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Abstract

Theft from cryptocurrency exchanges due to cyberattacks or internal fraud is a major problem. Exchanges can partially
alleviate customer concerns by providing periodic proofs of solvency. We describe MProve, a proof of reserves protocol for
Monero exchanges which can be combined with a known proof of liabilities protocol to provide a proof of solvency. It is the first
protocol for Monero which provides address privacy by allowing an exchange to hide its own addresses within a larger anonymity
set. MProve also provides a simple proof of non-collusion between exchanges.
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I. INTRODUCTION

Cryptocurrency exchanges represent a tradeoff between convenience and security for their customers. An exchange provides
its customers with a familiar login interface on a website where they can view, transfer, or trade their cryptocurrency balances.
In case customers forget their password, they can recover it using multi-factor authentication or by contacting the exchange’s
customer support. The customer is free from the hassle of storing the private keys corresponding to their cryptocurrency funds,
which are subject to loss and theft. But these conveniences for the customers come at the risk of their funds being stolen from
the exchange due to hacking or internal fraud. The loss of bitcoins from the Mt. Gox exchange in 2014 is the most infamous
embodiment of this risk [1]. Despite being acutely aware of the need to secure their systems, several cryptocurrency exchanges
have failed to prevent theft of their assets. An estimated $927 million worth of cryptocurrencies were reported as stolen from
exchanges in the first nine months of 2018 [2].

While ensuring security of the systems and protocols used by cryptocurrency exchanges is an important problem, we do not
address it in this work. Instead, we consider protocols by which exchanges can provide proofs of solvency to their customers.
These proofs give the customers assurance that an exchange continues to hold enough cryptocurrency reserves to cover their
cumulative liabilities. There are two main benefits of such proofs: (1) they prevent exchanges from concealing the loss of
cryptocurrency funds due to cyberattacks, and (2) they prevent exchanges from selling cryptocurrency assets to customers
without actually owning the required quantities of the assets.

Monero is a privacy-focused cryptocurrency which uses ring signatures, one-time addresses, and cryptographic commitments
to obfuscate the sources, destinations, and amounts in a transaction [3]. In this paper, we describe MProve, a proof of reserves
protocol for Monero exchanges. To the best of our knowledge, it is the first such protocol for Monero which provides address
privacy by allowing an exchange to hide its own addresses within an anonymity set of addresses. Since address privacy can
allow dishonest exchanges to collude by sharing the same addresses for generating their proofs, MProve also provides a proof
of non-collusion between exchanges. MProve can be combined with a known proof of liabilities protocol to provide a proof
of solvency.

In the next section, we discuss previous work on proof of reserves protocols. In Section III, we give a brief overview of
the Monero protocol. After a discussion of the challenges in using the Provisions proof of reserves protocol [4] for Monero
exchanges, we describe the MProve protocol in Section IV. In Section V, we briefly discuss the application of MProve to
Bitcoin exchanges. Some potential areas of improvement are discussed in Section VI.

II. RELATED WORK

The first known approach for generating a proof of solvency is attributed to Greg Maxwell and Peter Todd [5]. But this
approach revealed the total amount of assets held by an exchange and the cryptocurrency addresses storing these assets.
Decker et al. proposed a method for proving solvency of exchanges which uses a trusted platform module (TPM) to generate
the proof [6]. This method does not leak any information about the amounts or addresses owned by the exchange and outputs
a boolean result indicating solvency or insolvency. While ideal in terms of privacy, it requires trust in the security of the TPM
implementation [7].



Relying on conventional cryptographic assumptions, Dagher et al. proposed a scheme called Provisions which generates
privacy-preserving proofs of solvency for Bitcoin exchanges [4]. It consists of three main protocols and an optional fourth
protocol:

1) Proof of reserves: The exchange chooses a set P of unspent addresses with known public keys from the Bitcoin blockchain
such that it knows the private keys corresponding to a subset Pknown ⊂ P . The exchange then creates a Pedersen
commitment Cassets [8] to the total amount of bitcoins available in the Pknown addresses. The commitment Cassets is
accompanied by a proof that the exchange included the amount corresponding to an address in P only if it knows the
corresponding private key. The proof preserves the exchange’s privacy in the sense that the set Pknown is not revealed.

2) Proof of liabilities: The exchange publishes a list of liabilities which contains an entry for each of its customers. Each
entry contains Pedersen commitments to the bits in the binary representation of a particular customer’s Bitcoin balance.
These commitments can be combined (even by a third party) to generate a Pedersen commitment Ci to the balance of
the ith customer. The ith customer can check the correctness of Ci by logging in to the exchange and obtaining the
blinding factor used to generate Ci. Finally, a Pedersen commitment to the total liabilities of the exchange is computed
as Cliabilities =

∑
i Ci. This scheme is not foolproof as customer omissions from the list of liabilities can be detected only

if one of the omitted customers checks the list.
3) Proof of solvency: The exchange computes Cdifference = Cassets−Cliabilities and gives a zero-knowledge proof that Cdifference

is a Pedersen commitment to the zero amount.
4) Proof of non-collusion (optional): To prevent exchanges from sharing unspent addresses while generating their individual

proofs of reserves, a proof of non-collusion is required. The proof of reserves protocol in Provisions involves publishing a
list L1 containing Pedersen commitments to the private keys corresponding to the public keys in Pknown. Using the same
private keys, a second list L2 is computed containing public keys generated using a base point which is different from the
default base point of the secp256k1 elliptic curve used in Bitcoin. Each exchange gives a zero-knowledge proof that L2

is a permutation of L1 after base change and removal of blinding factors. If two exchanges were to use the same unspent
address, their respective L2 lists would have an element in common, revealing their collusion. This proof of non-collusion
reveals the number of Bitcoin addresses owned by an exchange. For this reason, it was presented as an optional protocol
by the designers of Provisions.

The proofs of liabilities and solvency in Provisions can be used without modification for Monero exchanges. But the proof
of reserves protocol in Provisions cannot be used due to the privacy-focused design of Monero (see discussion in Section IV).

