
Result Pattern Hiding Searchable Encryption for Conjunctive
Queries
(Full Version)

Shangqi Lai
∗

Monash University

Melbourne, Australia

shangqi.lai@monash.edu

Sikhar Patranabis

Indian Institute of Technology

Kharagpur, India

sikhar.patranabis@iitkgp.ac.in

Amin Sakzad

Monash University

Melbourne, Australia

amin.sakzad@monash.edu

Joseph K. Liu
†

Monash University

Melbourne, Australia

joseph.liu@monash.edu

Debdeep Mukhopadhyay

Indian Institute of Technology

Kharagpur, India

debdeep@iitkgp.ac.in

Ron Steinfeld

Monash University

Melbourne, Australia

ron.steinfeld@monash.edu

Shi-Feng Sun
∗†

Monash University

Melbourne, Australia

shifeng.sun@monash.edu

Dongxi Liu

Data61, CSIRO

Syndey, Australia

dongxi.liu@data61.csiro.au

Cong Zuo
∗

Monash University

Melbourne, Australia

cong.zuo1@monash.edu

ABSTRACT
The recently proposed Oblivious Cross-Tags (OXT) protocol (CRYP-

TO 2013) has broken new ground in designing efficient searchable

symmetric encryption (SSE) protocol with support for conjunctive

keyword search in a single-writer single-reader framework. While

the OXT protocol offers high performance by adopting a number

of specialised data-structures, it also trades-off security by leaking

‘partial’ database information to the server. Recent attacks have

exploited similar partial information leakage to breach database

confidentiality. Consequently, it is an open problem to design SSE

protocols that plug such leakages while retaining similar efficiency.

In this paper, we propose a new SSE protocol, called Hidden Cross-

Tags (HXT), that removes ‘Keyword Pair Result Pattern’ (KPRP)

leakage for conjunctive keyword search. We avoid this leakage by

adopting two additional cryptographic primitives - Hidden Vector

Encryption (HVE) and probabilistic (Bloom filter) indexing into the

HXT protocol. We propose a ‘lightweight’ HVE scheme that only

uses efficient symmetric-key building blocks, and entirely avoids

elliptic curve-based operations. At the same time, it affords selective

simulation-security against an unbounded number of secret-key

queries. Adopting this efficient HVE scheme, the overall practical

storage and computational overheads of HXT over OXT are rela-

tively small (no more than 10% for two keywords query, and 21%

for six keywords query), while providing a higher level of security.

∗
Also with Data61, CSIRO, Melbourne, Australia.

†
Corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CCS ’18, October 15–19, 2018, Toronto, ON, Canada
© 2018 Association for Computing Machinery.

CCS CONCEPTS
• Security and privacy→Privacy-preserving protocols;Man-
agement and querying of encrypted data;

KEYWORDS
Searchable Encryption, Hidden Vector Encryption, Leakage Profile

ACM Reference Format:
Shangqi Lai, Sikhar Patranabis, Amin Sakzad, Joseph K. Liu, Debdeep

Mukhopadhyay, Ron Steinfeld, Shi-Feng Sun, Dongxi Liu, and Cong Zuo.

2018. Result Pattern Hiding Searchable Encryption for Conjunctive Queries:

(Full Version). In 2018 ACM SIGSAC Conference on Computer and Communi-
cations Security (CCS ’18), October 15–19, 2018, Toronto, ON, Canada. ACM,

New York, NY, USA, 21 pages. https://doi.org/10.1145/3243734.3243753

1 INTRODUCTION
Privacy of stored data is important in many applications. Yet it

is becoming increasingly common for data to be hosted off-site,

especially with the rise of cloud computing. However, cloud storage

providers often cannot be trusted to respect the privacy of the data

they host [13], especially in the face of malicious insiders. A simple

solution is to encrypt the data before uploading it to the cloud.

However, this would prevent the data from being searched [28,

29]. For example, users may wish to use their mobile phone to

search their email. The cloud server will not be able to identify

which documents match the search query if the user’s email data is

encrypted using standard encryption techniques.

Searchable symmetric encryption (SSE) [11, 12, 16, 19, 22, 33, 35,

36] offers a potential solution to this problem by providing a way for

encrypted data to be searched securely. However, all SSE protocols

must have trade-off between security, performance, and function-

ality. The performance of SSE protocols is crucial in practice and

needs to be comparable to performance of search on unencrypted

databases in order to remain feasible for most practical applications.

Consequently, recent research has focused on high performance

https://doi.org/10.1145/3243734.3243753

SSE protocols that scale efficiently to large databases, by adapting

data structures used in efficient unencrypted database search to the

encrypted database setting. In particular, an efficient class of SSE

protocols [11, 12, 16, 19, 36] preprocessing the database using an

inverted-index to allow keyword searches to be performed in sub-

linear time, with a careful choice of encryption techniques applied

to the index to hide its contents and the queries from the server,

while allowing a flexible range of search queries. The benchmark

in this class of SSE protocols (supporting conjunctive queries) is

‘Oblivious Cross-Tags’ (OXT) [12]. Nevertheless, to achieve their

high performance, these protocols do trade-off security. In partic-

ular, they leak some ‘partial’ information to the server, both on

the queries themselves, as well as on the database contents. Recent

attacks [10, 25, 30, 39] have shown that such ‘partial’ leakages can

sometimes be exploited in practical applications, especially when

the attacker has available some auxiliary side information (which

may be obtained publicly in many cases). This state of affairs moti-

vates a re-examination of the security-efficiency trade-offs for SSE

protocols and raises the question:

Is it possible to reduce the leakage in existing state-of-the-art effi-
cient SSE protocols while preserving a practical level of performance?

In this paper, we make progress on this question. We focus,

like OXT, only on the setting of conjunctive keyword queries, since

such queries tend to be the most common in many practical appli-

cations. In this setting, queries consist of any number of keywords,

and the result consists of all documents containing all those key-

words.

Overview of OXT. To explain the main technical ideas behind

our construction, it is instructive to first briefly review the ‘TSet’
and ‘XSet’ data structures of OXT and how they are used to effi-

ciently process conjunction queries of the formw1 ∧ · · · ∧wn . In

OXT, TSet is cryptographic data structure that associates a list of
fixed-length data tuples to each keyword in a database. It is an en-

crypted inverted index that enables the owner to issue correspond-

ing tokens to retrieve these lists related to the queried keywords.

In particular, the client sends the server a ‘search token’ (called an

stag) related to the keywordw1 (called the ‘s-term’ and denoted by

sterm), which allows the server to retrieve from the TSet, the set
DB(w1) of all database documents containingw1. In addition, the

client sends ‘intersection tokens’ (called ‘xtraps’) related to the n−1

keyword pairs (w1,wi) consisting of the ‘s-term’ paired with each

of the remaining query keywordswi , 2 ≤ i ≤ n (called ‘x-terms’).

The intersection tokens allow the server to filter the set DB(w1) to

determine the n − 1 subsets of documents DB(w1) ∩ DB(wi) that

contains the pairs (w1,wi), returning only those documents that

contain all {wi }1≤i≤n . The intersection subsets DB(w1) ∩ DB(wi)

are efficiently computed by the server using the ‘XSet’ data struc-
ture; the ‘XSet’ is in essence a list of hashed pairs h(id,w), over all
database document identities id and keywordsw contained in id,
where h is a certain (public) cryptographic hash function. To fil-

ter DB(w1) to compute DB(w1) ∩ DB(wi), the server runs through

each document id in DB(w1) and checks, using the xtrap token

for (w1,wi), whether h(id,wi) is in the XSet. Therefore, the server
computation time is dominated by |DB(w1)|(n − 1) evaluations of

h, which is proportional to just the number of database documents

containing the least frequent ‘s-term’w1, even if other ‘xterm’ key-

words are much more common. However, this method also reveals

to the server the Keyword Pair Result Pattern (KPRP, called RP
in [12]), i.e. the partial result sets DB(w1) ∩ DB(wi) for each pair

(w1,wi).

