm. 6.6). Given x ←↩ D+

σ0

and y ←↩ U ({0, . . . , k − 1}), the probability to output
some integer z = kx+ y is proportional to:

ρσ0(x) · p = exp

(
− x2

2σ2
0

− −y(y + 2kx)

2(kσ0)2

)
= exp

(
− (kx+ y)2

2(kσ0)2

)
= ρkσ0

(z)

= ρσ(x).

The rejection framework of the binary sampling algo-
rithm is shown in Fig.1. The rejection sampling itself will not
leak any secret information, if the underlying base sampler
and the Bernoulli sampler are side-channel resistant. Unfor-
tunately, to achieve efficient algorithms, the original sampler
implementations in the BLISS signature are not constant-
time (see Fig.2 and Fig.3, respectively). When attacking
signature schemes similar to the BLISS, the attacker can
gather the discrete Gaussian vectors, or the intermediate
base samples and Bernoulli samples, by exploiting the side-
channels, such as the cache [8], or timing and power [10],

Output: A sample from D+
σ .

function BINARYSAMPLER(k)
Let x←↩ D+

σ0
.

Let y ←↩ U ({0, . . . , k − 1}).
Let z = kx+ y.
Let t = y (y + 2kx).
Let b←↩ Bexp(−t/2σ2).
if b = 0 then

Restart BinarySampler.
end if
return z.

end function

Fig. 1. Binary sampling scheme [1].

Output: A sample from D+
σ0

.
function BASESAMPLER

Sample b←↩ U ({0, 1}).
if b = 0 then

return 0.
end if
i = 1
while true do

Sample (b1, b2, . . . , b2i−1)←↩ (U ({0, 1}))2i−1.
if (b1, b2, . . . , b2i−2) 6= (0, 0, . . . , 0) then

Restart BaseSampler.
end if
if b2i−1 = 0 then

return i.
end if
i = i+ 1.

end while
end function

Fig. 2. Base sampler from BLISS [1].

Input: Integer t = y (y + 2kx) with 0 ≤ t < 2l

and binary form t = tl−1 . . . t0, where x ←↩ D+
σ0

and y ←↩ U ({0, . . . , k − 1}). Pre-computed table pi =
exp

(
−2i/2σ2

)
for i < l.

Output: A sample from Bp, where p = exp(−t/2σ2).
function BERNOULLISAMPLER(t)

for i = l − 1 downto 0 do
if ti = 1 then

Sample a←↩ Bpi .
if a = 0 then

return 0.
end if

end if
end for
return 1.

end function

Fig. 3. Bernoulli sampler from BLISS [1].

and then recover the signing key by using the leaked infor-
mation. These attacks only require about several thousand
signatures and the corresponding samples to succeed.

To mitigate these side-channel attacks, several efforts
have been proposed. We review them now.

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TC.2019.2940949 4

Input: Integer t = y (y + 2kx) with 0 ≤ t < 2l

and binary form t = tl−1 . . . t0, where x ←↩ D+
σ0

and y ←↩ U ({0, . . . , k − 1}). Pre-computed table pi =
exp

(
−2i/2σ2

)
for i < l.

Output: A sample from Bp, where p = exp(−t/2σ2).
function BERNOULLISAMPLER(t)

Let r = 1.
for i = l − 1 downto 0 do

Sample a←↩ Bpi .
Set r = r · (1− ti + ati).

end for
return r.

end function

Fig. 4. Constant-time Bernoulli sampler [9], [10].

3.2 Existing Timing/Cache Attack Countermeasures for
the Binary Sampling Method
3.2.1 Random Shuffle
One commonly used heuristic countermeasure is perform-
ing the Fisher-Yates random shuffle (or Knuth shuffle) [6],
to mask the relation between the retrieved side-channel
information of the samples and the secret, after performing
non-constant time sampling schemes [28], [29]. However,
in the above mentioned attacking scenarios, the random
permutation cannot totally hide the statistical features of the
distributions in the attacked vector. By performing statistical
analysis, it was shown in [30] that an attacker only requires
marginally larger yet still practical number of samples to
rearrange the coordinates and “undo” the shuffle.

3.2.2 Constant-time Base/Bernoulli Sampler
The base sampler can be implemented in constant-time,
by using a full-table access Cumulative Distribution Table
(CDT) sampler [12]. A recent work [31] suggested using
a binary search CDT sampler with constant number of
iterations O(logB) on hardware, where B is the tail-cut
bound. However, the memory access in this approach is not
constant, which might cause potential cache timing leakage
in software implementations [17]. On the other hand, for the
table-based Bernoulli sampler, several works [8], [9], [10]
suggested the countermeasure of removing the branches
and performing full-table access (see Fig.4). However, this
countermeasure adds significant overhead, since it requires
additional randomness for each table entry. A recent lattice-
based signature scheme in the NIST PQC submission [32],
qTesla-R1 [13], suggested a more efficient approach that the
sampler computes the bias p in (1) by multiplying table en-
tries from each subtable based on the binary representation
of the input, where every subtable Bi has 32 · 8 = 256 bytes
(see Fig.5). However, although the number of iterations in
this sampler is constant, the memory access pattern depends
on the size of the underlying CPU cachelines. This could
cause a potential leakage via cache timing side-channels on
some architectures.

3.3 Convolution Methods
Previous works [14], [16] suggested applying the following
KLD-based convolution theorem to construct discrete Gaus-
sian sampling algorithms:

Input: Integer t = y (y + 2kx) with 0 ≤ t < 215, where
x ←↩ D+

σ0
and y ←↩ U ({0, . . . , k − 1}). Pre-computed

Bernoulli table entries Bi,j = exp
(
−2(j·32i)/2σ2

)
, where

i, j ∈ Z+, 0 ≤ i < 3, and 0 ≤ j < 32. Each Bi,j has 8
bytes.

Output: A sample from Bp, where p = exp(−t/2σ2).
function BERNOULLISAMPLER(t)

Sample r ←↩ U
(
{0, 1}62

)
.

Let c = 262.
Let s = t.
for i = 0 to 2 do

Set c = c · Bi,s mod 32.
Set s = s/32.

end for
if r ≥ bce then

return 0.
else

return 1.
end if

end function

Fig. 5. Bernoulli sampler with constant number of iterations [13].

Output: A sample from Dσ , where σ ≈ 215.
function CONVOLUTIONSAMPLER

Sample x1, x2, x3, x4 ←↩ Dσ0
, where σ0 ≈ 6.18.

Let y = (x1 + 3x2) + 11 · (x3 + 3x4).
return y.

end function

Fig. 6. KLD-based convolution sampling scheme [14], [16].

