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1 INTRODUCTION
Physical attacks represent a major threat for embedded systems; they provide an e�ective way to

recover secret data and to bypass security protections, even for an attacker with a limited budget [31,

32]. Side-channel attacks consist in observing physical quantities (power, electromagnetic emissions,

execution time, etc.) while the system is performing an operation [26]. They can easily recover a secret

after a few hundreds of observations or less. In the literature, side-channel attacks are most of the time

associated to cryptography because they represent the most e�ective threat against implementations

of cryptography. In the previous decades, side-channel attacks targeted speci�c products such as

Smart Cards, and countermeasures were applied manually by dedicated security experts. Today

security components are embedded everywhere, and as a consequence side-channel attacks become

a threat for many of everyday life objects, for example light bulbs [32] or bootloaders [37]. Thus, there

is a strong need for automated solutions able to tackle everywhere the issue of side-channel attacks.

Many software and hardware countermeasures against side-channel attacks have been developed,

but most of them are ad hoc and require speci�c engineering developments considering either the
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hardware or the application code to protect (for example masking). Several works have shown that

polymorphism is an e�ective software countermeasure against side-channel attack [5, 8, 18, 19]. The

idea is to obtain a di�erent behaviour from one execution to the next one so that each side-channel

observation di�ers, thus e�ectively increasing the di�culty to recover the secret data. Tools have

been proposed by researchers to help developers to apply polymorphism on their code. Polymorphism

was implemented by generating code variants statically (multi-versioning) [7], or by generating code

variants at runtime [5, 18]. When variants are generated statically, the number of variants is limited by

the �nal size of the program, as generating more variants induces an increase of code size. By contrast,

tools that use runtime generation su�er from other drawbacks: (1) runtime code generation is usually

avoided in embedded systems because of the potential vulnerability introduced by the need to access

some segments of program memory with both write and execution permissions; (2) lightweight

runtime code generation lacks genericity, e.g., is applied on JIT-generated code only [24] or relies

on a Domain Speci�c Language [18].

In this paper, we present a generic approach supported by a tool, named Odo, which enables

to automatically protect any software component against side-channel attacks with runtime code

polymorphism. Our key idea is to base the polymorphic code generation on specialized runtime gen-

erators, which can only generate code for the targeted function to harden. Furthermore, our approach

leverages compilation to automatically generate the specialized generator for any function speci�ed

by the developer. Specialisation with compilation reduces the computational overhead incurred by

runtime code generation. It takes advantage of a compilation �ow to gather static information and to

optimize the code produced at runtime. Specialisation with compilation also enables a precise static al-

location of memory. As a consequence it makes possible the deployment of mitigations to the concerns

related to runtime code generation in embedded systems (i.e., restrict write permissions on program

memory), and the use of the proposed approach in embedded systems with limited memory resources.

At runtime, the specialized generators use the available static information and several runtime code

transformations to generate a di�erent code e�ciently and periodically. Some transformations have

already been shown e�ective against several types of side-channel attacks: register shu�ing, instruc-

tion shu�ing, semantic variants and insertion of noise instructions. The specialized generators can

also use a new and so-called dynamic noise instructions to introduce more variability even between

consecutive executions of the same generated code. As every transformation can be enabled/disabled

or tuned, the proposed approach o�ers a high level of polymorphism con�gurability.

In the experimental results, we �rst analyse in details an AES use case by considering 17 dif-

ferent con�gurations of polymorphism among the large set of possible con�gurations owing to

the con�gurability of our approach. We assess the security level of the hardened AES with two

di�erent evaluation criteria nowadays in use for the evaluation of side-channel countermeasures:

non-speci�c t-tests, to assess the absence of information leakage, and Correlation Power Analysis

(CPA). The security evaluation based on t-tests show that several levels of security can be reached.

We also analyse the impact of the di�erent transformations on security and performance. This gives

some insight on ways to satisfy some security and performance requirements. Finally, we present

a methodology to �nd a con�guration leading to a good trade-o� between security and performance.

Following it, we select 3 con�gurations with di�erent security and performance trade-o�s. The

results of a CPA attack that targets the weakest of these con�gurations in terms of security revealed

that attacking it is 13,000 folds as hard as attacking the reference unprotected implementation. As

our approach is fully automatic, we also evaluate the code size and runtime overheads considering

15 benchmarks and the 3 selected con�gurations. The evaluation shows that (1) the overheads are

small enough so that our approach is applicable even on highly constrained systems and (2) it is very



competitive compared to the state of the art. Indeed, code generation is highly e�cient and is an

order of magnitude faster than similar state-of-the-art approach.

Thus, experimental results demonstrate the versatility and the strength of our approach: it matches

the needs in terms of security, thanks to a high behavioural variability, while incurring an acceptable

performance overhead; its high con�gurability enables to adjust performance and security levels

for a particular case, such that polymorphism can be deployed easily on a wide variety of programs;

it removes the traditional concerns about runtime code generation, reaching the same con�dence

level as static multi-versionning approaches with lower overheads.

This rest of this paper is organized as follows: Section 2 gives some background on side-channel

attacks and existing software protections, and Section 3 details our threat model. Our approach and its

implementation in Odo are presented in Section 4; Section 5 is dedicated to the memory management.

The experimental evaluation is presented in Section 6. Section 7 is devoted to a comparison with the

closest existing approaches. Related work are presented in Section 8 before concluding in Section 9.

2 BACKGROUND
Cryptographic components that are currently in use in almost every computing system, such as AES or

RSA, are considered to be secure from the point of view of cryptanalysis, but Kocher et al. [26] showed

that an attacker can recover a secret cipher key by analysing the power consumption of a device. Such

attacks, named side-channel attacks, exploit the fact that the physical emissions of the device are

dependent on the executed instructions and the processed data. In order to extract exploitable informa-

tion from the measurements, the attacker computes a model of the energy consumption of the device

for every possible value of the secret she wants to disclose. Then, she compares the measurements

with the modelled values, typically using a correlation operator. The modelled value that matches best

the measurements then leads to the secret key value. The side-channel analysis takes a divide-and-

conquer approach so that the attack is computationally tractable: usually each data byte is recovered

separately. In our experimental validation, we used near-�eld electromagnetic measurements, but

the principle of the attack is similar for EM radiation and power consumption measurements.

The two main protection principles against these side-channel attacks are masking and hiding.

Masking consists in combining the sensitive (key dependent) intermediate computation data with

random values so that side-channel observations are unpredictable to the attacker. Hiding consists in

blurring the side-channel observations usually by introducing a kind of behavioural randomization,

for example in the amplitude of the measurements or with timing desynchronisations, in order to

increase the di�culty for an attacker to �nd exploitable information. Masking is an algorithmic

protection; it is currently the subject of a lot of research in cryptography because there is no general

solution to this protection principle; as a consequence masking schemes have to be designed carefully

for every sensitive algorithm. In practice, to the best of our knowledge, masking is still manually

applied on industry-grade secured components, which is error prone in addition to be costly. Plus,

higher-order attacks are e�ective against masked implementations [26]. Going one step further,

Moos & al showed that higher-order leakages can be turned into �rst-order leakages with a simple

�ltering, enabling the use of �rst-order attack on masked implementations [29]. In practice, masking

is combined with one or several hiding protections in industry-grade products.

Hiding countermeasures are various, like random delays [16, 17], random dynamic voltage and

frequency scaling [9, 36, 38], dynamic hardware modi�cation [33], or code polymorphism [18], which

is the countermeasure used in this paper. Contrary to masking that removes information leakage up to

a d-order, polymorphism do not remove information leakage from side-channel observations. Yet, it

was demonstrated as an e�ective solution to decrease the exploitability of information leakage so that
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Fig. 1. The overall compilation flow. The role of the user is reduced so that our approach can be deployed as
fast as possible on pre-existing code base. The polymorphic functions’ binaries are generated at runtime by
their respective SGPCs.

side-channel attacks are harder to perform [5, 7]. The work presented in this paper aims to provide

an automatic, user-friendly and secure solution to the use of polymorphism in embedded software.

3 THREAT MODEL
In this paper, we target side-channel attacks that exploit either power consumption or electromag-

netic emission. We assume that the attacker can control program inputs (e.g. to perform text chosen

attacks), and that she has access to the output of the program. Yet, we consider that the attacker

cannot get control over the random number generator. This assumption is common for side-channel

attacks countermeasures, as masking and hiding rely on the random number generator.

4 AUTOMATIC APPLICATION OF POLYMORPHISM
4.1 Overall flow
In this section, we give an overview of our approach, which is illustrated in Figure 1. The overall

approach is divided in two parts: a static part and a runtime one.