Result Pattern (RP) Leakage in SSE protocols. Information

leakage in SSE protocols can be classified into three types: storage

leakage, query pattern leakage, and result pattern leakage. In this

paper, we focus on the third type of leakage, namely result pattern

leakage (RP), i.e. information leaked to the server on the query

results. Ideally, in the conjunctive query SSE context, result pattern
leakage would reveal only the Whole Result Pattern (WRP), i.e. the
number (and possibly also, identities) of documents matching all query
keywords. Leaking the WRP is in most SSE settings unavoidable,

as it would be leaked to the server via the document identities

retrieved by the client after the query (unless an ORAM or PIR

protocol is used, which currently seems impractical). But inOXT,RP
leakage is larger than the WRP ideally desired, and comes in three

forms: single keyword result pattern (SP) leakage, Keyword-Pair
Result Pattern (KPRP) leakage and multiple keyword cross-query

intersection result pattern (IP) leakage.
The KPRP leakage is a ‘non-ideal’ leakage related to multiple

keywords in each query. This reveals partial query results to the

database server; for an n keyword conjunction queryw1 ∧ · · · ∧wn ,

with w1 designated as the ‘s-term’ keyword, the KPRP reveals to

the server the set DB(w1) ∩DB(wi) of documents containing every

pair of query keywords of the form (w1,wi), 2 ≤ i ≤ n. This may

leak significantly more information on the inverted-index and/or

the query than what is leaked by WRP, which is the set∩nj=1
DB(w j)

of documents matching all n query keywords.

The recent proposed file-injection attacks [39] have an adapted

version which exploits KPRP leakage in OXT to reveal all key-

words of a conjunctive queries with 100% accuracy. Thus, finding

an SSE protocol that eliminates KPRP leakage may be a feasible

way to mitigate such attack towards the conjunctive queries on the

inverted-index.

Our Contributions. In this paper, we present the first efficient

SSE protocol, called ‘Hidden Cross-Tags’ (HXT) that eliminates

KPRP leakage presented in the state-of-the-art OXT protocol [12].

Our protocol removes the KPRP ‘partial query’ leakage component,

leaving in its place only the minimal (in our SSE context) and

significantly smaller WRP. Furthermore, it leaves other query and

result pattern leakage components in existing SSE protocols (i.e.

SP and IP) unchanged. Thus, in terms of security, our protocol

offers strictly better guarantees than OXT protocol, and is likely

to significantly reduce the rate of query pattern leakage to the

database server, as discussed above.

The improved security of our protocol as compared to OXT may

be attributed to the adoption of two additional cryptographic prim-

itives - namely, Hidden Vector Encryption (HVE) and probabilistic

(Bloom filter) indexing [4]. HVE is a functional encryption prim-

itive typically used in the public-key setting. All existing HVE

schemes [6, 24, 27, 32] in the cryptographic literature use either

prime order or composite order bilinear pairings over elliptic curve

groups. In our HVE-based scheme, a dataset owner can encrypt a set

S ⊆ T = {1, . . . ,n}, for some positive integer n, into a ciphertext cS ,
which specifies a ‘policy’. Using a master secret keymsk , the owner
can generate a search token tkS ′ for any subset S ′ = {s ′

1
, . . . , s ′

ℓ
}

of T . Using the token tkS ′ for S
′
and the ciphertext cS for S , any-

one can efficiently check whether S ′ ⊆ S or not, without leaking

any partial information if S ′ ⊈ S , e.g. whether any particular el-

ement s ′i of S
′
is in S or not (note that in the scheme of [6], the

set S is used to generate the token, while the set S ′ is encrypted
in the ciphertext). Unfortunately, adopting such schemes into our

protocol leads to a huge compromise in overall performance and

efficiency. We address this issue by proposing a ‘lightweight’ HVE

scheme that only uses efficient symmetric-key building blocks, and

entirely avoids elliptic curve-based operations. At the same time, it

affords selective simulation-security against an unbounded number

of secret-key queries. Given this subset membership searchable

encryption protocol, a natural idea to apply it to eliminate KPRP
leakage in OXT would be to use it to encrypt the ‘XSet’ during set
up: we let S ⊆ T denote the XSet list of hashed pairs h(id,w), over
all documents id and keywordsw contained in id, and we encrypt

S into a ciphertext cS stored on the server using our HVE-based
subset searchable encryption scheme. In the search phase with

queryw1∧· · ·∧wn , the client issues the server a HVE search token

tkS ′ for S
′ = {h(id,wi)}

n
i=2

, id ∈ DB(w1). This allows the client

to check whether S ′ ⊆ S , i.e., whether id contains all n keywords

{wi }1≤i≤n , without revealing the KPRP information on whether

id contains any particular pair (w1,wi).

To demonstrate the high performance of our protocols and assess

the efficiency overhead of our security improvements, we report

our experimental results on the implementation of our protocol

and its performance evaluation, compared with the original OXT
protocol.

Security of HXT. We prove the client privacy of HXT against

the “honest-but-curious” server in a natural extension of the secu-

rity model used to prove the security of OXT [12], assuming the

security of the underlying HVE scheme, the DDH assumption, and

the security of the employed symmetric key primitives. The main

difference from [12] is that the leakage function in our security

model is weaker, as it eliminates the KPRP leakage component and

replaces it with the smaller WRP.
Practicality of HXT.We believe HXT is a practical, more secure

alternative to OXT for searching large databases. To support this

statement, we discuss the practical storage, computation, and com-

munication costs of HXT versus OXT (see Sec. 6 and Sec. 7 for more

details and experimental results). In terms of storage, we note that,

like HXT, practical implementations of OXT [12] also use a Bloom

filter for the XSet, and thus have a similar false positive probability

Pe and overhead factor in number of array storage locations. One

additional overhead in our HXT protocol is that each binary entry

of our Bloom filter array is encrypted into 1 PRF generated value,

i.e. typically 128 bits, whereas these bits are unencrypted in OXT,
leading to up to 128 factor overhead (in bit length) in XSet storage
for HXT over OXT. While this factor is quite large, our theoretical

analysis shows that for a fixed Pe = 10
−6
, the XSet Bloom filter

storage size in OXT is 35 times smaller than the TSet hash table size

(which is the same in HXT and OXT). Thus, the overall storage over-
head factor of HXT over OXT without Bloom filter will typically be

only 1 + 128/35 ≈ 4.65, which we believe is quite practical.

In terms of computational cost, the HXT has additional costs

compared to OXT due to the use of HVE (whereas the practical im-

plementations of OXT only uses plain Bloom filter). However, our

proposed HVE is based on symmetric key primitives and bitwise

operations. As a consequence, for typical parameters (e.g. n = 1

or n = 2 keyword queries with false positive rate Pe = 10
−6
), we

estimate that the overall server computation time overhead for HXT
over OXT in such practical applications is likely to be less than 1%

and is fully overlapped by I/O costs. Our implementation results

indeed show a server runtime overhead between 2% − 8% for a two

keywords query, and 21% for the six keywords query. The HXT
client computational cost overhead factor over OXT is higher at

≈ 0.06 ∗ log
2
(1/Pe) ≈ 1.19 for Pe = 10

−6
, but this is likely accept-

able as the overall client search time may be dominated by ‘out of

protocol’ costs such as the communication time for downloading

result documents. In terms of communications, HXT adds one ex-

tra round of communication over the OXT protocol, in which the

server communicates to the client the Bloom filter subset it needs

to check, and the client returns a HVE token to allow this search.

The communication length is still, as in OXT, only proportional to

the number of results for the least-frequent query keyword.