More recently, Blockstream released a tool for generating a proof of reserves for Bitcoin exchanges [9], [10]. It involves
creating a transaction which takes all the unspent outputs (UTXOs) owned by an exchange as inputs. An invalid input is also
included to make the transaction invalid so that it cannot be used to spend the exchange’s funds. Nevertheless, this transaction
allows one to verify that the exchange does own a certain amount of Bitcoin. This technique does not provide address privacy
as all the outputs owned by the exchange are revealed. While the proof of reserves protocol in Provisions provides address
privacy, it is restricted to UTXOs which are either pay to public key (P2PK) or pay to public key hash (P2PKH) addresses
with known public key. The Blockstream tool does not have this restriction.

The state-of-the-art in generating proof of reserves for Monero is a technique which was added to the official Monero client
in 2018 by a developer with the moniker Stoffu Noether [11]. It can be invoked via a command line tool or an RPC call
to the Monero client. In addition to the identity of the account to be used for proof generation, it takes a target amount as
input and attempts to find the smallest set of addresses owned by the account whose amount sum exceeds the target amount.
Once such a set is identified, the addresses in this set along with their corresponding key images and shared secrets used in
address generation are revealed as part of the proof of reserves. For each address in the set, signatures proving that the shared
secret and key image were correctly generated are included in the proof. Upon receiving the proof, an auditor will mark an
address as spent if its key image has already appeared on the blockchain. As the amount corresponding to an address can be
recovered from the shared secret, the auditor can calculate the sum of the amounts in unspent addresses as the reserve amount
corresponding to a particular account. By repeating the proof generation process over all the accounts owned by it, an exchange
could generate a proof of reserves. But such a proof does not provide address privacy as it reveals all the addresses owned
by the exchange and the amounts contained in them. As the key image of each address owned by the exchange is revealed,
ring signatures in future transactions spending from exchange-owned addresses become redundant. An observer can identify
the source address in such transactions by using the key image to address mapping.

In contrast, MProve reveals that the exchange owns some addresses in a larger anonymity set. MProve does not reveal any
amounts corresponding to the addresses in the anonymity set and only generates a Pedersen commitment to the reserve amount.
However, MProve also reveals the mapping between exchange-owned addresses and their key images making ring signatures
in future transactions redundant (see Section IV-F).



III. OVERVIEW OF MONERO

The design of Monero is based on the CryptoNote protocol [12]. In the following subsections, we describe those aspects of
Monero addresses and transactions needed to present our proof of reserves protocol.

A. Monero Public Keys and One-Time Addresses

In a Monero transaction, one-time addresses (also called stealth addresses) are used to hide the recipient of the funds.
One-time addresses are just public keys whose private keys are generated using the recipient’s long-term public keys and a
Diffie-Hellman protocol. Monero public keys are points on the elliptic curve used in EdDSA generated by the base point
G = (x, 4/5) with positive x [12], [13]. The order of G is a prime l which is larger than 2252. Monero private keys are
integers in the set Z+

l = {1, 2, . . . , l − 1}. Let E denote the subgroup of the EdDSA curve generated by the base point G.
We will use additive notation for the group operation on the curve. The public key A ∈ E corresponding to the private key
a ∈ Z+

l is given by

A = aG = G+ · · ·+G︸ ︷︷ ︸
a times

.

To receive funds in the Monero system, the recipient shares a pair of public keys (Avk, Ask) with the sender, where Avk =
avkG,Ask = askG. The subscripts vk and sk denote the view key and spend key respectively. The received funds cannot be
spent without knowledge of the private spend key ask. On the other hand, the private view key avk can be shared with third
parties allowing them to view (but not spend) the fund receipts.

Suppose Bob wants to send funds to Alice whose public key pair is (Avk, Ask). He chooses a random integer r ∈ Z+
l and

computes the points rAvk and H(rAvk‖oindex)G, where H : E 7→ Z+
l is a hash function which maps curve points to integers and

oindex is the index of the new output in the transaction. Bob creates and broadcasts the transaction which specifies the one-time
address P = H(rAvk‖oindex)G + Ask as the destination of the funds. The transaction also contains the point R = rG which
will enable Alice to recover the private key corresponding to P . The transaction will eventually be added to the blockchain as
part of a block.

From every transaction which appears on the blockchain, Alice reads the one-time address P and random point R. Using
her private view key avk, she computes the point P ′ = H(avkR‖oindex)G+Ask. For the transaction Bob created using Alice’s
public key pair, P ′ will be equal to P since the Diffie-Hellman shared secret is rAvk = ravkG = avkR. By checking for
this equality, Alice can identify transactions which are sending funds to her. The private key corresponding to P is given by
H(avkR‖oindex) + ask.

B. Linkable Ring Signatures

To prevent double spending, linkable ring signatures proposed in [14] are used in Monero with some modifications [15].
Two linkable ring signatures which spend from the same one-time address will have identical key images revealing the double
spend.

Suppose Alice wants to spend the funds from a one-time address P for which she knows the private key. She creates a
linkable ring signature on a message m as follows:
1. She assembles a list of one-time addresses P = (P0, P1, . . . , Pn−1) from the blockchain such that Pj = P for exactly one
j ∈ {0, 1, . . . , n− 1}.

2. Let xi ∈ Z+
l be the private key corresponding to Pi, i.e. Pi = xiG. Using the private key corresponding to Pj , she computes

the key image I = xjHp(Pj) where Hp : E 7→ E is a hash function.
3. She picks α and si, i = 0, 1, . . . , n− 1, i 6= j, randomly from Z+

l . Note that sj has not been chosen.
4. She computes points Lj = αG, Rj = αHp(Pj), and integer cj+1 = Hs(P,m,Lj , Rj) where Hs : {0, 1}∗ 7→ Z+

l is a hash
function.

