
PwoP: Intrusion-Tolerant and Privacy-Preserving
Sensor Fusion

Chenglu Jin
University of Connecticut

chenglu.jin@uconn.edu

Marten van Dijk
University of Connecticut

marten.van dijk@uconn.edu

Michael K. Reiter
UNC Chapel Hill
reiter@cs.unc.edu

Haibin Zhang
UMBC

hbzhang@umbc.edu

Abstract—We design and implement, PwoP, an efficient and
scalable system for intrusion-tolerant and privacy-preserving
multi-sensor fusion. PwoP develops and unifies techniques from
dependable distributed systems and modern cryptography, and in
contrast to prior works, can 1) provably defend against pollution
attacks where some malicious sensors lie about their values to
sway the final result, and 2) perform within the computation and
bandwidth limitations of cyber-physical systems.

PwoP is flexible and extensible, covering a variety of appli-
cation scenarios. We demonstrate the practicality of our system
using Raspberry Pi Zero W, and we show that PwoP is efficient
in both failure-free and failure scenarios.

I. INTRODUCTION
Numerous modern cyber-physical systems (CPS), spanning

industry, agriculture, military, and beyond, are increasingly
relying on distributed data sources (hereinafter without loss of
generality, sensors) to support critical decisions and actions. As
depicted in Fig. 1, the integration of these sensor data are most
often achieved with the help of a server (proxy, aggregator, or
averager), which upon receiving a client request, gets sensor
inputs from a set of sensors, integrates the sensor inputs, and
returns the result to the client. The client may then inform
the actuator what to do. Its application scenarios are almost
everywhere, including sensor networks, smart metering, GPS
devices and satellites, soldiers in battlefields, smart phones and
the cloud, time-keeping mechanisms [55], and so on.

Control
Program
(Client)

Actuator

Server

Sensor

Sensor

Sensor

Fig. 1. Distributed sensor fusion architecture.

Privacy and integrity are widely regarded as primary con-
cerns or even hurdles for many of these applications [69].
First, we need to protect the privacy of individual data sources.
Ideally, clients should learn only the designated function of the
sensor inputs but nothing more, and the server should learn
nothing (about sensor inputs or the final result). Second, we
require integrity, in the sense that the server should faithfully
return to the client the correct, integrated result.
Pollution attacks. An equally important but notoriously diffi-
cult goal in multi-sensor fusion is to defend against pollution
attacks, where some malicious sensors lie about their values
to sway the final result. Specifically, motivated attackers can

mount this kind of attack by either corrupting sensors and
contributing malicious inputs, or maliciously altering envi-
ronmental variables (say, by manipulating the environmental
values for sensors without actually corrupting the sensors
themselves).

At first glance, defending against pollution attacks seems
to be at odds with attaining privacy. Indeed, to achieve the
strongest privacy goal mentioned above, the server is not
supposed to learn individual sensor inputs. Thus, in spite of the
risk of pollution attacks, the vast majority of existing privacy-
preserving systems treat defending against pollution attacks as
out-of-scope.

Yet still, there are a handful of prior works attempting to
mitigate the problem [21, 49]. Their approach is to ask the
sensors to provide a cryptographic proof to show their inputs
are in a prescribed range (or more generally satisfying some
predicate), in the hope that a coalition of malicious sensors
would not affect the final result by much. Take the average
function for example. Suppose we have ten sensors, each of
which can have an input selected from the range [1, 100].
Also assume that the “correct” value is around 20 and correct
sensors will output a value around this. If three malicious
sensors contribute 100 (which is in the range), they would
introduce a significant error into the final result. Moreover, for
many applications, there are no prescribed limits on sensor
inputs. To the best of our knowledge, all existing privacy-
preserving aggregation and fusion schemes are vulnerable to
pollution attacks to a significant degree.
Working in computation and bandwidth restricted CPS.
Despite an impressive amount of work on secure sensor
fusion or data aggregation protocols [16, 18, 21, 24, 27, 28, 38,
39, 48, 57, 67], to the best of our knowledge, none of them
are implemented in real computation and bandwidth-restricted
environments. They either do not provide any implementation,
or their systems are run using commodity computers or virtual
machines. These systems do not consider computation and
bandwidth restricted environments specifically, and a new
design with these factors considered is needed. Meanwhile,
implementing a real system in these restricted environments
involves integration of knowledge and expertise from different
areas — hardware, software, and network communications.
Our approach. We design and implement, PwoP (“Privacy
w/o Pollutions”), a privacy-preserving and fault-tolerant sensor
fusion system that 1) defends against pollution attacks, 2)
performs within the computation and bandwidth limitations
of cyber-physical systems, 3) covers different application sce-
narios and different sensor input types, and 4) is efficient and
scalable in both failure-free and failure scenarios.

To defend against pollution attacks, instead of relying
on validity proofs, our strategy is to “tolerate,” so that no
matter what inputs malicious sensors provide, the fused value
represents the correct physical value with good accuracy, still
in a privacy-preserving manner.

Specifically, PwoP combines techniques from distributed
systems and multi-party computation. At the core of PwoP
are a series of practical sensor fusion algorithms that tolerate
malicious inputs themselves [12, 19, 54, 55, 65]. For example,
one of Marzullo’s algorithms [54] ensures that the range
produced by fusing ranges provided from sensors contains
the actual value measured by the sensors if at most f out
of 2f + 1 sensors are malicious. We extend the framework of
Yao’s garbled circuits (GC) for two-party computation to the
client-server-sensors setting for these fault-tolerant algorithms,
leveraging their built-in fault-tolerance to efficiently achieve
system liveness (i.e., guaranteed output delivery).

From the system perspective, we build a new and gen-
eral compiler enabling the multi-sensor setting from Tiny-
Garble [68]. We also make significant tailored optimizations,
yielding a system that performs considerably better than direct
application of GC compilers produce. Our system also tackles
various other security, availability, and reliability concerns.

PwoP covers a variety of sensor input types, including
intervals, rectangles, and d-dimensional inputs, and sensors
inputs with bounded and unbounded accuracy. Moreover, our
system works well in low bandwidth environments, thereby
capturing a wide range of real sensor applications.
System assumptions. Throughout the paper, we rely on two
assumptions:
• To achieve meaningful robustness against pollution attacks,

the number of malicious sensors should be bounded (less
than 1/2 or 1/3 of the total number, depending on concrete
applications and algorithms).

• While both the server and a fraction of sensors may be
malicious, the server should not collude with malicious
sensors [40, 42]. (We stress that in our system sensors can
collude, and in fact, we consider a strong adversary can
coordinate malicious sensors to compromise the system.)
The first assumption is a standard one in distributed sys-

tems and multi-party computation systems where sensors, ide-
ally, are independently distributed in different hosts (running
diverse software and hardware), and the adversary has only
limited capacity to compromise the system overall.

The second assumption is also a common assumption that
has been used in a large number of practical multi-party
computation systems [14, 15, 21, 24, 40, 42, 58]. Our system
therefore is suitable for applications where the server and
sensors lack motivation to collude, or the adversary lacks
the means to corrupt both the server and some sensors si-
multaneously. For example, a satellite does not own the GPS
devices, and the adversary may lack means to compromise
the satellite and some GPS devices together. Another example
is that soldiers with sensors may be captured by the enemies
who may be unable to compromise the headquarter, which is
typically well protected. As another one, the assumption makes
sense for submarines and underwater sensors.
Our contributions. We summarize our contribution as fol-
lows:

• We motivate, clarify, and formalize the problem of server-
aided, privacy-preserving, and intrusion-tolerant multi-
sensor fusion.

• We provide an efficient and expressive framework support-
ing a variety of key fault-tolerant sensor fusion algorithms.
The framework opportunistically leverages the bandwidth
and computation asymmetry property in the sensor fu-
sion setting and uses a novel combination of techniques
from distributed systems (Byzantine fault-tolerant sensor
fusion [54]) and multi-party computation (Yao’s garbled
circuits [73]). In addition, we use new techniques for
achieving system liveness (which would otherwise leverage
slower solutions using more than one server), make exten-
sive optimizations on the framework, and tackle various
other security and reliability issues.

• We make a general compiler specifically for our clients-
server-sensors setting by extending and optimizing Tiny-
Garble [68]. TinyGarble is designed for two-party compu-
tation (for garbler and evaluator), but our compiler works
for settings involving clients (garblers), server (evaluator),
and sensors (garbled input providers).

• We build a practical system for server-aided multi-sensor
fusion using Raspberry Pi Zero W. Our experimental eval-
uation demonstrates that the system is highly efficient and
scalable for both failure-free and failure scenarios.

II. RELATED WORK

Comparison with differentially-private systems. Apple [22]
and Google [33] use differential privacy [25, 26] mechanisms
to compute aggregate statistics. In these systems, each sensor
adds random noise and the noisy data will be aggregated to
get an estimate of aggregated values. These systems allow us
to achieve robustness, but have to trade between accuracy and
privacy. Increasing the noise level reduces information leakage
for individuals, but also reduces the estimated accuracy.

Essentially, the goals between differentially-private systems
and our system are orthogonal. In a differentially-private
system, the server will know a noisy version of the value
measured by each sensor, and thus learn much more than that
in our system. However, the client learns slightly less than our
system because of the noise added.
Comparison with privacy-preserving data fusion and ag-
gregation. Most privacy-preserving data aggregation systems
only protect individual sensor inputs but fail to handle mali-
cious sensors that attempt to sway the aggregated value [16,
18, 28, 38, 39, 48]. Only a handful provide a partial solution
by leveraging a cryptographic proof that sensor input has a
specific property (say, is within a predetermined range) [21,
24, 67]. PwoP takes a fundamentally different approach by
tolerating malicious sensor inputs without asking for input
validity proofs. Other works (e.g., [18, 38]) provide privacy-
preserving aggregation with tolerance to benign (crash) sensor
failures, i.e., where some sensors fail to provide their inputs.
Instead, our system deals with Byzantine failures, where
corrupted sensors can provide the server arbitrary values.

A number of privacy systems [27, 38, 57, 67] additionally
provide differential privacy. These systems still do not formally
defend against pollution attacks.