Additional Related Work. In practice, efficient unencrypted

search algorithms usually use a precomputed database index. This
allows keyword searches to be performed in essentially sublinear

time with respect to the size of the database (or more precisely,

in time proportional only to the number of results matching the

query). A number of index based SSE protocols have been proposed,

each more efficient than its predecessor. The first secure encrypted

index was proposed in [22], based on the form of forward index,

storing for each document a Bloom filter containing all the docu-

ment’s keywords. This allows a single document to be searched

in O(1) time but requires each document to be checked in turn,

with complexity proportional to the number of documents in the

database.

Curtmola et al. [16] were the first to propose using an inverted-
index data structure, storing in a hash table for each keyword, the

encrypted IDs of the documents that contain it (while hiding the

number of documents matching each keyword), resulting in com-

plexity proportional to the number of matching results, even for

searching the whole document collection. However, [16] does not

support multiple keyword conjunctive queries efficiently; it has

complexity proportional to the number of documents matching

the most frequent queried keyword. Later, [12] presented the OXT
protocol, extending [16] by adding a ‘Cross-Tag Set’ (XSet) data
structure, which lists hashed pairs of keywords and IDs of doc-

uments containing them, and reducing search complexity to be

proportional to the number of results matching the least frequent
queried keyword. Our HXT protocol is an improvement of OXT,
replacing the XSet by another encrypted data structure to eliminate

KPRP leakage, while preserving a low search complexity.

SE protocols have also been studied extensively in the public key
setting. Such protocols allow any user with the public key to insert

data but only allow the user with the private key to search. The

use of public key cryptography makes the protocols less efficient

than SSE, but allows more powerful functionality and/or better

security properties. The first such protocol was proposed by [5] as a

generalization of anonymous Identity-Based Encryption (IBE), and

supporting equality queries. It was significantly further generalized

in [6] to HVE, applied to conjunctive, subset and range searchable

encryption queries. However, it is not clear how to use it to obtain

Table 1: Notations and Terminologies

Notation Meaning

λ a security parameter

idi the document identifier of the i-th document

d number of documents in the database

w a keyword

Wi forward index {allw contained in idi }
W the set of all keywords ∪di=1

Wi
ω the number of elements in W

DB database (idi ,Wi)
d
i=1

DB(w) inverted-index {all id : w ∈ Wid}

N the number of all pairs of (id,w) in DB
n max. number of conjunctive keywords per query

sterm the least frequent term among queried terms

xterm other queried terms (excluding sterm)

E result set on server side (encrypted)

R result set on client side

Q the number of all queries

[n] the set of integers {1, 2, . . . ,n}

k the number of hash functions in a Bloom filter

m the length of a Bloom filter

Pe query false positive probability (per sterm result)

negl(λ) a negligible function in λ

s
$

←− S uniformly sampling a random s from S

a ← A(·) obtaining a as output of running algorithm A

efficient SSE protocols for conjunctive keyword queries. Our HXT

protocol fills this gap by proposing a symmetric-key HVE which is

significantly more efficient and suffices for symmetric-key setting

of SSE.

2 PRELIMINARIES
We first give a list of notations and definitions needed in our

construction and security analysis. A summary of notations and

terminologies used in this paper is given in Table 1. All needed

hardness assumptions and other necessary cryptographic primi-

tives including symmetric encryption scheme and pseudo-random

functions are given in Appendix A.

2.1 T-set
A T-set is an expanded inverted-index data structure [12] used for

efficient SSE. It is a cryptographic data structure that associates

a list of fixed-length data tuples to each keyword in a database.

Later it enables the owner to issue corresponding tokens to retrieve

these lists related to the queried keywords. A syntax, a correctness

definition, a security model, and an instantiation of such a hash

table is given in [12]. Throughout this paper, we identically adapt

the notations, definitions and results (in particular, those of Appen-

dix 2.2 and Sec. 6) of that paper regarding T-sets here. To summarise

what we use in this work, we give an instantiation of a T-set along

with a result regarding its security.

An instantiation of a T-set consists of three algorithms:

• TSet.Setup(T): The input to this algorithm is an array T and

the output is TSet with b buckets of size s each and a key κT .
This procedure places the i-th element of T[w] into bucket

TSet[b], where b is obtained using two secure pseudorandom
functions (PRFs) F and F̄ and a hash function H .

• TSet.GetTag(κT ,w): The input to this procedure is the key

κT and a keywordw , it returns F̄ (w).
• TSet.Retrieve(TSet, F̄ (w)): This procedure accepts TSet and
the output of TSet.GetTag as its inputs and retrieves the

same bucket TSet(b) and recovers t = T[w].
The only leakage of T-set instantiation in [12] is

N =
∑
w ∈W

|T[w]| =
∑
w ∈W

|DB(w)|, (1)

that is the number of all pairs of (id,w) in DB.

Theorem 1 (Th. 7 of [12]). For any keyword sequence q, including
an empty sequence, define LT(T, q) as (1). The T-set instantiation Γ
is LT-adaptively-secure assuming that F and F̄ are secure PRFs and
that H is a random oracle.

2.2 Searchable Encryption: Definition and
Security

In our single-writer single-reader setting, there are two parties:

the data owner (called client) of the plaintext database and a cloud

service provider (called server) that stores the encrypted database.

The client can interactively perform search queries over the data-

base. In more details, the client outsources her search service to the

server. When she wants to perform a search query, she generates

the search token by herself using her private key and forwards

the token to the server. With the token, the server retrieves the

encrypted identifier or documents for the client.

Formally, the syntax of our SSE protocol Π consists of the fol-

lowing algorithms:

• SE.EDBSetup(1λ ,DB) → (param,mk , EDB): Run by client,

takes 1
λ
and DB as inputs and returns the system public

parameters param, master keymk and encrypted database

EDB. param is publicly known.mk is kept by client and EDB
is stored in the server.

• SE.Search(param,mk ,ψ (w), EDB) → DB(ψ (w)): A proto-

col, runs between client and server interactively. Client’s

inputs are param,mk and queryψ (w), while server’s inputs
are param and EDB. At the end of the protocol, client out-

puts document identifiers DB(ψ (w)) matching queryψ (w),
and server outputs nothing.

We say that Π is computationally correct with false positive rate Pe
if for any database DB of size poly(λ) and any conjunctive query

ψ (w) = w1∧· · ·∧wn , the following gameCorΠ

A
(λ) is wonwith prob-

ability at most |DB(w1)| · Pe + negl(λ). In this game, the challenger

runs SE.EDBSetup to get EDB from DB and simulates SE.Search
on EDB and queryψ (w) to compute the client search result S . The
game is won (and returns 1) if S , DB(ψ (w)). We remark that this

relaxed correctness definition, allowing a ‘per sterm result’ false

positive rate Pe , is also required for the Bloom filter based practical

implementation of OXT (though not formalised in [12]).

We consider the following security model for SSE, which is

exactly the one from [12], except that our leakage function will

reveal WRP instead of the KPRP (known as RP) in [12]. The model

is parameterised by a leakage functionL, as described below, which

captures information allowed to learn by an adversary from the

interaction with a secure searchable encryption protocol. Loosely

speaking, the security says that the server’s view during a non-

adaptive attack can be properly simulated given only the output of

the leakage function L.

Let Π = (SE.EDBSetup, SE.Search) be a searchable encryption
protocol and A and S be two efficient algorithms. The security

is formally defined via a real experiment RealΠ
A
(λ) and an ideal

experiment IdealΠ
A,S
(λ) as follows:

• RealΠ
A
(λ) : The adversaryA(1λ) chooses a database DB and

a query list q. Then the experiment runs SE.EDBSetup(1λ ,
DB) to get (param,mk , EDB) and returns param and EDB
to A. After that, for each i ∈ |q|, the experiment runs the

SE.Search on input q[i], and stores the resulted transcript

and the client’s output into t[i]. Finally, EDB and t will be
given to A. Eventually, the experiment outputs the bit that

A returns.

• IdealΠ
A,S
(λ) The adversary A(1λ) chooses a database DB

and a query list q. Then the experiment runs EDB← S(L(
DB, q)) and gives it toA. Eventually, the experiment outputs

the bit that A returns.