5. Increasing j modulo n, she computes points and integers

Lj+1 = sj+1G+ cj+1Pj+1,

Rj+1 = sj+1Hp(Pj+1) + cj+1I,

cj+2 = Hs(P,m,Lj+1, Rj+1),

...
Lj−1 = sj−1G+ cj−1Pj−1,

Rj−1 = sj−1Hp(Pj−1) + cj−1I,

cj = Hs(P,m,Lj−1, Rj−1).



6. Finally, she computes sj = α− cjxj . As Lj and Rj were computed using α in step 4, this implies that

Lj = αG = (sj + cjxj)G = sjG+ cjPj ,

Rj = αHp(Pj) = (sj + cjxj)Hp(Pj)

= sjHp(Pj) + cjI.

7. The linkable ring signature on the message m is given by σ = (I, c0, s0, s1, . . . , sn−1).
Alice includes the linkable ring signature in a transaction spending funds in the address P and broadcasts it onto the network
for inclusion in the blockchain. The message m is the hash of the transaction prefix which consists all the transaction data
except for the signatures. The verification of the linkable ring signature proceeds as follows:
1. The message m which was signed is recreated from the transaction prefix.
2. The one-time addresses P = {P0, P1, . . . , Pn−1} used to create the linkable ring signature are read from the transaction.
3. Using σ, the integers cj , j = 1, 2, . . . , n− 1, are calculated as

L0 = s0G+ c0P0,

R0 = s0Hp(P0) + c0I,

c1 = Hs(P,m,L0, R0),

...
Ln−2 = sn−2G+ cn−2Pn−2,

Rn−2 = sn−2Hp(Pn−2) + cn−2I,

cn−1 = Hs(P,m,Ln−2, Rn−2).

4. Finally, cn−1 and sn−1 are used to calculate c′0 as

Ln−1 = sn−1G+ cn−1Pn−1,

Rn−1 = sn−1Hp(Pn−1) + cn−1I,

c′0 = Hs(P,m,Ln−1, Rn−1).

5. The signature σ is accepted if c′0 equals the c0 given in σ. Otherwise, it is rejected.
A valid linkable ring signature is a proof that the transaction was created by someone with knowledge of a private key

among the n private keys corresponding to the addresses in P . As the one-time address Pj which is spent in the transaction
is not revealed, Alice can potentially try to double spend from it. But the second transaction’s linkable ring signature σ will
contain the same key image I = xjHp(Pj) leading to its rejection by the network.

C. Pedersen Commitments and Range Proofs

In the current implementation of Monero, transaction amounts are hidden using Pedersen commitments [8]. A point H ∈ E
was generated from the Keccak hash of the base point G to ensure that the discrete logarithm of H with respect to G is
unknown. The Pedersen commitment to an amount a ∈ Zl is given by

C(y, a) = yG+ aH,

where y ∈ Zl is a randomly chosen blinding factor. This commitment scheme is perfectly hiding as C(y, a) is indistinguishable
from a random element in E even to computationally unbounded adversaries. It is computationally binding as an adversary
capable of computing the discrete logarithm of H with respect to G can generate a pair (y′, a′) 6= (y, a) such that C(y′, a′) =
C(y, a). Pedersen commitments to amounts can be added (without knowing the blinding factors) to generate a commitment to
the sum of the amounts, i.e.

C(y1, a1) + C(y2, a2) = C(y1 + y2, a1 + a2).

A key feature of Pedersen commitments is that digital signatures can be used to show that a commitment is hiding the zero
amount without revealing the blinding factor. Note that a commitment to the zero amount C(y, 0) = yG can be viewed as
a public key whose corresponding private key is the blinding factor y. If an ECDSA signature is generated using the private
key y, its validity can be verified using the public key C(y, 0). If the commitment had been to a non-zero amount a, then
C(y, a) will contain a contribution from the point H . Since the discrete logarithm of H with respect to G is unknown, a
computationally bounded adversary cannot compute the private key y′ such that y′G = C(y, a) = yG+ aH .

In a transaction, the sum of the input amounts should be equal to the sum of the output amounts and the transaction fees.
This relation needs to be verifiable by miners without revealing the blinding factors used to generate the amount commitments.



For simplicity, assume that a transaction has one input and two outputs. Let ain be the input amount, a1out, a
2
out be the output

amounts, and f be the transaction fees. These amounts satisfy the relation

ain = a1out + a2out + f.

The commitment to the input amount C(yin, ain) will be recorded in the blockchain with the blinding factor yin known to the
owner of the input. The input owner will randomly choose blinding factors y1out, y

2
out and create the output commitments

C(y1out, a
1
out) = y1outG+ a1outH,

C(y2out, a
2
out) = y2outG+ a2outH.

The transaction will contain C(y1out, a
1
out), C(y

2
out, a

2
out), and the transaction fees f . It will also contain an ECDSA signature

verifiable by the public key

C(yin, ain)− C(y1out, a
1
out)− C(y2out, a

2
out)− fH

=
(
yin − y1out − y2out

)
G+

(
ain − a1out − a2out − f

)
H

= zG+ 0H = C(z, 0)

where the input owner knows the private key z. By calculating the public key C(z, 0) and performing ECDSA signature
verification, the miners are convinced that the difference between the commitments and the fees term is a commitment to zero.

The receiver of the outputs in a transaction needs to know the blinding factors and amounts in order to verify receipt
and subsequently spend the received funds. These are securely communicated to the receiver using the same shared secret
rAvk = avkR which was used to generate the one-time address. To communicate a blinding factor yout and amount aout, the
sender stores yout ⊕ HK(rAvk) and aout ⊕ HK(HK(rAvk)) in the transaction where ⊕ denote bitwise XOR and HK is the
Keccak hash function. As the point R is contained in the transaction, the receiver can use avk to recover the blinding factor
and amount.

As lG is the identity of the group E , we have C(y, l+ a) = C(y, a). To prevent this relation from being exploited to inflate
the amount stored in an input commitment, range proofs are used to prove that the amounts in a commitment are in the range
{0, 1, . . . , 264 − 1}. This particular range is of interest since the maximum number of piconeros (the smallest unit of currency
in Monero) which can come into existence is limited to 264 − 1.

