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Abstract. In this paper we revisit some of the main aspects of the
DAGS Key Encapsulation Mechanism, one of the code-based candidates
to NIST’s standardization call for the key exchange/encryption func-
tionalities. In particular, we modify the algorithms for key generation,
encapsulation and decapsulation to fit an alternative KEM framework,
and we present a new set of parameters that use binary codes. We discuss
advantages and disadvantages for each of the variants proposed.
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1 Introduction

The majority of cryptographic protocols in use in the present day are based on
traditional problems from number theory such as factoring or computing dis-
crete logarithms in some group; this is the case for schemes such as RSA, DSA,
ECDSA etc. This is undoubtedly about to change due to the looming threat of
quantum computers. In fact, due to Shor’s seminal work [21], such problems will
be vulnerable to polynomial-time attacks once quantum computers with enough
computational power are available, which will make current cryptographic so-
lutions obsolete. While the resources necessary to effectively run Shor’s algo-
rithm on actual cryptographic parameters (or other cryptographically relevant



quantum algorithms such as or Grover’s [12]) might be at least a decade away,
post-quantum cryptography cannot wait for this to happen. In fact, today’s en-
crypted communication could be easily stored by attackers and decrypted later
with a quantum computer, compromising secrets that aim for long-term security.
Therefore, it is vital that the time required to develop such resources (tDev) is
not inferior to the sum of the time required to develop and deploy new crypto-
graphic standards (tDep), and the desired lifetime of a secret (tSec), i.e. we need
to ensure tDev ≥ tDep + tSec.

With this in mind, the National Institute of Standards and Technology
(NIST) has launched a Call for Proposals for Post Quantum Cryptographic
Schemes [17], to select a range of post-quantum primitives to become the new
public-key cryptography standard. The NIST Call is soliciting proposals in en-
cryption, key exchange, and digital signature schemes. It is expected that the
effort will require approximately 5 years, and another 5 years will likely follow
for the deployment phase, which includes developing efficient implementations
and updating the major cryptographic products to the new standard. Currently,
there are five major families of post-quantum cryptosystems: lattice-based, code-
based, hash-based, isogeny-based, and multivariate polynomial-based systems.
The first two are the most investigated, comprising nearly three quarters of the
total amount of submissions to the NIST competition (45 out of 69).

Our Contribution DAGS [1] was one of the candidates to NIST’s Post-
Quantum Standardization call [17]. The submission presents a code-based Key
Encapsulation Mechanism (KEM) that uses Quasi-Dyadic (QD) Generalized Sri-
vastava (GS) codes to achieve very small sizes for all the data (public and private
key, and ciphertext); as a result, DAGS features one of the smallest data size
among all the code-based submissions. Unfortunately, due to some security con-
cerns, DAGS was not selected for the second round of the standardization call. In
this paper, we present the results of our investigation of the DAGS scheme, aimed
at tweaking and improving several aspects of the scheme. First, we describe a
new approach to the protocol design (Section 3), which offers an important alter-
native and a tradeoff between security and performance. Then, in Section 4, we
propose and discuss new parameters, including an all-new set based on binary
codes, to protect against both known and new attacks. Finally, in Section 5,
we report the numbers obtained in a new, improved implementation which uses
dedicated techniques and tricks to achieve a considerable speed up. We hope this
version of DAGS can provide some stability and reassurance about the security
of the system.

2 Preliminaries

2.1 Notation

We will use the following conventions throughout the rest of the paper:

2



Table 1: Notation used in this document.

a a constant
a a vector
A a matrix
A an algorithm or (hash) function
A a set

(a ‖ b) the concatenation of vectors a and b
Diag(a) the diagonal matrix formed by the vector a
In the n× n identity matrix
$← choosing a random element from a set or distribution
` the length of a shared symmetric key

2.2 Linear Codes

We briefly recall some fundamental notions from Coding Theory. The Hamming
weight of a vector x ∈ Fn

q is given by the number wt(x) of its nonzero com-
ponents. We define a linear code using the metric induced by the Hamming
weight.

Definition 1. An [n, k]-linear code C of length n and dimension k over Fq is a
k-dimensional vector subspace of Fn

q .