Definition 1 (Security). The searchable encryption protocol Π

is called L-semantically secure against non-adaptive attacks if for
all PPT adversaries A there exists an efficient simulator S such that

| Pr[RealΠA (λ) = 1] − Pr[IdealΠ
A,S(λ) = 1]| ≤ negl(λ).

An adaptive model can also be defined correspondingly as in [12]. In

such a model, the query list q will not be known to the challenger

at the beginning of the real and ideal games. Instead, it selects

repeatedly search query q after each experiment runs SE.EDBSetup.
Note that in the real game, the input to SE.Search is only EDB and

to generate EDB, the simulator S has only access to the leakage

function L(DB, q).

2.3 Bloom Filters
A Bloom filter (BF) is a probabilistic (indexing) data structure to
represent a setV = {s1, s2, . . . , sN } of N elements. Its main func-

tionality is to support membership queries. The idea is to choose k
independent hash functions, {Hi }1≤i≤k , each with domainV and

range [m]. The Bloom filter consists of a binary vector b ofm bits,

initially all 0. In order to set up BF forV , for each element s ∈ V ,

the bits at positions {Hi (s)}1≤i≤k are changed to 1. To test mem-

bership of q, we check if b has 1’s in all positions {Hi (q)}1≤i≤k ,
and if so, we conclude q ∈ V with high probability. Otherwise, we

conclude q < V with probability 1. If q < V yet the membership

test returns 1, we call it a “false positive” event. Given a BF set

up for V , and q < V , the false positive probability for q over a

uniformly random choice of {Hi (q)}1≤i≤k is

Pe ≤ (1 − e
−k ·N /m)k . (2)

Parameters are chosen such that Pe is negligible. It can be seen

from (2) that there is a trade-off between k and the probability of

having a false positive: smaller k are preferred since they reduce the

computation cost, but it is also necessary to maintain the desired

false positive rate. Given N , Pe , the optimal choice of k is k ≈
log

2
(1/Pe), while the requiredm ≈ 1.44 · log

2
(1/Pe) ·N (i.e. k ≈ 20,

m ≈ 29 · N for Pe = 10
−6
) [8].

2.4 Hidden Vector Encryption and its Security
Predicate encryption offers a new cryptographic mechanism that

provides fine-grained access control over an encrypted database. In

predicate encryption, decryption keys are associated with boolean

predicates f : Σ −→ {0, 1} over a pre-defined set of attributes

Σ, while each ciphertext is associated with an attribute I ∈ Σ,
and a payload messages µ ∈ M. A decryption key can be used to

decrypt a ciphertext only if the attribute I satisfies f (I) = 1. Amajor

application of this encryption paradigm is to outsource encrypted

data to a server, and yet retain the ability to make queries on the

data without revealing more information than absolutely necessary.

This is, in principle, similar to the concept of SSE described in the

previous subsection. Hidden vector encryption (HVE) is one such

predicate encryption scheme that supports conjunctive, equality,

comparison, and subset queries on encrypted data. While HVE

was formally defined in the public-key setting in [6], we adopt

their definition to the symmetric-key setting in order for it to be

applicable in the context of SSE.

A symmetric-key HVE may be defined as an ensemble of the

following four PPT algorithms:

• HVE.Setup(λ): takes a security parameter λ and outputs a

master secret keymsk . It also defines the message spaceM.

• HVE.KeyGen(msk , v ∈ Σm∗): takes a predicate vector v, the
master secret keymsk and outputs a decryption key s.
• HVE.Enc(msk , µ ∈ M, x ∈ Σm): takes as input a message µ,
an index vector x, and the master secret keymsk and outputs

the ciphertext c associated with (x, µ).
• HVE.Query(s, c): takes a ciphertext c corresponding to the

index vector x and a decryption key s corresponding to the

predicate vector v, and outputs the message µ if PHVE
v (x) = 1.

We say that a symmetric-key HVE is correct [6] if for all security pa-

rameters λ, all (µ, x) ∈ M ×Σm and all predicate vectors v, after se-
quentially runningHVE.Setup(λ) to getmsk ,HVE.KeyGen(msk , v ∈
Σm∗) to get s, and HVE.Enc(msk , µ ∈ M, x ∈ Σm) to get c, if
PHVE
v (x) = 1, then HVE.Query(s, c) = µ, otherwise

Pr [HVE.Query(s, c) =⊥] = 1 − negl(λ).

The next step is to formally define the notion of semantic se-

curity for symmetric-key HVE against PPT adversaries. The def-

initions are presented in the simulation-setting, which naturally

subsumes the traditional security definitions for HVE in the indis-

tinguishability setting. Prior to presenting the formal definition, we

present two auxiliary definitions that constitute the trivial leakage

from any symmetric-key HVE scheme. Given a predicate vector

v = (v1, . . . ,vm) ∈ Σ
m
∗ , its wildcard pattern α(v) is a vector of the

same size as the predicate vector v, which is 1 if vj , ∗, and 0 oth-

erwise. Also, given a predicate vector v ∈ Σm∗ and an index vector

x ∈ Σ, the decryption pattern β(v, x) is a boolean value such that

β(v, x) = 1 if PHVE
v (x) = 1, and 0 otherwise. With these definitions

in place, we now define the real and simulation experiments for a

symmetric-key HVE scheme.

The Real Experiment. The real experiment for a symmetric-key

HVE scheme involves a challenger and a stateful PPT adversaryA,

who interact as follows:

• Setup phase: During this phase the adversary A chooses

an attribute vector x ∈ Σm and gives it to the challenger.

In response, the challenger runs HVE.Setup(λ) and outputs

msk and message spaceM.M is given to the adversary.

• Query phase 1: The adversary A adaptively chooses pred-

icate vectors vj , for j ∈ [q1]. The challenger then uses vj
andmsk to run HVE.KeyGen, and responds with the corre-

sponding decryption keys sj .
• Challenge phase: The adversaryA outputs a message µ ∈
M. The challenger runs HVE.Enc usingmsk , x and µ and

obtains the ciphertext c, which is given to A.

• Query phase 2: The adversary runs a protocol identical to

Query phase 1 and receives sj for q1 + 1 ≤ j ≤ q2.

Let rA denote the internal random bits used by A during the real

experiment. We use the term ViewA,Real to denote the ensemble

(M, c, {vj }j ∈[q2], rA), which is essentially the view of the adver-

sary A in the real experiment described above.

The Simulation Experiment. The simulation experiment for a

symmetric-key HVE scheme involves a stateful PPT simulator S

and a stateful PPT adversary A, who interact as follows:

• Setup phase: During this phase the adversary A chooses

an attribute vector x ∈ Σm . In response, the simulator S

provides A with the message spaceM. Note that S does

not receive the actual attribute vector x.
• Query phase 1: The adversary adaptively chooses predicate
vectors vj , for j ∈ [q1]. For each such predicate, the simu-

lator S only receives as input the wildcard pattern α(vj)
and the decryption pattern β(vj , x). It responds with the

corresponding decryption keys sj .
• Challenge phase: The adversaryA outputs a message µ ∈
M. The simulator S responds with the challenge ciphertext

c corresponding to x, µ.
• Query phase 2: The adversary runs a protocol identical to

Query phase 1 and receives sj for q1 + 1 ≤ j ≤ q2.

Again, let rA denote the internal random bits used by A during

the simulation experiment. We use the term ViewA,Sim to denote

the ensemble (M, c, {vj }j ∈[q2], rA), which is essentially the view

of the adversary A in the simulation experiment described above.

We define the advantage of a PPT distinguisher D in distin-

guishing the real and simulation experiments described above as

Adv
HVE
D ,A (λ) = | Pr[D(ViewA,Real) = 1] − Pr[D(ViewA,Sim) = 1]|.

A symmetric-key HVE scheme is said to be selectively simulation-

secure if for all such PPT distinguishers D and PPT adversaries A,

the function Adv
HVE
D ,A (λ) is a negligible in λ.