IV. MPROVE PROOF OF RESERVES PROTOCOL

The main obstacle to using the proof of reserves protocol proposed in Provisions [4] for Monero exchanges stems from a
fundamental difference between unspent transaction outputs in Bitcoin and Monero. In Bitcoin, the unspent outputs can be
identified by reading the blockchain. In Monero, ring signatures are used to hide the specific one-time address which is being
spent in a transaction. Each Monero transaction specifies an anonymity set of one-time addresses which contains the address
being spent. It only contains the key image of the address being spent to avoid double spending. So the set of unspent outputs
cannot be identified by reading the Monero blockchain. This prevents us from using the Provisions proof of reserves protocol
which begins by assembling a set of unspent outputs containing the exchange-owned outputs as a subset.

A fundamental requirement of any proof of reserves protocol for Monero is that it should prove that the key images of
the exchange-owned one-time addresses, which contribute to the total assets commitment Cassets, have not appeared on the
blockchain. If this requirement is not met, then we cannot detect the usage of already spent one-time addresses to generate
Cassets. Protocols which explicitly reveal the key images have the benefit of providing an automatic proof of non-collusion
as one-time addresses shared between exchanges will be revealed. But a drawback on explicitly revealing the key images is
that a future transaction spending from an exchange-owned address may reveal the source of funds making the ring signature
obfuscation unnecessary (see Section IV-F). MProve suffers from this drawback and removing it is an open problem for now.

A. Ring Signatures

Our proposed proof of reserves protocol uses both linkable and regular ring signatures. While the regular ring signature
creation and verification algorithms (as defined in [16]) are similar to their linkable counterparts, we present them here for
clarity.

Suppose Alice wants to sign a message m using a ring signature involving the public keys P = (P0, P1, . . . , Pn−1) where
she knows the private key xj corresponding to Pj . She creates the ring signature as follows:
1. She picks α and si, i = 0, 1, . . . , n− 1, i 6= j, randomly from Z+

l .
2. She computes points Lj = αG and integer cj+1 = Hs(P,m,Lj) where Hs : {0, 1}∗ 7→ Z+

l is a hash function.



3. Increasing j modulo n, she computes points and integers

Lj+1 = sj+1G+ cj+1Pj+1,

cj+2 = Hs(P,m,Lj+1),

...
Lj−1 = sj−1G+ cj−1Pj−1,

cj = Hs(P,m,Lj−1).

4. Finally, she computes sj = α− cjxj . As Lj was computed using α in step 2, this implies that

Lj = αG = (sj + cjxj)G = sjG+ cjPj .

5. The ring signature on the message m is given by γ = (c0, s0, s1, . . . , sn−1).
To check the validity of a ring signature, a verifier does the following:

1. Using the public key list P = (P0, P1, . . . , Pn−1), the message m, and the ring signature γ = (c0, s0, s1, . . . , sn−1), the
verifier calculates the integers cj , j = 1, 2, . . . , n− 1, as

L0 = s0G+ c0P0,

c1 = Hs(P,m,L0),

...
Ln−2 = sn−2G+ cn−2Pn−2,

cn−1 = Hs(P,m,Ln−2).

2. Finally, cn−1 and sn−1 are used to calculate c′0 as

Ln−1 = sn−1G+ cn−1Pn−1,

c′0 = Hs(P,m,Ln−1).

3. The signature γ is accepted if c′0 equals the c0 given in γ. Otherwise, it is rejected.

B. Proof Generation

The MProve proof of reserves protocol proceeds as follows:
1. The exchange chooses a list of one-time addresses P = (P1, P2, . . . , PN ) from the Monero blockchain such that it knows

the private keys corresponding to a subset1 Pknown of P . The list P is made public by the exchange.
2. For each Pi ∈ P , the exchange can read the corresponding Pedersen commitment Ci from the blockchain. Let Ci be the

commitment to an amount ai with blinding factor yi, i.e.

Ci = C(yi, ai) = yiG+ aiH. (1)

For Pi ∈ Pknown, the exchange knows yi and ai. For Pi /∈ Pknown, the exchange may know yi and ai if it was the party
which sent funds to Pi. In general, the exchange will not know yi and ai for Pi /∈ Pknown.

3. For each Pi ∈ P , the exchange randomly picks zi ∈ Zl and generates C ′i as

C ′i =

{
ziG if Pi ∈ Pknown,

ziG+ Ci if Pi /∈ Pknown.
(2)

4. For each i = 1, 2, . . . , N , the exchange publishes a regular ring signature γi on a message m verifiable by the pair of public
keys (C ′i, C

′
i − Ci). The calculation of γi is described in Appendix A.

5. For each i = 1, 2, . . . , N , the exchange publishes a linkable ring signature σi on a message m verifiable by the pair of
public keys (Pi, C

′
i − Ci). The calculation of σi is described in Appendix B.

6. The exchange publishes a commitment Cassets which satisfies the equation
N∑
i=1

Ci = Cassets +

N∑
i=1

C ′i. (3)

The exchange claims that Cassets is a Pedersen commitment to the amount of Monero it owns.

1Even though P is a list, we will sometimes find it convenient to interpret it as a set.



The intuition behind the protocol construction is as follows. Let Iknown = {i | Pi ∈ Pknown} be the set of indices i such that
the exchange knows the private key corresponding to Pi. The left hand side of (3) is a commitment to the amount

∑N
i=1 ai.

Ideally, we want the Cassets term on the right hand side of (3) to be a commitment to
∑

i∈Iknown
ai and the

∑N
i=1 C

′
i term to be

a commitment to the remaining amount.
If Pi /∈ Pknown, then the exchange does not know the private key corresponding to Pi. To create the ring signature σi, the

exchange has to then use the private key zi where C ′i−Ci = ziG. This implies that C ′i−Ci is a commitment to zero whenever
Pi /∈ Pknown. So the commitments Ci and C ′i on both sides of (3) commit to the same amounts whenever Pi /∈ Pknown and
there is no transfer of funds (in the form of the aiH terms) from the corresponding Ci terms to the Cassets term.