SIA [17] explored a setting where individual sensor inputs
do not need to be privacy-protected but the central server needs
to verifiably provide clients with correct values. This helps

achieve integrity. In contrast, PwoP achieves both privacy and
integrity.
Comparison with alternative approaches to intrusion-
tolerant and privacy-preserving sensor fusion. In addition
to GC-based approach, we also provide alternative solutions
with the same goal as PwoP: one using order-preserving
encryption, and one using set representation. We describe the
two approaches in Appendix IX, and compare them with PwoP
in detail. Summarizing, the set-representation-based approach
only applies to honest-but-curious sensors and a very limited
number of fusion algorithms, and the approach based on order-
preserving encryption leaks too much information and cannot
easily achieve integrity.
Fault-tolerance and garbled circuits. Nielsen and Or-
landi [60] built LEGO for two-party computation in the mali-
cious case. In LEGO, the garbler first sends many gates, and
the receiver tests if they are constructed correctly by opening
some of them. Then the parties run interactively to solder the
gates (as Lego blocks) into a circuit. They use a fault-tolerant
circuit to ensure a valid output from a majority of good ones.
In contrast, our system exploits the fault tolerant features of
the underlying algorithms to achieve a garbled circuit based,
privacy-preserving system that can tolerate pollution attacks,
returning correct results even in the presence of Byzantine
failures and malicious attacks.
Non-colluding multi-party computation. The assumption
that a number of parties do not collude is not only used to build
theoretical multi-party computation [6, 9, 32, 40], but used in
practical multi-party computation systems [14, 15, 21, 24, 42,
58]. Among these systems, many use garbled circuits as a
building block (e.g., [14, 15, 40, 42, 58]). Our notion of non-
collusion follows this line of research, but has an architecture
that is different from all these existing systems. In our setting,
we assume that clients only have means to contact the server,
and we assume the server and sensors do not collude. Note
that non-collusion of parties does not imply that the parties
are trusted. Rather, it simply means these parties do not work
together (i.e., share internal states).

A few systems [14, 15, 58] relying on the non-colluding
assumption work in the three-party computation only, using
modern mobile devices. They attempt to resolve different
problems from ours.
Efficient GC implementations. Starting from Fairplay [53],
a large number of GC tools (compilers or implementations)
have been proposed [8, 36, 47, 52, 68, 74]. Our system is based
on (but makes significant modifications to) TinyGarble [68], an
approach that in addition to using state-of-the-art optimizations
such as free-XOR [46], row reduction [59], fixed-key AES
garbling [8], and half gates [75], leverages logic synthesis to
reduce the size of circuits.
Related attacks. Pollution attacks have also been studied
in other areas such as network coding [1] and personalized
services [72]. We work with a fundamentally different setting,
focusing on data and sensor pollution attacks.

Our pollution attack scenarios are also different from those
of Sybil attacks [23] where an adversary may forge multiple or
even an unlimited number of identities to damage distributed
systems. While Sybil attacks and pollution attacks may share
somewhat the same goal, Sybil defenses [4] offer no help for
defending against data pollution.

III. SYSTEM AND THREAT MODEL

The setting. As depicted in Fig. 1, our system, PwoP, consists
of a number of clients (control programs), a single server
(proxy, averager, aggregator), and a set of sensors. Client and
server are denoted c and S respectively. We denote the number
of sensors by n, and a bound on the number of faulty sensors
by g. The set of sensors is denoted as Π = (s1, · · · , sn).
Let l be the length of the sensor input. Let k be the security
parameter of cryptographic primitives.

In PwoP, a client sends a request to the single server, and
the server collects readings from some or all of the sensors.
Then the server runs a sensor fusion algorithm and sends
the aggregated result to the client. Clients and sensors only
communicate with the single server. In particular, sensors
neither need to know each other, nor send one another any
information.

Throughout the paper, we assume authenticated and private
channels.
Threat model. A participant (client, the server, or sensor)
that faithfully executes our protocol to completion is said
to be correct; otherwise it is Byzantine or malicious. The
behaviors of malicious participants are limited only by the
cryptographic assumptions that we employ. A Byzantine par-
ticipant that conforms to the protocol until some point at which
it simply stops executing (permanently) is said to crash. A
correct participant can nevertheless be semi-honest, namely
it conforms to the protocol but may additionally preserve
the transcript of everything it observes, in an effort to glean
information to which it is not entitled. Participants (Byzantine
or semi-honest) may also be required to be non-colluding
(e.g., [40, 42]), which informally means that they do not share
information except as explicitly prescribed by the protocol.
The non-colluding assumption has been used in many practical
multi-party computation systems [14, 15, 42, 58].

In PwoP, clients are semi-honest, while the server and
some sensors can be malicious. We have designed but have
not implemented an enhanced system that can defend against
malicious clients; see Sec. IX.
Goals. PwoP aims to achieve privacy, correctness, and live-
ness.
• Privacy: If a semi-honest client does not collude with the

server and does not collude with sensors, then it learns only
the aggregated result returned from the server but nothing
more. If the server does not collude with the client and
does not collude with sensors, then it learns nothing about
sensor inputs or the final result.
• Correctness: If the server is correct and no more than g

sensors are Byzantine, then the only response a correct
client will accept is the correctly aggregated result, in the
sense discussed in the next section.
• Liveness: If the server is correct, if no more than g sensors

are Byzantine, and if all Byzantine sensors crash, then each
correct client receives a reply to its request.

IV. FAULT-TOLERANT SENSOR AVERAGING
ALGORITHMS

We briefly survey the key fault-tolerant sensor fu-
sion/averaging algorithms [19, 54–56, 65].
Marzullo’s algorithms [54, 55]: M-g-U, M-g, M-g-m, and
M-op. The study of fault-tolerant sensor averaging algorithms

dates to two seminal works by Marzullo [54, 55]. We collec-
tively call them Marzullo’s algorithms.

In the presence of n sensor values from n replicated
sensors, a fault-tolerant sensor averaging algorithm [54] is
used to compute a correct aggregated value even if some
of the individual sensors are incorrect (in which case the
sensor is said to be malicious, Byzantine, or simply faulty).
Marzullo [54] considered the case where each individual
sensor value can be represented by an interval I = [u, v] over
the reals. Let (u − v), the width of the interval, denote the
accuracy (or inaccuracy) of a sensor. Let (u + v)/2 be the
midpoint or center of the interval. Then, a sensor value is
correct if the interval I it returns contains the actual value
of the measured feature, and the sensor is faulty otherwise.
The goal of Marzullo’s algorithm is to find the minimum (and
correct) interval given n different intervals I = {I1, · · · , In},
with at most g < n of those being faulty. The fused interval is
at least as accurate as the range of the least accurate individual
non-faulty sensors.

We start by introducing algorithms where the number of
failed sensors g is known. The underlying idea is follows:
Since g or less sensors are incorrect, any (n − g) mutually
intersecting sensors (i.e., clique) may contain the correct value.
The algorithm computes the “cover” (not the “union”) of all
(n − g)-cliques.1 Let lo be the smallest value contained in at
least n−g of the intervals and hi be the largest value contained
in at least n− g of the intervals. Then, the correct aggregated
result is the interval [lo, hi].

Marzullo [54] describes a general algorithm with
O(n log n) complexity to compute this result. It uses a sweep-
ing idea: First, sort all the endpoints of all the intervals.
Second, moving from the lowest value to the highest value,
keep track of the number of intervals containing each value.
The final result can then be determined from these counts.
The algorithm cost is dominated by the sorting procedure.
Additional care is needed when the rightmost endpoint value
of one interval coincides with the leftmost one of another
interval, indicating that one interval ends exactly as another
begins. Whether such an occurrence is deemed as a valid
duration may depend on applications, but this should be
agreed upon beforehand. In this paper we follow Marzullo’s
convention [54], which considered the occurrence as being
valid.

The above algorithm can apply to the case of arbitrary
failures with unbounded inaccuracy, and to the case of arbitrary
failures with bounded inaccuracy, where the maximum length
of the interval is known and values that are too inaccurate
can be detected. Marzullo’s algorithm needs 3g + 1 and
2g + 1 sensors to tolerate g arbitrary failures with unbounded
inaccuracies and bounded inaccuracies, respectively. We used
M-g-U and M-g to denote the above two cases.

It is not uncommon to require the averaging algorithm to
only return the midpoint of the interval. This may even be more
desirable in a privacy-preserving setting, as providing the lo
and hi values might reveal too much unnecessary information.
We write M-g-m to denote this variant.

Marzullo [55] also gave a solution to the case where the
system parameter g is unknown or unspecified. The goal is
to find the cover for the maximum intersection groups for all

1Picking the cover instead of the union can help preserve the shape of the
sensor value.

1
2

3
4

5
6

7 8
9

10

M-op

SS

M-g

Fig. 2. A five-sensor system with M-g, M-op and SS. The sensor input
intervals are [1, 5], [2, 6], [3, 7], [4, 9], [8, 10]. The resulting intervals are
[3, 6], [4, 5] and [3, 7] for M-g, M-op and SS respectively.

the intervals. Thus, the algorithm is “optimistic” (instead of
“optimal”), and we write M-op to denote this one.
Schmid and Schossmaier [65]: SS. Marzullo’s algorithms
may exhibit a somewhat irregular behavior: it is possible
that when Marzullo’s algorithms are applied to two slightly
different input sets, the output may be quite different. This is
formalized as violation of the Lipschitz condition regarding a
certain metric [50].

Schmid and Schossmaier [65] offered a solution, SS, which
can satisfy the Lipschitz condition. The algorithm is simple:
Given n intervals Ii = [ui, vi] (1 ≤ i ≤ n), (at most)
g of which may be faulty, SS simply outputs [maxg+1{u1,
· · · , un}, ming+1{v1, · · · , vn}], where maxg+1{u1, · · · , un}
denotes the element ujg+1

in the ordering uj1 , · · · , ujn of
{u1, · · · , un} from largest to smallest, and ming+1{v1, · · · ,
vn} denotes the element vjg+1

in the ordering vj1 , · · · , vjn of
{v1, · · · , vn} from smallest to largest. While SS shares the
same worst case performance as Marzullo’s, SS may generate
a larger output interval.
Chew and Marzullo [19]: ChM. Chew and Marzullo gen-
eralized the approach to handle the case of multidimen-
sional values. We will cover the most efficient algorithms
described in their paper, including an algorithm for general
d-dimensional rectangles (ChM-dD) and an algorithm for
general d-dimensional rectangles that have the same size and
orientation (ChM-dD-sso). To tolerate g failed sensors, these
algorithms use 2dg + 1 and 2g + 1 sensors respectively. Note
that for the case of ChM-dD-sso, the total number of sensors n
does not depend on the dimension d. We defer the concrete
description of these algorithms to where we need them.
Example. To help understand the algorithms described, we
describe an example in Fig. 2 which shows how three one-
dimensional algorithms (M-g, M-op, and SS) work. All the
three algorithms deal with bounded accuracy and use 2g + 1
sensors to tolerate g failures.

As in Fig. 2, the input intervals for the sensors are [1, 5],
[2, 6], [3, 7], [4, 9] and [8, 10]. For all the algorithms, all
input endpoints need to be sorted.