3 LIGHTWEIGHT SYMMETRIC-KEY HIDDEN
VECTOR ENCRYPTION

In this section, we propose a novel HVE scheme in the symmetric-

key setting, referred to as SHVE, that entirely avoids the use of pair-
ings. Our construction is predicate-only (implying that the payload

message is “True” by default) and is amenable to parallel imple-

mentations for high performance. At the same time, it guarantees

selective simulation-security against probabilistic polynomial-time

adversaries for a single ciphertext query and an unbounded number

of decryption key queries.

3.1 Detailed SHVE Construction
We now present the details of our proposed SHVE construction.

Let Σ be a finite set of attributes and ∗ be a wildcard symbol (“don’t

care” value) not in Σ. Define Σ∗ = Σ ∪ {∗}. In our framework,

Σ is typically a finite field Zp , where p is a prime. We define a

family of predicates PSHVE
: Σm −→ {0, 1} as follows. For each

v = (v1, . . . ,vm) ∈ Σm∗ , there exists a predicate P
SHVE
v ∈ PSHVE

,

such that for x = (x1, . . . , xm) ∈ Σ
m
, we have:

PSHVE
v (x) =

{
1 ∀ 1 ≤ i ≤ m (vi = xi or vi = ∗),
0 otherwise.

In other words, the vector x matches v in all the coordinates that

are not the wildcard character ∗. The parameterm is referred to as

the width of the SHVE.
Our construction uses a pseudorandom function (PRF) F0 : {0, 1}λ

×{0, 1}λ+log λ −→ {0, 1}λ+log λ
and an IND-CPA secure symmetric

encryption scheme (Sym.Enc, Sym.Dec) with both the key-space

and the plaintext-space being {0, 1}λ+log λ
, where λ is a security

parameter. The details of the construction are as follows:

• SHVE.Setup(1λ): On input the security parameter λ, the

algorithm uniformly samples msk
$

←− {0, 1}λ . It then de-

fines the payload message spaceM = {‘True’}, and outputs

(msk ,M).
• SHVE.KeyGen(msk , v ∈ Σm∗): On input a predicate vector

v = (v1, . . . ,vm) and the master secret keymsk , we denote
by S = {lj ∈ [m] | vlj , ∗} the set of all locations in v that do
not contain wildcard characters. Let these locations be l1 <

l2 < . . . < l |S | . The algorithm samples K
$

←− {0, 1}λ+log λ

and sets the following:

d0 = ⊕j ∈[|S |]

(
F0(msk ,vlj | |lj)

)
⊕ K ,

d1 = Sym.Enc

(
K , 0λ+log λ

)
.

The algorithm finally outputs the decryption key:

s = (d0,d1, S) .

• SHVE.Enc(msk , µ = ‘True’, x ∈ Σm): On input a message µ,
an index vector x = (x1, . . . , xm) and the master secret key

msk , this algorithm sets cl = F0(msk , xl | |l), for each l ∈ [m],
and outputs the ciphertext:

c = ({cl }l ∈[m]).

• SHVE.Query(s, c): The query algorithm takes as input a

ciphertext c and a decryption key s, and parses them as:

c =
(
{cl }l ∈[m]

)
,

s = (d0,d1, S) .

where S = {l1, l2, . . . , l |S |}. The algorithm computes the

following:

K ′ =
(
⊕j ∈[|S |]clj

)
⊕ d0.

Next the decryption algorithm computes:

µ ′ = Sym.Dec

(
K ′,d1

)
.

If µ ′ = 0
λ+log λ

, the decryption algorithm outputs ‘True’ else

it outputs ⊥.

The correctness of the aforementioned scheme may be verified as

follows. Let c = ({cl }l ∈[m]) be a ciphertext corresponding to an

index vector x = (x1, . . . , xm), and let s = (d0,d1, S) be a decryption
key corresponding to predicate vector v = (v1, . . . ,vm). Let S =
{l1, l2, . . . , l |S |}. We consider the following scenarios:

• If PSHVE
v (x) = 1, we must have vlj = xlj for each j ∈ [|S |]. In

other words, we have clj = F0(msk ,vlj | |lj) for each j ∈ [|S |].

This now immediately leads to the following relation:

K ′ =
(
⊕j ∈[|S |]clj

)
⊕ d0 = K ,

µ ′ = Sym.Dec (K ,d1)

= 0
λ+log λ .

• If PSHVE
v (x) = 0, we must have vlj , xlj , for some j ∈

[|S |]. This in turn implies that for some j ∈ [|S |], clj ,

F0(msk ,vlj | |lj), and hence, during decryption, K ′ , K . This

ensures that except with negligible probability, we have

µ ′ , 0
λ+log λ

, and the decryption algorithm returns the

failure symbol ⊥.

This establishes the correctness of the SHVE scheme. Quite evi-

dently, in our construction, the key-generation and query algo-

rithms operate only on the secret-key/ciphertext components listed

in the subset S , which correspond to the non-wildcard entries in the

predicate vector. The speed-up achieved as a result of this property

is particularly evident in applications where a majority of the pred-

icate vectors have only sparsely distributed non-wildcard entries.

As it turns out, our SSE construction, presented in the following

section, presents precisely such an application scenario.

3.2 Security of SHVE
We now state the following theorem for the security of our SHVE
construction:

Theorem 2. Our predicate-only SHVE construction is selectively
simulation-secure in the ideal cipher model as per the security defini-
tions presented in Sec. 2.4.

Proof. The proof is given in Appendix B. □

4 HXT CONSTRUCTION
We now give the main construction of our SSE protocol and then

prove its correctness and analyse its security.

4.1 Hidden Cross Tags (HXT) Protocol
Our SSE protocol HXT uses (for security parameter λ) (i) a cyclic
group G with prime order p and generator g, for which the DDH
assumption holds (Def. 2), (ii) a symmetric-key HVE (see Sec. 2.4),

for which we use (for the rest of the paper) SHVE presented in

previous section, (iii) a symmetric key encryption scheme Sym
with key space {0, 1}λ (Def. 4), (iv) a Bloom filter BF with lengthm

Algorithm 1 : SE.EDBSetup

Input: 1
λ ,DB

Output: mk , param, EDB
1: function SE.EDBSetup(1λ ,DB)
2: Initialise T← ∅ indexed by keywords W.

3: Select key κS for PRF F .
4: Select keys κI , κZ , κX for PRF Fp .
5: Select hash functions {Hj }1≤j≤k for BF.
6: Run HVE.Setup(1λ) to getmsk .
7: Initialise EDB← {}.
8: forw ∈ W do
9: Initialise t← {}.
10: Compute κe ← F (κS ,w).
11: for id ∈ DB(w) do
12: Set a counter c ← 1.

13: Compute xid← Fp (κI , id).
14: Compute zw ← Fp (κZ ,w | |c); yc ← xid · z−1

w .

15: Compute ec ← Sym.Enc(κe , id).
16: Append (yc , ec) to t and set c ← c + 1.

17: end for
18: Set T[w] ← t.
19: end for
20: Compute (TSet,κT) ← TSet.Setup(T).
21: Let EDB(1) = TSet.
22: Initialize BF← 0

m
.

23: forw ∈ W do
24: for id ∈ DB(w) do
25: Compute xid← Fp (κI , id).
26: for j = 1 : k do
27: Let hj (id,w) ≜ Hj

(
gFp (κX ,w)·xid

)
.

28: Set BF[hj (id,w)] ← 1.

29: end for
30: end for
31: end for
32: Compute c← HVE.Enc(msk , µ = ‘True’,BF).
33: Let EDB(2) = c.
34: return param = ({Hj }

k
j=1
),mk = (msk ,κS ,κI ,κZ ,κX ,

κT), EDB = (EDB(1), EDB(2)).
35: end function

and k hash functions {Hj }1≤j≤k (see Sec. 2.3), and finally (v) PRFs
F with range {0, 1}λ and Fp with range Z∗p (Def. 3).