Theorem 4 (KLD-based Convolution Theorem, Adapted from
[14], Lemma 3). Let x1 ←↩ DZ,σ1

and x2 ←↩ DkZ,σ2
for

some σ1, σ2 ∈ R+. Let σ−23 = σ−21 + σ−22 and σ2 =
σ2
1 + σ2

2 . For any ε ∈ (0, 1/2), if σ1 ≥ ηε(Z)/
√

2π and
σ3 ≥ ηε(kZ)/

√
2π, then the distribution P of x1 + x2

satisfies:

KL(P||Dσ) ≤ 2

(
1−

(
1 + ε

1− ε

)2
)2

≈ 32ε2.

For the deviation σ ≈ 215 in the BLISS-I parameter set,
one can generate x1, x2 ←↩ Dσ1

and compute x1 + k1x2,
where σ1 = σ/

√
1 + k21 ≈ 19.53 and k1 = 11. Sampling

from Dσ1
can be further decomposed into x3 + k2x4, where

x3, x4 ←↩ Dσ2
, σ2 = σ1/

√
1 + k22 ≈ 6.18, and k2 = 3

(see Fig.6). If the sampling algorithm of Dσ2
(or Dσ1

) is
constant-time, then the whole sampling scheme will be
constant-time. To sample from Dσ2

, recent works [17], [33]
adapted the bitslicing method to implement the Knuth-Yao
algorithm [34] more efficiently in constant-time, compared
to the previous full-table access CDT approach.

Meanwhile, a recent work [15] proposed the following
max-log based convolution theorems:
Theorem 5 (Adapted from [15], Cor. 4.1). Let ~z =

(z1, . . . , zn) ∈ Zn be a nonzero vector with
gcd(z1, . . . , zn) = 1 and ~σ = (σ1, . . . , σn) ∈ Rn with
σi ≥ ‖~z‖∞ · ηε(Z)/

√
π for all i ≤ n. Let ~y ←↩

(
D′σi

)n,
with ML

(
D′σi ||Dσi

)
≤ µi for all i. Let σ2 =

∑
z2i σ

2
i

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TC.2019.2940949 5

and P be the distribution of
∑
ziyi. Then ML(P||Dσ) ≤

2ε+
∑
µi.

Theorem 6 (Adapted from [15], Cor. 4.2). Let x1 ←↩ D′Z,σ1

and x2 ←↩ D′kZ,σ2
for some σ1, σ2 ∈ R+. Let σ−23 =

σ−21 + σ−22 and σ2 = σ2
1 + σ2

2 . If σ1 ≥ ηε(Z)/
√

2π,
σ3 ≥ ηε(kZ)/

√
2π, ML

(
D′Z,σ1

||DZ,σ1

)
≤ µ1, and

ML
(
D′kZ,σ2

||DkZ,σ2

)
≤ µ2, then the distribution P of

x1 + x2 satisfies ML(P||Dσ) ≤ 4ε+ µ1 + µ2.

4 PROPOSED CONSTANT-TIME IMPLEMENTATION
TECHNIQUES

4.1 Directly Approximating the Exp Function
The Bernoulli bias p in (1) can be directly computed within
double precision (53 bits), if the RD-based relative error
bound (Theorem 2) is adapted [21]. Falcon [24], a recent
lattice-based signature scheme in the NIST PQC submission,
applied this approach to compute the rejection bias when
sampling from the arbitrary-centered discrete Gaussian dis-
tribution, by using a rational function approximation of
exp(x), similar to the implementation in the C standard
library (see Fig.7). However, the floating-point division
instructions on the Intel CPUs have various latency and
throughput [35]. Furthermore, the compiler may replace the
division operation with its own arithmetic library routine,
which may not be constant-time [36]. Therefore, the division
arithmetic should be generally avoided in constant-time
implementation.

Another classical method to compute the exp(x) is the
Padé approximation [21], which uses P (x)/Q(x) to approx-
imate exp(x) for some polynomials P (x) = Q(−x). For the
BLISS signature scheme, to satisfy the relative error bound
by Theorem 2, P (x) and Q(x) need to be at least degree
7 by our experiments in the sagemath tool. To compare
u < P (x)/Q(x) for some u←↩ U ([0, 1)) in the rejection step
of the binary sampling scheme, one may instead perform the
comparison of u · Q(x) < P (x) to avoid the floating-point
division. However, it is unclear how to choose the precisions
of u and the u · Q(x) multiplication operation for this
method. Another issue is how to efficiently implement this
approach in constant-time, since the implementation may
involve either a high precision floating-point multiplication
for u · Q(x) or computing the multiplication between the
mantissas of u andQ(x) with integer arithmetics larger than
64 bits.

We compute the exp(x) by evaluating a polynomial at
point x instead, where only the floating-point additions
and multiplications are involved. Both the addition and the
multiplication instructions on the Intel CPUs have constant
latency and throughput [35]. To find such an exp(x) ap-
proximation with sufficient precision, we use the following
approach:

1) Let t = y(y+2kx). First, we observe that since σ0 =√
1/ (2 ln 2) and σ = kσ0, the Bernoulli bias p in (1)

can be re-written as:

p = exp
(
−t/2σ2

)
= exp

(
− ln 2 · t/k2

)
= 2−t/k

2

.

Therefore, we can find a polynomial approximation
of 2−t/k

2

for t ≥ 0.

Input: x ∈ R, such that |x| ≤ ln 2.
Output: ex with about 50-bit precision.

function EXP(x)
Let p1 = 1.66666666666666019037 · 10−1.
Let p2 = −2.77777777770155933842 · 10−3.
Let p3 = 6.61375632143793436117 · 10−5.
Let p4 = −1.65339022054652515390 · 10−6.
Let p5 = 4.13813679705723846039 · 10−8.
Let s = x/2.
Let t = s2.
Let c = s−t ·(p1 + t · (p2 + t · (p3 + t · (p4 + t · p5)))).
Let r = 1− ((s · c) / (c− 2)− s).
return r2.

end function

Fig. 7. Rational function approximation algorithm of exp(x) [24].

2) Second, we adapt the method from [37]. Let a =
−t/k2. We get:

2a = 2bac+z = 2bac · 2z,

for 0 ≤ z < 1, where z is the remaining part of
rounding operation. We can directly get the multi-
plication with 2bac by changing the exponent of a
floating-point variable. To approximate 2z , we use
the sollya tool [38] to find a polynomial with
sufficient number of terms, such that the minimax
error is within the RD-based relative error bound.

According to the manual of the sollya tool [39], we use
the following three functions to get such a polynomial and
verify its precision:

• The guessdegree(f, I, δ, ω) function finds the min-
imal degree sufficient for the polynomial approxi-
mation P of function f over the interval I , such
that ‖Pω − f‖∞ < δ. For example, we use
the command guessdegree(1, [0,1], 1b-45,
1/2ˆx) to estimates the minimal degree of poly-
nomial approximation P (x) over the interval [0, 1],
such that:

‖P/2x − 1‖∞ < 2−45 =⇒ ∆ (P ||2x) < 2−45.