To find the left endpoint of the resulting interval for M-
g, we can imagine that there is a vertical line sweeping from
left to right. The vertical line can stop at the leftmost point
that intersects n − g = 3 intervals. In the example, this point
is 3. Similarly, to find the right endpoint, a vertical line can
sweeping from right to left, and find the right end of the
resulting interval (6). Thus, the resulting interval is [3, 6].

Instead of outputting an interval, M-g-m will output the
midpoint of the resulting interval generated by M-g.

In contrast to M-g, M-op algorithm does not need to know
the g value a-priori. A vertical line will sweep over all the
endpoints and finds the leftmost and rightmost points that
intersect with the maximum input intervals. In the example,
point 4 and 5 are covered by four input intervals, while the
rest endpoints are covered by at most three input intervals.
Thus, M-op will output [4, 5] as the result.

For SS, one need to find the (n−g)-th smallest left endpoint
and the (n−g)-th largest right endpoint. In the example, point
4 and point 7 are picked as they are the third smallest left end
and the third largest right end, respectively.

The example would be easily extended to explain M-g-U
with unbounded accuracy. However, it requires at least 3g+ 1
sensors to tolerate g failures.

In Appendix XIII, we show an example on how d-
dimensional algorithms (ChM) work.

V. PWOP
This section presents PwoP. We first describe the key

building block of PwoP—garbling schemes [7]—and then the
design of PwoP.

A. Garbling Schemes
Bellare, Hoang, and Rogaway (BHR) [7] introduced the

notion of a garbling scheme as a first-class cryptographic
primitive. Here we mainly adopt this abstraction but tailor it
for our purposes; specifically, we require that all the garbling
scheme algorithms be dominated by random coins. The change
is only notational.2

A garbling scheme is a tuple of algorithms G =
(Gb,En,Ev,De). Gb takes as input 1k, a random coin r and a
Boolean circuit f , and outputs a garbled circuit F. En takes an
input x and a random coin r and outputs a garbled input X .
Ev takes a garbled circuit F and garbled input X and outputs
a garbled output Y . De takes a garbled output Y and a coin r
and outputs a plain-circuit output y (or ⊥).

We require a correctness condition on garbling schemes: if
F← Gb(1k, r, f), then De(r,Ev(F,En(r, x))) = f(x).

In our work, we require the prv.sim (privacy), obv.sim
(obliviousness), and aut (authenticity) security definitions in
BHR, which we briefly describe here:
• prv.sim (privacy): There is a simulator S that takes as input

(1k, f, f(x)) and produces output which is indistinguish-
able from (F, X, r) generated normally.

• obv.sim (obliviousness): There is a simulator S that takes
as input (1k, f) and produces output which is indistinguish-
able from (F, X) generated normally.

• aut (authenticity): Any adversary should not be able to
generate a Y ′ 6= Ev(F, X) such that De(r, Y ′) 6= ⊥.

B. PwoP Design
The system presented in this section deals with the scenario

where clients are semi-honest, the server is malicious, a
fraction of sensors are malicious, and the server should be

2In BHR’s original definition, only Gb is probabilistic, while the rest
are deterministic. In their syntax, there are two more notations e (encoding
information) and d (decoding information). For all the efficient garbling
schemes known, both e and d can be generated by a single random coin
together with some associate data.

non-colluding with any other participants. We deal with the
scenario with malicious clients in Sec. IX.
PwoP with no liveness. The general idea behind PwoP is
as follows: The client is responsible for generating a garbled
circuit; then sensors contribute garbled inputs; and finally the
server evaluates the function using the garbled inputs, and
sends the client the garbled output.

Each time the client wants to obtain a fused result of
sensors inputs, the client and the sensors need to agree on a
fresh, random coin r that is used to garble the circuit and garble
the inputs respectively, and they should prevent the value r
from being known by the server. In the semi-honest model,
we can easily achieve this by allowing the client to dictate the
coin.3 In PwoP, we assume that a client shares a symmetric,
pairwise key with each sensor. A client chooses a random coin
and wraps the coin using an authenticated encryption with the
pairwise keys shared. The ciphertexts will be sent to the server
who will distribute them to respective sensors. Alternatively,
we can assume public key infrastructure and our system can
be easily adapted.

Also, the client can send both the wrapped coins and the
garbled circuit in the same round, saving one communication
round.

The above approach opportunistically leverages the band-
width and computation asymmetry property in the sensor
fusion setting, where the bandwidth between clients and the
server is ample, but the bandwidth between sensors and the
server is limited. In fact, it is very common in modern systems
to shift part of work to clients to improve the service through-
put and reduce the latency. As we will show, the overhead
incurred by the circuit generation and the circuit transmission
in PwoP, for practical parameters, is negligible. Moreover, in
our approach, the circuit size (related to the accuracy of the
returned results to clients) can be flexibly decided by clients.
In addition, letting the client code allows the circuit to be
precomputed off-line.

We describe PwoP with no liveness (i.e., with no guaran-
teed output delivery) in Fig. 3, using a language of garbling
schemes that is slightly modified from BHR. We make black-
box use of a general sensor averaging function fta, and we
defer the circuit design, optimization, and justification to the
next section.

Setup and inputs: Let fta be any sensor averaging function in Sec. IV.
Let G = (Gb,En,Ev,De) be a garbling scheme. Let 〈REQ〉 be a client
request that contains the function description. Let xΠ = {x1, · · · , xn} and
XΠ = {X1, · · · , Xn} be sensors’ inputs and garbled inputs respectively.

00 Client c selects a random coin r, runs Gb (using r) to garble a circuit
F for fta, and sends F, 〈REQ〉, encrypted coins to server S.
01 S forwards 〈REQ〉 and the corresponding encrypted coins to sensors.
02 Sensors Π run En (using r and xΠ) and send S garbled inputs XΠ.
03 Server S runs Ev on XΠ and sends the garbled output Y to c.
04 Client c runs De (using r and Y) to get fta(xΠ).

Fig. 3. PwoP with no liveness. When the server receives a garbled circuit,
the server collects data from sensors and returns the reply to the client.

We have the following theorem establishing the security of the

3In the malicious model, agreeing on a common coin can be achieved by
modifying a threshold coin-flipping protocol [13] to the server-aided setting;
each message in this coin-setup protocol is transmitted between the client
and corresponding sensor using end-to-end encryption, with the server simply
passing these encrypted messages.

above scheme.
Theorem 1: The PwoP protocol achieves Privacy and Cor-

rectness for sensor fusion function fta.
Privacy follows from both privacy and obliviousness of the

garbling scheme. Specifically, the first part of Privacy (i.e.,
the client only learns the aggregated value) can be derived
from the privacy of the garbling scheme. This is because in
PwoP the client only obtains (F, Y, r), while adversary in
the privacy game of the garbling scheme obtains (F, X, r)
and Y is fully determined by X and F. The second part
of Privacy can be trivially obtained from the privacy of the
garbling scheme. Correctness follows from the authenticity
of the garbling scheme and the correctness of fta. Note that
correctness holds even against a malicious server as long as
the server does not collude with sensors.

However, the scheme in Fig. 3 does not achieve liveness:
if some of these sensors fail to provide their garbled inputs,
the server cannot evaluate the circuit.
Supporting general feedback function. In PwoP, after the
server evaluates the garbled circuit, it can also send the garbled
outputs to sensors which may run De to get the fused value. In
a control program, the data sent to sensors which may be co-
located with actuators are feedback data, according to which
actuators can perform some prescribed operations.

Moreover, PwoP can be easily extended to the case where
S provides sensors with output from an arbitrary feedback
function (not necessarily the same function which the client
asks to compute). To achieve this, clients not only garble the
function that they need but also the feedback function for
sensors and actuators.
Discussion. This basic scheme shares some similarities with
both Feige, Kilian, and Naor (FKN) [30] and Kamara, Mohas-
sel, and Raykova (KMR) [40]. The difference is that FKN and
KMR only involve a server and parties (in our case, sensors)
and the server needs to send back the garbled output to the
parties, while in our model, the server needs to return the
garbled output to the client and optionally to the sensors. In
FKN and KMR, the server and one party do heavy work that is
linear in the size of the circuit, while in our case, each sensor’s
role is symmetric and each sensor only does work that is linear
in the size of its input. The security of KMR requires only
obliviousness and authenticity of the garbling scheme, while
PwoP additionally requires privacy of the garbling scheme.

Our scheme is also similar to Naor, Pinkas, and Sumner
(NPS) [59], one designed specifically for auctions. In NPS,
there is an auction issuer who generates the circuit, a number of
bidders who send their garbled values, and an auctioneer who
computes the garbled values and returns the final result to all
bidders. Instead of relying on an external, trusted circuit issuer,
our circuit generator is just one participating client (who would
also expect a reply from the server). Moreover, NPS uses proxy
oblivious transfer to provide the parties with the garbled input,
but we choose to use an agreed common coin, just as FKN
and KMR, for the purpose of efficiency and scalability.

The servers in both FKN and NPS can learn the output,
while KMR and ours do not.

C. Achieving Liveness
We now describe PwoP with liveness. In our approach, the

absence of a reply from a sensor will be treated as an input of
[−∞,+∞] (or the prescribed upper and lower bounds), which

means this reply will not be counted. The reason why we can
do this is that our fault-tolerant algorithms can natively tolerate
empty (meaningless) inputs as long as the number of these
inputs (and together with malicious inputs) are g-bounded.
More specifically, if the server does not receive the garbled
input from some sensors in time, it will ask the client to send
corresponding garbled inputs for the missing sensors for values
[−∞,+∞]. When using algorithms with bounded accuracy,
the client will generate a random interval with maximum
accuracy. PwoP with liveness is described in Fig. 4.

Setup and inputs: Let fta be any sensor averaging function in Sec. IV.
Let G = (Gb,En,Ev,De) be a garbling scheme. Let 〈REQ〉 be a client
request that contains the function description. Let xΠ = {x1, · · · , xn} and
XΠ = {X1, · · · , Xn} be sensors’ inputs and garbled inputs respectively.

00 Client c selects a random coin r, runs Gb (using r) to garble a circuit
F for fta, and sends F, 〈REQ〉, encrypted coins to server S.
01 S forwards 〈REQ〉 and the corresponding encrypted coins to sensors.
02 Sensors Π run En (using r and xΠ) and send S garbled inputs XΠ.
If S does not receive all the garbled inputs before the times expires, it requests
from the client missing garbled inputs that encode [−∞,+∞].
04 Server S runs Ev on XΠ and sends the garbled output Y to c.
05 Client c runs De (using r and Y) to get fta(xΠ).