The HXT protocol consists of two algorithms: SE.EDBSetup and

SE.Search.
The setup algorithm SE.EDBSetup (Algorithm 1) gets the se-

curity parameter λ and DB and returns the param,mk and EDB.
The encrypted database EDB has two components: EDB(1) is TSet
generated exactly as in OXT, and EDB(2), which is shown as the

blue part in Fig. 1: it is an HVE encryption of a carefully designed

Bloom filter BF, which is set up for XSet elements of the form

h(id,w) = gFp (κX ,w)·xid
, for encrypted identifiers xid = Fp (κI , id)

over all id ∈ DB(w). The setup algorithm writes 1’s into BF in

positions in set

S = {Hj (h(id,w))}1≤j≤k ,

Algorithm 2 : SE.Search

Input: param, mk , query w̄ = (w1 ∧ · · · ∧wn) with sterm w1,

EDB.
Output: Result R.
1: function SE.Search(param,mk , w̄ , EDB)
2: Client’s inputs are (param,mk , w̄) and server’s input is

(param, EDB).
3: Client initialises R ← {}.
4: Client computes stag ← TSet.GetTag(κT ,w1) and sends

stag to the server.

5: Server lets TSet = EDB(1).
6: Server computes t ← TSet.Retrieve(TSet, stag), sends |t|

to client, and starts accepting xtokens computed by client as

follows:

7: for c = 1 : |t| do
8: Client computes ηw1

← Fp (κZ ,w1 | |c).
9: for ℓ = 2 : n do
10: Client computes xtoken[c , ℓ] ← gηw1

·Fp (κX ,wℓ)
.

11: end for
12: Client sets xtoken[c] ← (xtoken[c , 2], . . . , xtoken[c ,n]).
13: Client sends xtoken[c] to server.

14: end for
15: Server initialises E ← {}.

16: for c = 1 : |t| do
17: Client initialises vc ← ∗m .

18: Server recovers (yc , ec) from the c-th component of t.
19: for ℓ = 2 : n do
20: Server computes xtag = xtoken[c , ℓ]yc .
21: for j = 1 : k do
22: Server computes uj ← Hj (xtag).
23: Server sends uj to client.

24: Client sets vc [uj] ← 1.

25: end for
26: end for
27: Client computes tokenc ← HVE.KeyGen(msk , vc).
28: Client sends tokenc to server.

29: Server lets c = EDB(2).
30: Server computes resc ← HVE.Query(tokenc , c).
31: if resc = ‘True’ then
32: Server adds ec to E (i.e., E = E ∪ {ec })
33: end if
34: end for
35: Server sends E to client.

36: Client computes κe ← F (κS ,w1),

37: Client computes idc ← Sym.Dec(κe , ec), and adds idc to R
for all ec ∈ E.

38: return R
39: end function

over all (id,w) pairs with id ∈ DB(w), and then encrypts BF with

HVE.Enc. The new parts of our protocol compared to OXT are

coloured blue.

The search protocol SE.Search is shown in Algorithm 2, where

the first 14 lines generate stag and xtokens similar to OXT. The
XSet membership test for conjunctions in OXT is replaced by a HVE
token generation and query. Namely, the HVE token tokenc for

Bloom Filter

0 1 0 1 … 0

m-length bit array
HVE

c1 c2 c3 c4 … cm

bitwise
ciphertext

OXT XSet

�

Figure 1: An illustration of difference w.r.t XSet in HXT com-
pare to OXT.

all idc ∈ DB(w1) is generated for a predicate (BF) vector vc with

1’s in positions in set S ′ = {Hj (h(idc ,wi)}
2≤i≤n
1≤j≤k and wildcards

in other positions.
1
Consequently (as the message encrypted by

HVE was set to ‘True’ in SE.EDBSetup) the HVE.Query returns

‘True’ if S ′ ⊆ S , i.e. if all n − 1 xterms wi are in the document

idc . Otherwise, HVE.Query returns ⊥, without revealing KPRP
information on whichwi are in idc . Importantly, in step 27 and 30,

the HVE.KenGen and HVE.Query algorithm only uses components

of c in the non-wildcard positions of vc and tokenc , so search run-

time is only proportional to |DB(w1)| · n · k (similar to OXT), and
not to the sizem of the BF. We next show that HXT is correct with

the Bloom filter’s false positive rate Pe .

Theorem 3. If the underlying HVE scheme and T-set scheme Γ
are correct, and the PRFs F and Fp are secure, then HXT is computa-
tionally correct with false positive rate Pe ≤ (1 − e

−k ·N /m)k .

Proof. The proof is given in Appendix B. □

5 SECURITY
A Searchable Symmetric Encryption (SSE) query consists of a

Boolean formula ψ and a tuple w = (w1, . . . ,wn) of keywords.

Throughout the paper, we only consider conjunctive queries with

ψ (w) = w1∧· · ·∧wn . Without loss of generality, we assume thatw1

is sterm and (w2, . . . ,wn) are n − 1 xterms. For a vector of queries

q = (s, x2, . . . , xn), it consists of a vector s of sterms, and a sequence

of vectors x2, . . . , xn of xterms.

We define the leakage function of HXTL(DB, q) as a tuple(N , EP,
SP,WRP, IP) formed as follows:

• N =
∑d
i=1
|Wi | is the total number of appearances of key-

words in documents.

• EP is the equality pattern of s ∈ WQ
indicatingwhich queries

have the equal sterms. In particular, EP[i] = |{s[1], . . . , s[j]}|,
where j is the least index for which s[j] = s[i]. Note that
EP ∈ [ω]Q and it is leaked since the client sends stag corre-

sponding to s to server.

• SP is the size pattern of the queries, i.e. the number of

documents matching the sterm in each query. Formally,

SP ∈ [ω]Q and SP[i] = |DB(s[i])|.

1
Under the “honest-but-curious” assumption, the server following the protocol can

not arbitrarily check the membership of Bloom Filter. Therefore, the server is not able

to check XSet like in OXT.

• WRP is the whole result pattern, which is an array computed

as follows: WRP[i] = DB(s[i]) ∩nj=2
DB(xj [i])2.

• IP is the conditional intersection pattern, which is a 4-dimen-

sional table IP[i , j,α , β] defined as follows:

=


DB(s[i]) ∩ DB(s[j]) if i , j,α , β ,

and xα [i] = xβ [j],
∅ otherwise,

for 1 ≤ i , j ≤ Q and 1 ≤ α , β ≤ n.

The overall leakage function L consists of the leakage from the

HXT protocol LHXT and the leakage function of T-set LT.

5.1 Leakage Function Comparison
Note that WRP is a new component in our leakage function com-

pared toOXT. In their leakage function, they actually hadKPRP[i] =
∪nj=2

(
DB(s[i]) ∩ DB(xj [i])

)
, which is denoted by RP in [12] and ob-

viously a lot more than WRP. The following example illustrates the

impact of updating leakage component from KPRP to WRP.
Suppose that a database consists of 6 documents labelled by

{idi }1≤i≤6. Let us assume the following database ‘forward index’,

listing document id’s and keywords contained in each:

id keywords id keywords

1 w1,w2,w6,w7,w8 4 w1,w2,w3

2 w2,w3,w4,w5 5 w1,w3,w6

3 w4,w5,w6,w7 6 w2,w3,w7

Consider the queryw1∧w2∧w3 for some keywordsw1,w2, andw3.

By convention, we letw1 be the least frequent keyword amongst

all queried words. The inverted-index listing the document id’s
containing each of the queried words are DB(w1) = {id1, id4, id5},

DB(w2) = {id1, id2, id4, id6}, and DB(w3) = {id2, id4, id5, id6}.

Table 2: Leakage Comparison for queryw1∧w2∧w3 between
KPRP and WRP.