If there were no constraint on C ′i for Pi ∈ Pknown, then an exchange can inflate the amount committed in Cassets using a
single such C ′i. For example, suppose P1 ∈ Pknown. Then the exchange can set

C ′1 = z1G+ C1 + (l − b)H,
C ′i = ziG+ Ci for i = 2, 3, . . . , N, (4)

Cassets = −
N∑
i=1

ziG+ bH,

and still satisfy the equation in (3) for some arbitrary amount b ∈ Zl. We could force every C ′i for i ∈ Iknown to be commitment
to the zero amount by requiring a signature verifiable by the public key C ′i. While this would ensure the transfer of funds (in
the form of the aiH terms) from Ci to the Cassets term in (3), it would also reveal the set Pknown. To avoid this, we require a
regular ring signature γi verifiable by the pair of public keys (C ′i, C

′
i − Ci) for all i = 1, 2, . . . , N . For i /∈ Iknown, γi can be

generated using the same private key (corresponding to C ′i −Ci) which was used to generate σi. For i ∈ Iknown, if the private
key corresponding to C ′i − Ci is used to generate γi then C ′i and Ci commit to the same amount. Consequently, C ′i cannot
contain any H term beyond that contributed by Ci and cannot be used to inflate the Cassets term as illustrated in (4). On the
other hand, if for some i ∈ Iknown the private key corresponding to C ′i is used to generate γi then this implies that C ′i is a
commitment to zero ensuring that the aiH terms from Ci are included in Cassets.

While the above discussion considers a potentially malicious exchange, the following theorem assures us that an honest
exchange can correctly generate a commitment to its total reserves.

Theorem 1. If an exchange follows the MProve protocol honestly, then Cassets will be a commitment to the amount

aowned =
∑

i∈Iknown

ai. (5)

Proof: Consider the definition of C ′i given in (2).
• If Pi ∈ Pknown, C ′i is a commitment to zero. Hence

∑
i∈Iknown

C ′i is a commitment to the zero amount.
• If Pi /∈ Pknown, C ′i −Ci is a commitment to zero. Let Iunknown = {i | 1 ≤ i ≤ N,Pi /∈ Pknown} denote the set of indices i

such that the exchange does not know the private key corresponding to Pi. Then
∑

i∈Iunknown
(C ′i − Ci) is a commitment

to the zero amount.
Rearranging (3), we get ∑

i∈Iknown

Ci = Cassets +
∑

i∈Iknown

C ′i +
∑

i∈Iunknown

(C ′i − Ci). (6)

As the last two sums on the right hand side are commitments to zero, Cassets and
∑

i∈Iknown
Ci must be commitments to the

same amount. Since ∑
i∈Iknown

Ci =
∑

i∈Iknown

(yiG+ aiH)

= aownedH +
∑

i∈Iknown

yiG, (7)

Cassets is a commitment to aowned.

C. Proof Verification

The output of an exchange in the MProve protocol consists of the following:
• A list of one-time addresses P1, P2, . . . , PN .
• The commitments C ′1, C

′
2, . . . , C

′
N created by the exchange.

• The regular ring signatures γi = (di0, t
i
0, t

i
1) for i = 1, 2, . . . , N .

• The linkable ring signatures σi = (Ii, c
i
0, s

i
0, s

i
1) for i = 1, 2, . . . , N .



• The message m used to create γi and σi.
• The commitment Cassets which the exchange claims to be a commitment to its total reserves.

Verification involves the following operations:
1. The verifier checks that none of the key images Ii published by the exchange as part of the signatures σi appear in any of

the transactions in the blockchain. If a key image appears in a transaction, the verifier rejects the proof of reserves as it
implies that the funds in the corresponding one-time address Pi have already been spent. If none of the key images have
appeared on the blockchain, the verifier continues with proof verification.

2. The verifier reads the commitments Ci corresponding to the Pis from the blockchain.
3. The public key C ′i − Ci is computed for each i.
4. The public key pair (C ′i, C

′
i − Ci) is used to verify the regular ring signatures γi.

5. The public key pair (Pi, C
′
i − Ci) is used to verify the linkable ring signatures σi.

6. Equality in (3) is verified using the Cis, C ′is, and Cassets.
7. The verifier also checks that none of the key images Ii published by the exchange appear in the signatures published by

other exchanges. If a key image is common to the signatures published by two different exchanges, collusion is declared.
As observed in [4], the exchanges need to generate their proofs after the same block for collusion to be detectable.

D. Security Properties

We consider two security properties of the MProve proof of reserves protocol: inflation resistance and address privacy.
We will model computationally bounded entities as probabilistic polynomial-time (PPT) algorithms. The inflation resistance
property prevents a PPT exchange from creating a commitment to an amount which is greater than its total reserves. The
address privacy property prevents a PPT adversary from identifying the addresses owned by the exchange from the information
provided as output of the proof of reserves protocol.

If we assume that a PPT entity cannot calculate the discrete logarithm of H with respect to G, the following theorem assures
us that a PPT exchange can only use MProve to output a commitment to an amount which is a sum of a subset of the reserves
it owns. It cannot use MProve to output a commitment to an amount which is greater than the total reserves it owns.

Theorem 2. Suppose an exchange can create a proof of reserves with commitment Cassets = C(y, a) such that
(i) it knows the blinding factor y ∈ Zl and amount a ∈ Zl,

(ii) the amount a is not of the form
∑

i∈I1 ai for any set I1 ⊆ Iknown, and
(iii) the proof is accepted by the verification procedure in Section IV-C.
Then the exchange can calculate the discrete logarithm of H with respect to G with overwhelming probability.