A linear code can be represented by a matrix G ∈ Fk×n
q , called generator

matrix, whose rows form a basis for the vector space defining the code. Alterna-

tively, a linear code can also be represented as kernel of a matrix H ∈ F(n−k)×n
q ,

known as parity-check matrix, i.e. C = {c : HcT = 0}. Thanks to the generator
matrix, we can easily define the codeword corresponding to a vector µ ∈ Fk

q as

µG. Finally, we call syndrome of a vector c ∈ Fn
q the vector HcT .

2.3 Structured Matrices and GS Codes

Definition 2. Given a ring R (in our case the finite field Fqm) and a vector
h = (h0, . . . , hn−1) ∈ Rn, the dyadic matrix ∆(h) ∈ Rn×n is the symmetric
matrix with components ∆ij = hi⊕j, where ⊕ stands for bitwise exclusive-or on
the binary representations of the indices. The sequence h is called its signature.
Moreover, ∆(r,h) denotes the matrix ∆(h) truncated to its first r rows. Finally,
we call a matrix quasi-dyadic if it is a block matrix whose component blocks are
r × r dyadic submatrices.

If n is a power of 2, then every 2l×2l dyadic matrix can be described recursively
as

M =

(
A B
B A

)
where each block is a 2l−1 × 2l−1 dyadic matrix. Note that by definition any 1
× 1 matrix is trivially dyadic.
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Definition 3. For m,n, s, t ∈ N and a prime power q, let α1, . . . , αn and w1, . . . , ws

be n + s distinct elements of Fqm , and z1, . . . , zn be nonzero elements of Fqm .
The Generalized Srivastava (GS) code of order st and length n is defined by a
parity-check matrix of the form:

H =


H1

H2

...
Hs


where each block is given by

Hi =



z1
α1 − wi

. . .
zn

αn − wi

z1
(α1 − wi)2

. . .
zn

(αn − wi)2
...

...
...

z1
(α1 − wi)t

. . .
zn

(αn − wi)t


.

The parameters for such a code are the length n ≤ qm − s, dimension
k ≥ n−mst and minimum distance d ≥ st+ 1. GS codes are part of the family
of alternant codes, and therefore benefit of an efficient decoding algorithm; ac-
cording to Sarwate [20, Cor. 2] the complexity of decoding is O(n log2 n), which
is the same as for Goppa codes. Moreover, it can be easily proved that every GS
code with t = 1 is a Goppa code. More information about this class of codes can
be found in [15, Ch. 12, §6].

3 SimpleDAGS

3.1 Construction

The core idea of DAGS is to use GS codes which are defined by matrices in quasi-
dyadic form. It can be easily proved that every GS code with t = 1 is a Goppa
code, and we know [15, Ch. 12, Pr. 5] that Goppa codes admit a parity-check
matrix in Cauchy form under certain conditions (the generator polynomial has
to be monic and without multiple zeros). By Cauchy we mean a matrix C(u,v)
with components Cij = 1

ui−vj . Misoczki and Barreto showed in [16, Th. 2] that

the intersection of the set of Cauchy matrices with the set of dyadic matrices is
not empty if the code is defined over a field of characteristic 2, and the dyadic
signature h = (h0, . . . , hn−1) satisfies the following “fundamental” equation

1

hi⊕j
=

1

hi
+

1

hj
+

1

h0
. (1)

4



On the other hand, it is evident from Definition 3 that if we permute the
rows of H to constitute s× n blocks of the form

Ĥi =



z1
(α1 − w1)i

. . .
zn

(αn − w1)i

z1
(α1 − w2)i

. . .
zn

(αn − w2)i
...

...
...

z1
(α1 − ws)i

. . .
zn

(αn − ws)i


we obtain an equivalent parity-check matrix for a GS code, given by

Ĥ =


Ĥ1

Ĥ2

...

Ĥt

.

The key generation process exploits first of all the fundamental equation to
build a Cauchy matrix. The matrix is then successively powered (element by
element) forming several blocks which are superimposed and then multiplied by
a random diagonal matrix. Thanks to the observation above, we have now formed
the matrix Ĥ, where for ease of notation we use u and v to denote the vectors
of elements w1, . . . , ws and α1, . . . , αn, respectively. Finally, the resulting matrix
is projected onto the base field (as usual for alternant codes) and row-reduced
to systematic form to form the public key. The process is essentially the same as
in [19], to which we refer the readers looking for additional details about dyadic
GS codes and key generation.