Fig. 4. PwoP with liveness. The protocol completes with 1 round in the
failure-free scenario, and with 2 rounds if some garbled inputs are missing.

We thus have the following theorem.
Theorem 2: PwoP described in Fig. 4 implements Liveness

in synchronous environments.
In synchronous environments, if the server is correct and

if all Byzantine sensors crash, the server will request garbled
inputs from the correct client after the timer expires. As the
client is correct, the server will receive these “dummy” garbled
inputs and the server can evaluate the garbled circuit and send
a reply to the client.
Discussion. Achieving liveness efficiently has been a difficult
problem for garbled circuit based multi-party computation.
Most of prior works on GC (as surveyed in Sec. II) achieve
liveness by introducing multiple servers and use secret-sharing
based techniques to help liveness. This is not only less efficient
in general, but also requires significant communication and
interaction, which makes it ill-suited in bandwidth and energy
restricted environments.

Schemes in [40, 42] do not achieve liveness. NPS [59]
considered a “denial of service attack by bidders,” which is
essentially a form of liveness. Similar to our case, NPS needs
to prevent a corrupt bidder from sending incorrect values
or simply not sending values to the server. Their approach
is to prove to the auction issuer that the bad event occurs,
and then a dummy zero value will be provided. However,
in our case we aimed at minimizing the interaction with the
client (circuit generator). In addition, our scheme achieves
liveness for random coin based approach, while NPS uses
proxy oblivious transfer.

A similar problem was studied by Feigenbaum, Pinkas,
Ryger, and Saint-Jean [31]. They simply provided a solution
that requires all the parties to pre-commit their values to
two “non-colluding” servers before a circuit is garbled. Their
application scenarios are very different from ours.

In PwoP, malicious sensors may contribute ill-formed
garbled inputs so that the server ends up with outputting ⊥. It
is vital that the server can “quickly” tell if a garbled input is

correct. We discuss how PwoP can achieve fast detection for
ill-formed inputs in Sec. IX. This way, PwoP can be extended
to achieve liveness for g-bounded Byzantine sensors.

VI. CIRCUIT DESIGN AND OPTIMIZATIONS
This section describes how to design efficient circuits for

the fault-tolerant algorithms in Sec. IV. There are three good
reasons why we need the effort.

First, while multiple generic GC compilers or tools that
can translate a program to a circuit exist [8, 36, 47, 52, 68, 74],
there is significant room for improvement for some specific
programs. Our optimization requires non-trivial efforts and
analysis for the correctness of the design.

Second, among all the GC compilers, TinyGarble [68]
is generally deemed to be (one of) the most efficient one,
especially for large programs, as it incorporates state-of-the-
art optimizations such as free-XOR [46], row reduction [59],
fixed-key AES garbling [8], and half gates [75], and more
importantly, uses logic synthesis to reduce the size of cir-
cuits. However, TinyGarble only supports a limited number of
components that we need. We therefore aim to build modular
components that can be readily used for our fault-tolerant
algorithms.

Third, different from the conventional circuit design, the
sensors in our setting can be malicious and may contribute ma-
licious garbled inputs. Garbled circuits, or in general, multiple-
party computation, offer no protection on malicious inputs. For
instance, we cannot rely on sensors to contribute well-formed
input intervals (see below).
Convention. Before the protocol starts, all participants should
agree on a representation for the intervals and d-dimensional
values. For intervals, each possible value is given an integer
label with l bits, and we assume the lower and upper bounds
are 0 and σ respectively. Clearly, l = log σ. Likewise, d-
dimensional values are given a d-dimensional vector with each
component being an interval which can be represented by a
fixed number of bits.

A. Circuit design for M-g-U
Overview. Our complete circuit design for M-g-U is depicted
in Fig. 5. To implement Marzullo’s algorithm, we first need
to sort all the input endpoints of sensor inputs, resulting in a
sorted array of 2n values (considering each sensor is providing
one interval in the form of two endpoints). This is achieved
using modified sorting networks. For each point in this sorted
array, we need to count how many input intervals can cover this
point. This is handled by adding 1 to an intersecting interval
counter if the point is a left end of an input interval, and
subtracting 1 if it is a right end. After that, we compare the
intersecting interval counters for each point with n−g, in order
to find the points that are covered by exact n − g intervals.
We do this using index select. As in Fig. 5, the left end of
the resulting interval is the output of the max value min index
module.

Likewise, the circuit for computing the right end of the
resulting interval can be implemented in a symmetric way by
again running the modified sorting networks and index select.
However, we will show that we can reuse the modified sorting
networks and index select module for computing the right
interval, as shown in Fig. 5.
Our circuit design in detail. Instead of using (+1, u) and

Modified Sorting Networks

Index Select

l-bit

...
1-bit 1-bit 1-bit 1-bit

Max Value
Min Index

......

......
log n-bit

l-bit

l-bit l-bit l-bit

l-bit l-bit l-bit l-bit

Min Value
Max Index

...l-bit l-bit l-bit l-bit

l-bit

g+1-bit g+1-bit

Fig. 5. The complete circuit design for M-g-U. n is the number of sensors,
l is the length of the endpoint of the input interval, and g is the number of
faulty sensors.

(−1, v) to represent an interval [u, v] (as in the code version
of Marzullo’s algorithm), in our circuit design, each sensor
provides an interval in the form of two values u, v to the server.
This is because sensors may be malicious and it will result
in wrong result if the left end provided by some malicious
sensor is actually larger than the right end. Therefore, at the
first level of our modified sorting network, we need to add
an array of compare-and-swap modules to sort the two values
from the same sensor. Note that the above problem is not what
the conventional garbled circuit design would care about.

Before we proceed, let’s recall sorting networks [5, 20, 44],
which are circuits that sort a sequence into a monotonically
increasing sequence. The core building block of a sorting
network is a compare-exchange circuit, which takes as input a
pair of values (x, y) and returns a sorted pair (x′, y′) so that
x′ = min(x, y) and y′ = max(x, y). To realize this building
block, prior constructions [35, 45, 46] used the idea of compare
then conditional-swap: the circuit keeps two inputs unchanged
if and only if the comparator returns 1, i.e., x is less than y.
For our design, the first layer of our modified sorting network
guarantees that the two values from the same sensor will form
an interval with its right end always greater or equal to its
left end. Then we taint these two values with +1 and −1
respectively to indicate the order of two endpoints. For our
implementation, we use one bit to represent for ±1, i.e., we
use “1” and “0” to represent +1 and −1 respectively.

Starting from the second layer of our modified sorting
networks, it is essentially sorting networks built from compare-
exchange components that have a modified comparator, as
illustrated in Fig. 6. Instead of using the less-than comparator,
we follow Marzullo’s algorithm [54] to realize a comparator,
<m, as defined below: Given two inputs x and y, each of
which is of the form s||u where s ∈ {1, 0} and |u| = l,
define x <m y = (lsbl(x) < lsbl(y)) ∨ (lsbl(x) = lsbl(y) ∧
msb1(x) > msb1(y)), where lsbl and msbl represent the least
significant l bits and the most significant l bits respectively. In
words, x <m y if and only if the value part of x is less than
that of y, or the value parts happens to be equal and the sign
part of x is greater than that of y. Note that the sign part of a
left end is encoded by 1.

We follow [45] to realize the conventional less-than circuit
and equal-to circuit (which takes advantage of the free-xor
technique). However, observing that when lsbl(x) = lsbl(y)
and msb1(x) = 1 it does not matter we swap or not the two
inputs, we can further simplify the circuit, leading to a circuit
exactly as in Fig. 6.

[x < y]

[x = y]
1-bit

msb (x)1

lsb (x)l lsb (y)l

1-bit

1-bit 1-bit

Fig. 6. The comparator component.

For our implementation, while asymptotically optimal sort-
ing network exists [2], PwoP uses Batcher sorting network [5,
44] which has much better performance for practical parame-
ters, as studied in [52].

Now we describe how to find the position of the minimum
value of the resulting interval by our index select module
composed by a prefix sum circuit and an array of equality
checkers, as shown in Fig. 7. All the sorted one-bit inputs,
representing +1 or −1, first go through a prefix sum circuit
to compute their prefix sums. Prefix sum circuit allows one
to compute on input (z1, z2, · · · , zn) and produce as output
(m1,m2, · · · ,mn), where mj = z1 + z2 + · · · + zj for
1 ≤ j ≤ n. Indeed, this circuit fits perfectly for our purpose as
the intersecting interval counter in M-g-U. A straightforward
instantiation of n-prefix sum circuit requires n additions.4 Note
that for each addition when performing prefix sums, we can
exploit the free-xor circuit from [45].

The next layer is to convert every prefix sum which is equal
to the value n−g to 1 and convert the rest to 0 otherwise. This
can be trivially instantiated via simple equal-to circuit [45].
Observing that not every position in the array of prefix sum
can possibly equal n − g, we can apply another optimization
that only implements comparators for the positions where n−g
can be the possible output. To be precise, for an array with 2n
values provided by n sensors, only g+1 positions can possibly
have a prefix sum equal n−g. We prove the correctness of this
optimization in Theorem 3 in Appendix XII. This observation
reduces the number of comparators and the width of max value
min index by roughly 83.3% of that with a straightforward
implementation, because it only compares at g + 1 positions,
instead of 2n = 6g + 2 positions in a straightforward imple-
mentation. However, the size reduction for the other algorithms
is slightly smaller, with a 75% reduction, since n = 2g+1 for
the other algorithms.

Then these g+1 values go through a max value min index
circuit which computes the value with the minimum index and
the maximum value (which is 1). Effectively, it outputs the
leftmost point which covers n − g sensor input intervals. We
can easily modify the circuit from [45] to obtain this circuit.

To compute the maximum value, we find that one can reuse
the result of modified sorting networks and index select mod-
ules. Specifically, we just need to left shift one position of the
sorted input value array (shifting is free in circuits), and apply
it to a max value max index circuit. Then we will generate the
right end of the result interval. The proof of correctness of this
optimization is in Theorem 4 in Appendix XII. Since the whole

4In a system that can evaluate garbled circuits in parallel, we recommend to
implement a parallel prefix sum circuit as mentioned in (cf. [64, Chapter 2.6]),
which has a depth of O(logn) and O(n) additions.

circuit complexity is dominated by the sorting network, this
optimization avoids another sorting networks and index select
circuit for computing the right end of the resulting interval,
thereby halving the computation overhead.

Prefix Sum

Max Value Min Index

1-bit 1-bit 1-bit 1-bit
......

......

l-bit

=? =? =? =?

log n-bit

1-bit 1-bit 1-bit 1-bit
l-bit l-bit

Fig. 7. The index select module and the max value min index module. The
index select module is composed by a prefix sum circuit and an array of
equality checkers.