Leakage Component Leaked Entries

KPRP (from OXT) {(id1,w2), (id4,w2), (id4,w3), (id5,w3)}

WRP (from HXT) {(id4,w2), (id4,w3)}

The KPRP leakage component in OXT is computed as follows:

RP = ∪3

j=2

(
DB(w1) ∩ DB(w j)

)
= {id1, id4} ∪ {id4, id5}. As shown

in Table 2, The KPRP leakage thus reveals 4 entries of the inverted-

index, underlined in the inverted-index above. However, in this

paper, we eliminate the ‘partial query’ (KPRP) leakage induced by

RP, leaving only whole result pattern (WRP) corresponding to the

final query result. By definition, we have WRP = ∩3

j=1
DB(w j). In

our example, WRP reveals the exact result of the query, that is

{id4}. Table 2 shows that the WRP only reveals two entries in the

inverted-index above, in contrast to 4 entries revealed by KPRP
above.

In fact, [12] has not noticed this leakage in their analysis and

simply put RP to be the set of all identifiers matching the i-th query.

2WRP is defined under the “no false positive” assumption, i.e. Both TSet and Bloom

Filter do not have a false positive rate. Otherwise, the false positive should be taking

into account to define a refined leakage profile FP-WRP.

Table 3: Notations for Comparison Analysis

Notation Meaning

m, mp number of multiplications over G and Zp
p, e number of pairings and exponentiations

epre number of preprocessed exponentiations

G, GT, Zp size of an element from G, GT , and Zp resp.

m′ number of non-wildcard elements in a BF
TPRF time taken to compute a PRF
Thash time taken to compute a hash of BF
TXOR time taken to perform an exclusive-or operation over λ

TEnc time taken to compute a sym. ciphertext

TDec time taken to decrypt a sym. ciphertext

TTSet time taken to set-up TSet

5.2 Security Analysis of HXT
Here, we show the security of our protocol against both a non-

adaptive and an adaptive adversarial server which is assumed to be

“honest-but-curious”. Similar to [12], we first give a theorem about

the security against non-adaptive attacks, and later discuss the full

security. For sake of simplicity, we assume in our proof that no

false positive happens in our protocol HXT3 (i.e., no false positive

happening in both TSet and BF).

Theorem 4. Our protocol HXT is L-semantically secure against
non-adaptive attacks where L is the leakage function defined as
before, assuming that the DDH assumption holds in G, that F and Fp
are secure PRFs, that HVE is a selectively simulation-secure protocol,
that Sym = (Sym.Enc, Sym.Dec) is an IND-CPA secure symmetric
encryption scheme, that Γ is a LT-secure and computationally correct
T-set instantiation, and that no false positive happens in our HXT.

Proof. The proof is given in Appendix B. □

We now show that our theorem is also valid for adaptive models.

Theorem 5. Our protocol HXT is L-semantically secure against
adaptive attacks where L is the leakage function defined as before,
assuming that the DDH assumption holds in G, that F and Fp are
secure PRFs, that HVE is a selectively simulation-secure scheme, that
Sym is an IND-CPA secure symmetric encryption scheme, and that Γ
is a LT-secure and computationally correct T-set instantiation.

Proof. The proof is given in Appendix B. □

6 PERFORMANCE COMPARISON
We first give a list of notations needed in this section for our

comparison analysis in Table 3.

6.1 Comparison between HVE Schemes
The performance of the proposed HXT protocol depends on the

parameters of the underlying employed HVE scheme. Hence, we

first give the comparison between the available HVE schemes and

our SHVE scheme in terms of their performance parameters. After

showing the performance advantage of proposed SHVE, we carry
3
Note that the assumption can be relaxed by taking into account the indices introduced

due to the false positive.

Table 4: Different HVE schemes and their properties.

Ref. |G| Ciphertext Size Key Size Enc. Cost Query Cost KeyGen. Cost

BW [6] p1p2 (2m + 1)G + (1)GT (2m + 1)G (6m + 2)m + (8m + 2)e (2m + 1)p (2m + 1)p + (2)m

KSW [27] p1p2p3 2(2m + 1)G + (1)GT (2m + 1)G
(4m)m + (2m)mp
+(6m + 1)e

(2m + 1)p
(3m + 1)m + (2m)mp

+(6m + 2)e
OT [32] p1 2(5m + 1)G + (1)GT (11)G + (m)Zp (m + 1)e + (m + 1)m (11)p + 5(m − 1)e (12m + 10)m
IP [24] p1 (2m + 1)G + (1)GT (2m)G (2m + 2)e + (1)m (2m)p + (2m + 1)m (2m)e + (2m)m

SHVE N /A (m)λ O(m′) + 2λ (m)TPRF (m′)TXoR +TDec
(m′)TPRF + (m

′)TXoR
+TEnc

Table 5: Execution Time Comparison between IP [24] and
the proposed SHVE; The width of HVE: m = 10000, no wild-
card element.

Scheme KeyGen. Time (s) Enc. Time (s) Query Time (s)

IP [24] 51.154 50.901 119.219

SHVE 0.172 0.162 0.004

on to derive and analyse the performance of our HXT and compare

it to that of OXT.
In Table 4, we summarise 4 well-known paring-based HVE con-

structions as well as the SHVE scheme we proposed and compare

them based on their properties including ciphertext and key (token)

sizes as well as encryption, query and token generation computa-

tional costs when we use them to encrypt a Bloom filter with the

length ofm,m is also referred to as the width of the HVE here. Note

that the second and third schemes were induced from Inner Prod-

uct Encryption (IPE), while the first and the fourth constructions

were originally obtained for HVE model. All the presented schemes

except ours are pairing-based constructions (over groups G and GT
as domain and range of a bilinear function) with different group

orders ranging from just 1 prime to product of 3 primes, while our

construction is based on symmetric key encryption.

It is clear that the HVE scheme with pairings in [24] can provide

the most efficient construction with low complexity encryption,

query, and key generation algorithms amongst the pairing-based

HVEs. Therefore, the first evaluation aims to compare the runtime

efficiency of our SHVE scheme with the IP [24]. To evaluate our

scheme, we implement our SHVE with Java, and we choose to use

AES-CMAC as our PRF function while AES in CBC mode as the

symmetric key encryption scheme. All above symmetric crypto-

graphic primitives are from the Legion of Bouncy Castle [37]. We

adopt 128-bit key length for symmetric key encryption scheme

because symmetric encryption with 128-bit key offers better secu-

rity than the Elliptic Curve Cryptography (ECC) over a curve with

a 160-bit prime order group with a smaller key size according to

RFC 4492 [3], and, it can perform encryption/decryption efficiently.

For comparison, we use the open source implementation of IP [24]

included in Java Pairing based Cryptograyphy (JPBC) [9] library,

which is also implemented by Java, and it is constructed on the

curvey2 = x3+x over the field Fp for some primep = 3 mod 4, the

group operations are based on and the 160-bit prime order groups

which are generated from above curve. To make the performance

of IP [24] consistent with the theoretical analysis from Table 4, we

Table 6: The Execution Time of SHVE with different sizes of
predicate vector. The width of HVE:m is from 10

5 to 10
8, no

wildcard element.

SHVE width (m) KeyGen. Time (s) Enc. Time (s) Query Time (s)

10
5

0.715 0.676 0.02

10
6

6.402 6.125 0.052

10
7

58.292 56.417 0.403

10
8

581.933 560.636 3.683

add a preprocessing code for Enc., as it has been implemented for

KeyGen. and Query, but missed in Enc..

It is also critical to distinguish betweenm (the length of the en-

tire Bloom filter which is at least as large as 36 × N) andm′. In the

HVE schemes based on inner product encryption, the complexity

of key generation and query depends onm, while in the SHVE, the
complexity depends only on the number of non-wildcard characters

m′ in the vector. This has a significant impact on the practicality of

the scheme since a dependence ofm would mean a query complex-

ity that scales with the size of the database. However, our query

complexity (e.g., number of pairings and exponentiations) grows

with the size of the result set rather than the database.