3.2 The New Algorithms

The DAGS algorithms, as detailed in the original proposal submitted to the first
Round [8], follow the “Randomized McEliece” paradigm of Nojima et al. [18],
which is built upon the McEliece cryptosystem. The fact that this version of
McEliece is proved to be IND-CPA secure makes it so that the resulting KEM
conversion achieves IND-CCA security tightly, as detailed in [13]. However, to ap-
ply the conversion correctly, it is necessary to use multiple random oracles. These
are needed to produce the additional randomness required by the paradigm, as
well as to convert McEliece into a deterministic scheme (by generating a low-
weight error vector from a random seed) and to obtain an additional hash output
for the purpose of plaintext confirmation. Even though, in practice, such ran-
dom oracles are realized using the same hash function (the KangarooTwelve
function [14] from the Keccak family), the protocol’s description ends up being
quite cumbersome and hard to follow.
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A simpler protocol can be obtained, although, as we will see, not without
consequences, using the Niederreiter cryptosystem. We report the new descrip-
tion below, following the same conventions used in the original DAGS specifica-
tion [1]. Therefore, system parameters are the code length n, dimension k and
co-dimension r, the values s and t which define a GS code, the cardinality of
the base field q and the degree of the field extension m. Note that, unlike the
original DAGS, we do not need the sub-parameters k′ and k′′.

Algorithm 1. Key Generation

Key generation follows closely the process described in the original DAGS
Key Generation. We present here a compact version, and we refer the reader to
the description in Section 3.1.1 of [8] for further details.

1. Generate dyadic signature h.

2. Build the Cauchy support (u,v).

3. Form Cauchy matrix Ĥ1 = C(u,v).

4. Build Ĥi, i = 2, . . . t, by raising each element of Ĥ1 to the power of i.

5. Superimpose blocks Ĥi in ascending order to form matrix Ĥ.

6. Generate vector z by sampling uniformly at random elements in Fqm with
the restriction zis+j = zis for i = 0, . . . , n0 − 1, j = 0, . . . , s− 1.

7. Form H = Ĥ ·Diag(z).

8. Project H onto Fq using the co-trace function: call this Hbase.

9. Write Hbase as (B | A), where A is r × r.

10. Get systematic form1 (M | Ir) = A−1Hbase: call this H̃.

11. Sample a uniform random string r ∈ Fn
q .

12. The public key is the matrix H̃.

13. The private key consists of (u, A, r) and H̃.

The main differences are as follows. First of all, the public key consists of the
systematic parity-check matrix H̃ = (M | Ir), rather than the generator matrix
G = (Ik | MT ). Also, the private key only stores u instead of v and y, but it
includes additional elements, namely the random string r, the submatrix A and
H̃ itself2.

1 If A is not invertible, abort and go back to 1.
2 This is mostly a formal difference, since H̃ is in fact the public key.
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Algorithm 2. Encapsulation

Encapsulation uses a hash function H : {0, 1}∗ → {0, 1}` to extract the de-
sired symmetric key, ` being the desired bit length (commonly 256). The function
is also used to provide plaintext confirmation by appending an additional hash
value, as detailed below.

1. Sample e
$←Fn

q of weight w.

2. Set c = (c0, c1) where c0 = H̃e and c1 = H(2, e).

3. Compute k = H(1, e, c).

4. Output ciphertext c; the encapsulated key is k.

Algorithm 3. Decapsulation

As in every code-based scheme, the decapsulation algorithm consists mainly
of decoding; in this case, like in the original DAGS version, we call upon the
alternant decoding algorithm (see for example [15]).

1. Get syndrome c′0 corresponding to matrix3 H ′ from private key4.

2. Decode c0 and obtain e′.

3. If decoding fails or wt(e′) 6= w, set b = 0 and η = r.

4. Check that H̃e′ = c0 and H(2, e′) = c1. If so, set b = 1 and η = e′.

5. Otherwise, set b = 0 and η = r.

6. The decapsulated key is k = H(b,η, c).

The description we just presented is conform to the guidelines detailed by
the “SimpleKEM” construction of [5], hence our choice to call this new version
“SimpleDAGS”. This is one of two aspects in which this variant diverges sub-
stantially from the original; we will discuss advantages (and disadvantages) of
this new paradigm in the next section. The other different aspect is that using
Niederreiter requires a different strategy for decoding, which we describe below.