The user starts by annotating the target functions to be secured with polymorphism. Then, he

chooses a con�guration of polymorphism. The choice of such a con�guration will be discussed in

section 6.2. The annotated C �le (�le.c in Figure 1) is compiled by our tool, Odo, into another C �le

(�le.odo.c in Figure 1). The code of each function to secure has been replaced by: (1) a wrapper that

interfaces with the rest of the code, and (2) a dedicated generator. The wrapper handles the calls to

the dedicated generator and to the produced code. The wrapper is also in charge to make the link

between the original function, identically called by the rest of the code, and the polymorphic instance,

i.e. to call the polymorphic instance with the right arguments and to return its return value. One

dedicated generator is created for each polymorphic function; the implementation of the generator,

which is automatically generated by Odo, is entirely dependant on the initial code of the function,



and also depends on the polymorphic con�guration chosen by the user. We refer to these generators

as SGPC (Specialized Generator of Polymorphic Code) later on.

The produced C �le is then compiled along with the Odo-runtime library, which provides the

architecture support and the code transformation framework, into a binary �le that is then loaded

on the platform. A dedicated zone in RAM is statically reserved to host the runtime-generated code

of a polymorphic function. This memory zone is called an instance bu�er. In Figure 1, two functions

are annotated in the source code. As generators are specialized, there are one SGPC and one instance

bu�er for each annotated function.

At runtime, the SGPC is called by the wrapper whenever the code has to be regenerated in order

to generate a new polymorphic instance in the instance bu�er. Calling it regularly gives the property

of polymorphism to the function: its code changes at each call. The frequence of the regenerations

can be controlled by the user. We call regeneration period, denoted asω, the number of consecutive

executions of the same polymorphic instance before a new regeneration. When the SGPC is called,

the permissions of its instance bu�er are switched from execute-only to write-only, and switched

back at the end of generation. This ensures that the instance bu�er is never writable and executable

simultaneously (Section 5.3).

4.2 Generation of Specialized Generators of Polymorphic Code
In this section, we present how Odo generates a SGPC for a function chosen by the user. The runtime

code transformations implemented to leverage code polymorphism are presented in the next section.

Odo is a standard compiler, based on LLVM. It performs a normal compilation in order to produce

a suite of assembly instructions corresponding to the targeted function body, and then it generates

the SGPC dedicated to this function from this suite of instructions. The code of a SGPC is composed

of a sequence of calls to binary instruction emitters that targets the sequence of ARM assembly

instructions generated by the normal compilation �ow.

In Odo, the generation of SGPCs is executed by a new backend, which is fully identical to the ARM

backend except for the code emission pass. As only this pass di�ers between our backend and the ARM

backend, the suite of instructions from which a SGPC is built bene�ts from all previous optimisations

of the compiler. The emission pass emits the C code of the SGPCs of the annotated functions instead

of emitting assembly code. The SGPCs produced with polymorphism activated are quite similar to

the ones obtained with polymorphism disabled, the di�erences are highlighted in the next section.

Listing 3 represents the code generated by Odo for the function annotated in Listing 1, when poly-

morphism is deactivated. This code is composed of a SGPC forf_criticalnamedSGPC_f_critical
and a new function f_criticalwhich interfaces with the rest of the code. The SGPC of f_critical,

SGPC_f_critical, is designed to emit a suite of binary instructions identical to the assembly code

that LLVM would have generated for the function (Listing 2). The SGPC is composed of a suite

of function calls to the Odo-runtime library, including one call for each binary instruction to be

generated. The encoding of all the ARM Thumb1 and Thumb2 instructions are available through

the library. For instance, in Figure 3, the call eor_T2(r[4],r[1],r[0]) writes in the instance bu�er

the binary instruction eor r4,r1,r0. The su�x _T2 indicates that the Thumb2 encoding is used. All

the binary instruction emitters de�ned in the Odo-runtime.a library (Figure 1) take the instruction

operands, physical register names and/or constant values, as parameters, as would be for regular

machine instructions. This enables the SGPC to change the operands from one generation to another

one (e.g., r[4] can refer to a di�erent physical register).

In addition, the SGPC raises interruptions at the very beginning and the very end of its execution

so that the interrupt handler changes the access permissions of the dedicated instance bu�er. This

is illustrated by the calls to raise_interrupt_rm_A_add_B functions in Listing 3. In practice, these



interrupt calls are inlined using assembly primitives. The mechanisms enabling memory permissions

management are presented in details in Section 5.3.

Listing 1. Original C file annotated by the user

#pragma odo_polymorphic

int f_critical(int a, int b) {

int c = a^b;

a = a+b;

a = a % c;

return a;

}

Listing 2. ARM instructions suite generated by LLVM
for f_critical

f_critical: @r0←a; r1←b

push r4, pc

eor r4, r1, r0 @r4←r1^r0

add r0, r1, r0 @r0←r1+r0

sdiv r1, r0, r4 @r1←br0/r4c

mls r0, r1, r4, r0 @r0←r0−r1∗r4

pop r4, lr @return r0

Listing 3. The C file generated by Odo when all poly-
morphism transformations are turned o�

code code_f[CODE_SIZE];

void SGPC_f_critical() {

raise_interrupt_rm_X_add_W(code_f);

reg_t r[] = {0,1,2,3,4,5,6,...,12,13,14,15};

push_T2_callee_saved_registers();

eor_T2(r[4], r[1], r[0]);

add_T2(r[0], r[1], r[0]);

sdiv_T2(r[1], r[0], r[4]);

mls_T2(r[0], r[1], r[4], r[0]);

pop_T2_callee_saved_registers();

raise_interrupt_rm_W_add_X(code_f);

}

int f_critical(int a, int b) {

if (SHOULD_BE_REGENERATED())

SGPC_f_critical();

return code_f(a, b);

}

Listing 4. The C file generated by Odo when all polymor-
phism transformations are activated

code code_f[CODE_SIZE];

void SGPC_f_critical() {

raise_interrupt_rm_X_add_W(code_f);

reg_t r[] = {0,1,2,3,4,5,6,...,12,13,14,15};

shu�e_regs(r);
push_T2_callee_saved_registers();

gennoise(); variant_eor_T2(r[4], r[1], r[0]);

gennoise(); add_T2(r[0], r[1], r[0]);

gennoise(); sdiv_T2(r[1], r[0], r[4]);

gennoise(); mls_T2(r[0], r[1], r[4], r[0]);

gennoise(); pop_T2_callee_saved_registers();

raise_interrupt_rm_W_add_X(code_f);

}

int f_critical(int a, int b) {

if (SHOULD_BE_REGENERATED())

SGPC_f_critical();

return code_f(a, b);

}

Listing 5. Example of an ARM assembly code gen-
erated by SGPC_f_critical with all polymorphism
transformations activated.
r5 is used instead of r4 due to the register shu�ling, a
semantic variant is inserted for the exclusive or and
several noise instructions were inserted. No instruc-
tions were shu�led due to the dependencies between
the instructions.

f_critical:

push r5, r7, r8, r9, lr

eor r5, r1, #42 @semantic variant used

eor r5, r5, r0
eor r5, r5, #42
add r0, r1, r0

sub r9, #127 @noise instruction

sdiv r1, r0, r5

add r7, r9, #5 @noise instruction

eor r8, #3 @noise instruction

mls r0, r1, r5, r0

pop r5, r7, r8, r9, pc

4.3 Runtime code transformations and their generation
In this section, we present the code transformations used to generate a di�erent code each time the

SGPC is called. We explain how compilation �ow is leveraged to enhance the code transformations at



runtime without requiring costly code analysis. We also present how the code of the SGPC generated

by Odo di�ers when these transformations are activated.

Five di�erent transformations can be used by the SGPCs to vary the code of polymorphic instances:

(1) register shu�ing, which is a random permutation among the callee-saved registers, (2) instructions

shu�ing, whichconsists in emitting in a randomorder independent instructions, (3) semanticvariants,

which refers to a random replacement of some instructions by a sequence leading to the same result,

(4) noise instructions, which are useless instructions inserted in between the original instructions

of the function, and (5) dynamic noise, which consists of a sequence of noise instructions preceded

by a random forward jump so that the number of executed instructions varies at each execution.

Listing 4 shows the output of Odo for the input of Listing 1, when all polymorphic transformations

are activated. Listing 5 is an example of a polymorphic instance that can be generated by the SGPC

at runtime.

Register shu�ing. Contrary to what was proposed previously [18] where random register allo-

cation was performed at runtime, here register allocation is done statically by the compiler, resulting

in a better allocation and a faster runtime code generation. SGPCs make registers vary by relying on

a permutation, which is done at the beginning of each code generation (shuffle_regs in Listing 4),

between the general purpose callee saved registers (r4-r11), and which is a fast operation. Only

instructions that encode registers on 4 bits are used. The e�ects of register shu�ing are illustrated

in Listing 5: in this example, register r5 is used instead of register r4.