• The fpminimax(f, n, L, I, floating, relative) function
performs the heuristic from [40] to find a degree-n
polynomial approximation P of function f over the
interval I , such that P has the minimal minimax
relative error, with the i-th floating-point coefficient
ci having precision Li for all i ≤ n. For example,
we use the command fpminimax(2ˆx, 9,
[|1,D...|], [0,1], floating, relative)
to find the polynomial approximation P (x) of 2x

over the interval [0, 1], with degree 9 (the result
from the previous guessdegree command) and
double precision coefficients (“D” represents double
precision in this command). To make sure P (0) = 1,
we set L0 = 1 (1-bit precision), which results in
coefficient c0 = 1.

• The supnorm(p, f, I, relative, accuracy) function
computes the interval bound r = [l, u] for the
supremum norm of the relative error ∆ = |p/f − 1|

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TC.2019.2940949 6

over the interval I , such that supx∈I{∆(x)} ⊆ r
and 0 ≤ |u/l − 1| ≤ accuracy. For example, we
use the command supnorm(P, 2ˆx, [0,1],
relative, 1b-128) to verify ∆(P ||2x) over
the interval [0, 1] is smaller than the required
relative error bound, where P is the polynomial
approximation computed in the previous fpminimax
command.

4.2 FACCT Algorithm

Our constant-time Bernoulli sampler adapting the exp(x)
approximation approach above is shown in Fig.8. Let the
standard deviation σ = kσ0, where k ∈ Z+ and σ0 =√

1/(2 ln 2). Let P (z) be the polynomial approximation of
2z with δP -bit precision for 0 ≤ z < 1. Given an integer t =
y (y + 2kx), where x←↩ D+

σ0
with tail-cut boundB and y ←↩

U ({0, . . . , k − 1}), this algorithm generates a sample from
Bp, where p = exp(−t/2σ2) = 2−t/k

2

. We assume an IEEE-
754 floating-point value f ∈ (0, 1] with (δf +1)-bit precision
is represented by f =

(
1 +mantissa · 2−δf

)
· 2exponent,

where integer mantissa has δf bits and exponent ∈ Z−.

4.2.1 FACCT Relative Error Analysis

Here, we analyse the relative error of Fig.8. Since the al-
gorithm will output 1 when f = 1.0, we only consider
the case when f ∈ (0, 1), which implies exponent < 0.
Let PFACCT and PIDEAL represent the distribution of the
FACCT Bernoulli sampler and the ideal Bernoulli sampler,
respectively. Since a = −t/k2 and z = a− bac, we have:

PIDEAL(bac, z) = exp(−t/2σ2) = 2a = 2z+bac.

Theorem 7 (Adapted from [37], Def. 5.1 and Eq. 5.7). The ab-
solute error between an accurate polynomial evaluation
P (x) = anx

n + an−1x
n−1 + · · · + a0 and the evalua-

tion H(x) by using Horner’s rule with δ-bit precision
floating-point arithmetic is:

|H(x)− P (x)| ≤ γ2n ·
n∑
i=0

|ai| · |x|i ,

where γ2n ≈ 2n · 2−δ if 2n� 1/2−δ .

The polynomial approximation P from the sollya tool
is evaluated by using Horner’s rule (see Fig.10 for an exam-
ple). Assume a degree-n polynomial approximation P only
has positive coefficients. Since we use (δf + 1)-bit precision
floating-point arithmetic to compute P (z) for 0 ≤ z < 1, by
adapting Theorem 7, we have:

PFACCT(bac, z) =

(
mantissa+ 2δf

)
2δf+1

· 2l+exponent+1

2l

=
(

1 +mantissa · 2−δf
)
· 2exponent

= f

≤
(

1 + 2n · 2−(δf+1)
)(

P (z) · 2bac
)
,

where the last inequality follows because
|H(z)/P (z)− 1| ≤ γ2n and γ2n ≈ 2n · 2−(δf+1) due
to Theorem 7 (The multiplication with 2bac does not
change the error since we directly change the exponent of a

Input: Deviation σ = kσ0, where k ∈ Z+ and σ0 =√
1/(2 ln 2). Integer t = y (y + 2kx), where x ←↩ D+

σ0

with tail-cut bound B and y ←↩ U ({0, . . . , k − 1}). Poly-
nomial approximation P (z) of 2z with δP -bit precision for
0 ≤ z < 1. Bit length l ≥ 2B + 1.

Output: A sample from Bp, where p = exp(−t/2σ2) =

2−t/k
2

.
function BERNOULLISAMPLER(t)

Let a = −t/k2.
Let z = a− bac.
Evaluate s = P (z) on point z.
Let f = s · 2bac.
Let represent f by f =

(
1 +mantissa · 2−δf

)
·

2exponent, with δf -bit mantissa.
Sample rm ←↩ U

(
{0, 1}δf+1

)
.

Sample re ←↩ U
(
{0, 1}l

)
.

if
(
rm < mantissa+ 2δf and re < 2l+exponent+1

)
or

f = 1.0 then
return 1.

else
return 0.

end if
end function

Fig. 8. FACCT Bernoulli sampler.

floating-point variable). Then, the relative error ∆ between
PFACCT and PIDEAL is:

∆ = max
bac,z

∣∣∣∣PFACCT(bac, z)
PIDEAL(bac, z)

− 1

∣∣∣∣
≤ max
bac,z

∣∣∣∣∣∣
(

1 + 2n · 2−(δf+1)
)(

P (z) · 2bac
)

2z+bac
− 1

∣∣∣∣∣∣
≤
(

1 + n · 2−δf
)(

1 + 2−δP
)
− 1 (by definition of δP)

= 2−δP + n ·
(

2−δf + 2−(δP+δf)
)
. (2)

We also need to make sure that l + exponent + 1 ≥ 0
during the comparison in Fig.8. Let ∆ be the relative error
in (2). Since a = −t/k2, by definitions of exponent and ∆
from (2), we have:

exponent ≥
⌊
log2

(
(1−∆) · 2−t/k

2
)⌋

≥
⌊
−1− t/k2

⌋
(we make ∆ ≤ 1/2)

≥
⌊
−1− y(y + 2kx)

k2

⌋
(by definition of t)

≥
⌊
−1− y2

k2
− 2kxy

k2

⌋
≥ −2B − 2. (by definitions of x and y)

Therefore, if l + exponent+ 1 ≥ 0, we have:

l ≥ 2B + 1. (3)

To ensure that the compiler will not replace any floating-
point arithmetic with its own library implementation, we
manually write the arithmetic in the source code by using
constant-time instructions with the Intel intrinsics. This also

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TC.2019.2940949 7

Input: Center c′F ∈ (0, 1/2].
Output: A sample from Dc′F ,σ .

function BINARYSAMPLEREX(c′F , k)
Let x←↩ D+

σ0
.