Caveat. A tempting way of designing the circuit for M-g-U
might be to first use the sorting network and then “release”
all the flag information, which the server could use to easily
determine the indexes and the final result. One might think
that this flag information would not reveal much information,
or one might be willing to trade this information for efficiency
and the compactness of the circuit. However, we are not sym-
pathetic to this viewpoint, stressing that the flag information
leaks too much to the server. Indeed, the server can tell from
the flag information the topology of all the intervals, and even
tell the number of failed sensors. Also note that only sorting
the entries (without giving the final interval) would not lead to
a garbling scheme that achieves authenticity when the server
is malicious.

B. Circuit Design for Other Algorithms
Circuit design for M-g. M-g is a sensor averaging algorithm
for arbitrary failures with bounded accuracy. Recall that our
convention is that each interval is of the range [0, σ], where σ
is some pre-determined, maximum value. Here we need to levy
an additional requirement on the input interval [u, v] (where
0 ≤ u ≤ v ≤ σ): the difference between u and v must be less
than or equal to some threshold t, i.e., v − u ≤ t; otherwise
the interval is deemed as being “invalid.”
Circuit design for M-g-m. Our circuit for M-g-m builds on
that of M-g. We calculate the midpoint of the resulting interval
by adding the two end points together, without dividing it by
2. Since it is a division by 2 (a public constant), users can
divide it by themselves without using garbled circuits.
Circuit design for M-op. Recall that M-op wishes to find the
cover for the maximum intersection groups for all the intervals.
Our circuit for M-op is similar to that of M-g-U. The difference
is that no equality checkers are needed in index select, since
g is unknown. Also, the comparators in max value min (max)
index will need to be integer comparators, instead of binary
comparators, because we are looking for the points that have
the highest prefix sum, which implies that these points intersect
with the maximal number of input intervals.

TABLE I. PWOP CHARACTERISTICS. The column labeled ”type” specifies if the algorithm handles intervals (I) or d-dimensional values (dD). n is the
total number of sensors, g is the upper bound on the number of malicious sensors, k is the security parameter (in this paper, 128 bit), and l is the length of

sensor input. The column labeled ”complexity” specifies the time complexity of the algorithm in the plain setting. The columns labeled ”server circuit,”
”sensor time,” ”sensor communication,” and ”#rounds” specify for server circuit complexity, sensor time complexity (measured using the number of

pseudorandom function calls), sensor communication complexity, and the round complexity for PwoP, respectively.

algorithms type #sensors description complexity server circuit sensor time sensor communication #rounds
M-g-U I 3g + 1 unbounded accuracy O(nlog(n)) O(lnlog2(n)) O(l) O(lk) 1 or 2

M-g I 2g + 1 bounded accuracy O(nlog(n)) O(lnlog2(n)) O(l) O(lk) 1 or 2
M-g-m I 2g + 1 only reveal midpoint O(nlog(n)) O(lnlog2(n)) O(l) O(lk) 1 or 2
M-op I 2g + 1 “optimistic” O(nlog(n)) O(lnlog2(n)) O(l) O(lk) 1 or 2

SS I 2g + 1 Lipschitz condition O(nlog(n)) O(lnlog2(n)) O(l) O(lk) 1 or 2
ChM-dD dD 2dg + 1 d-dimension O(dnlog(n)) O(ldnlog2(n)) O(dl) O(dlk) 1 or 2

ChM-dD-sso dD 2g + 1 same size & orientation O(dnlog(n)) O(ldnlog2(n)) O(dl) O(dlk) 1 or 2

However, it is worth noting that some of the optimiza-
tions for M-g-U circuit cannot be applied here, because g is
unknown to M-op algorithm. Specifically, we are unable to
select only g + 1 values for comparisons and selections, we
have to feed all the values into the max value min (max) index
modules.
Circuit design for SS. The core functionality of SS is
selection, with which one can easily derive the final interval.
To realize the selection circuit, one solution is to directly apply
a conventional sorting circuit on the input values, and we can
easily obtain a circuit with O(ln log2 n) complexity. Another
possibility is to use the probabilistic method from Wang et
al. [70]. This gives a non-zero error probability, but leads to a
circuit with O(ln log k) complexity. In PwoP, we implement
only the method with zero error probability.
Circuit design for ChM-dD. One can project the region for
sensors onto each of the d-dimensions, and thus obtain d
independent 1-dimensional problems, which can be resolved
separately. The combined rectangles are called projection
rectangles, and this approach is called the projection approach.
It is easy to see that since the projection algorithm naturally
gives rise to a d-rectangle, no further adjustments on the shape
of the rectangles are needed.

We can generalize our M-g circuit to handle the case of d-
dimensional projection rectangles in a straightforward manner:
d independent circuits will be generated and the size for ChM-
dD is just d times as large as that of M-g.

According to Chew and Marzullo [19], the projection
approach for ChM-dD is “the method-of-choice for some sit-
uations,” but there are two disadvantages to the approach [19,
Section 3.1]: first, some information may be lost; second, the
size of the average result may be larger than necessary.
Circuit design for ChM-dD-sso. ChM-dD-sso is referred to
as the algorithm finding the fault-tolerant rectangle from ones
with the same size and orientation. In this case, one may sim-
ply compute the projection d-rectangles in O(dn log n) time
tolerating g ≤ n/2 failures. Note that the maximum tolerable
failures g is independent of the number of dimensions d. We
note that the combined rectangle may be smaller than the
original size. For our design, we do not attempt to construct
a rectangle with exactly the same size as hinted by [19], and
instead we simply provide the user with the minimum one and
the user can easily construct a rectangle from the result.
Circuit design for d-rectangles with unbounded accuracy.
For ChM-dD and ChM-dD-sso, there are variants for arbitrary
failures with unbounded accuracies. Their circuits can be
constructed following an analogous line as what we did for

the case of M-g-U and M-g.

VII. PWOP CHARACTERISTICS
Table I shows the characteristics of PwoP. PwoP covers

seven Byzantine fault-tolerant sensor fusion algorithms. PwoP
is designed specifically for cyber-physical systems that work
in computation and bandwidth restricted environments.

In PwoP, the communication round is optimal: one round
for failure-free scenarios, and two rounds for failure scenarios.
Meanwhile, sensors performs “minimal” computation, depend-
ing on l (and d) only. The total bits that each sensor sends
to the server only depend on l and the security parameter k
(and d). These metrics in PwoP outperform the ones in prior
privacy-preserving sensor aggregation systems with pollution
attacks mitigated such as [21, 49] and an alternative approach
using set representation described in Appendix XI.

VIII. IMPLEMENTATION AND EVALUATION
A. Implementation

We make a general garbled circuit compiler specifically for
our clients-server-sensors setting. We achieve this by modify-
ing and extending TinyGarble [68], the state-of-the-art garbled
circuit compiler for secure two-party computation, which in-
corporates state-of-the-art garbled circuit optimizations [8, 46,
59, 75] and leverages logic synthesis to optimize and compress
circuits. Specifically, we first decompose TinyGarble into three
parties: clients (garbled circuit generators), the server (garbled
circuit evaluator), and sensors (garbled input providers). We
then modify the system to be coin-based: clients and sensors
now take as input shared random coins. Last, we modify
the garbled circuit evaluation function so that garbled output
is hidden from the server (which is essential to achieving
Privacy).

As TinyGarble does not support efficient sorting networks
or other primitives we need, we directly build optimized mod-
ules needed and then build the circuits described in Sec. IV.
We manually write the hardware circuits in Verilog, as we
find doing so also provides circuit reduction compared to
the ones using high-level programming languages and high
level synthesis. The resulting circuits go through another logic
synthesis process by Synopsys Design Compiler to obtain the
netlists of the implemented algorithms. Lastly, we applied
the V2SCD tool in TinyGarble to convert netlists into simple
circuit description files, which can be taken as the inputs of
TinyGarble framework.

To show the practicality of our system, we build a multi-
sensor fusion system using Raspberry Pi Zero W (1GHz,
single core CPU and 512MB RAM). In our system, each

Raspberry Pi functions as a sensor, providing the server with
garbled inputs for its sensor inputs. Raspberry Pi Zero W is
the cheapest Raspberry Pi device supporting WiFi connection,
and is smaller than a credit card. Notice that, we selected
Raspberry Pi Zero W just because of its built-in WiFi module,
not its computational power. As a fact, the computation on each
sensor only contains a few pseudorandom function evaluations
and XOR operations, so it is very efficient for any sensor with
minimum computational power to compute. The server runs on
an Intel Core i7-4790 processor, and the client runs on another
computer with an Intel Core i7-4702HQ processor. Sensors and
the server are connected using one wireless router. To support
concurrent transmissions of sensor inputs, we implement multi-
threading for data collection at the server side. The client and
the server are physically connected via an Ethernet cable.

The length of all sensor values (i.e., l = log(σ)) is set to
eight bits. For an interval, each sensor needs to garble a 16-bit
input, resulting in a 256-byte garbled input. Similarly, garble
inputs for a rectangle in our setting takes 512 bytes.

Our system achieves liveness for sensors that are subject
to crash failures. As described in Sec. V, our system works in
synchronous environments and needs a two-round communi-
cation when there are sensor failures.

Initially, PwoP uses heartbeat messages to detect failed
sensors before the sensor fusion protocol starts, and sets a timer
for each request to detect new crash faulty sensors. Specifically,
the server sets a timer each time a request is sent to sensors.
If it does not receive some garbled inputs in time, it marks
the corresponding sensors as faulty. It then asks the client to
provide garbled inputs for [−∞,+∞] (or random values in the
case of algorithms with bounded accuracy) for these sensors,
evaluate the circuit, and send the garbled output to the client.

B. Evaluation
Overview. We have evaluated PwoP using up to 19 sensors,
with seven different algorithms: M-g, M-g-m, M-g-U, M-
op, SS, ChM-dD, and ChM-dD-sso. We evaluate PwoP for
these algorithms under different network sizes (the number of
sensors). We use g to represent the network size for these al-
gorithms, and total number of sensors can be found in Table I.
We measure the latency, throughput, and scalability in both
failure and failure-free scenarios. For failure-free scenarios,
each sensor will provide a well-formed garbled input, even if
the underlying value is faulty. In contrast, our failure scenario
captures crash failures where some sensors do not provide the
server with garbled inputs in time.

Overall, PwoP has low latency and high throughput, and
can be deployed in many real-time applications, e.g., monitor-
ing pressure and water leaks in a water distribution system [3].
Latency. The latency evaluation for the seven algorithms are
depicted in Fig. 8 for g = 1 and 2. The latency of the whole
process takes only 12 to 54 milliseconds.