Instruction shu�ing. This transformation aims at shu�ing independent instructions prior to their

emission in the instance bu�er. The emitted binary instructions are �rst stored in a temporary bu�er,

named shu�ing bu�er, of con�gurable size (32 instructions in our experiments). Each binary instruc-

tion is associated with its defs and uses registers. Before an instruction is added to the shu�ing bu�er,

Odo-runtime performs a data�ow analysis, starting from the last instruction in the shu�ing bu�er, to

compute the list of possible insertion locations. A random location is then selected among the possible

insertion locations. The shu�ing bu�er is �ushed into the instance bu�er at the end of each basic block

orwhen it is full. The instructionshu�ingtransformation is transparentlycarriedoutbyOdo-runtime,

the code Odo generates for the SGPC is identical whether the transformation is activated or not.

Semantic variants. Some instructions can be replaced by a suite of instructions that achieves

the same result and leaves all the originally alive registers unmodi�ed (status registers included).

Odo-runtime currently provides semantic variants for instructions that are frequently used in cryp-

tographic ciphers to manipulate sensitive data: instructions belonging to the families of eor, sub,

load and store, it can be easily extended. Currently, each original instruction can be replaced by

1 to 5 variant instructions. Odo generates speci�c function calls to the Odo-runtime library for the

emission of these instructions when semantic variants is activated. In Listing 1, green bold calls

are in charge of the emission of semantic variants. At runtime, the SGPC emits the binary code of

one variant randomly chosen among available ones (which include the initial instruction). The call

variant_eor_T2(r[4], r[1], r[0]); from Listing 4 can generate the original instruction eor r4, r1,

r0 or, e.g., a sequence eor rX, r0, #rand; eor r4, r1, #rand; eor r4, r4, rX (as illustrated in

Listing 5) where rX is a randomly chosen free register and #rand is a random constant. Semantic

variants for arithmetic instructions (e.g., sub and xor) are based on arithmetic equivalences, variants

for stores use smaller stores like store-bytes or store-halfwords, and variants for loads use unaligned

loads in addition of load-bytes and load-halfwords.

Noise instructions. We call noise instructions functionally-useless instructions that are generated

in between the useful instructions. The insertion of noise instructions is performed by the calls to



gennoise (in blue italic in Listing 4). Similar to other transformations, Odo generates such calls only

when this code transformation is activated.

The side-channel pro�le of noise instructions should be as close as possible to the pro�le of useful

instructions, so that the attacker cannot distinguish them and �lter them out from the side-channel

measurements [21]. We selected noise instructions among instructions that are often used in pro-

grams, such as addition, subtraction, exclusive or, and load. The user can specify a particular range

of addresses for the loads, which can allow random loads from the AES SBox for instance. Otherwise,

a small static random table is used.

Table 1. Probability models that control
the number of noise instructions to be
inserted in between two original instruc-
tions. Both models are configurable by
the user. The high-var model provides
high variance while keeping the mean
quite low.

low-var model
P[X =0]=1−p

∀i ∈ [1,N ],P[X =i]=
p

N
high-var model

P[X =0]=1−p

∀i ∈ [0,N [,P[X =2
i
]=p×2−(i+1)

P[X =2
N
]=p×2−N

Each insertion of noise instructions is guided by a proba-

bility model. Odo-runtime currently o�ers two di�erent con-

�gurable models. In both models, a random draw determines

if noise instructions are inserted or not. The models are pre-

sented in Table 1. The number p is the probability of insertion

of one or more noise instructions, and P[X=i] represents the

probability of inserting i noise instructions. The parameter N
controls the maximum number of noise instructions that can

be inserted at once. The �rst model, named low-var, follows

a uniform probability law, combined with the random draw of

probability p. It has a low variance which implies that the over-

all execution time of the function will always remain relatively

close to the theoretical mean. The second model, referred as

high-var, was speci�cally designed to have a much higher

variance and a comparable mean. It is based on a binomial prob-

ability law. The number of inserted instructions, if not null, is

2 to the power of the number obtained from the binomial law.

The variables N and p as well as the model can be chosen by

the user when choosing a polymorphism con�guration. The

mean value of a model impacts the overall execution time therefore it should be kept low for the sake

of performance, whereas having a high variance increases the attacks complexity [28]. The low-var
model is interesting for time constrained applications where the execution time should not vary too

much, otherwise the high-var model should be preferred. The high level of con�gurability of the

insertion of noise instructions allows the user to tune the level of variability according to his will.

At every insertion of one noise instruction, the SGPC randomly chooses one instruction among

add, sub, eor and load instructions. Then, it randomly chooses the operands and allocates a free

register for the destination register.

Dynamic noise. We call dynamic noise a dynamic mechanism that provides a variable execution

from one execution to another even without runtime code re-generation. We use a sequence of noise

instructions whose starting point varies from one execution to another thanks to a random branching

mechanism: a forward jump whose size is randomly chosen precedes the noise instructions sequence

and skips a random number of noise instructions of the sequence. Such sequences for dynamic

noises are inserted by the SGPC during runtime code generation following the same procedure as the

insertion of noise instructions. The di�erence resides in the fact that at every insertion of one noise

instruction, the SGPC randomly chooses to insert either an add, a sub, an eor, a load, or a dynamic

noise sequence instead. Each time the SGPC is executed, di�erent sequences of dynamic noise are

generated, at variable locations in the code of the generated polymorphic instance.

This transformation has two advantages. First, it enables to partly decorrelate the executed

code to what happens during the generation, preventing an attacker to gain precise knowledge



of the generated code during code generation. Second, as the execution of the same polymorphic

instance varies, it enable to lowers the constraints on the frequency of regeneration owing to security

requirements. As a consequence, the approach can be used even on systems that cannot a�ord to

regenerate the code too frequently.

@ R7 = number of bytes to be skipped

and R7, Rrand, 3� 2

@ 2 must be added to R7 since, during the

@ add R7 PC R7 instruction, PC points

@ to the bx inst whose size is 2 bytes.

@ Also, the least signi�cant bit must be

@ set in the address (Thumb mode)

@ which gives an o�set of 3

add R7, R7, 3

add R7, PC, R7

@ R7 = address of targeted noise inst

bx R7 @ jump into the sequence

add R7, R8, #41 @ 4 noise instructions

xor R8, R10, R7

load R7, R4, #34

add R8, R8, #101

Fig. 2. Exemple of sequence of instructions
produced with dynamic noise. The value of
Rrand changes regularly.

The jump size of every jump associated with a dynamic

noise sequence of a polymorphic instance must be e�-

ciently determined and must randomly vary from one ex-

ecution of the polymorphic instance to another one. The

size of all jumps associated with dynamic noise sequences

of one polymorphic instance should also be di�erent dur-

ing the same execution. To this end, a register is reserved

to hold a random number used to e�ciently compute a

random jump size at every execution of every dynamic

noise sequence throughout an execution of a polymorphic

instance. Also, the number of instructions in a dynamic

noise sequence can only be a power of two. The jump size

is then computed by masking the random value held in the

reserved register with an immediate, by using a Boolean

and. Figure 2 shows an example of such sequence with

4 noise instructions. The part before the bx handles the

branch o�set
1
, and 4 randomly chosen noise instructions

are generated after the bx. Although the number of noise

instructions in the sequence is �xed, it is con�gurable by

the user, even within a function. As an example, in our

experiments, we selected a dynamic noise sequence size

of 32 instructions at the beginning and at the end of the function, and of 4 instructions in the middle.

The rationale behind this choice is the need of a higher variability at the beginning and the end of the

function making the synchronisation with the function execution more di�cult.

The register that holds random values is managed as follows. A dedicated place is reserved in

memory to hold a seed value that will vary from one execution to another one. At the beginning

of every execution of the function (polymorphic instance), the stored value of the seed is loaded to

initialise a fast PRNG. The fast PRNG is then used to set a new random value in the reserved register.

Then, throughout the execution, the register value can be updated by some other noise instructions

(e.g, a noise addition instruction inserted by the SGPC can add a random immediate to the register).

This makes the value of the register change throughout the execution of the function. Finally, at the

end of any execution of the function, the value of the register is stored, it will be used as a seed for

the fast PRNG at the beginning of the next execution.

Theoretical number of variants. To give an idea of the variability achievable by our approach, one

can easily compute an underestimate of the theoretical number of variants Nv . Considering only

the insertion of noise instruction, with the low-var model, Nv ≥ (
∑N

i=04
i
)
number_instructions−1

. The 4

comes from the fact that noise instructions are selected among 4 di�erent instructions (add, sub,
eor, load). Taking p=1/7 and N=4 this gives Nv ≥ 341

number_instructions−1>6×1022 for a code of

only 10 instructions, and roughly 10
704

for a code of 278 instructions as the aes T-table used later in

the experimental evaluation. This number is an underestimated number of variants as it does only

take into account the classic noise (not the dynamic noise nor the other transformations), and it does

1
For platforms that do not support add with PC, 2 additional instructions are required to compute the branch address.



not take into account the randomness used within the noise instructions (as their immediate values

are randomly chosen).