Proof: As the exchange was successful in creating the linkable ring signatures σi, it knows wi ∈ Zl such that wiG = C ′i−Ci

for i ∈ Iunknown, i.e. Pi /∈ Pknown, with overwhelming probability. This is because creating σi without knowing either of the
private keys corresponding to the public keys {Pi, C

′
i − Ci} amounts to a forgery of the linkable ring signature which is

possible only with negligible probability.
As the exchange was successful in creating the regular ring signatures γi, it knows wi ∈ Zl such that wiG is equal to either

C ′i or C ′i − Ci for i ∈ Iknown, i.e. Pi ∈ Pknown, with overwhelming probability. Let I1, I2 be a partition of the set Iknown such
that wiG = C ′i for i ∈ I1 and wiG = C ′i − Ci for i ∈ I2.

As Iunknown ∪ I1 ∪ I2 = {1, 2, . . . , N}, we can rearrange the terms in (3) to get∑
i∈I1

Ci = Cassets +
∑
i∈I1

C ′i +
∑

i∈Iunknown∪I2

(C ′i − Ci)

= Cassets +

N∑
i=1

wiG. (8)

Since I1 ⊆ Iknown, the exchange knows the blinding factors yi and amounts ai such that Ci = yiG + aiH for all i ∈ I1. By
the theorem hypothesis, it also knows y and a such that Cassets = yG+ aH . Substituting these values in (8), we get∑

i∈I1

(yiG+ aiH) = yG+ aH +

N∑
i=1

wiG (9)

=⇒

(∑
i∈I1

yi −
N∑
i=1

wi − y

)
G =

(
a−

∑
i∈I1

ai

)
H (10)



The exchange can then calculate the discrete logarithm of H with respect to G as(
a−

∑
i∈I1

ai

)−1(∑
i∈I1

yi −
N∑
i=1

wi − y

)
. (11)

The multiplicative inverse of a−
∑

i∈I1 ai exists because it is a non-zero element in the prime field Fl. This follows from the
assumption that a 6=

∑
i∈I1 ai for all possible subsets I1 of Iknown.

We define the address privacy of the MProve protocol using the following experiment (which we call AddrPriv). Let
C′ = (C ′1, C

′
2, . . . , C

′
N ), Γ = (γ1, γ2, . . . , γN ), Σ = (σ1, σ2, . . . , σN ) be vectors containing the commitments and signatures

output by the MProve protocol. Let C = (C1, C2, . . . , CN ) be the commitments corresponding to the list of one-time addresses
in P . Let m be the message which is signed to create the signatures. The value of Cassets is determined by C and C′ according
to (3).
1. The exchange chooses an index j such that Pj ∈ P is a one-time address whose private key is known to it.
2. The exchange chooses a bit b uniformly from {0, 1}.
3. If b = 0, the exchange uses the MProve protocol to create a proof of reserves where the linkable ring signature σj is created

using the private key corresponding to Pj and the ring signature γj is created using the private key corresponding to C ′j .
4. If b = 1, the exchange uses the MProve protocol to create a proof of reserves where both the linkable ring signature σj

and ring signature γj are created using the private key corresponding to C ′j − Cj .
5. Given P,C,C′,Γ,Σ,m, and index j, an adversary A outputs a bit b′, i.e.

b′ = A (P,C,C′,Γ,Σ,m, j) . (12)

6. The adversary succeeds if b′ = b. Otherwise, it fails.

Definition 1. The MProve protocol provides address privacy if every PPT adversary A succeeds in the AddrPriv experiment
with a probability which is negligibly close to 1

2 , irrespective of the message m and index j.

As the C ′is in the MProve protocol are chosen randomly and independently of each other (see definition in (2)), the signatures
γi for i 6= j do not aid the adversary in estimating b. Similarly, the signatures σi created by one of the private keys corresponding
to the public key pair (Pi, C

′
i−Ci) do not aid in the estimation of b for i 6= j. Hence, we can restrict our attention to adversaries

of the form A(Pj , Cj , C
′
j , γj , σj ,m).

A ring signature scheme is said to provide signer ambiguity if it does not reveal the identity of the signing key except with
probability negligibly close to that achievable by random guessing [14]. The linkable ring signature scheme used to generate
σj has been shown to be signer ambiguous in the random oracle model provided the decisional Diffie-Hellman (DDH) problem
is hard [17, Appendix C]. A similar argument can be used to show that the MProve protocol provides address privacy in the
random oracle model. We state the following theorem whose proof is given in Appendix C.

Theorem 3. The MProve protocol provides address privacy in the random oracle model under the decisional Diffie-Hellman
assumption.

E. Performance

The performance of MProve is given in Table I for anonymity list P having sizes 1000, 10000, and 100000. The generation
and verification (except for the key image blockchain query) algorithms were implemented in C++ as a test in the Monero
codebase [18]. The program to check whether the key images in the proof appear on the blockchain was implemented as a
Python script which sends an RPC call to the Monero daemon (script available at [18]). The query time column in Table I
gives the execution times of this script after the LMDB database was fully loaded into RAM (it consumes about 2 GB). The
execution times were measured on a 3.6 GHz CPU/8 GB RAM desktop PC. For each case, the percentage of known addresses
is either 10%, 50%, or 90%. Both generation/verification times and proof sizes increase linearly with the size of P with the
proof generation time having a small dependence on the size of Pknown. Even for an anonymity list size of 100000, the proof
generation and verification algorithms take approximately a minute to complete.

While there is no other proof of reserves protocol for Monero which provides address privacy, a comparison to the non-
private reserve proof technique [11] would give insights into the cost of privacy. We defer this comparison to the extended
version of this paper.