Let y ←↩ U ({0, . . . , k − 1}).
Let s←↩ U ({−1, 1}).
Let δ = dkx+ sc′F e − kx− sc′F .
if y + δ ≥ k then

Restart BinarySamplerEx.
end if
Let z = dkx+ sc′F e+ y.
Let t = 2kx (y + δ) + (y + δ)

2.
Let b←↩ Bexp(−t/2σ2).
if b = 0 then

Restart BinarySamplerEx.
end if
return s · z.

end function

Fig. 9. Non-zero centered binary sampling scheme [41].

enables the Single Instruction Multiple Data (SIMD) instruc-
tion sets, such as the AVX2, which computes 4x double
precision floating-point arithmetic in parallel.

Compared with the previous table-based constant-time
Bernoulli sampling techniques [8], [9], [10], [13], where the
number of table entries is proportional to the bit length
of t, our implementation is more compact in terms of
the memory consumption, since we only need to store
a small number of polynomial coefficients. For example,
in the BLISS-I parameter set, k = 254, which implies
0 ≤ t < 221. This requires at least 21 table entries in the
previous techniques, compared to only 9 coefficients for
about 45-bit precision in our implementation (see Section
4.5). Also, our implementation is more efficient for large
standard deviations, since the code is independent of σ
(assuming −1/k2 is a pre-computed constant), while the
number of iterations (proportional to the number of table
entries) relies on k in previous table-based approaches. In
addition, if the application requires samples from several
different standard deviations, our implementation does not
need additional pre-computed tables for each different k.

4.3 Non-zero Centered Discrete Gaussian Sampling
In this section, we discuss how to generalise our FACCT
sampler to sample from non-zero centered discrete Gaus-
sian distributions. We denote the non-zero centered dis-
crete Gaussian distribution on integers as: Dc,σ (x) =
ρσ (x− c) /

∑
k∈Z ρσ (k − c), where the center c ∈ R. A

recent work [41] extended the binary sampling scheme to
arbitrary non-zero centered discrete Gaussians as follows:
For any center c ∈ R, sampling from Dc,σ is equivalent to
sampling fromDcF ,σ+bcc, where cF = c−bcc ∈ [0, 1) is the
fractional part of c. In addition, for 1/2 ≤ cF < 1, sampling
from DcF ,σ is equivalent to sampling from 1−Dc′F ,σ where
c′F = 1− cF ∈ (0, 1/2]. A modified binary sampling scheme
[41] can then be adapted to sample from Dc′F ,σ with any
c′F ∈ (0, 1/2] (see Fig.9).

Since the Bernoulli bias in Fig.9 still has the form
exp

(
−t/2σ2

)
where σ = kσ0, k ∈ Z+, and σ0 =

√
1/(2 ln 2), one can easily adapt our FACCT Bernoulli

sampler in Fig.8 to implement the non-zero centered
discrete Gaussian sampling scheme in [41]. However,
the average number of trials in Fig.9 has the upper-
bound

(
σ2/

(
σ0σ − σ2

0

))
·
(
ρσ0

(Z+) /
(
σ
√
π/2− 1

))
[41]

and therefore the rejection rate of sampling may reveal σ.

4.4 Concrete Rényi Divergence Based Convolution
Sampling
Previous works [21] only implied the potentially tighter
parameters for the convolution theorem based samplers by
adapting the Rényi divergence. In this section, we discuss
the concrete parameter choice for the RD-based convolution
sampling scheme.
Theorem 8 (Adapted from [21], Lemma 4). For two distribu-

tions P and Q such that Supp(P) = Supp(Q), we have:

Rα(P||Q) ≤

1 +
α(α− 1) ·

(
eML(P||Q) − 1

)2
2
(
2− eML(P||Q)

)α+1

1

α−1

.

The right-hand side is asymptotically equivalent to 1 +
α · (ML (P||Q))

2
/2 as ML(P||Q)→ 0.

Recall that ML(P||Q) ≈ ∆(P||Q) when ∆(P||Q) → 0
(Lemma 4.2, [15]). Also, in the convolution sampler adapt-
ing Theorem 5, typically ~z = (k − 1, k) for some k ≥ 4 [15].
Therefore, by applying Theorem 2, we provide the following
concrete RD-based parameter choice lemmas:
Lemma 1. Let x1, x2 ←↩ D′σ0

, with σ0 = σ/
√

(k − 1)2 + k2

for some σ ∈ R+ and k ≥ 4. If σ0 ≥ kηε(Z)/
√
π and

∆
(
D′σ0
||Dσ0

)
≤ µ, then for M independent samples,

sampling from the distribution P of (k− 1)x1 +kx2 will
be λ-bit secure, if ∆(P||Dσ) ≤ 2ε+ 2µ ≤

√
1/ (4λ ·M).

Lemma 2. Let x1, x2 ←↩ D′σ0
, with σ0 = σ/

√
1 + k2 for some

σ ∈ R+ and k ≥ 2. If:

σ0 ≥ ηε(Z)/
√

2π,√
1

σ−20 + (kσ0)−2
≥ kηε(Z)/

√
2π,

and ∆
(
D′σ0
||Dσ0

)
≤ µ, then for M independent sam-

ples, sampling from the distribution P of x1 + kx2 will
be λ-bit secure, if ∆(P||Dσ) ≤ 4ε+ 2µ ≤

√
1/ (4λ ·M).

Proof: We show that for distributions P andQ, andM
independent samples, sampling from P will be λ-bit secure,
if ML(P||Q) ≤

√
1/ (4λ ·M). Let α = 2λ. By combining

Theorem 2 and Theorem 8, we get:

R2λ(P||Q) ≤ 1 + λ · (ML (P||Q))
2 ≤ 1 + 1/(4M)

=⇒ ML(P||Q) ≤
√

1/ (4λ ·M).

Then, let σ0 = σ/
√

(k − 1)2 + k2, ~z = (k − 1, k), and
~σ = (σ0, σ0) in Theorem 5 to get ∆(P||Dσ) ≤ 2ε + 2µ. Let
σ0 = σ/

√
1 + k2, σ1 = σ0, and σ2 = kσ0 in Theorem 6, we

get ∆(P||Dσ) ≤ 4ε + 2µ. We replace ML with ∆ in both
Theorem 5 and Theorem 6, then get Lemma 1 and Lemma
2, respectively.

Since the constraint for σ0 in Lemma 2 is looser than in
Lemma 1 (about

√
2 times), but σ0 shrinks faster in Lemma

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TC.2019.2940949 8

TABLE 1
Total Relative Errors for Different Number of Convolution Levels.

~z 1 Level 2 Levels 3 Levels
(k − 1, k) 2ε+ 2∆ 6ε+ 4∆ 14ε+ 8∆

(1, k) 4ε+ 2∆ 12ε+ 4∆ 28ε+ 8∆
Mixed-k 4ε+ 2∆ 10ε+ 4∆ 22ε+ 8∆

TABLE 2
Convolution Parameters for σ ≈ 215.