To understand the performance bottleneck of the system,
we look into the time consumed by each operation for the
whole process. We find that the communication between the
server and sensors is two orders of magnitude larger than the
cryptographic operations and the rest of the communication.
Circuit generation (at the client side), circuit transfer (between
the client and the server), garbled input generation (at the
sensor side), and circuit evaluation (at the server side), col-
lectively, take only several milliseconds, even when g = 9

g = 1 g = 2
0

20

40

60

12

19

14

24

15

23

16

21
20

26

22

32

25

54

L
at

en
cy

(m
s)

M-g M-g-m
M-op SS

ChM-dD-sso M-g-U
ChM-dD

Fig. 8. Latency (in ms) of PwoP in failure-free scenarios for g = 1 and 2.
This and subsequent figures are best viewed in color.

and the total number of sensors is 19. This implies that if we
can reduce the communication latency between the server and
sensors, we can easily boost the performance of PwoP.

To compare the performance of different algorithms, we
notice that for a given g, M-g, M-g-m, M-op, and SS (the four
one-dimensional algorithms) have roughly the same latency,
because the latency is dominated by the communication time
between the server and sensors, and the total size of garbled
inputs transmitted for these algorithms is exactly the same.
This observation is less visible small g’s (see Fig. 8), but
becomes apparent for larger g’s (see Fig. 10).

For the same g, the latency of M-g-U is larger than that
of the other one-dimensional algorithms. Indeed, to tolerate g
sensor failures, M-g-U requires more sensors (3g+1) than the
other one-dimensional algorithms (2g+ 1). As a consequence,
it requires more data to be transmitted, and takes longer time
to process all the data.

Besides these one-dimensional algorithms, we implement
and evaluate d-dimensional algorithms. In particular, we set
d = 2 for our evaluation, as 2-dimensional sensor fusion
is useful for many applications (e.g., measuring the location
of a physical object). The size of each sensor endpoint is
set to 8 bits, and a two-dimensional rectangle requires 32
bits to represent. This doubles the size of the garbled inputs,
comparing to the case for one dimensional algorithms. We find
that the increased data size is reflected in latency: the latency of
ChM-dD-sso is larger than that of M-g, M-g-m, M-op, and SS
for the same number of sensors. ChM-dD requires 2dg+ 1 to
tolerant g malicious sensors, and therefore in the 2-D example
4g + 1 sensors are required. Correspondingly, the latency of
ChM-dD grows much faster than the other algorithms.
Throughput. The throughput of PwoP for all seven algorithms
for g = 1 and 2 is shown in Fig. 9. Similar to the latency
analysis, the throughput of M-g, M-g-m, M-op, and SS is
almost the same for the same g values. The throughput of
M-g-U is consistently lower than the other one-dimensional
algorithms for the same g, due to a larger number of connected
sensors. The throughput of ChM-dD-sso is lower than all one-
dimensional algorithms because there are more transmitted
input data for ChM-dD-sso. Moreover, the throughput of ChM-
dD is even lower due to even more sensors in total.

In PwoP, we did not implement batching of sensor inputs
for the communication between the server and sensors. We

g = 1 g = 2
0

50

100

150

200

250
233

100

211

100

225

108

217

100

134

65

128

7269

34

T
hr

ou
gh

pu
t

(R
eq

/s
)

M-g M-g-m
M-op SS

ChM-dD-sso M-g-U
ChM-dD

Fig. 9. Throughput of PwoP in failure-free scenarios for g = 1 and 2.

2 4 6 8
0

50

100

150

g

L
at

en
cy

(m
s)

M-g M-g-m
M-op SS

ChM-dD-sso M-g-U
ChM-dD

Fig. 10. Scalability of the latency of PwoP in failure-free scenarios for g = 1
to 9. (except M-g-U and ChM-dD, for which we measured for g = 1 to 6
and g = 1 to 4, respectively)

2 4 6 8
0

50

100

150

200

g

T
hr

ou
gh

pu
t

(R
eq

/s
)

M-g M-g-m
M-op SS

ChM-dD-sso M-g-U
ChM-dD

Fig. 11. Scalability of the throughput of PwoP in failure-free scenarios for
g = 1 to 9. (except M-g-U and ChM-dD, for which we measured for g = 1
to 6 and g = 1 to 4, respectively)

conjecture that the use of batching would provide higher
throughput and a meaningful trade-off between latency and
throughput. We did not implement parallel evaluation of gar-
bled circuits, and this is not needed in our current implemen-
tation for which the communication is the bottleneck.
Scalability. We evaluate the scalability of PwoP using up to
19 sensors. The largest latency we obtained in our evaluation

0 50 100 150 200 250
0.00

0.02

0.04

0.06

0.08

0.10

0.12

Throughput (Req/s)

L
at

en
cy

(s
)

M-g SS ChM-dD-sso

Fig. 12. Latency vs throughput of PwoP in failure-free scenarios.

2 4 6 8
0

50

100

150

g

L
at

en
cy

(m
s)

M-g M-g-m
M-op SS

ChM-dD-sso M-g-U
ChM-dD

Fig. 13. Scalability of the latency of PwoP in failure scenarios for g = 1 to
9 (except M-g-U and ChM-dD, for which we measured for g = 1 to 6 and
g = 1 to 4, respectively)

is the latency of ChM-dD-sso for g = 9, which is only 0.11
seconds, as shown in Fig. 10. This demonstrates that PwoP, for
all algorithms and all network sizes that we tested, is efficient.
In Fig. 10, as the number of sensors increases from 3 to 19, the
latency grows slowly and linearly from 0.012 to 0.11 seconds.

If we compare the latency between M-g-U and the other
algorithms for the case where the total number of sensors
are equal, e.g., g = 6 for M-g-U and g = 9 for M-g-m,
the latency difference is almost not noticeable. This, from a
different angle, confirms that the latency is dominated by the
communication, not the cryptographic operations.

In addition, the scalability of throughput of PwoP is shown
in Fig. 11. As the number of sensors increases, the throughput
reduces from 233 Req/s to 24 Req/s for M-g, and similarly
for others. This is due to the network congestion incurred by
the increase of the number of sensors.

We also report latency vs. throughput of three algorithms
M-g, SS and ChM-dD-sso in Fig. 12. For clarity, we omit the
rest as the curves of the other algorithms are very similar to
these three.
Performance in failure scenarios. In failure scenarios, we test
the case where g out of n sensors fail at the same time. The
latency and the throughput for PwoP for g = 1 to 9 in failure
scenarios are shown in Fig. 13 and Fig. 14, respectively.

The latency part does not count the time-out value set by

2 4 6 8
0

50

100

150

200

250

g

T
hr

ou
gh

pu
t

(R
eq

/s
)

M-g M-g-m
M-op SS

ChM-dD-sso M-g-U
ChM-dD

Fig. 14. Scalability of the throughput of PwoP in failure scenarios for g = 1
to 9. (except M-g-U and ChM-dD, for which we measured for g = 1 to 6
and g = 1 to 4, respectively)

the server. It should be set to different values for different
applications. We find that there is no observable difference
between the failure and failure-free scenarios for latency if not
counting the time-out value. Indeed, the extra communication
does not add visible overhead.

We also find that the throughput in failure scenarios are
slightly better than the that in failure-free cases. The reason
is that comparing with getting garbled inputs from sensors via
WiFi, it is faster to get garbled inputs from the client, which is
connected with the server using an Ethernet cable physically.
Moreover, as now there are less sensors competing for the
bandwidth between sensors and the server, their communica-
tion is faster.

IX. DISCUSSION

PwoP with malicious clients. We have studied how to de-
sign schemes with semi-honest clients. Indeed, clients have
incentives to learn correct results from the server. However,
malicious clients can learn information which should be kept
private. In particular, malicious clients might code a circuit that
computes functions that are different from the one as claimed
by clients. For instance, clients may code circuits on computing
how many and which sensors have failed, or a circuit that
reveals (some) sensors’ individual inputs.

It is easy to secure our system against malicious clients.
This is (easily) achieved by augmenting and modifying the
Salus protocol due to Mamara, Mohassel, and Riva [42]. As
PwoP, we require the clients to garble the circuit (instead
of one of the parties), and we let the client and the server
run a cut-and-choose protocol. To reduce the communication
overhead, we may use the optimal strategy of Shelat and
Shen [66] that challenges 3/5 of the circuits, and may use
the random seed checking technique due to Goyal, Mohassel,
and Smith [34].
False garbled inputs detection. We describe how the GC
evaluator (the server, in our case) can efficiently detect if
garbled inputs are valid.

Recall that malicious sensors may provide the evaluator
with invalid garbled inputs. Depending on which garbling
schemes are used, an invalid garbled input may cause the
evaluator to return ⊥ (before all the gates are evaluated), or
return an invalid garbled output that appears correct to the

evaluator but will not be accepted by the client.
Our goal is to detect false garbled inputs in an as efficient

way as possible. The technique can be used for PwoP to
achieve Liveness even against fully Byzantine sensors. To this
end, we first need a garbling scheme with the underlying
encryption being able to detect false garbled inputs. Ideally,
we require the evaluator to perform a minimum number of
circuit gate evaluation, preferably, only on circuit input gates.

Our notion of security for the underlying encryption
scheme is similar to that of Lindell and Pinkas (LP) [51], where
they used a symmetric encryption scheme with an elusive
and efficiently verifiable range. It allows the evaluator to tell
which gate entry in a four-row table is correct. If one is
unlucky, it would try all of the four entries. Most recent garbled
circuit implementations chose to use the “point-and-permute”
technique [62], which leads to garbling schemes that allow to
decrypt exactly one entry per gate.

However, our motivation is different from LP. Here we
simply require that the evaluator would return “no” if the
garbled input for a single bit is not one of the required two
encodings. Not surprisingly, LP does meet the simple notion
above. Other (and more efficient) constructions are possible,
such as using (deterministic) authenticated encryption and PRP
with redundancy.

For efficiency, we may use a hybrid construction as follows:
At entry level of garbled circuit, we use a garbled scheme
which can efficiently detect invalid garbled inputs. When
evaluating the remaining garbled circuits, we can still use the
most efficient GC implementation so far. We comment that
for the entry level garbling scheme, we can still use point-
and-permute technique, which requires the evaluator to decrypt
only one table entry — we only give malicious sensors one
chance.

Additional care is needed: we need to design a circuit that
has a small number of entry-level gates and encompasses all
the inputs. Ideally, the verification should be run in parallel.
Also, we need to consider free-XOR gates, as evaluating them
does not take any encryption/decryption and they do not allow
efficient detection.