Management of register availability. The insertion of noise instructions and the use of semantic

variants may require free registers. A liveness analysis performed statically by the compiler is used

to allocate registers at low cost at runtime for these instructions.

During the compilation of SGPCs, Odo performs a static register allocation ignoring any polymor-

phism aspect. Then, Odo performs a backward register liveness analysis right before code emission of

the SGPC. During the code emission of the SGPC, Odo emits additional calls throughout the SGPC’s

code in order to transfer the liveness information. These calls indicate which registers are free (or

not) in between two useful instructions. In our SGPC example in Listing 4, add uses r1, thus r1 is

alive right before this instruction. Then sdiv de�nes r1 without using it. Thus r1 is dead before the

sdiv instruction and alive right after. As a consequence, r1 is free to be used (written) between the

add instruction and sdiv one.

Thanks to these calls, the SGPC is made aware of the liveness state at any point of the program. It

can then select free registers when needed. All registers allocated for the noise instructions and for

the semantic variants are chosen randomly among free registers. As the extra registers used in the

sequence of instructions resulting from these polymorphic transformations are dead immediately

after their use, the static liveness analysis remains unmodi�ed whatever the extra registers used.

Branch management. Target o�sets for branch instructions are computed at runtime, as the

insertion of noise instructions and the use of semantic variants make the size of the code vary. If the

o�set becomes too large for the initially selected encoding, the SGPC chooses another encoding that

allows larger target o�sets.

5 MEMORY MANAGEMENT
This section presents how program memory is managed in order to make our approach usable

in practice on embedded systems with limited memory resources. More precisely, the memory

management must o�er a solution to the following constraints:

• targeted platforms can be constrained embedded systems without dynamic memory man-

agement (i.e., no malloc) and that have a limited amount of memory,

• the use of noise instructions and semantic variants makes the size of the generated code vary

from one generation to another,

• the instance bu�er has to be writable during runtime code generation and executable during

execution, but both permissions must not be activated at the same time.

The �rst constraint makes the answer to the second one not straightforward: the absence of

dynamic memory allocation prevents from allocating an instance bu�er of the right size at each

runtime code generation. Moreover, it is not acceptable to systematically allocate an instance bu�er

of the possible largest code size, as it would be a huge waste of memory; it would also make the

approach unusable on systems with severe memory limitations. Statically allocating an instance

bu�er whose size is lower than the worst case size implies that bu�er over�ows could occur at

runtime, which threatens both the functionality and the security of the entire platform.

As a solution, we �rst exploit the static knowledge of the reference assembly instructions of the

function in order to:

(1) Limit the amount of memory by statically allocating a realistic amount of memory for instance

bu�ers without impacting the variability obtained with code polymorphism.

(2) Prevent bu�er over�ows by dynamically guaranteeing that the generated code �ts in its

instance bu�er. Our approach is based on a detection mechanism that adapts the insertion of



noise instructions to the remaining space and to the size of the remaining useful instructions to

generate, in case a bu�er over�ow should occur. Furthermore, we show how to guarantee that

the probability of reaching the conditions of a bu�er over�ow remains below a con�gurable

threshold.

(3) Guarantee that only the legitimate SGPC can write into the instance bu�er, and no other

parts of the program nor other programs. This is achieved by a dedicated management of

the memory permissions of each instance bu�er, and leveraged by the specialisation of the

SGPCs along with the static allocation of their associated instance bu�ers.

It is important to allocate a code bu�er of realistic size, so that the prevention of bu�er over�ows

does not introduce a bias in the probabilistic models used to implement polymorphism, i.e., so that

no vulnerability is introduced. For example, if considering only the insertion of noise instructions: if

the allocated size allows not more than the original instructions to be emitted, noise instructions will

never be emitted, and the polymorphic instance will not present any behavioural variability. More

generally, our objective is to control the likelihood that a bias is introduced in the probability models

used in the polymorphic transformations due to the restrictions on the size of the allocated code

bu�er, in order to avoid exploitations of such biases by attackers.

5.1 Allocation of instance bu�ers
The allocated size of an instance bu�er is computed during the generation of the associated SGPC,

by computing the size required for useful instructions and the size required for noise instructions.

For useful instructions, Odo computes the sum Su of the size of the useful instructions, considering

the largest semantic equivalents in case of available semantic variant. For noise instructions, Odo

computes the size Sn to allocate by considering the probability law SP that results of the ni−1 draws

of law P (the law used to determine the number of noise instructions to be inserted), where ni is the

number of original instructions. Given SP, we can compute the size to allocate so that the probability

of having an over�ow is below a given threshold: this size Sn corresponds to the size of a noise

instruction multiplied by the smallest integer i that checks the condition

∑∞
j=i+1SP[j]< threshold .

Odo automatically computes SP from the knowledge of P, and then �nds the appropriate size

to allocate considering either a threshold provided by the user, or a default threshold set to 10
−6

.

As a result, with the default threshold, the probability of directly generating a code that �ts into

the allocated memory is more than 999,999 chances over a million, whatever the original size of

the code. Thus, the probability to introduce an exploitable bias in the probability models used for

the polymorphic runtime code transformations is controlled such that this could not lead to an

exploitable vulnerability. Moreover, the SGPC prevents bu�er over�ows at runtime, as explained in

next section, to guarantee that the code always �ts into the allocated instance bu�er.

The gap in terms of size that results from the proposed allocation policy instead of a worst case

allocation policy is huge. Figure 3 illustrates that the gap is asymptotically constant as the number

of original instructions increases; for the high-var model considered here, and considering one

probability draw following P in between each pair of consecutive instructions, the di�erence of the

allocated sizes represents about 58 bytes for each original instruction of the function, while about

10 bytes are saved for each original instruction for the low-var model. Considering an original

function of 200 instructions, this results in a di�erence of 2kB for the low-var model and 11.6kB for

the high-var model considered.

5.2 Prevention of bu�er overflows
Su , the maximal size of the useful instructions, is statically computed by Odo. At runtime, the SGPC

initialises with Su a variable in charge of keeping track of the remaining needed space for the useful



instructions and the longest semantic variants. This variable is decremented throughout the code

generation, after the emission of each useful instruction. Moreover, at every generation of noise

instructions, the noise instructions generator computes the maximum number of instructions it

can insert by considering this variable and the available bu�er space. This information enables the

runtime to constrain the generation of noise instructions to guarantee that no over�ow can occur.

5.3 Management of the memory access permissions on code bu�ers

Fig. 3. Di�erence in terms of bytes per instruction be-
tween our policy (with threshold = 10

−6) and worst case
policy. For the high-var model taken as an example, this
di�erence is approximately equal to 58 bytes per in-
struction. For a code of 500 instructions, this represents
a di�erence of 29kB.

Runtime code generation requires that code

bu�ers are accessed with write and execute per-

missions, possibly exclusively. However, in em-

bedded systems, write permissions are system-

atically disabled on program memory to prevent

the exploitation of bu�er over�ows attacks. To

overcome this issue, JITs typically provide an ac-

cess to program memory exclusively with write

or execute permissions [14, 15, 25]. In this work,

we follow the same approach, but in addition the

bu�er of the polymorphic instance is protected

so that only the legitimate SGPC can write into

it.

In this section, we propose a mitigation tech-

nique based on the facts that the instance bu�ers

are statically allocated, and that each instance

bu�er has a unique associated SGPC. We rely

on the memory protection unit (MPU) of the

target platform to switch access permissions re-

lated to the instance bu�er from execute-only to

write-only (and vice-versa) whenever needed.

By default, a code bu�er allocated for a function only has the execute permission. At the beginning of

the SGPC execution, the SGPC raises an interruption in order to be granted by the write permission

(Figure 4). The interruption handler checks the address where the interrupt has been raised. If the

check passes, it exchanges the execute permission with the write one only for the instance bu�er

associated with the requesting SGPC. Thanks to the static allocation of the instance bu�ers, the

interrupt handler is made aware of which memory zone is associated with which SGPC (to allow a

switch of permissions only for correct pairs of interruption address and memory zone) and of the

addresses of each instance bu�er (to switch the permissions for only a bu�er zone). At the end of

the SGPC, the write permission is removed and the execution permission added by following the

same principle. This solution is lightweight (see section 6.3.2), and can be easily extended to systems

that provide a MMU instead of a MPU. It is suitable only if the system does not have preemptive

multitasking however.