Method l σ0 ~zi
KLD [14] 1 19.53 ~z1 = (1, 11)

KLD [16], [17] 2 6.18 ~z1 = (1, 11), ~z2 = (1, 3)
RD (k − 1, k) 1 17.92 ~z1 = (8, 9)

RD (1, k) 2 5.67 ~z1 = (1, 12), ~z2 = (1, 3)
RD Mixed-k 2 5.67 ~z1 = (8, 9), ~z2 = (1, 3)

1 instead, one can apply both lemmas on different recursion
levels. For example, one may adapt Lemma 1 on all the
intermediate levels and use Lemma 2 on the bottom level,
to achieve possibly smaller base sampler deviation.

The total relative errors for different number of convo-
lution levels are shown in Table 1. Typically, the standard
deviations in lattice-based cryptosystems require 3 levels at
maximum. Let ∆ be the relative error of the base sampler.
The “Mixed-k” in Table 1 represents the example we dis-
cussed above.

For σ ≈ 215 in the BLISS-I parameter set, the base
sampler deviation σ0 and convolution parameters ~zi are
shown in Table 2 for i ≤ l, where l is the number of
convolution levels. We assume M = m · qs with m = 1024,
qs = 264, λ = 128, and ∆ ≤ 2−53. Compared with the KLD-
based convolution schemes [14], [16], [17], our RD-based
convolution parameter choice lemmas generate smaller base
sampler deviations for the same number of convolution
levels.

4.5 Performance

We implement the binary sampling scheme (Fig.1) by com-
bining the constant-time CDT base sampler with the FACCT
Bernoulli sampler (Fig.8). We choose the tail-cut bound B
by Theorem 1, which guarantees that the R∞ between the
tail-cut and the ideal discrete Gaussian is ≤ exp(1) over all
M = m · qs samples, corresponding to a loss of at most
log2 (exp(1)) ≈ 1.44 bits of security for the tail-cut samples
relative to the ideal discrete Gaussian sampling case. On
the other hand, we choose ∆D+

σ0
and ∆Bp by Theorem 2,

which guarantees that we lose at most 1 bit of security due to
the relative precision errors, respectively. Hence overall our
choice of tail-cut and precision parameters ensure that we
lose at most 1 + 1 + 1.44 = 3.44 bits of security with respect
to the ideal discrete Gaussian sampling over M samples.
Since our FACCT Bernoulli sampler is independent of σ, we
pick the precision δP of the polynomial approximation and
bit length l in Fig.8 by using (2) and (3), respectively. We
use double precision floating-point, where the mantissa has
δf = 52 bits, and we fix the parameters in Table 3 for our
implementations in the benchmarks.

We employ the full-table access CDT base sampler. We
select the parameters in Table 3 such that the base sampler

TABLE 3
Parameters for Implementations.

Parameter Description Value
M Number of discrete Gaussian samples 274

λ Security level 128
B Tail-cut bound 9
δP Precision of the polynomial approximation 45
δf Number of bits in the mantissa 52
l Bit length in Fig.8 19

∆D+
σ0

Relative error of the base sampler 2−46

∆Bp Relative error of the Bernoulli sampler 2−44.99

has about 126-bit absolute precision. We store each CDT en-
try in two 63-bit integers, then the constant-time comparison
of x < y, where 0 ≤ x, y < 263, can be performed by a 64-
bit signed integer subtraction, since the sign bit of x − y
will be 1 when x < y. We compute the CDT in reversed
order such that P(i) = CDT [i]− CDT [i+ 1] for i ∈ [0, B],
where the subtraction only enlarges the relative error by a
factor of about σ0 [14], [22]. For the uniform sampling over
the range [0, k − 1], we adapt similar techniques as in [42]
to reduce the rejection rate. We generate random integers
over a larger range [0, 2l − 1] instead, where 2l > k, and
then perform the modulo k operations. In addition, we show
how to get the polynomial approximation P in our FACCT
sampler implementation by using the sollya tool in Fig.10,
and we verify ∆(P ||2x) < 2−45.9 over the interval [0, 1].

For the benchmarks, we select σ ≈{
25, 215, 211, 17900, 217, 220

}
, where 215 (approximately

27.7) and 17900 (approximately 214.1) are the standard
deviations from the BLISS-I [1] and the Dilithium-G [19]
recommended parameter sets, respectively. We compare
the running time of our implementations with the binary
sampling scheme from [13] and the countermeasures
from [9], [10]. Since the countermeasures did not have
a full implementation code available, we simply replace
the Bernoulli sampling subroutine in our non-AVX2
reference implementation with the countermeasures.
Because the optimal convolution sampling schemes [17],
[33] require major refactoring of the bitslicing base sampler
for each different σ, we exclude it from this benchmark.
We use the AES256 counter mode with hardware AES
instructions (AES-NI) to generate the randomness in all
the implementations. We use clang 8.0.0 to compile our
AVX2 implementation, and use gcc 9.1.1 to compile all
the other implementations, with the compiling options
-O3 -march=native enabled for both compilers. The
benchmark is running on an Intel i7-7700K CPU at 4.2GHz,
with the Hyperthreading and the Turbo Boost disabled. We
generate m = 1024 samples for 1000 times and measure
the median number of the consumed CPU cycles. The
comparison results are shown in Fig.11. The “Ref” in
the following figures and tables represents non-AVX2
reference implementations. We implement the non-AVX2
reference implementations by using the constant-time SSE4
floating-point instructions, which is available on the Intel
Nehalem architecture back to 2008 and all subsequent
Intel architectures. However, older Intel CPUs such as
the Pentium III may not support constant-time hardware
floating-point multiplication instructions [26].

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TC.2019.2940949 9

> guessdegree(1,[0,1],1b-45,1/2ˆx);
[9;9]
> P=fpminimax(2ˆx,9,[|1,D...|],[0,1],floating,relative);
> P;
1 + x * (0.69314718056193380668617010087473317980766296386719
+ x * (0.24022650687652774559310842050763312727212905883789
+ x * (5.5504109841318247098307381293125217780470848083496e-2
+ x * (9.6181209331756452318717975913386908359825611114502e-3
+ x * (1.3333877552501097445841748978523355617653578519821e-3
+ x * (1.5396043210538638053991311593904356413986533880234e-4
+ x * (1.5359914219462011698283041005730353845137869939208e-5
+ x * (1.2303944375555413249736938854916878938183799618855e-6
+ x * 1.43291003789439094275872613876154915146798884961754e-7))))))))
> supnorm(P,2ˆx,[0,1],relative,1b-128);
[1.4918069016855064039857437282944775430163557005892e-14;
1.4918069016855064039857437282944775430206027262258424e-14]

Fig. 10. The polynomial approximation P in the FACCT sampler implementation.

Fig. 11. Comparison of the CPU cycles for different σ.

Fig. 12. Comparison of the Bernoulli table size for different σ.

We measure the table size of the Bernoulli sampler by
computing the number of table entries times the size of
the variable type (in bytes) for each implementation. Since
we store vectors instead of single values in our AVX2
implementation, the table size is 4x our non-AVX2 refer-
ence implementation. The comparison results are shown in
Fig.12.