Take the circuit for M-g-U as an example. We may choose
to use Batcher sorting network [5], not only because it is the
most efficient one, but also because it allows efficient and
parallel false garbled inputs detection. Before going to the
subsequent circuit, Batcher sorting network first runs 2n/2 =
n compare-exchange operations in parallel. The entry-level
circuit (with n compare-exchange operations) is rather small
compared to whole sorting network circuit (with O(n log2 n)
compare-exchange operations).

X. CONCLUSION
We describe the design and implementation of PwoP, an

efficient and scalable system for intrusion-tolerant and privacy-
preserving multi-sensor fusion. PwoP has two distinguish-
ing features: 1) PwoP can provably defend against pollution
attacks without compromising privacy, and 2) PwoP is de-
signed specifically to perform in computation and bandwidth
restricted cyber-physical systems. To show the practicality of
our approach, we build a secure multi-sensor fusion system,
covering a variety of practical application scenarios.

ACKNOWLEDGMENT

This work was partially supported by NSF grant CNS-

1413996 for MACS: A Modular Approach to Cloud Security.

REFERENCES

[1] S. Agrawal, D. Boneh, X. Boyen, and D. M. Freeman. Preventing pol-
lution attacks in multi-source network coding. Public Key Cryptography
2010, pp. 161–176.

[2] M. Ajtai, J. Komlós, and E. Szemerédi. An O(n logn) sorting network.
In STOC, 1983.

[3] M. Allen, and A. Prels, and M. Lqbal, and S. Srirangarajan, and
H.B. Llm, and L. Glrod, and A. J. Whittle, Real-time in-network dis-
tribution system monitoring to improve operational efficiency. Journal-
American Water Works Association 2011.

[4] L. Alvisi, A. Clement, A. Epasto, S. Lattanzi, and A. Panconesi.
SoK: The evolution of Sybil defense via social networks. 2013 IEEE
Symposium on Security and Privacy.

[5] K. E. Batcher. Sorting networks and their applications. In Proc. AFIPS
Spring Joint Computer Conference, 1968.

[6] D. Beaver, S. Micali, and P. Rogaway. The round complexity of secure
protocols (extended abstract). In Proc. of 22nd STOC, pages 503–513,
1990.

[7] M. Bellare, V. Hoang, and P. Rogaway. Foundations of garbled circuits.
In ACM CCS 12, pages 784–796. ACM Press, October 2012.

[8] M. Bellare, V. Hoang, S. Keelveedhi, and P. Rogaway. Efficient garbling
from a fixed-key blockcipher. In IEEE Symposium on Security and
Privacy 2013, pp. 478–492, IEEE Computer Society Press, May 2013.

[9] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems
for non-cryptographic fault-tolerant distributed computation. STOC
1988.

[10] A. Boldyreva, N. Chenette, Y. Lee, and A. O’Neill. Order-preserving
symmetric encryption. In EUROCRYPT, 2009.

[11] A. Boldyreva, N. Chenette, and A. O’Neill. Order-preserving encryp-
tion revisited: improved security analysis and alternative solutions. In
CRYPTO, 2011.

[12] R. R. Brooks and S. S. Iyengar. Robust distributed computing and
sensing algorithm. Computer 29, 6 (1996), 53–60, 1996.

[13] C. Cachin, K. Kursawe, and V. Shoup. Random oracles in Constantino-
ple: Practical asynchronous Byzantine agreement using cryptography.
Journal of Cryptology 18(3), 219–246.

[14] H. Carter, C. Lever, and P. Traynor. Whitewash: outsourcing garbled
circuit generation for mobile devices. In ACSAC 2014, pages 266–275,
2014.

[15] H. Carter, B. Mood, P. Traynor, and K. Butler. Secure outsourced
garbled circuit evaluation for mobile devices. In Proceedings of the
USENIX Security Symposium, 2013.

[16] C. Castelluccia, A. C.-F. Chan, E. Mykletun, and G. Tsudik. Efficient
and provably secure aggregation of encrypted data in wireless sensor
networks. TOSN 5(3): 20:1-20:36 (2009).

[17] H. Chan, A. Perrig, B. Przydatek, and D. Song. SIA: Secure informa-
tion aggregation in sensor networks. In Journal of Computer Security –
Special Issue on Security of Ad-hoc and Sensor Networks, Volume 15
Issue 1, Pages 69-102, January 2007. Early version in SenSys ’03.

[18] T.H. Chan, E. Shi, and D. Song. Privacy-preserving stream aggregation
with fault tolerance. FC 2012.

[19] P. Chew and K. Marzullo. Masking failures of multidimensional sensors.
SRDS 1991, 32–41, 1991.

[20] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction
to Algorithms. MIT Press, 2nd edition, 2001.

[21] H. Corrigan-Gibbs and D. Boneh. Prio: Private, robust, and scalable
computation of aggregate statistics. NSDI 2017, pages 259–282, 2017.

[22] Differential privacy overview — Apple. https://images.apple.com/
privacy/docs/Differential Privacy Overview.pdf

[23] J. R. Douceur. The Sybil Attack. International Workshop on Peer-to-Peer
Systems (2002), pp. 251–260.

[24] Y. Duan, J. Canny, and J. Zhan. P4P: practical large-scale privacy-
preserving distributed computation robust against malicious users.
USENIX Security 10, 2010.

[25] C. Dwork. Differential privacy. ICALP 2006, pp. 1–12.

[26] C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, and M. Naor. Our
data, ourselves: Privacy via distributed noise generation. EUROCRYPT
2006, pp. 486–503.

[27] T. Elahi, G. Danezis, and I. Goldberg. PrivEx: Private collection of
traffic statistics for anonymous communication networks. CCS (2014),
ACM, pp. 1068–1079.

[28] Z. Erkin and G. Tsudik. Private computation of spatial and temporal
power consumption with smart meters. ACNS 2012, pp 561–577.

[29] Z. Erkin, A. Piva, S. Katzenbeisser, R. L. Lagendijk, J. Shokrollahi, G.
Neven, and M. Barni. Protection and retrieval of encrypted multimedia
content: When cryptography meets signal processing. In EURASIP
Journal on Information Security, 2007, Article ID 78943, 2007.

[30] U. Feige, J. Kilian, and M. Naor. A minimal model for secure compu-
tation (extended abstract). In 26th ACM STOC, pages 554–563, ACM
Press, May 1994.

[31] J. Feigenbaum, B. Pinkas, R. Ryger, and F. Saint-Jean. Secure com-
putation of surveys. In EU Workshop on Secure Multiparty Protocols
(SMP), ECRYPT, 2004.

[32] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental
game. STOC (987.

[33] U. Erlingsson, V. Pihur, and A. Korolova. RAPPOR: Randomized
aggregatable privacy-preserving ordinal response. CCS (2014), ACM,
pp. 1054–1067.

[34] V. Goyal, P. Mohassel, and A. Smith. Efficient two party and multi party
computation against covert adversaries. In EUROCRYPT ’08, Springer,
pages. 289–306, 2008.

[35] Y. Huang, D. Evans, and J. Katz. Private set intersection: Are garbled
circuits better than custom protocols? NDSS 2012, 2012.

[36] Y. Huang, D. Evans, J. Katz, and L. Malka. Faster secure two-party
computation using garbled circuits. In USENIX Security Symposium,
2011.

[37] Y. Ishai and E. Kushilevitz. Private simultaneous messages protocols
with applications. Proceedings of the Fifth Israeli Symposium on Theory
of Computing and Systems, 1997.

[38] M. Jawurek and F. Kerschbaum. Fault-tolerant privacy-preserving statis-
tics. PETS 2012.

[39] M. Joye, and B. Libert. A scalable scheme for privacy-preserving
aggregation of time-series data. FC 2013, 2013.

[40] S. Kamara, P. Mohassel, and M. Raykova. Outsourcing multi-party
computation. Cryptology ePrint Archive, report 2011/272, October 25
2011.

[41] S. Kamara, P. Mohassel, M. Raykova, and S. Sadeghian. Scaling private
set intersection to billion-element sets. FC 2014, LNCS 8437, pages
195–215, 2014.

[42] S. Kamara, P. Mohassel, and B. Riva. Salus: A system for server-aided
secure function evaluation. In Proceedings of the ACM conference on
Computer and communications security (CCS), 2012.

[43] F. Kerschbaum and Axel Schröpfer. Optimal average-complexity ideal-
security order-preserving encryption.

[44] D. E. Knuth. The Art Of Computer Programming — Volume 3 / Sorting
and Searching. Addison-Wesley, 2nd edition, 1998.

[45] V. Kolesnikov, A.-R. Sadeghi, and T. Schneider. Improved garbled
circuit building blocks and applications to auctions and computing min-
ima. In International Conference on Cryptology and Network Security
(CANS), 2009.

[46] V. Kolesnikov and T. Schneider. Improved garbled circuit: Free XOR
gates and applications. In ICALP 2008, volume 5126 of LNCS, pages
486–498, Springer, July 2008.

[47] B. Kreuter, a. shelat, B. Mood, and K. Butler. PCF: A portable circuit
format for scalable two-party secure computation. In Proceedings of the
USENIX Security Symposium, 2013.

[48] K. Kursawe, G. Danezis, and M. Kohlweiss. Privacy-friendly aggrega-
tion for the smart-grid. PETS 2011, pp. 175–191.

[49] L. Lamport. Using time instead of timeout for fault-tolerant distributed
systems. In ACM Transactions on Programming Languages and Systems
6 (2): 254–280, 1984.

[50] L. Lamport. Synchronizing time servers. Technical Report 18, Digital
System Research Center, 1987.

[51] Y. Lindell and B. Pinkas. A proof of security of Yao’s protocol for
two-party computation. In Journal of Cryptology, Volume 22, Issue 2,
pages 161–188, April 2009.

[52] C. Liu, X. Wang, K. Nayak, Y. Huang, and E. Shi. ObliVM: A
programming framework for secure computation. In IEEE Symposium
on Security and Privacy (S&P), 2015.

[53] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay — a secure two-
party computation system. In Proceedings of the 13th conference on
USENIX Security Symposium, Volume 13, pages 287–302, USENIX
Association, 2004.

[54] K. Marzullo. Tolerating failures of continuous-valued sensors. ACM
Trans. Comput. Syst. 8(4): 284–304, 1990.

[55] K. Marzullo. Maintaining the time in a distributed system: an ex-
ample of a loosely-coupled distributed service (synchronization, fault-
tolerance, debugging). Ph.D. dissertation, Stanford University, Depart-
ment of Electrical Engineering, February 1984.

[56] K. Marzullo and S. Owicki. Maintaining the time in a distributed
system. PODC 1983, pages 295–305, 1983.