3.3 Decoding from a Syndrome

In the original version of DAGS, the input to the decoding algorithm is, as is
commonly the case is coding theory, a noisy codeword. The alternant decoding
algorithm consists of three distinct steps. First, it is necessary to compute the
syndrome of the received word, with respect to the alternant parity-check matrix;
this is represented as a polynomial S(z). Then, the algorithm uses the syndrome
to compute the error locator polynomial σ(z) and the error evaluator polynomial
ω(z), by solving the key equation ω(z)/σ(z) = S(z) mod zr. Finally, finding the

3 In alternant form.
4 See next section for details.
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roots of the two polynomials reveals, respectivelly, the locations and values (if
the code is not binary) of the errors. Actually, as shown in Section 6.3 of [1], it is
possible to speed up decapsulation by incorporating the first step of the decoding
algorithm in the reconstruction of the alternant matrix, i.e. the syndrome is
computed on the fly, while the alternant matrix is built.

We are now ready to explain how to perform alternant decoding when the
input is a syndrome, rather than a noisy codeword, as is the case in Algorithm 3
above. In this case, we do not need to reconstruct the alternant matrix itself, but
rather to transform the received syndrome to the syndrome corresponding to the
alternant matrix. This consists of two steps. First, remember that the public key
H̃ is the systematic form of the matrix Hbase. This is obtained from the quasi-
dyadic parity-check matrix H, whose entries are in Fqm , by projecting it onto
the base field Fq. The projection is performed using the co-trace function and a
basis for the extension field, say {β1, . . . , βm}. Recall that the co-trace function
works similarly to the trace function, by writing each element of Fqm as a vector
whose components are the coefficients with respect to the basis {β1, . . . , βm}.
However, instead of writing the components on m successive rows, the co-trace
function distributes them over the rows at regular intervals, r at a time. More
precisely, if a = (a1, a2, . . . , ar)T is a column of H, the corresponding column
a′ = (a′1, a

′
2, . . . , a

′
rm)T of Hbase will be formed by writing the components of

each ai in positions a′i, a
′
r+i, . . . , a

′
r(m−1)+i, for all i = 1, . . . ,m.

The first step consists of transforming the received syndrome c0 = H̃e
into He. For this, we need to multiply the syndrome by A to obtain AH̃e =
AA−1Hbasee = Hbasee. Then we reverse the projection process and “bring back”
the syndrome on the extension field. This is immediate when operating directly
on the matrices, but a little less intuitive when starting from a syndrome. It turns
out that it is still possible to do that, by using again the basis {β1, . . . , βm}.
Namely, it is enough to collect all the components si, sr+i, . . . , sr(m−1)+i of
the syndrome s = Hbasee and multiply the resulting vector with the vector
(β1, . . . , βm). This maps the vector of components back to its corresponding
element in Fqm and it is immediate to check that this process yields He.

The second step consists of relating the newly-obtained syndrome to the
alternant parity-check matrix H ′. Since this is just another parity-check for the
same code, it is possible to obtain one from the other via an invertible matrix.
In particular, for GS codes we have H = CH ′, where the r× r matrix C can be
obtained using u. Namely, the r rows of C corresponds to the coefficients of the
polynomials g1(x), . . . , gr(x), where we have

g(l−1)t+i =

s∏
j=1

(x− uj)t

(x− ul)i

for l = 1, . . . , s and i = 1, . . . , t. To complete the second step, then, it is enough
to compute C and then C−1He. The resulting syndrome is ready to be decoded.
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3.4 Consequences

There are some notable consequence to keep in mind when switching to the
SimpleDAGS variant. First of all, the change in the KEM conversion not only
makes the protocol simpler, but has additional advantages. The reduction is tight
in the ROM, and the introduction of the plaintext confirmation step provides
an extra layer of defense, at the cost of just one additional hash value. This is
similar to what done in the Classic McEliece submission [7]. Moreover, the use
of implicit rejection and a “quiet” KEM (i.e. such that the output is always a
session key) further simplifies the API, and is an incentive to design constant-
time algorithms, without needing extra machinery or stronger assumptions, as
explained in Sections 14 and 15 of [5].