From Fig.11, compared to the countermeasures, our non-
AVX2 reference implementation is 1.5x–3.7x faster, and our
AVX2 implementation is 3.5x–8.3x faster, respectively, espe-

cially for the larger σ. In addition, our AVX2 implementation
is 1.6x–1.8x faster than the qTesla-R1 sampler. Note that our
non-AVX2 reference implementation is suboptimal on the
running speed, since the constant-time floating-point arith-
metic instructions for a single value have similar latencies
and throughputs as their SIMD counterparts on the Intel
CPUs [35]. Therefore, our optimal AVX2 implementation
should be used if running speed is concerned.

From Fig.12, our implementations have much smaller ta-
ble sizes than the qTesla-R1 sampler (9.6x–28.8x for our non-
AVX2 reference implementation and 2.4x–7.2x for our AVX2
implementation), especially for the larger σ. In addition,
compared to the countermeasures, our non-AVX2 reference
implementation has 1.5x–4.5x smaller table size, and our
AVX2 implementation has similar table size, respectively.

From both Fig.11 and Fig.12, we also verify that the
efficiency of our implementations is independent of σ.

5 APPLICATIONS

In this section, we compare the performance of our soft-
ware implementations with previous implementations from
actual cryptosystems.1

5.1 Sampling from the BLISS-I Standand Deviation
In this section, we compare the performance of our FACCT
sampler implementations with the sampler implementa-
tions from qTesla (both R1 [13] and R2 [2]), the bitslicing
convolution scheme [17], and previous countermeasures [9],
[10], using the BLISS-I parameter set. Since other convo-
lution schemes [14], [16] only have hardware implementa-
tions, we only compare with the software implementation
of the bitslicing convolution [17].

The BLISS-I parameter set has k = 254 and σ ≈ 215.
We use the similar benchmark setup as Section 4.5, with
λ = 128, m = 1024, and qs = 264, which gives the same
number of samples M as in Table 3. For the bitslicing convo-
lution scheme, we compare with the implementation of 128-
bit absolute precision, and we directly use the benchmark

1. The implementation source codes are available at https://gitlab.
com/raykzhao/gaussian

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TC.2019.2940949 10

TABLE 4
Comparison of the CPU Cycles for Generating m = 1024 Samples

from DZ,σ , with σ ≈ 215.

Scheme CPU cycles (Ref) CPU cycles (AVX2)
qTesla-R1 [13] 162215 −
qTesla-R2 [2] 2531610 −

Bitslicing [17] ≈ 532800 ≈ 254708
Countermeasure [9], [10] 459297 −

FACCT 221991 87192

TABLE 5
Comparison of the Memory Consumptions for σ ≈ 215.

Scheme Table Code Total
qTesla-R1 [13] 192+1280 597 2069
qTesla-R2 [2] 90816 961 91777

Bitslicing [17] − ≈ 98816 ≈ 98816
Countermeasure [9], [10] 144+168 440 752

FACCT (Ref) 144+80 659 883
FACCT (AVX2) 576+320 1275 2171

script2 from the authors to measure the number of the CPU
cycles of generating 64 base samples, and scale the result up
to 4m = 4096 base samples. We also scale this number by
the same factor as in [17] to retrieve the AVX2 result. The
CPU cycles are shown in Table 4.

To measure the memory consumption of each imple-
mentation, we compute the table sizes for both the base
samplers and the Bernoulli samplers by using similar ap-
proaches as in Section 4.5. Since the bitslicing approach
does not require a table, but has a rather large code size
[17], for a fair comparison, we also measure the assembly
code size (in bytes) of the sampling functions. We com-
pile the source codes by using the compiling options -Os
-march=native to generate more compact assembly code,
and use the objdump command to perform the disassembly.
The memory consumption comparison results are shown
in Table 5. The “Table” represents the total table size, and
for binary sampling variants, the results are in the form of
“base sampler table size+Bernoulli sampler table size”. The
“Code” represents the code size, and the “Total” represents
the sum of the table size and the code size. All the numbers
in Table 5 are in bytes.

From Table 4, in addition to the results from Fig.11, our
implementations significantly outperform the bitslicing con-
volution scheme (2.4x for the reference implementation and
2.9x for the AVX2 implementation). Our implementations
are also significantly faster than the qTesla-R2 sampling
algorithm for larger σ ≈ 215 (11.4x for the reference im-
plementation and 29.0x for the AVX2 implementation).

From Table 5, in addition to the results from Fig.12, our
non-AVX2 reference implementation consumes 2.3x smaller
memory space than the qTesla-R1 sampler, and has similar
memory consumption compared to the countermeasures,
respectively. Our AVX2 implementation has similar memory
consumption compared to the qTesla-R1 sampler. However,
for larger σ, as shown in Fig.12, the qTesla-R1 sampler
will consume significantly more memory space to store the
Bernoulli table, while our implementations maintain sim-
ilar memory consumptions. Both of our implementations

2. https://github.com/Angshumank/const gauss

TABLE 6
Comparison of the CPU Cycles for qTesla-R2 (AVX2) Keygen.

Scheme Orig. (cSHAKE) [2] Orig. (AES-NI) FACCT
I 1093917 1009155 402022

III 2875728 2419416 1039426
V 14352751 11607570 4007417

TABLE 7
Signing Speed Comparison for Falcon.

N Orig. (sig/s) Our Impl. (sig/s)
256 17844.457 16375.575
384 10232.885 9561.668
512 8781.839 8076.828
768 5281.893 4933.550

1024 4443.585 4086.705

consume much smaller memory space than the bitslicing
convolution scheme (111.9x for the non-AVX2 reference
implementation and 45.5x for the AVX2 implementation). In
addition, our implementations have much lower memory
consumptions compared to the qTesla-R2 sampler for larger
σ ≈ 215 (103.9x for the non-AVX2 reference implementation
and 42.2x for the AVX2 implementation).

5.2 qTesla
To test the running speed of our sampler in a cryptosys-
tem, we replace the sampler in the AVX2 implementation
of qTesla-R2 with our FACCT AVX2. Since the cSHAKE
software random generator is much slower than the AES-
NI, we measure the performance after replacing the random
generator of the sampler with the AES-NI in the implemen-
tations. The CPU cycles measured by the benchmark script
from qTesla-R2 are shown in Table 6. The qTesla-R2 Keygen
with our AVX2 sampler (AES-NI) is 2.3x–2.8x faster than the
original implementations (modified to use AES-NI instead
of cSHAKE). Note that the standard deviations in qTesla-R2
(σ ≈ 10.2–22.93) is smaller than the deviations in previous
benchmarks. Therefore, our implementation maintains good
performance even for smaller σ.

5.3 Falcon
To test the performance of our proposed constant-time
exp(x) implementation in Section 4.1, we replace the exp(x)
in Falcon with our non-AVX2 reference implementation.
Since the exp(x) is used when performing the rejection
sampling from the arbitrary-centered discrete Gaussian in
the signing, we measure the signing speed by using the
benchmark script from Falcon. The results are shown in
Table 7. Our constant-time exp(x) reference implementation
only adds very slight overhead (6.5%–8.2%) to the signing
(However, the rejection rate of sampling may still be secret
dependent).