[57] L. Melis, G. Danezis, and E. De Cristofaro. Efficient private statistics
with succinct sketches. NDSS 2016, Internet Society.

[58] B. Mood, D. Gupta, K. Butler, and J. Feigenbaum. Reuse it or lose it:
More efficient secure computation through reuse of encrypted values.
In ACM CCS 2014, pages 582–596, 2014.

[59] M. Naor, B. Pinkas, and R. Sumner. Privacy preserving auctions
and mechanism design. In Proceedings of the 1st ACM conference on
Electronic commerce, pages 129–139. ACM, 1999.

[60] J. B. Nielsen and C. Orlandi. LEGO for two-party secure computation.
In 6th TCC, Springer Volume LNCS 5444, pages 368–386, 2009.

[61] R. A. Popa, F. H. Li, and N. Zeldovich. An ideal-security protocol for
order-preserving encoding. In 34th IEEE Symposium on Security and
Privacy, 2013.

[62] P. Rogaway. The round complexity of secure protocols. MIT Ph.D.
Thesis, 1991.

[63] P. Rogaway. Authenticated-encryption with associated-data. ACM
CCS’02, ACM Press, pp. 98–107, 2002.

[64] J. E. Savage. Models of Computation — Exploring the Power of Com-
puting, Addison-Wesley, 1997.

[65] U. Schmid and K. Schossmaier. How to reconcile fault-tolerant interval
intersection with the Lipschitz condition. Distributed Computing 14(2):
101–111, 2001.

[66] a. shelat and C.-H. Shen. Two-output secure computation with malicious
adversaries. In Proceedings of the Annual international conference on
Theory and applications of cryptographic techniques, 2011.

[67] E. Shi, T. H. Chan, E. Rieffel, R. Chow, and D. Song. Privacy-
preserving aggregation of time-series data. In NDSS 2011, pp. 1–17,
2011.

[68] E. M. Songhori, S. U. Hussain, A.-R. Sadeghi, T. Schneider, and
F. Koushanfar. TinyGarble: Highly compressed and scalable sequential
garbled circuits. SP ’15.

[69] Jeffrey M. Voas. Networks of ‘Things.’ NIST Special Publication (NIST
SP) - 800-183.

[70] G. Wang, T. Luo, M. Goodrich, W. Du, and Z. Zhu. Bureaucratic
protocols for secure two-party sorting, selection, and permuting. In
ASIACCS 2010, pages 226–237, 2010.

[71] D. Westhoff, J. Girao, and M. Acharya. Concealed data aggregation for
reverse multicast traffic in sensor networks: Encryption, key distribution,
and routing adaptation. In IEEE Transactions on Mobile Computing,
5(10) : 1417–1431, 2006.

[72] X. Xing, W. Meng, D. Doozan, A. Snoeren, N. Feamster, and
W. Lee. Take this personally: Pollution attacks on personalized services.
USENIX Security 13.

[73] A. Yao. How to generate and exchange secrets. In Foundations of
Computer Science, 1986., 27th Annual Symposium on, pages 162–167,
IEEE, 1986.

[74] S. Zahur and D. Evans. Obliv-C: A Language for extensible data-
oblivious computation. IACR Cryptology ePrint Archive 2015: 1153
(2015).

[75] S. Zahur, M. Rosulek, and D. Evans. Two halves make a whole:
Reducing data transfer in garbled circuits using half gates. EuroCrypt
2015.

XI. ALTERNATIVE APPROACHES TO
INTRUSION-TOLERANT AND PRIVACY-PRESERVING

SENSOR FUSION
We describe two alternative approaches to intrusion-

tolerant and privacy-preserving sensor fusion, and compare
them with PwoP.

A. Order-Preserving Encryption Based Approach
Order-preserving encryption (OPE) [10, 11, 43, 61] is an

encryption scheme where the order of ciphertexts matches that
of the corresponding plaintexts. OPE is a powerful primitive
most known to enable performing a large class of queries on
encrypted databases. However, OPE is also suggested for use
in encrypted data aggregation in sensor networks [71] and
multimedia content protection [29].

We observe that non-interactive, deterministic OPE [10, 11]
may be used to achieve the goal of fault-tolerant and privacy-
preserving sensor fusion, yet for a limited class of problems,
and with a much weak security guarantee. For instance, we
consider how to do this for M-g-U: Initially, assume all sensors
and the client share a group OPE key. Using this group key,
each user encrypts only two values, i.e., the leftmost and
rightmost endpoint of its input interval. Since all the encrypted
values reveal their order information, the server is able to run
the fault-tolerant sensor averaging algorithm in “plaintexts,”
and returns the leftmost and rightmost endpoint of the resulting
interval to the client. Then the client can use the group key to
decrypt the two ciphertexts.

The above construction is simple, but suffers from sev-
eral problems. First, the construction leaks all the order in-
formation. For many applications, the order information is
exactly what one strives to protect. Even worse, all existing
non-interactive OPEs leak more than just the order of the
values [61]. Correspondingly, even with the non-collusion as-
sumption between the server and sensors, and allowing leaking
all the order information, it is difficult, if not impossible,
to prove the construction secure against even a semi-honest
server under (any) appropriate simulation-based definition of
security. Further, it is also unclear how to achieve integrity (i.e.,
ensure the server to faithfully return the client correct OPE
values, rather than arbitrary values). Last, the construction can
only apply to the sensor fusion algorithms with unbounded
accuracy, but we do not know how to deal with the ones with
bounded accuracy.

Interactive, ideal-secure OPEs that reveal no additional
information on the plaintexts besides their order do exist [43,
61]. The interactive nature of these schemes, however, makes
them ill-suited for our setting where some sensors may want
to learn more information about other sensors.

B. Set Representation Based Approach
We extend the idea of multi-party set representation

(SR) [40] to provide solutions for some (but not all) of the
fault-tolerant fusion algorithms.

The idea for the set representation method is as follows: To
compute the resulting interval, one may simply approximate
the real interval with as many discrete elements as possible.
Let σ denote the number of elements in the entire universe.
The idea can naturally lead to an algorithm with O(nσ) time.

Before proceeding to our findings, let’s briefly describe the
server-aided private set intersection protocol by Kamara, Mo-
hassel, Raykova, and Sadeghian (KMRS) [41]. Let S denote
the set of party pi. All the parties who have private inputs
should first jointly generate a secret key for a pseudorandom
permutation (PRP) E. Then each party randomly permutes
the set Ek(S), and sends the permuted set to the server,
which simply computes and returns the intersection of all the
encrypted sets. The protocol above is secure with a semi-honest
server or any collusion of malicious parties. Further techniques
were developed by KMRS to ensure the protocol to remain
secure against a malicious server.

We may base the idea to build a privacy-preserving and
fault-tolerant scheme. Compared to the GC based approach,
set representation based one has much lower client to server
communication complexity, but much larger communication
complexity and time complexity between sensors and the
server. The property makes SR based approach not suitable
for applications where sensors has limited bandwidth and
computational power. Meanwhile, SR based approach only
works for semi-honest sensors. (The reason is that a malicious
sensor might not provide consecutive encrypted data.) This
assumption is hard to justify, as the number of the sensors may
be large and the sensors are distributed in different locations.
Last, SR based approach only works for a rather limited set
of fault-tolerant algorithms.

XII. CORRECTNESS PROOF
Theorem 3: In the circuit designs of M-g-U, M-g, M-g-m,

ChM-dD and ChM-dD-sso, only g+1 positions out of 2n can
possibly have a prefix sum equal n− g.
Proof: Let z1, z2, z3, ...z2n be an array of sign values (in the
form of ±1) of a sorted array in an ascending order generated
by our modified sorting network described in Sec. VI. We
denote the prefix sum by Aj =

∑j
i=1 zi.

To prove the theorem, we just need to show the following
two claims are correct:

1) If ∃j such that Aj = n − g, then only Aj+2k can
possibly equal n− g, where k is an integer and 1 ≤
j + 2k ≤ 2n.

2) If Aj = n− g, then n− g ≤ j ≤ n+ g.
Indeed, given the two claims, we can find that there are

in total g + 1 positions that can possibly have a prefix sum
equal n− g. They are n− g + 2h, where h is an integer and
0 ≤ h ≤ g. The theorem will then follow.
Proof of claim 1: Suppose Aj = n − g. Let us consider the
set of zi for 1 ≤ i ≤ j. Since zi can only be ±1, we can only
replace +1 with −1 or replace −1 with +1 to change Aj .
Therefore Aj can only be n − g + 2k, where k is an integer
and 0 ≤ n−g+2k ≤ n. This also implies that it is impossible
for Aj−1 and Aj+1 to equal n− g; they can only possibly be
n− g + 1 + 2k.
Proof of claim 2: Since Aj =

∑j
i=1 zi, and zi can only be ±1,

the smallest index j, such that Aj = n−g, is n−g. Similarly,
the largest index j, such that Aj = n−g, is 2n−(n−g) = n+g.

Theorem 4: In the circuit designs of M-g-U, M-g, M-g-m,
M-op, ChM-dD and ChM-dD-sso, modified sorting networks
and index select are only needed once.
Proof: We use the same notation as above. To compute the
minimum value (left end) of the resulting interval, we need to

compute the prefix sum Aj =
∑j

i=1 zi, and find the leftmost
position j such that Aj = n − g. Similarly, to compute the
maximum value of the resulting interval, we need to compute
the postfix sum Bj =

∑2n
i=j zi, and find the rightmost position

j such that Bj = −(n− g). Notice that all zi’s come in pairs
of +1 and −1, so the sum of all zi’s must be 0. This implies
that for any j, Aj + Bj+1 =

∑2n
i=1 zi = 0. Thus we can

directly obtain the array of Bj from Aj without performing
the addition operations again. This saves an additional copy of
modified sorting network and index select, including prefix or
postfix sum and equality checkers (no equality checkers in the
circuit of M-op, since g is unknown), for computing the right
end of the resulting interval. Since Bj = −Aj−1, when we
apply the sorted array of sensor inputs to the max value max
index module, we need to left shift the array of sensor inputs
for one position. Note that bit shifting is completely free in
circuits.

XIII. EXAMPLE FOR MULTIDIMENSIONAL ALGORITHMS

Fig. 15. Example of ChM-dD with d = 2. Five rectangles with dashed lines
are the input rectangles, and the rectangle with solid lines is the aggregated
rectangle.

Fig. 15 shows an example of ChM-2D algorithm for a five-
sensor system. The five rectangles with dashed lines are the
input rectangles from five sensors. We run a M-g algorithm
for both dimensions, leading to two resulting intervals. These
two intervals construct the final resulting rectangle (solid block
in Fig. 15).