On the other hand, using Niederreiter has a negative impact on the overall
performance of the scheme. The cost of the first step of decoding, detailed above,
is comparable to that of reconstructing H ′ (and computing the syndrome) in
the original DAGS, but there is an additional cost in the multiplication by A.
Moreover, inverting the matrix C in the second step is expensive, and would
slow down decapsulation considerably. In alternative, one could delegate some
computation time to the key generation algorithm, and store C−1 as private key;
this would preserve the efficiency of the decapsulation but noticeably increase the
size of the private key. Either way, there is a clear a tradeoff at hand, sacrificing
performance and efficiency in favor of a simpler description and tighter security.
It therefore falls to the user’s discretion whether original DAGS or SimpleDAGS
is the best variant to be employed for the purpose.

4 Improved Resistance

It is natural to think that introducing additional algebraic structure like QD in
a scheme based on algebraic codes (such as Goppa or GS) can give an adversary
more power to perform a structural attack. This is the case of the well-known
FOPT attack [10], and successive variants [11,9], which exploit this algebraic
structure to solve a multivariate system of equations and reconstruct an alternant
matrix which is equivalent to the private key. A detailed analysis of such attacks,
and countermeasures, is given in the original DAGS paper. Recently, Barelli and
Couvreur presented a structural attack aimed precisely at DAGS [4], which is
very successful against the original parameters. We discuss it here.

4.1 The Barelli-Couvreur Attack

The attack makes use of a novel construction called Norm-Trace Codes. As the
name suggests, these codes are the result of the application of both the Trace and
the Norm operation to a certain support vector, and they are alternant codes. In
particular, they are subfield subcodes of Reed-Solomon codes. The construction
of these codes is given explicitly only for the specific case m = 2 (as is the case in
all DAGS parameters), i.e. the support vector has components in Fq2 , in which
case the norm-trace code is defined as
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NT (x) = 〈1, T r(x), T r(αx), N(x)〉

where α is an element of trace 1.

The main idea is that there exists a specific norm-trace code that is the
conductor of the secret subcode into the public code. By “conductor” the authors
refer to the largest code for which the Schur product (i.e. the component-wise
product of all codewords, denoted by ?) is entirely contained in the target, i.e.

Cond(D, C) = {u ∈ Fn
q : u ?D ⊆ C}

The authors present two strategies to determine the secret subcode. The
first strategy is essentially an exhaustive search over all the codes of the proper
co-dimension. This co-dimension is given by 2q/s, since s is the size of the per-
mutation group of the code, which is non-trivial in our case due to the code being
quasi-dyadic. While such a brute force in principle would be too expensive, the
authors present a few refinements that make it feasible, which include an obser-
vation on the code rate of the codes in use, and the use of shortened codes. The
second strategy, instead, consists of solving a bilinear system, which is obtained
using the parity-check matrix of the public code and treating as unknowns the
elements of a generator matrix for the secret code (as well as the support vector
x). This system is solved using Gröbner bases techniques, and benefits from a
reduction in the number of variables similar to the one performed in FOPT, as
well as the refinements mentioned above (shortened codes).

In both cases, it is easy to deduce that the two parameters q and s are crucial
in determining the cost of running this step of the attack, which dominates the
overall cost. In fact, the authors are able to provide an accurate complexity
analysis for the first strategy which confirms this intuition. The average number
of iterations of the brute force search is given by q2c, where c is exactly the
co-dimension described above, i.e. c = 2q/s. In addition, it is shown that the
cost of computing Schur products is 2n3 operations in the base field. Thus, the
overall cost of the recovery step is 2n3q4q/s operations in Fq. The authors then
argue that wrapping up the attack has negligible cost, and that q-ary operations
can be done in constant time (using tables) when q is not too big. All this leads
to a complexity which is below the desired security level for all of the DAGS
parameters that had been proposed at the time of submission. We report these
numbers below.

Table 2: Early DAGS Parameters.

Security Level q m n k s t w BC 1 BC 2

1 25 2 832 416 24 13 104 270 244

3 26 2 1216 512 25 11 176 280 244

5 26 2 2112 704 26 11 352 255 233
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In the last two columns we report, respectively, the complexity of the at-
tack when running it with the first approach (exhaustive search) and the cycle
count for the execution of the attack with the second approach (Gröbner bases).
The latter was reported in a follow-up paper by Bardet, Bertin, Couvreur and
Otmani [3]. As it is possible to observe, the attack complexity is especially low
for the last set of parameters since the dyadic order s was chosen to be 26, and
this is probably too much to provide security against this attack. Still, we point
out that, at the time this parameters were proposed, there was no indication
this was the case, since this attack is using an entirely new technique, and it is
unrelated to the FOPT and folding attacks that we just described.