6 CONCLUSION

In conclusion, we present fast, compact, and constant-time
(FACCT) centered discrete Gaussian sampler over integers,
by implementing the Bernoulli sampler in the binary sam-
pling scheme with a constant-time exp(x) polynomial ap-
proximation. Our implementation is faster than previous

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TC.2019.2940949 11

countermeasures [9], [10], more compact than the qTesla
samplers (both R1 [13] and R2 [2]), and outperforms the
bitslicing convolution scheme [17] in both timing and mem-
ory consumption. Our implementation techniques are also
independent of the standard deviation, and have good
flexibility and performance in various applications. In ad-
dition, we show the smaller base sampler deviations for the
convolution schemes by adapting the Rényi divergence.

ACKNOWLEDGMENTS

Ron Steinfeld was supported in part by ARC Discovery
Project grant DP180102199.

REFERENCES

[1] L. Ducas, A. Durmus, T. Lepoint, and V. Lyubashevsky, “Lattice
signatures and bimodal gaussians,” in CRYPTO (1), ser. Lecture
Notes in Computer Science, vol. 8042. Springer, 2013, pp. 40–56.

[2] E. Alkim, P. S. L. M. Barreto, N. Bindel, P. Longa, and J. E. Ri-
cardini, “The lattice-based digital signature scheme qtesla,” IACR
Cryptology ePrint Archive, vol. 2019, p. 85, 2019.

[3] L. T. Phong, T. Hayashi, Y. Aono, and S. Moriai, “Lotus: Algorithm
specifications and supporting documentation,” https://www2.
nict.go.jp/security/lotus/index.html, 2017, accessed: 2019-06-27.

[4] M. Seo, S. Kim, D. H. Lee, and J. H. Park, “Emblem: (ring) lwe-
based key encapsulation with a new multi-bit encoding method,”
https://pqc-emblem.org/, 2018, accessed: 2019-06-27.

[5] J. Lee, D. Kim, H. Lee, Y. Lee, and J. H. Cheon, “Rlizard: Post-
quantum key encapsulation mechanism for iot devices,” IEEE
Access, vol. 7, pp. 2080–2091, 2019.

[6] D. E. Knuth, The art of computer programming, Volume II: Seminu-
merical Algorithms, 3rd Edition. Addison-Wesley, 1998.

[7] L. Devroye, Non-Uniform Random Variate Generation. New York,
NY, USA: Springer-Verlag, 1986.

[8] L. G. Bruinderink, A. Hülsing, T. Lange, and Y. Yarom, “Flush,
gauss, and reload - A cache attack on the BLISS lattice-based
signature scheme,” in CHES, ser. Lecture Notes in Computer
Science, vol. 9813. Springer, 2016, pp. 323–345.

[9] P. Pessl, L. G. Bruinderink, and Y. Yarom, “To BLISS-B or not
to be: Attacking strongswan’s implementation of post-quantum
signatures,” in CCS. ACM, 2017, pp. 1843–1855.

[10] T. Espitau, P. Fouque, B. Gérard, and M. Tibouchi, “Side-channel
attacks on BLISS lattice-based signatures: Exploiting branch trac-
ing against strongswan and electromagnetic emanations in micro-
controllers,” in CCS. ACM, 2017, pp. 1857–1874.

[11] J. Bootle, C. Delaplace, T. Espitau, P. Fouque, and M. Tibouchi,
“LWE without modular reduction and improved side-channel
attacks against BLISS,” in ASIACRYPT (1), ser. Lecture Notes in
Computer Science, vol. 11272. Springer, 2018, pp. 494–524.

[12] J. W. Bos, C. Costello, M. Naehrig, and D. Stebila, “Post-quantum
key exchange for the TLS protocol from the ring learning with
errors problem,” in IEEE Symposium on Security and Privacy. IEEE
Computer Society, 2015, pp. 553–570.

[13] N. Bindel, S. Akleylek, E. Alkim, P. S. L. M. Barreto, J. Buch-
mann, E. Eaton, G. Gutoski, J. Kramer, P. Longa, H. Polat, J. E.
Ricardini, and G. Zanon, “Submission to NIST’s post-quantum
project: lattice-based digital signature scheme qTESLA,” https:
//qtesla.org/, 2017, accessed: 2018-11-03.

[14] T. Pöppelmann, L. Ducas, and T. Güneysu, “Enhanced lattice-
based signatures on reconfigurable hardware,” in CHES, ser. Lec-
ture Notes in Computer Science, vol. 8731. Springer, 2014, pp.
353–370.

[15] D. Micciancio and M. Walter, “Gaussian sampling over the inte-
gers: Efficient, generic, constant-time,” in CRYPTO (2), ser. Lecture
Notes in Computer Science, vol. 10402. Springer, 2017, pp. 455–
485.

[16] A. Khalid, J. Howe, C. Rafferty, F. Regazzoni, and M. O’Neill,
“Compact, scalable, and efficient discrete gaussian samplers for
lattice-based cryptography,” in ISCAS. IEEE, 2018, pp. 1–5.

[17] A. Karmakar, S. S. Roy, O. Reparaz, F. Vercauteren, and I. Ver-
bauwhede, “Constant-time discrete gaussian sampling,” IEEE
Trans. Computers, vol. 67, no. 11, pp. 1561–1571, 2018.

[18] M. F. Esgin, R. Steinfeld, A. Sakzad, J. K. Liu, and D. Liu, “Short
lattice-based one-out-of-many proofs and applications to ring
signatures,” IACR Cryptology ePrint Archive, vol. 2018, p. 773, 2018.

[19] L. Ducas, T. Lepoint, V. Lyubashevsky, P. Schwabe, G. Seiler, and
D. Stehlé, “CRYSTALS - dilithium: Digital signatures from module
lattices,” IACR Cryptology ePrint Archive, vol. 2017, p. 633, 2017.

[20] S. Bai, A. Langlois, T. Lepoint, D. Stehlé, and R. Steinfeld, “Im-
proved security proofs in lattice-based cryptography: Using the
rényi divergence rather than the statistical distance,” in ASI-
ACRYPT (1), ser. Lecture Notes in Computer Science, vol. 9452.
Springer, 2015, pp. 3–24.

[21] T. Prest, “Sharper bounds in lattice-based cryptography using
the rényi divergence,” in ASIACRYPT (1), ser. Lecture Notes in
Computer Science, vol. 10624. Springer, 2017, pp. 347–374.

[22] C. A. Melchor and T. Ricosset, “Cdt-based gaussian sampling:
From multi to double precision,” IEEE Trans. Computers, vol. 67,
no. 11, pp. 1610–1621, 2018.

[23] N. C. Dwarakanath and S. D. Galbraith, “Sampling from discrete
gaussians for lattice-based cryptography on a constrained device,”
Appl. Algebra Eng. Commun. Comput., vol. 25, no. 3, pp. 159–180,
2014.