We discuss now the cases where the system support is di�erent from the one we used. For systems

with OS that have preemptive multitasking, the OS must be in charge of managing the access

permissions to guarantee exclusive access to the code bu�ers. Just as the interrupt handler in the

presented approach, the OS will take advantage of the information statically available to perform

legitimacy validation. For any platform without Memory Protection Unit (MPU) nor OS, control �ow

integrity techniques can be used to ensure that an instance bu�er can (1) only be modi�ed by the

dedicated SGPC and (2) only be jumped to from the address where the polymorphic code is called,



SGPC1:
0x00 push r4 … lr
0x04 svc 1 ;raise interrupt

  ;with code 1
…
0x62 svc 1 ;raise interrupt

  ;with code 1
0x64 pop r4 … pc

Interrupt handler:
switch(interrupt code) {
    case 1: /*a SGPC asks for switching permissions*/
        if interrupt raised at 0x04
            switch permissions of instance buffer
            of function 1 from X only to W only
            resume execution at 0x06
        if interrupt raised at 0x62
            switch permissions of instance buffer 
            of function 1 from W only to X only
            resume execution at 0x64
        goto error

An interrupt is raised at the 
beginning and at the end of

 SGPC to switch permissions

Interrupt handler always 
checks that the switch is

requested from a legitimate
address, and chooses the

 action to perform 
according to this address

Begin and end addresses
of the instance buffer

are known and hardcoded

Fig. 4. Permissions handling using interruptions and the MPU (Memory Protection Unit). The instance bu�ers
are never writable (W) and executable (X) simultaneously. Their permissions can be switched thanks to the
static allocation of the instance bu�ers and the specialisation of SGPCs that allow comparing the address
where the interrupt has been raised to hardcoded values.

e.g., in the case of Listing 4 the address corresponding to the call code_f(a,b). The principle is to

insert checks before each stores and each branches (direct or indirect) in order to verify the validity

of any write to a code bu�er and of any jump into a code bu�er. This idea was presented in the CFI

extension called SMAC presented by Abadi et al. [3], and induces a much higher performance cost.

6 EXPERIMENTAL EVALUATION
6.1 Experimental setup
We considered a constrained embedded platform. We used a STM32VLDISCOVERY board from

STMicroelectronics, �tted with a Cortex-M3 core running at 24 MHz, 8 kB of RAM, and 128 kB of

�ash memory. It does not provide any hardware security mechanisms against side-channel attacks.

Our setup for the measurements of electromagnetic emission includes a PicoScope 2208A, an

EM probe RF-U 5-2 from Langer and a PA 303 preampli�er from Langer. The PicoScope features a

200 MHz bandwidth and a vertical resolution of 8 bits. The sampling rate is 500 Msample/s (which

gives 20.83 samples per CPU cycle), and 24500 samples were recorded for each measurement.

For the study on AES below, both for the t-test and CPA, a trigger signal was set via a GPIO pin on

the device at the beginning of the AES encryption, and after runtime code generation by the SGPC, to

ease the temporal alignment of the measurement traces. We veri�ed that our measurements covered

the full time window of interest, both for the reference and for the polymorphic implementations of

AES. Note that the SGPC does not manipulate the secret encryption key, and hence would not be

vulnerable to the side-channel attacks used here. Note also that our trigger setup makes the attack

easier than it would be in practice for an attacker, as she would have to align the measurements.

Odo is based on LLVM 3.8.0. All C �les produced by Odo were compiled using the -O2 optimisation

level, which o�ers a good compromise between code size and performance. Because of the limited

memory available on our target, we had to compile the rabbit and salsa20 benchmarks using the -O1
optimisation level to produce code whose size is more suitable for the platform. All the programs

executed by the platform (the initial ones or the ones generated by Odo) were cross-compiled with the

LLVM/clang toolchain in version 3.8.0 using the compilation options -O2 -static -mthumb -mcpu=
cortex-m3. Execution times were measured as a number of processor clock cycles, . The size of the

programs (data, text, and bss sections) was measured in bytes with the arm-none-eabi-size tool

from the gcc toolchain.

As previously explained, the level of variability provided by Odo can be con�gured with trans-

formations to use and their potential parameters. We �rst analyse the performance and security



Table 2. Test-cases considered for the evaluation. Our approach is fast and easy to deploy, whatever the nature
of the program to be hardened, as it is carried out through compilation.

Nature of benchmark List of benchmarks

8 block ciphers AES 8 bits, AES T-table, camellia, 3 des, xtea, present, misty 1, simon.

4 stream ciphers arc4, rabbit, salsa20, trivium.

2 hash functions sha256, md5.

1 general function bytecompare from verifyPin.

of 17 di�erent con�gurations on the AES T-table, and we discuss the possible trade-o�s between

security and induced overheads. Then, we apply 4 polymorphic con�gurations for hardening 15

representative benchmarks (Table 2). These 4 selected con�gurations include a con�guration with

polymorphism disabled, and 3 con�gurations using di�erent variability options. They are used to

evaluate the performance and code size overheads for none to high variability at runtime.

In the following, con�gurations are designated with acronyms of the transformations used,

presented in Table 3.

6.2 Use case study: AES Table 3. Acronyms used for config-
uration names

RS register shu�ing

IS instruction shu�ing

SV semantic variants

N1 noise instructions

without dynamic noise,

probability model

low-var, p=1/7, N=4

N2 noise instructions

without dynamic noise,

probability model

high-var, p=1/4, N=4

DN1 noise instructions

with dynamic noise,

probability model

low-var, p=1/7, N=4

DN2 noise instructions

with dynamic noise,

probability model

high-var, p=1/4, N=4

This section presents a performance and security study of the AES

implementation from the mbed TLS library [2] (AES T-table in our

benchmarks). Nowadays, this implementation is widely used in

many embedded systems from IoT devices to mobile and desktop

computers, and its original implementation does not feature any

countermeasureagainst side-channelattacks.Thesecurityagainst

side-channel attacks of the AES cipher has been studied for several

years. It is often used as a reference for security evaluation.

6.2.1 T-test based security evaluation.

Presentation of the t-test. The t-test is a statistical method ap-

plied on two sets of side-channel measurements in order to de-

termine if the two sets are statistically distinguishable. In the

case of side-channel attacks, the evidence of distinguishability

reveals the presence of an information leakage, which could po-

tentially lead to a successful attack, for example by means of a

CPA. The t-test tries to di�erentiate the means and standard devi-

ation of the two sets of measurements by computing values called

t-statistic. These values are computed all along the measurement

traces. If they remain in between ]-4.5,4.5[, the two sets are con-

sidered to be statistically non-distinguishable with a con�dence

of 99.999% [23, 34].

In this paper we use the non-speci�c t-test [34], because it is independent of the underlying

architecture and of the model of an attack. The t-test was performed by measuring the electromagnetic

emission of our device during the execution of two randomly interleaved groups of 10
4

encryptions.

The two groups of measurement traces gather the electromagnetic emissions retrieved during

encryptions of random plaintexts and �xed plaintexts respectively.



Analysis of the e�ects of the transformations on the t-value. We performed 10 times the t-test, for 17

di�erent con�gurations to evaluate the resulting security of the AES T-table on our platform. For

all con�gurations, the period of regeneration was set to 1. For each process, we picked the maximal

t-value (in absolute). In the following, t-value refers to the maximal for one t-test. When this value is

bellow 4.5 the con�guration passes the t-test.

Figure 5 shows a violin plot of the t-values obtained for the 10 t-tests performed for each con�gura-

tion. A violin plot shows the minimal, maximal as well as the median of the maximal t-values obtained

during the 10 t-tests as well as the distribution of the maximal t-values. Without any protection,

the t-test fails and the maximal t-values are very high: the con�guration none exhibit a median of

the maximum t-values of 110. The 5 polymorphic transformations we deploy have two goals: to

introduce desynchronisation (instruction shu�ing, semantic variants, noise and dynamic noise) and

to change the pro�le of the leakage (register shu�ing, semantic variants, noise and dynamic noise).

As more transformations get activated, the number of passed t-tests increases, and the maximal

t-values strongly decrease. As polymorphism does not remove the leakage, one could expect all

the t-tests to fail. However, we see that as the variability of the code grows, the maximal t-values

decrease progressively, and that they quickly reach a point where more t-tests pass than fail. One

of the con�guration even passes all the 10 t-tests, which means that all t-tests failed to detect the

hidden leakage. Note that we limited the number of con�gurations for the sake of clarity, but as our

approach is fully con�gurable, one could get other con�gurations that are close to the studied ones,

or with even more variability.

Each of the polymorphic transformations used in isolation has a di�erent impact on security

(Fig. 5.) Register shu�ing seems to have very little impact on the t-value on our platform but may

be of interest for other platforms as the register index can have an impact on measurements [35].