F. Drawback

The main drawback of the MProve protocol is that it does not preserve sender address privacy when an exchange spends
from an address Pi ∈ Pknown which was used in the protocol. This is because the key image Ii is revealed in the MProve
protocol which can be matched with the key image which appears in the transaction spending from Pi. This does not affect the
privacy of the MProve protocol itself as the transaction appears on the blockchain after the proof of reserves is generated. But



TABLE I
MPROVE PROOF GENERATION AND VERIFICATION PERFORMANCE

|P| |Pknown| Proof Generat. Verif. Query
Size Time Time Time

1000 100 0.32 MB 0.70 s 0.65 s 0.048 s
1000 500 0.32 MB 0.69 s 0.69 s 0.048 s
1000 900 0.32 MB 0.68 s 0.67 s 0.048 s

10000 1000 3.2 MB 7.01 s 6.76 s 0.087 s
10000 5000 3.2 MB 6.92 s 6.76 s 0.087 s
10000 9000 3.2 MB 6.87 s 6.75 s 0.087 s

100000 10000 32 MB 71.79 s 67.85 s 0.545 s
100000 50000 32 MB 71.13 s 67.83 s 0.545 s
100000 90000 32 MB 70.39 s 67.82 s 0.545 s

it effectively makes the transaction a zero mix-in transaction which increases traceability [19], [20]. Alleviating this problem
is an interesting direction for future research.

V. APPLICATION TO BITCOIN EXCHANGES

While MProve is intended for Monero exchanges, it can also be used for Bitcoin exchanges for taking advantage of the proof
of non-collusion. As the unspent amount ai associated with a public key Pi is known, the commitment Ci can be simply set
to aiH . Here H needs to be a group element whose discrete logarithm with respect to the base point of the secp256k1 curve
is not known. The C ′i commitments will be generated as in (2). As the zis are randomly chosen, knowledge of the opening of
Ci does not reveal whether Pi ∈ Pknown or not. The ring signatures γi and linkable ring signatures σi are generated as in the
MProve protocol. The commitment Cassets published by the exchange has to satisfy

N∑
i=1

aiH = Cassets +

N∑
i=1

C ′i. (13)

Collusion between exchanges can be detected by checking if any of the key images Ii in the linkable ring signatues σi appear
in the proofs provided by two different exchanges. As spending from a Bitcoin address does not involve the generation of a
key image, the drawback mentioned in Section IV-F does not apply. However, this technique suffers from the same restriction
as Provisions, i.e. it is restricted to UTXOs which are either P2PK or P2PKH with known public key.

VI. CONCLUSION

We have described the design of MProve, a proof of reserves protocol for Monero exchanges. It is the first known protocol
to provide address privacy while avoiding collusion between exchanges. MProve’s proof generation and verification algorithms
are efficient taking only about a minute to complete for an anonymity set having 100,000 addresses. We foresee two areas for
improvement.
• The key image of an address is an essential part of the proof as it prevents exchanges from using spent addresses for

proof generation. But revealing the key images is bad for privacy. Ideally, we would like to efficiently prove that the key
image corresponding to an exchange-owned address has not appeared on the blockchain without revealing it. Additionally,
this proof should not reveal which addresses are owned by the exchange.

• The proof sizes scale linearly with the size of the anonymity list P . Applying recent techniques like Bulletproofs [21] to
reduce the proof size is an interesting direction for future research.
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APPENDIX A
RING SIGNATURE GENERATION IN MPROVE

In this appendix, we describe the calculation of the regular ring signature γi corresponding to step 4 of the MProve proof
generation procedure described in Section IV-B. The calculation is the same as the algorithm described in Section IV-A with
the public key list Qi = (C ′i, C

′
i − Ci). We use different notation to differentiate the terms from those used in the linkable

ring signature calculation of Appendix B.
(i) For i such that Pi ∈ Pknown, the private key zi corresponding to the public key C ′i = ziG is used to create the regular

ring signature γi = (di0, t
i
0, t

i
1) where



• Using randomly chosen βi from Z+
l , di1 is calculated as di1 = Hs(Qi,m, Si

0) where Si
0 = βiG.

• Using randomly chosen ti1 from Z+
l , di0 is calculated as di0 = Hs(Qi,m, Si

1) where Si
1 = ti1G+ di1(C

′
i − Ci).

• The value ti0 is set to βi − di0zi.
(ii) For i such that Pi /∈ Pknown, the private key zi corresponding to the public key C ′i − Ci = ziG is used to create the

regular ring signature γi = (di0, t
i
0, t

i
1) where

• Using randomly chosen βi from Z+
l , di0 is calculated as di0 = Hs(Qi,m, Si

1) where Si
1 = βiG.

• Using randomly chosen ti0 from Z+
l , di1 is calculated as di1 = Hs(Qi,m, Si

0) where Si
0 = ti0G+ di0C

′
i.

• The value ti1 is set to βi − di1zi.

APPENDIX B
LINKABLE RING SIGNATURE GENERATION IN MPROVE

In this appendix, we describe the calculation of the linkable ring signature σi corresponding to step 5 of the MProve proof
generation procedure described in Section IV-B. The calculation is the same as the algorithm described in Section III-B with
the public key list Ri = (Pi, C

′
i − Ci).

Let xi ∈ Z+
l be the private key corresponding to Pi, i.e. Pi = xiG.

(i) For i such that Pi ∈ Pknown, the private key xi is used to create the linkable ring signature σi = (Ii, c
i
0, s

i
0, s

i
1) where

Ii = xiHp(Pi) is the key image.
• Using randomly chosen αi from Z+

l , ci1 is calculated as

Li
0 = αiG, R

i
0 = αiHp(Pi),

ci1 = Hs(Ri,m,Li
0, R

i
0). (14)

• Using randomly chosen si1 from Z+
l , ci0 is calculated as

Li
1 = si1G+ ci1(C

′
i − Ci),

Ri
1 = si1Hp(C

′
i − Ci) + ci1Ii, (15)

ci0 = Hs(Ri,m,Li
1, R

i
1).

• The value si0 is set to αi − ci0xi.
(ii) For i such that Pi /∈ Pknown, the private key zi corresponding to the public key C ′i − Ci = ziG is used to create the

linkable ring signature σi = (Ii, c
i
0, s

i
0, s

i
1) where Ii = ziHp(C

′
i − Ci) is the key image.