While the attack performs very well against the original DAGS parameter
sets, it is overall not as critical as it appears. In fact, it is shown in Section 5.3
of [1] how this can be defeated even by modifying a single parameter, namely
the size of the base field q. This is the case for DAGS 3, where changing this
value from 26 to 28 is enough to push the attack complexity beyond the claimed
security level. Updated parameters were introduced in [1], and we report them
below.

Table 3: Updated DAGS Parameters.

Security Level q m n k s t w BC 1

1 26 2 832 416 24 13 104 ≈ 2128

3 28 2 1216 512 25 11 176 ≈ 2288

5 28 2 1600 896 25 11 176 ≈ 2289

Table 4: Memory Requirements (bytes).

Parameter Set Public Key Private Key Ciphertext

DAGS 1 8112 2496 656
DAGS 3 11264 4864 1248
DAGS 5 19712 6400 1632

Note that, for DAGS 5, the dyadic order s needed to be amended too, and the
rest of the code parameters modified accordingly to respect the requirements on
code length, dimension etc. The case of DAGS 1 is a little peculiar. In fact, the
theoretical complexity of the first attack approach can be made large enough
by simply switching from q = 25 to q = 26, similarly to what was done for
DAGS 3. With this in mind, and for the sake of simplicity, [1] featured this
choice of parameters for DAGS 1, as reported in Table 3. However, thanks to the
detailed analysis appeared in [3], it is now possible to see that these parameters
are particularly vulnerable to the second attack approach. In what follows, we
will briefly explain the reason for this, and present a new choice of parameters
for DAGS 1.
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As noted before, the success of the attack strongly depends on the dimension
of the invariant code D, which is given by k0 − c, where k0 = k/s is the number
of row blocks and c = 2q/s was defined above. For the parameters in question,
we have k0 = 26 and c = 8 and therefore this dimension is 18. This leads to
an imbalance in the ratio of number of equations to number of variables. The
former are given by (k0−c)(n0−k0−1), where n0 = n/s is the number of column
blocks, while the latter consists of the (k0 − c)c variables of the U type and the
n0 − k0 + c + log s − 3 variables of the V type that define the bilinear system.
Therefore we obtain 450 equations in 179 total variables, and this ratio is about
2.5. The authors then show how the system can be solved by specializing the
U variables to obtain linear equations, for a total cost of approximately 2111

operations, which is below the claimed security level. Actually, this cost can be
further reduced following a hybrid approach that combines exhaustive search
and Gröbner bases, to a total of 283.

The crucial point is that a ratio of 2.5 is quite high, and this is what makes
the attack feasible. In contrast, the updated DAGS 5 parameters produce a ratio
of 1.1 which is too low (the system has too many variables) while the situation
for DAGS 3 is even more extreme, since in this case c = k0 and therefore D does
not even exist. In this case, the authors suggest to use the dual code instead,
therefore replacing k0 with n0 − k0 in all the above formulas. In principle, this
makes the attack applicable, but the parameters yield a ratio of 0.7 which is
again too low to be of any use. We insist on this crucial point to select our next
choice of parameters for DAGS 1 (where “N.A.” stands for “not applicable”).

Table 5: New DAGS Parameters.

Security Level q m n k s t w BC 1 BC 2

1 28 2 704 352 24 11 88 ≈ 2542 N.A.
3 28 2 1216 512 25 11 176 ≈ 2288 N.A.
5 28 2 1600 896 25 11 176 ≈ 2289 N.A.

Table 6: New Memory Requirements (bytes).

Parameter Set Public Key Private Key Ciphertext

DAGS 1 7744 2816 736
DAGS 3 11264 4864 1248
DAGS 5 19712 6400 1632

Note that we have only changed the parameters for DAGS 1, but we have
chosen to report the other two sets too, in order to provide a complete view.
With this new choice, we have k0 = 22 and c = 32 and therefore D does not
exist; in fact, not even its dual exists, since in this case k0 = n0 − k0. This
completely defeats the second attack approach, while the first approach would
produce a ridiculously large complexity (≈ 2542, see above), and we therefore
feel comfortable claiming that DAGS 1 is now safe against all known attacks.
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In the end, we can add the Barelli-Couvreur attack(s) to the amount of
constraints on the selection of parameters, and we are very thankful to the
authors of [4] and [3] for the detailed and careful analysis of the attack techniques.
We will provide a complete overview of such constraints in the next section, where
we will also detail an entirely new take on the subject.