Instruction shu�ing has an higher impact on reducing the t-value than register shu�ing, but has a

lower impact than semantic variants. Noise instructions have a higher impact than semantic variants

on reducing the t-value, and dynamic noise has the highest impact. When transformations are

combined, the resulting e�ect on the t-value is harder to analyse, their combination can exhibit some

complex interactions. For instance, dynamic noise could lower the e�ect of instruction shu�ing

as it disables instruction shu�ing around the dynamic noise sequences. Yet, alone or combined,

dynamic noise seems to be the one that has the higher impact on the t-value: it clearly increases the

number of passed t-tests compared to noise instructions, as DN1 and DN2 pass more t-tests than N1

and N2 respectively. We also note that using a stronger noise model (high-var instead of low-var)

improves the observed security; DN2 and N2 show a better security than DN1 and N1 respectively.

The best con�guration is the one where all transformations are activated. However, as the impact

of transformations depends on the targeted application (mix of instructions, available semantic

variants, etc.), the impact of a con�guration on security depends on the platform and also on the

application.

Analysis of the e�ects of dynamic noise on the t-value as the period of regeneration increases. We

study more precisely the e�ect of dynamic noise on the observed maximal t-value. In particular, we

show that dynamic noise enables the user to increase the period of regeneration way more than the

user could using non-dynamic noise.

Figure 6 shows how the median of the maximum t-values gathered on 10 t-tests evolves asω grows,

for the N1, N2, DN1 and DN2 con�gurations. Please note the log scales, both for y-axis and x-axis.

Con�gurations DN1 and DN2 show better security than N1 and N2 respectively for all the tested

period of regenerations. In addition, the con�gurations where dynamic noise is activated maintain

the security well better than the ones where it is not activated. For example, while N2 and DN1

show similar values for small periods of regenerations, the security provided by N2 starts to drop



R
S

n
o
n
e IS S
V

R
S

+
IS

+
S

V

N
1

R
S

+
S

V
+

D
N

1

IS
+

S
V

+
D

N
1

D
N

1

N
2

R
S

+
IS

+
S

V
+

D
N

1

R
S

+
S

V
+

D
N

2

D
N

2

R
S

+
IS

+
D

N
1

R
S

+
IS

+
D

N
2

IS
+

S
V

+
D

N
2

R
S

+
IS

+
S

V
+

D
N

2

4.5

8

16

32

64

128

M
a
x
im

u
m

 t
-v

a
lu

e
 o

b
ta

in
e
d

 (
lo

w
e
r 

is
 b

e
tt

e
r)

Fig. 5. Maximum t-values obtained for 10 t-tests for 17 dif-
ferent configurations. The distribution of these t-values is
represented, as well as the minimum, maximum and median.
The configurations are sorted by the medians obtained. Sev-
eral configurations passed the t-test more times than they
failed it, and one configuration passed all the t-tests.

Fig. 6. Observed maximum t-values (taken as a
median of the maximum t-values of 10 t-tests)
for configurations without and with dynamic
noise, in function of the period of regeneration.
The configurations with dynamic noise show
overall be�er security, and be�er preserve secu-
rity as the period regeneration increases.

from a period of 100, while the security provided by DN1 starts to drop from a period of 1000. The

DN2 con�guration exhibits an even greater ability to maintain the security level when the period

increases, as the t-values observed start to increase signi�cantly only for periods greater than 8000.

Thus, the dynamic noise makes the choice of the period of regeneration wider, which may be

useful to lower the generation cost.

6.2.2 Performance and code size overheads. We discuss in this section the impact of the di�erent

transformations on performance and code size. We measured performance overheads in terms of

relative execution time w.r.t. the reference code with and without taking into account the generation

cost. Execution time overhead denotes the ratio of the averaged execution time of 10
4

variants without

the code generation cost to the execution time of the reference code. Global overhead refers to the

ratio of the execution time averaged with 10
4

variants, generation time included, to the reference

execution time. For evaluating the global overheads, we considered di�erent regeneration periods.

We also measured the code size overhead as the relative code size w.r.t. the reference code.

Execution speed and code size. The Table 4 presents the execution time overheads, global overheads

with various period of regeneration, generation time in clock cycles and size overheads obtained for

the 17 con�gurations.

The global overheads are prohibitive whenω =1, this period of regeneration is probably of interest

only if the generation cost can be hidden during waiting times. Yet, the global overheads become

more reasonable as the period of regeneration is increased.

The di�erent transformations in�uence di�erently the overheads. Activating instructions shu�ing

in addition to some other transformations roughly doubles the generation time. For instance, the

generation time is 82077 cycles for RS+SV+DN1 163873 cycles for RS+IS+SV+DN1, and 107820 cycles

for RS+SV+DN2 218909 cycles for RS+IS+SV+DN2. Yet, this transformation has very little in�uence

on execution time overhead. It also has little in�uence on size overhead. Thus, it is of interest if

generation cost can be hidden, or if the period of regeneration is large enough to minimize its impact



Table 4. Overheads obtained in execution time and size for all configurations. "Execution" corresponds to the
execution time overhead, "Global" to the global overhead, "Gen time" to the generation time in clock cycles,
and "Size" to the size overhead.ω corresponds to the period of regeneration.

Con�guration RS none IS SV RS+IS N1 RS+SV IS+SV DN1

+SV +DN1 +DN1

Execution 1.48 1.34 1.34 2.09 2.53 2.08 3.56 3.07 2.31

Globalω=1 8.39 6.91 37.51 17.04 70.41 43.38 67.43 115.44 49.58

Globalω=25 1.76 1.57 2.79 2.68 5.24 3.73 6.12 7.56 4.20

Globalω=100 1.55 1.40 1.70 2.24 3.20 2.49 4.20 4.19 2.78

Globalω=250 1.51 1.37 1.49 2.15 2.80 2.24 3.82 3.52 2.50

Globalω=1000 1.49 1.35 1.38 2.10 2.59 2.12 3.62 3.18 2.35

Gen time (cycles) 8,876 7,147 46,476 19,216 87,228 53,077 82,077 144,402 60,750

Size 1.54 1.38 1.62 1.56 1.84 2.11 2.41 2.36 2.11

Con�guration N2 RS+IS RS+SV DN2 RS+IS RS+IS IS+SV RS+IS

+SV+DN1 +DN2 +DN1 +DN2 +DN2 +SV+DN2

Execution 3.39 3.60 4.97 3.71 2.49 3.90 4.48 5.02

Globalω=1 58.93 131.13 88.87 71.06 99.29 143.25 159.57 175.38

Globalω=25 5.61 8.71 8.32 6.41 6.36 9.48 10.68 11.83

Globalω=100 3.95 4.88 5.81 4.39 3.46 5.30 6.03 6.72

Globalω=250 3.61 4.11 5.30 3.98 2.88 4.46 5.10 5.70

Globalω=1000 3.45 3.73 5.05 3.78 2.59 4.04 4.64 5.19

Gen time (cycles) 71,366 163,873 107,820 86,540 124,391 179,065 199,283 218,909

Size 2.19 2.43 2.49 2.18 2.34 2.42 2.44 2.51

on performance. Activating register shu�ing has a low impact on both execution time and the lowest

impact on the global overhead as it bene�ts from the static analysis performed during the generation

of the SGPC.

Semantic variants impact both the execution time, generation time and size overhead. Its impact

has to be considered speci�cally for a use-case, as from one use-case to another the number of

instructions (and their positions in the code) for which variants are available varies. Finally, the

overheads due to noise and dynamic noise depend a lot on the probability law P used. For instance,

the frequency at which the generator executes the code responsible for inserting strictly more than 0

noise instructions directly depends on the value of p.

Impact of dynamic noise on overheads. Figure 7 shows the global overheads obtained with and

without dynamic noise whenω varies from 1 (top left) to 10000 (bottom right) plotted as a function of

the security provided (maximal t-value). The sweet spot is at the bottom left, where hardened codes

are the most secure and have the lowest overheads.

The con�gurations with dynamic noise get closer to the sweet sport than the ones with classic noise.

In particular, at a given global overhead, they o�er a much better security than the con�guration

with classic noise. This shows that dynamic noise relaxes the security constraints on the period of

regeneration. Thus, dynamic noise allows to reduce the regeneration period i.e. the code generation

cost.

6.2.3 Trade-o� between security and performance. The con�gurability of our approach allows

to explore di�erent possibilities to �nd a trade-o� that �ts the user’s constraints, by measuring

performance overheads and security levels (with a metric like the maximum t-values for instance)

for one’s particular platform and application.



Fig. 7. Global overheads obtained with increas-
ingω values with and without dynamic noise in
function of the obtained maximal t-value. The
configurations with dynamic noise show similar
or be�er overheads at a given security level com-
pared to the ones with classic noise. Dynamic
noise allows to reach much be�er security at a
given overhead.