• Using randomly chosen αi from Z+
l , ci0 is calculated as

Li
1 = αiG, R

i
1 = αiHp(C

′
i − Ci),

ci0 = Hs(Ri,m,Li
1, R

i
1). (16)

• Using randomly chosen si0 from Z+
l , ci1 is calculated as

Li
0 = si0G+ ci0Pi, R

i
0 = si0Hp(Pi) + ci0Ii,

ci1 = Hs(Ri,m,Li
0, R

i
0). (17)

• The value si1 is set to αi − ci1xi.

APPENDIX C
PROOF OF THEOREM 3

The proof involves constructing a PPT adversary M who violates the decisional Diffie-Hellman (DDH) assumption using
a PPT adversary A who violates address privacy in the MProve protocol. The hash functions Hs and Hp will be modeled as
random oracles which enables M to create a valid MProve protocol output that is fed to A.

Suppose A is a PPT adversary who violates address privacy in the AddrPriv experiment. By the discussion following
Definition 1, we can restrict our attention to adversaries of the form A(Pj , Cj , C

′
j , γj , σj ,m). If A violates address privacy,

then there exists a polynomial f such that

Pr
[
A(Pj , Cj , C

′
j , γj , σj ,m) = b

]
>

1

2
+

1

f(λ)
, (18)

where λ is a security parameter. Recall that the linkable ring signature σj = (Ij , c
j
0, s

j
0, s

j
1). For b = 0, the point Ij is the

key image of Pj , i.e. Ij = xjHp(Pj). In this case, the triple (Pj , Hp(Pj), Ij) is a Diffie-Hellman triple. This is because for
Pj = xjG and Hp(Pj) = yjG, we have Ij = xjyjG. And for b = 1, Ij is the key image of C ′j−Cj , i.e. Ij = xjHp(C

′
j−Cj),



and (C ′j − Cj , Hp(C
′
j − Cj), Ij) is a Diffie-Hellman triple. As A can estimate b with a probability which is non-negligibly

better than 1
2 , it must be implicitly able to identify which of the two triples is a Diffie-Hellman triple. This idea is exploited

in the construction of the adversary M.
SupposeM is an adversary tasked with identifying Diffie-Hellman triples. Let G be the generator of a cyclic group of order

l. An entity who wishes to testM chooses a bit d uniformly from {0, 1} and givesM the triple (G1, G2, G3) = (aG, bG, cdG)
where a, b, c0 are chosen uniformly from Z+

l and c1 = ab. To estimate d from (G1, G2, G3), M will use A as a subroutine
as follows.
1. M chooses a bit b uniformly from {0, 1}.
2. If b = 0, M does the following:

(i) It sets Pj = G1, Hp(Pj) = G2 (using the random oracle assumption), and Ij = G3.
(ii) It chooses random group elements Cj and C ′j and sets the public key list R = (Pj , C

′
j − Cj).

(iii) It chooses scalars c0, s0, s1 uniformly from Z+
l and calculates L1, R1 as follows.

L0 = s0G+ c0Pj ,

R0 = s0Hp(Pj) + c0Ij ,

c1 = Hs(R,m,L0, R0), (19)
L1 = s1G+ c1(C

′
j − Cj),

R1 = s1Hp(C
′
j − Cj) + c1Ij .

(iv) It sets the random oracle output Hs(R,m,L1, R1) to be equal to c0.
(v) It sets σj = (Ij , c0, s0, s1) which will pass the linkable ring signature verification algorithm for the public key list R.

(vi) It chooses scalars d0, t0, t1 uniformly from Z+
l and calculates S1 for public key list Q = (C ′j , C

′
j − Cj) as follows.

S0 = t0G+ d0C
′
j ,

d1 = Hs(Q,m, S0), (20)
S1 = t1G+ d1(C

′
j − Cj),

(vii) It sets the random oracle output Hs(Q,m, S1) to be equal to d0.
(viii) It sets γj = (d0, t0, t1) which will pass the ring signature verification algorithm for the public key list Q.

3. If b = 1, M does the following:
(i) It chooses a random group element Cj and sets C ′j = Cj +G1.

(ii) It sets Hp(C
′
j − Cj) = G2 (using the random oracle assumption) and Ij = G3.

(iii) It chooses a random group elements Pj and sets the public key list R = (Pj , C
′
j − Cj).

(iv) For public key list R, it generates the linkable ring signature σj = (Ij , c0, s0, s1) using the same procedure as the
b = 0 case.

(v) For public key list Q = (C ′j , C
′
j − Cj), it generates the ring signature γj = (d0, t0, t1) using the same procedure as

the b = 0 case.
4. M obtains the output b′ = A(Pj , Cj , C

′
j , γj , σj ,m). If b′ = b, then M estimates the bit d as 1. Otherwise, M estimates d

as 0.
When d = 1, the triple (G1, G2, G3) is a DH triple and the Ij in the linkable ring signature σj constructed by M is the
key image of one of the keys in R. By (18), the adversary A can identify which key was used with a probability which is
non-neglibly better than 1

2 . This in turn implies that M can correctly estimate d as 1 with the same probability. So we have

Pr [M(G1, G2, G3) = 1 | d = 1] = Pr[b′ = b | d = 1]

>
1

2
+

1

f(λ)
. (21)

When d = 0, G3 (and consequently Ij) is independent of (G1, G2). As the inputs Pj , Cj , C
′
j , γj , σj to A or their components

are either uniformly random group elements/scalars or outputs of random oracles, the adversary can only estimate the bit b
with probability 1

2 . So we have

Pr [M(G1, G2, G3) = 0 | d = 0] = Pr[b′ 6= b | d = 0]

=
1

2
. (22)



As d was chosen uniformly from {0, 1}, averaging (21) and (22) we get

Pr [M(G1, G2, G3) = d] >
1

2
+

1

2f(λ)
. (23)

This contradicts the DDH assumption as M is a PPT adversary.
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