4.2 Binary DAGS

Parameters in schemes based on QD-GS codes are a carefully balanced machine,
needing to satisfy many constraints. First of all, we would like the code dimension
k = n −mst to be approximately n/2, since having a code rate close to 1/2 is
an optimal choice in many aspects (for instance, against ISD). In second place,
in order to stay clear of the Barelli-Couvreur attack, the value q has to be
sufficiently large, while the dyadic order s cannot be too big, as we just explained.
On the other hand, s should still be large enough to obtain a significant reduction
in key size. Balancing these two parameters can be quite hard since both q and
s are required to be powers of 2. Meanwhile, the values of the extension degree
m and the number of blocks t need to be, jointly, sufficiently large to reach the
threshold of mt > 21, which is necessary to avoid the FOPT attack. Of course,
m, s and t cannot all be large at the same time otherwise the code dimension k
would become trivial. Moreover, it is possible to observe that the best outcome is
obtained when m and t are of opposite magnitude (one big and one small) rather
than both of “medium” size. Now, since s and t are also what determines the
number of correctable errors (which is st/2), the value of t cannot be too small
either, while a small m is helpful to avoid having to work on very large extension
fields. Note that qm still needs to be at least as big as the code length n (since
the support elements are required to be distinct). After all these considerations,
the result is that, in previous literature [19,6,1], the choice of parameters was
oriented towards selecting a large base field q and the smallest possible value for
the extension, i.e. m = 2, with s ranging from 24 to 26, and t chosen accordingly.
We now investigate the consequences of choosing parameters in the opposite
way.

Choosing large m and small t allows q to be reduced to the minimum, and
more precisely q could be even 2 itself, meaning binary codes are obtained. Binary
codes were already considered in the original QD Goppa proposal by Misoczki
and Barreto [16], where they ended up being the only safe choice. The reason for
this is that larger base fields mean m can be chosen smaller (and in fact, must,
in order to avoid working on prohibitively large extension fields). This in turn
means FOPT is very effective (remember that there is no parameter t for Goppa
codes), so in order to guarantee security one had to choose m as big as possible
(at least 16) and consequently q = 2. Now in our case, if t is small, s must be
bigger (for error-correction purposes), and this pushes n and k up accordingly.
We present below our binary parameters (Table 7) and corresponding memory
requirements (Table 8).
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Table 7: Binary DAGS Parameters.

Security Level q m n k s t w BC

1 2 13 6400 3072 27 2 128 N.A.
3 2 14 11520 4352 28 2 256 N.A.
5 2 14 14080 6912 28 2 256 N.A.

Table 8: Memory Requirements for Binary DAGS (bytes).

Parameter Set Public Key Private Key Ciphertext

DAGS 1 9984 20800 832
DAGS 3 15232 40320 1472
DAGS 5 24192 49280 1792

The parameters are chosen to stay well clear of all the known algebraic at-
tacks. In particular, using binary parameters should entirely prevent the latest
attack by Barelli and Couvreur. In this case, in fact, we have m >> 2, and it is
not yet clear whether the attack is applicable in the first place. However, even if
this was the case, the complexity of the attack, which currently depends on the
quantity q/s, would depend instead on mqm−1/s. It is obvious that, with our
choice of parameters, the attack would be completely infeasible in practice.
Note that, in order to be able to select binary parameters, it is necessary to
choose longer codes (as explained above), which end up in slightly larger public
keys: these are about 1.3 times those of the original (non-binary) DAGS. The
private keys are also considerably larger. On the other hand, the binary base
field should bring clear advantages in term of arithmetic, and result in a much
more efficient implementation. All things considered, this variant should be seen
as yet another tradeoff, in this case sacrificing key size in favor of increased
security and efficient implementation.