To �nd a good trade-o�, the user can start by select-

ing some con�gurations considering the code gener-

ation impact on his application and its performance

constraints. For instance, if the generation cost can be

hidden, then instructions shu�ing really is an interest-

ing option as it increases security without increasing

execution time. On the other hand, if the generation

cost cannot be hidden, this option may be eliminated to

limit the global overhead, and dynamic noise is a better

choice as it enables to choose a larger re-generation

period.

Then, the user can make some measurements of per-

formance and security on his platform for the selected

con�gurations. Then he can eliminate the con�gura-

tions that do not match his constraints in terms of per-

formance (e.g. the ones that lead to a too slow execution

or a too large memory overhead). Finally, he can choose

the con�guration that shows the best security and can

evaluate it with other security metrics (a CPA success

rate for instance) if he wants.

For the rest of the evaluation conducted in this paper,

we chose 4 con�gurations that have quite di�erent

characteristics. First, we chose the con�guration none

(no variability) as it allows to show the minimal overheads induced by the generation and the

execution of runtime generated code. Then, we considered a con�guration named low suitable for

a highly constraint environment. The low con�guration includes DN1 with omeдa=250, as it has

limited performance impact and is on the bottom left of the DN1 curve of Figure 7. Then, we chose the

con�guration RS+IS+DN1 as a medium con�guration, that supposes that the generation cost is hidden

during waiting time. It has an execution time overhead close to the one of the low con�guration,

but showed a better security level. It induces however a generation time way larger than the low
con�guration. Finally, we chose the RS+IS+SV+DN2 con�guration as a high con�guration, because

this con�guration passed all the t-tests. Its impact on execution time and on generation time is much

larger than the other con�gurations.

The parameters of the selected con�gurations are recalled hereafter:

none - No variability option.

low - Activated options are register shu�ing, insertion of noise instructions with the probability

model low-var (p=1/7, N=4) with dynamic noise. The regeneration periodω is set to 250.

medium - All mechanisms are activated except semantic variants. The insertion of noise

instructions uses the probability model low-var (p=1/7, N=4) with dynamic noise and the

regeneration periodω is set to 1.

high - All mechanisms are activated. The insertion of noise instructions uses the probability

model high-var (p=1/4, N=4) with dynamic noise and the regeneration periodω is set to 1.

6.2.4 CPA based security evaluation.

Methodology. We performed a �rst order CPA against both the reference implementation and an

implementation protected using the low con�guration. The considered attack targeted the output of

the �rst SubBytes function of the AES encryption. The conducted attack aimed at the retrieval of the



Fig. 9. Execution time overhead compared to statically compiled version (clang 3.8.0 -O2).

�rst byte of the key as retrieving the other key bytes can be similarly performed with a similar attack

complexity. We used the hamming weight as model of the EM emission of the SubBytes.
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Fig. 8. Success rate of CPA for both the unpro-
tected implementation and the configuration
low. The number of traces required for the at-
tack is multiplied by1.3×104, the execution time
is multiplied by 2.5 (including generation cost).

Results. Figure 8 presents the success rate obtained

for CPA against both the reference unprotected AES

and an implementation protected by Odo with the con-

�guration low. The success rate represents the statisti-

cal proportion of attacks to succeed given a number of

traces. A success rate of 1 means that all attacks succeed.

The results show that the reference implementation

is highly vulnerable, as a success rate of 0.8 (80% of

attacks are successful) is reached with about 290 traces

on our test platform. Such a number of traces is con-

sidered as very low for side-channel attacks, even on

unprotected implementations. Furthemore, using 290

traces, the correct key leaks with a correlation value

of 0.53, which suggests that our measurement setup

provides very good attack conditions.

The implementation protected by Odo with the con�guration low is far more secure, as 3.8×106

traces have to be collected to reach a success rate of 0.8, in the same experimental conditions as for

the reference unprotected implementation. Compared to the reference, that represents 1.3×104 folds

more measurements.

6.3 Performance evaluation
The performance evaluation has been conducted by considering 15 di�erent test cases, presented in

Table 2. The benchmarks considered for the evaluation are mostly cryptographic benchmarks, either

from the mbedtls library [2], the eSTREAM project [1] or a home-made 8-bits implementation of AES.

As any C function could be secured by Odo, these selected cryptographic functions only represent

a tiny panel of the possible usages of our approach. Hence, we also considered the bytecompare

function from a verifyPin implementation from FISSC [20]. We evaluated these test cases against the

4 polymorphic con�gurations previously selected. We �rst analyse the execution time overhead (of

the polymorphic variants). Then we present an analysis of code generation speed and size overheads.
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Fig. 10. Generation time vs number of useful instructions generated. The slopes represent the cost of generation
per useful instruction. Our approach can easily scale as the functions get bigger.

6.3.1 Execution time overhead. Figure 9 presents the execution time overhead (as de�ned in

Section 6.2.2) for the 15 benchmarks. Depending on the benchmarks and on the con�guration,

execution time overheads range from 1, which means that the hardened code executes as fast as the

reference one, up to 7. Execution time overhead depends on the instruction mix of the initial code.

First, as semantic variants are not available for all instructions, it impacts more the performance

of some codes than others. Second, as the code is generated in RAM, in our platform, instruction

fetch and data loads use the same bus. As a consequence, load instructions take a longer time to

execute than if the code was in Flash. More precisely, when stored in RAM a Thumb 1 (16 bits) load

instruction takes 1.5 cycles in average and a Thumb 2 (32 bits) load instruction takes 2 cycles (instead

of 1 cycle when stored in Flash memory).

The overheads observed in Figure 9 indicate that the code produced remains generally e�cient

considering the amount of variability that it gets. The overall impact of execution time overhead for

an application which has one or several polymorphic functions depends a lot on the proportion of the

execution time initially spent in the transformed functions. The di�erent con�guration possibilities

allow to adapt the polymorphism to the application requirements.

6.3.2 Generation speed. In order to analyze the cost of code generation, we correlated the number

of useful instructions to the time needed for code generation for all the considered con�gurations

(Figure 10). We also measured the minimal cost of code generation which can be obtained with a

call to an SGPC with no instruction to generate. This minimal cost is about 1500 cycles. This cost

includes the time taken for changing the instance bu�ers permissions with the MPU (≈100 cycles

per generation). Figure 10 shows that the generation time evolves almost linearly with the number

of useful instructions to generate. The reader should note that the number of useful instructions only

depends on the source program and the optimisation level, but does not depend on the polymorphism

options. The slopes of the trend lines in Figure 10 indicate the mean number of cycles required

to generate one useful instruction. For the con�guration high, the generation of each instruction

requires about 709 cycles, and only 22 cycles per instruction when no polymorphism is introduced.

As an indication, static compilers like LLVM take about 3 million cycles per instruction [13], while

the specialized code generator deGoal requires 233 cycles per instruction [12, 13]. Thus, the runtime

code generation is really e�cient.
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Fig. 11. Code size overhead compared to statically compiled version (clang 3.8.0 -O2).

6.3.3 Size overhead. Figure 11 illustrates the size overhead computed as the ratio between the size

of the protected binary and the size of the unprotected binary. Each bargraph gives the breakdown of

the .text, .bss, and .data sections. The results show that increasing the variability increases the

size overhead. This is due to several factors. First, as new mechanisms are enabled, the library and

SGPC codes that handle these mechanisms are added into the binary, which impacts .text sections.

Second, a greater polymorphic variability generates larger instance bu�ers, as noise instructions

are more probable or as the use of semantic equivalences requires to keep more space for individual

instructions, which impacts .bss sections. The increase of the .data sections is due to the use of a

shu�ing bu�er for instruction shu�ing, and to some private data of the Odo-runtime library.

The overhead in code size may appear too high for constrained systems, however we considered

only benchmarks that correspond to one functionality of an embedded system. By limiting the part of

the embedded software to be secured for a given product to the minimum one, the overhead should

be far lower. Also, if several polymorphic functions are deployed on a same platform, the library

could also be shared among the SGPCs. Moreover, all benchmark were able to �t in our platform

which has 8kB of RAM and 128kB of �ash memory.

6.3.4 Conclusion of the performance evaluation. The evaluation shows that our approach is

generic. Generation speed evolves linearly with respect to the number of original instructions of the

code, and is much higher than compilation speed of static compilers. The execution time overheads

obtained can be acceptable. Indeed, �rst order masking is a widely used countermeasure that induce

overheads that can easily range from 20 to 2000 [10]. As masking is used in practice in spite of these

overheads, hence the overheads induced by our approach can be considered as acceptable too. The

con�gurability of our approach allows then to tune performance/security trade-o�. The security

evaluation on the con�guration low showed that the CPA required 13000 times more traces than on

the reference, while the global execution time overhead is only 2.5.