[24] T. Prest, P.-A. Fouque, J. Hoffstein, P. Kirchner, V. Lyubashevsky,
T. Pornin, T. Ricosset, G. Seiler, W. Whyte, and Z. Zhang, “Falcon:
Fast-Fourier lattice-based compact signatures over NTRU,” https:
//falcon-sign.info/, 2017, accessed: 2018-10-31.

[25] M. Walter, “Sampling the integers with low relative error,” IACR
Cryptology ePrint Archive, vol. 2019, p. 68, 2019.

[26] G. Barthe, S. Belaı̈d, T. Espitau, P. Fouque, M. Rossi, and
M. Tibouchi, “GALACTICS: gaussian sampling for lattice-based
constant-time implementation of cryptographic signatures, revis-
ited,” IACR Cryptology ePrint Archive, vol. 2019, p. 511, 2019.

[27] C. Peikert, “An efficient and parallel gaussian sampler for lattices,”
in CRYPTO, ser. Lecture Notes in Computer Science, vol. 6223.
Springer, 2010, pp. 80–97.

[28] S. S. Roy, O. Reparaz, F. Vercauteren, and I. Verbauwhede, “Com-
pact and side channel secure discrete gaussian sampling,” IACR
Cryptology ePrint Archive, vol. 2014, p. 591, 2014.

[29] M. O. Saarinen, “Arithmetic coding and blinding countermeasures
for ring-lwe,” IACR Cryptology ePrint Archive, vol. 2016, p. 276,
2016.

[30] P. Pessl, “Analyzing the shuffling side-channel countermeasure for
lattice-based signatures,” in INDOCRYPT, ser. Lecture Notes in
Computer Science, vol. 10095, 2016, pp. 153–170.

[31] J. Howe, A. Khalid, C. Rafferty, F. Regazzoni, and M. O’Neill, “On
practical discrete gaussian samplers for lattice-based cryptogra-
phy,” IEEE Trans. Computers, vol. 67, no. 3, pp. 322–334, 2018.

[32] NIST, “NIST post-quantum competition,” http://csrc.
nist.gov/groups/ST/post-quantum-crypto/documents/
call-for-proposals-final-dec-2016.pdf, 2016, accessed: 2018-10-
31.

[33] A. Karmakar, S. S. Roy, F. Vercauteren, and I. Verbauwhede, “Push-
ing the speed limit of constant-time discrete gaussian sampling. A
case study on the falcon signature scheme,” in DAC. ACM, 2019,
pp. 88:1–88:6.

[34] D. E. Knuth and A. C. Yao, “The complexity of non-uniform
random number generation,” Algorithms and Complexity: New Di-
rections and Recent Results, pp. 357–428, 1976.

[35] Intel, “Intel intrinsics guide,” https://software.intel.com/sites/
landingpage/IntrinsicsGuide/, accessed: 2018-10-31.

[36] G. Seiler, “Faster AVX2 optimized NTT multiplication for ring-lwe
lattice cryptography,” IACR Cryptology ePrint Archive, vol. 2018,
p. 39, 2018.

[37] J. Muller, N. Brisebarre, F. de Dinechin, C. Jeannerod, V. Lefèvre,
G. Melquiond, N. Revol, D. Stehlé, and S. Torres, Handbook of
Floating-Point Arithmetic. Birkhäuser, 2010.

[38] S. Chevillard, M. Joldes, and C. Q. Lauter, “Sollya: An environment
for the development of numerical codes,” in ICMS, ser. Lecture
Notes in Computer Science, vol. 6327. Springer, 2010, pp. 28–31.

[39] S. Chevillard, C. Lauter, and M. Joldes, “Users‘ manual for
the sollya tool,” https://gforge.inria.fr/frs/download.php/file/
37750/sollya.pdf, accessed: 2018-11-19.

[40] N. Brisebarre and S. Chevillard, “Efficient polynomial l-
approximations,” in IEEE Symposium on Computer Arithmetic.
IEEE Computer Society, 2007, pp. 169–176.

[41] Y. Du, B. Wei, and H. Zhang, “A rejection sampling algorithm
for off-centered discrete gaussian distributions over the integers,”

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TC.2019.2940949 12

SCIENCE CHINA Information Sciences, vol. 62, no. 3, pp. 39 103:1–
39 103:3, 2019.

[42] R. Steinfeld, A. Sakzad, and R. K. Zhao, “Titanium: Proposal for
a nist post-quantum public-key encryption and kem standard
specifications document version 1.1,” http://users.monash.edu.
au/∼rste/Titanium v11.pdf, submitted to NIST Post-Quantum
Competition. Accessed: 2019-01-08.

Raymond K. Zhao is a current Ph.D. can-
didate at the Faculty of Information Technol-
ogy, Monash University, Australia. He received
his B.Eng. degree in Computer Science and
Technology from Zhejiang University, China, in
2015, and his Master degree in Network and
Security from Monash University, Australia, in
2017. His main research interests include effi-
cient and side-channel resistant implementation
techniques on lattice-based cryptography and its
applications.

Ron Steinfeld (S’99-M’04) is a Senior Lecturer
at the Clayton School of IT, Faculty of Information
Technology, Monash University, Australia since
2015. He received his B.Sc. degree in Mathe-
matics and Physics in 1998, his B.E. Hons (First
Class) degree in Electrical and Computer Sys-
tems Engineering in 2000, and his Ph.D. degree
in Computer Science in 2003, all from Monash
University, Australia. From 2003 to 2006 he was
a postdoctoral research fellow in cryptography
and information security at Macquarie University,

Australia. From 2007 to 2009 he was a Macquarie University Research
Fellow in cryptography and information security. From 2009 to 2014 he
was an ARC Australian Research Fellow in cryptography and informa-
tion security at Macquarie University (until 2012) and then at Monash
University (2012-2014). His main research interests include the design
and analysis of cryptographic algorithms and cybersecurity protocols.

Amin Sakzad (M’12) received his Ph.D. degree
in applied mathematics from the Amirkabir Uni-
versity of Technology (Tehran Polytechnique),
Tehran, Iran, in 2011. He was a research as-
sistant and a lecturer at Carleton University, Ot-
tawa, ON, Canada, in 2010. He was a Research
visitor and a lecturer at the Amirkabir University
of Technology in 2011. He was a research fellow
with the Software Defined Telecommunications
(SDT) Laboratory in the Department of Electrical
and Computer Systems Engineering (ECSE) at

Monash University, Melbourne, Australia from 2012-2015. Starting from
2016, he held a posdoctoral research fellowship position at the Faculty of
Information Technology (FIT), Monash University, Melbourne, Australia.
As of May 2017, he has been appointed as a lecturer at FIT, Monash Uni-
versity, Melbourne, Australia. His research interests include Euclidean
lattices, lattice-based cryptography, and wireless network coding.

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