5 Revised Implementation Results

In this section we present the results obtained in our revised implementation. Our
efforts focused on several aspects of the code, with the ultimate goal of providing
faster algorithms, but which are also clearer and more accessible. With this in
mind, one of the main aspects that was modified is field multiplication. We re-
moved the table-based multiplication to prevent an easy avenue for side-channel
(cache) attacks: this is now vectorized by the compiler, which also allows for
a considerable speedup. Moreover, we were able to obtain a considerable gain
during key generation by exploiting the diagonal form of the Cauchy matrix.
Finally, we “cleaned up” and polished our C code, to ensure it is easier to under-
stand for external auditors. Below, we report timings obtained for our revised
implementation (Table 10), as well as the measurements previously obtained for
the reference code (Table 9), for ease of comparison. We remark that all these
numbers refer to the latest DAGS parameters (i.e. those presented in Table 5);
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an implementation of Binary DAGS is currently underway. The timings were
acquired running the code 100 times and taking the average. We used CLANG
compiler version 8.0.0 and the compilation flags -O3 -g3 -Wall -march=native
-mtune=native -fomit-frame-pointer -ffast-math. The processor was an Intel(R)
Core(TM) i5-5300U CPU @ 2.30GHz.

Table 9: Timings for Reference Code.

Algorithm
Cycles

DAGS 1 DAGS 3 DAGS 5

Key Generation 2,540,311,986 4,320,206,006 7,371,897,084

Encapsulation 12,108,373 26,048,972 96,929,832

Decapsulation 215,710,551 463,849,016 1,150,831,538

Table 10: Timings for Revised Implementation.

Algorithm
Cycles

DAGS 1 DAGS 3 DAGS 5

Key Generation 408,342,881 1,560,879,328 2,061,117,168

Encapsulation 5,061,697 14,405,500 35,655,468

Decapsulation 192,083,862 392,435,142 388,316,593

As it is possible to observe, the performance is much faster than the previ-
ously reported numbers, despite the increase in parameters (and especially field
size). Furthermore, we are planning to obtain even faster timings by incorpo-
rating techniques from [2]. These include a dedicated version of the Karatsuba
multiplication algorithm (as detailed in [2]), as well as an application of LUP in-
version to compute the systematic form of the public key in an efficient manner.
Such an implementation is currently underway and results will appear in future
work.

6 Conclusion

DAGS was one of the two NIST proposals based on structured algebraic codes,
and the only one using Quasi-Dyadic codes (the other, BIG QUAKE, is based
on Quasi-Cyclic codes). In fact, DAGS is also the only proposal exploiting the
class of Generalized Srivastava codes. As such, we believe DAGS is already an
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interesting candidate. At the present time, neither of these two proposals was
selected to move forward to the second round of the standardization competition.
Indeed, BIG QUAKE seemed to privilege security over performance, at the cost
of selecting very conservative parameters, which gave way to large keys and
ended up pushing the scheme into the same category of “conservative” schemes
such as Classic McEliece (where a comparison favored the latter). The approach
for DAGS was the opposite: we chose “aggressive” parameters, with the goal
of reaching really interesting data sizes. In practice, this meant using m = 2
and this led to the Barelli-Couvreur attack. As a consequence, security concerns
where raised and this led to the decision of not selecting DAGS for the second
round.

In this paper, we investigated several aspects of DAGS, one of which is pre-
cisely its security. Exploiting the analysis given in [3], we have shown that two
of the updated parameter sets, namely DAGS 3 and DAGS 5, are already beyond
the scope of both attack approaches. The third set, that of DAGS 1, was unfor-
tunate as the imbalance between number of equations and number of variables
provided a way to instantiate the Gröbner basis technique effectively. Now that
an analysis is available, it was easy to select a new parameter set for DAGS 1,
which we trust will be the definitive one. We have then provided updated im-
plementation figures, which take into account a variety of ideas for speeding
up the code, such as vectorization, and dedicated techniques for Quasi-Dyadic
codes. Moreover, we presented two variants offering some tradeoffs. The first is
what we call “SimpleDAGS”, and it is essentially a conversion of the original
protocol to the Niederreiter framework. This allows for a cleaner protocol and a
simpler security analysis (as in [5]), at the cost of increased data requirements.
The second is a new set of binary parameters, which provides an advantage in
terms of security against known structural attacks, again at the cost of a slight
increase in data size. While an implementation is still underway for this set of
parameters, we expect them to provide much faster times, in line with similar
schemes such as Classic McEliece.
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