7 DISCUSSION
In this section, we discuss and compare our approach with the closest existing approaches.

The Odo-runtime library is an enhanced version of COGITO, a runtime code generation framework

which already provides support for random register allocation, instruction shu�ing, semantic

equivalences, and insertion of noise instructions [18]. COGITO requires the developer to implement

polymorphic components using a low-level domain speci�c language (DSL). This approach brings



Table 5. Comparison of execution time overheads for Odo and Code Morphing [5] and MEET [7]. Elements
in the same line have close security levels. Our approach can be used with much lower overhead (50% saved)
than previous automated runtime approach [5], and with much lower overhead (27% saved) than the static
approach MEET when the generation cost can be hidden. When generation cost cannot be hidden, overheads
with Odo high are smaller than MEET overheads even with a small period of regeneration likeω =100

Benchmark.ω is the regenera-

tion period

AES

T-table

camellia 3DES misty1 present xtea geo.

mean

Code Morphing [5]ω=100 5.00 - - - - - 5.00

Odo lowω=250 2.50 2.75 2.77 2.94 2.29 2.82 2.67

MEET [7] 6.76 8.99 8.61 10.1 2.79 6.02 6.68
Odo high, no code gen. 5.01 5.94 5.23 4.78 3.63 4.94 4.87
Odo highω=100 6.72 7.97 6.71 6.30 3.63 5.70 6.00

Odo highω=1000 5.19 6.14 5.38 4.93 3.63 5.01 4.99

Table 6. Comparison of size overheads for Odo and MEET [7]. Size overheads of the Code Morphing approach [5]
are unknown. Size overheads obtained with our approach are much smaller (29% saved) than the ones of the
static approach MEET.

Benchmark AES T-

table

camellia 3DES misty1 present xtea geo.

mean

MEET [7] 6.19 7.82 9.80 4.49 2.90 3.14 5.18
Odo high 2.75 4.20 2.97 4.93 4.13 3.45 3.66

more �exibility, but requires to re-implement the polymorphic component with the provided DSL.

The Odo approach di�ers from this previous work by o�ering an automatic compilation of SGPCs

from annotated C source code, a precise way to estimate a realistic code size for static memory

allocation as well as a dynamic mechanism for preventing over�ows during runtime code generation,

and a memory protection mechanism using the MPU. Furthermore, our implementation of register

shu�ing relies on the static register allocation of LLVM/clang, which provides a code of better quality

than the runtime register allocation used in [18].

Code Morphing [5] and MEET [7] are close works that proposed an automated approach to

deploy polymorphism. Code Morphing relies on dynamic code modi�cation and a compiler to apply

code polymorphism. The polymorphic engine randomizes semantic equivalences and register uses,

shu�es instructions and performs array access permutations. However, it does not provide any

solution for the management of memory permissions. This has been stressed by the authors of MEET

as a motivation for another approach that removes the need for both writable and executable code

segments. MEET relies on an automatic and static generation of multiple semantic variants for small

sequences of instructions of the code to harden. Variants are then randomly selected at execution

time. This approach allows to use code polymorphism without the need of runtime code generation

but, as a static approach, may su�er from high size overheads. Our approach uses dynamic code

generation but provides mitigations for security concerns related to this use.

Tables 5 and 6 give the overall execution time and the size overheads obtained with the di�erent

approaches. We give here some comparison using con�gurations that are close in terms of security.

However, the reader should note that the security evaluation performed in each paper (including

ours) has been carried out on di�erent platforms, which may present di�erent side-channel pro�les,

hence presenting di�erent levels of resistance to the CPA used in the related experimental studies.

Thus, comparisons of the security level achievable with the di�erent approaches are delicate. To

compare Odo with Code Morphing, we chose the low con�guration that passes the CPA done for



Code Morphing, on our platform that is easier to attack (because the reference AES is broken in less

traces on our platform). For comparison with MEET, we chose the high con�guration as both this

con�guration and MEET’s AES pass the t-test.

Code Morphing induces important overheads when the regeneration period is small. Considering

the execution time of an AES T-table as a referenceTr ef
2
, we estimated that the time taken by the

Code Morphing transformations (the process equivalent to our code regeneration) is about 393×Tr ef
while Odo’s con�guration low takes 47×Tr ef , which is almost an order of magnitude more e�cient.

Compared to MEET, our approach provides smaller code size overheads. Yet, MEET does not su�er

from the execution time overhead incurred by runtime code generation. Using Odo, the execution

time overheads can be smaller if runtime code generation can be partly or totally hidden, e.g., by

executing the SGPC concurrently to other computations. In addition, the security levels obtained by

MEET are impressive. In their approach, polymorphism is combined with mask refreshing to remove

information leakage from memory accesses. In Odo, memory accesses are blurred by introducing

noise memory accesses, but the information leakage due to memory accesses is still present in

side-channel observations. Still, our approach allows to reduce the amount of information leakage to

the point that the remaining information leakage is not detected by a t-test, without using masking

techniques. Our approach could as well be combined with masking, for a greater level of security, but

also at the expense of greater overheads. Finally, if the execution time of runtime code generation

cannot be hidden, and for comparable execution time overheads, the security level provided by the

MEET approach is probably greater than our con�guration high withω =100.

8 RELATED WORK
Amarilli et al. �rst coined the use of polymorphism by software means as a countermeasure against

side-channel attacks [8]. Then, the approaches presented in the previous section have been pro-

posed [5, 7, 18]. As we already deeply discussed them we do not discuss them in this section.

Code polymorphism has also been employed outside the domain of power/electromagnetic side-

channel attacks. librando hardens a JIT implementation [24]; it randomly inserts nop instructions

and masks constant values with boolean masks (named constant blinding) to avoid code injection in

code constants. Crane et al. also propose to randomly insert nop and load instructions to perturb

cache-based side-channel attacks [19]. In our approach, the risk of code injection is void because the

SGPC has no bytecode input; plus, we are able to insert noise instructions of the same nature than

useful machine instructions in the generated code. Thus, our approach is probably of interest for

cache-based side-channel attacks too, and future work will study its e�ectiveness.

Compilation has also been used to automatically apply other countermeasures against side-channel

attacks. Agosta et al. proposed to bring out several key hypotheses instead of one during an attack so

that the attacker cannot determine which one is the right hypothesis [6].

Several approaches also leveraged compilation to automatically apply boolean masking. Eldib et

al. used an SMT solver in combination with a compilation �ow to automatically compute and apply

an e�ective masking scheme [22]. Moss et al. proposed to automatically insert a boolean masking

countermeasure at compile time; a DSL with an dedicated type system allows to describe the level

of con�dentiality of variables [30]. Agosta et al. proposed a data-�ow analysis to determine the

vulnerability level of symmetric cryptography primitives [4]. The vulnerability level is a complexity

metric based on the number of key bits involved in the computation of each intermediate value; then,

the compiler applies a masking countermeasure only to the most vulnerable parts of the secured

code to reduce the overall overhead. Bayrak et al. proposed an approach using decompilation and

2
Unfortunately, the data available in the Code Morphing paper only enabled us to compute the execution time taken by

morphing actions as a function of the reference execution time, so we cannot give a more precise comparison.



compilation to apply boolean masking to a binary program [11]. The proposed tool applies the

countermeasure on machine instructions that were identi�ed as vulnerable in a preliminary static

leakage analysis of the original binary program, and applies a random precharging countermeasure.

Luo et al. used a compiler and a SAT solver to automatically generate a threshold implementation [27].

Masking and hiding countermeasure can be used in combination to increase the security level.

Our compiler-based approach could be combined with compiler-based masking approaches to get a

masked polymorphic code.

9 CONCLUSION
In this paper, we presented an automatic approach to secure code against side-channel attacks with

code polymorphism, implemented by runtime code generation. From an annotated source code, our

automatic hardening approach implemented in the Odo tool based on LLVM generates specialised

code generators for each function to harden. Specialisation of code generators enables to lower the

countermeasure cost. Our compilation-based approach enables to optimize the code to produce, to

make available static information used at runtime by the code transformations as well as to �nely

manage memory that host the generated code. Several transformations applied at runtime make the

code vary between runtime code generations. We also proposed the dynamic noise transformation to

introduce variability between two consecutive executions of the same generated code and to reduce

the frequency of code generation.

Experiments showed that the security level can be strongly increased compared to unprotected

implementations while keeping the overhead low enough. The �exibility o�ered by our con�gurable

tool enables a user to meet or trade-o� its security and performance requirements. The range of

polymorphic variability goes from none to a very high level. The size overhead is lowered compared

to static multiversionning approaches. Our runtime code generation is very e�cient, about one

order of magnitude faster compared to the state-of-the-art, which allows our approach to induce

performance overheads that are competitive or smaller than static multiversionning approaches.
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