All evaluations are performed on a server with Intel Xeon E5

2660 2.20 GHz CPU and 128 GB of DDR3 RAM. The width of HVE
m is set to 10000, and the predicate vector v we used doesn’t have

any wildcard element, which meansm =m′ in our evaluations. We

run IP [24] and proposed SHVE scheme three times respectively to

obtain the average execution times of key generation, encryption,

and query. The results are shown in Table 5. Compared with IP [24],

the proposed SHVE scheme is 314x faster in Enc., 297x faster in

KeyGen., and almost 30000x faster in Query.

We also evaluate the execution time of SHVE with largem to

show the efficiency of SHVE. In this evaluate, the width of HVE is

varied from 10
5
to 10

8
. The result is reported in Table 6, and it is

consistent with our theoretical performance analysis.

We can see that the SHVE scheme is efficient even if it is running

with a large m. For example, it is able to run KeyGen and Enc.

algorithm within 10 minutes, and query algorithm within 3 s when

m = 10
8
(10

8
elements for processing). Note that it needs several

hours to run a pairing-based HVE with the same parameter (m) to

encrypt and to generate the key, and several days to query.

6.2 Comparison between OXT and HXT
We compare our schemewith that of [12] in terms of computational

complexity (of the set-up and search phases), storage size (of the

Table 7: Communication overhead between client and server and their computational costs.

Conjunctive query q = (w1 ∧w2 ∧ · · · ∧wn).

OXT [12] cost HXT cost

Computation

set-up comp. cost NTTSet + N epre + NkThash NTTSet + N epre + NkThash + (m)TPRF
search common cost (server)

xtag comp.&BF match

|DB(w1)| ((n − 1)(kThash + e))

search additional cost (server)
HVE Queries

N /A |DB(w1)|((m
′)TXOR +TDec)

search common cost (client)
stag, xtoken comp. & index recover

|DB(w1)|(nTPRF + (n − 1)epre) +TPRF +TDec

search additional cost (client)
HVE KeyGen

N /A |DB(w1)|((m
′)TPRF + (m

′)TXOR +TEnc)

Storage storage size (server) Nλ +m Nλ + (m)λ

Communication common comm. bandwidth |t| + |DB(w1)|(n − 1)G + |E |O(λ)
additional comm. bandwidth

tokenc transmission

N /A |DB(w1)|(O(m
′) + 2λ)

server), and the number of interaction runs and bandwidth for

conjunctive query (w1∧w2∧· · ·∧wn)with stermw1. Note that e, m,

and p are defined in Table 3. The overall comparison is summarized

in Table 7.

6.2.1 Set-up computational costs. First, we focus on computa-

tional cost spent during the set-up phase. Although both our pro-

tocol and the OXT share a lot of similarities, the time taken to

generate the encrypted database in HXT is mainly contributed from

the computation of the c in addition to TSet, XSet and BF vector

computational costs. The computing of c adds the computational

cost of an HVE.Enc, that is (m)TPRF if we employ the SHVE. If we
letTTSet = TPRF+TEnc, then computing TSet and XSet in OXT sums

up to NTTSet + N epre, where the first term is obtained since TSet
has N components each filled up using a PRF and an encryption

of a symmetric encryption scheme. For the XSet computation, we

make N preprocessed exponentiations, in total of N epre. These are

shown in the first row computation comparison of Table 7. Note

that although we do not entirely generate XSet in HXT, we still com-

pute its components to initiate a BF vector. Bloom filter is employed

for keeping the XSet in a reasonably storage space for the practical

implementation of OXT [12] and generating HVE for HXT, the BF
generation has only the evaluations of hashs Hj , for 1 ≤ j ≤ k and

kN elements.

6.2.2 Storage size. We now investigate the storage size of HXT
and compare it to OXT. The latter stores TSet and the Bloom filter

of XSet in EDB, while HXT uses TSet and an encryption of an HVE
system. Note that the latter is in fact an HVE ciphertext replacing

the Bloom filter of XSet of OXT. The size of TSet equals N , where

each component contains a G element of size O(λ); and the size of

Bloom filter ism. Note thatm is approximately 1.44kN to attain a

negligible probability of false positives, which is 35 times smaller

than an XSet with 512-bit base field for k = 20 (1024 bits for each

element and 1024N in total). Therefore, This in total gives O(N (λ+
k)) as the storage size inOXT. The size of c depends on the size of the
corresponding BF (used to generate it). Therefore, the ciphertext

size is (m)λ. Hence, the overall storage size of HXT is of order

O(kNλ).

6.2.3 Search computational costs. During the search phase, the

computational costs are divided between the client and the server.

The client in both HXT and OXT has to interact with the server

once she wants to send stag and xtokens, where she needs to use

a preprocessed element to calculate (n − 1) exponentiations for

each recovered document in DB(w1). The overall computational

cost till this stage isTPRF + |DB(w1)|TPRF + |DB(w1)|(n − 1)(TPRF +

epre) = TPRF + |DB(w1)|(n)TPRF + |DB(w1)|(n − 1)epre. In OXT, the
server then performs |DB(w1)|(n − 1)e many xtag generation and

|DB(w1)|(n − 1)kThash membership test in the BF vector.
4
It fi-

nally returns recovered encrypted indices to the client, when she

has to perform a decryption of what was stored in TSet. The lat-
ter costs client TDec. In HXT, the server evaluates vectors vc , for
1 ≤ c ≤ |DB(w1)|, and sends it to client. The client consequently

computes tokenc using HVE.KeyGen. The first one again is en-

dowed by (n − 1)kThash and (n − 1)e evaluations, while the second

component requires an HVE key generation, ifm′ denotes the num-

ber of non-wildcard components of vc , then the cost of generating

tokenc is (m′)TPRF + (m
′)TXOR +TEnc. Finally at the server side, the

determination of res through an HVE.Query and a tokenc is extra
compared to OXT, which costs another (m′)TXOR +TDec, using the

above defined notation. The search computational costs discussed

above are presented in the second to fifth row of Table 7.

Finally, we determine the computational cost overhead on server

and client side, respectively. For this purpose, we define Osrvr
as:

|DB(w1)|((m
′)TXOR +TDec)

|DB(w1)|((n − 1)(kThash + e))
.

Based on a micro-benchmark, the computation time of a hash is

insignificant, as the computation cost of an exponentiation is com-

parable to 1300 evaluations of hashs. In addition, the computation

time of an xor operation is 3 times faster than hash, 50 times faster

4
Note that server doesn’t preprocess xtokens, because preprocessing takes more time

than exponentiation directly, so it only suits in the case when the same element is

reused many times.

than Sym.Dec and 100 times faster than Sym.Enc. If we apply the

typical settings from [12]: let Pe = 10
−6

and n = 2, we will have

k = 20, andm′ is equal to the size of vc , which is (n − 1)k (k in

above settings), we conclude that HXT only introduces 1% extra

cost on server side; We further define Oclient
as

|DB(w1)|((m
′)TPRF + (m

′)TXOR +TEnc)

|DB(w1)|(nTPRF + (n − 1)epre) +TPRF +TDec
.

Because the preprocessed element performs exponentiation 17

times slower than PRF and PRF is 43 times slower than exclusive-or

operation, the overhead of HXT is about 119% on client side. It is

easy to deduce from the micro-benchmark that the above two ratios

are inversely proportional to n, which means the computational

overhead of HXT is smaller when the query has a longer keyword

list. However, our evaluations on subsection 7.3 show that such

overhead can be masked by I/O cost on server side.

6.2.4 Interaction rounds and bandwidth. In our proposed query

protocol SE.Search shown in Algorithm 2 (on page 8), the stag and

xtoken generations are the same as that in OXT, which accounts

for the first round of interaction between the client and server. The

bandwidth of this round is |t| + |DB(w1)|(n − 1)G. In the second

and third rounds of interactions, the server computes vc (using the

hashs from the BF) for each encrypted index in vector t retrieved
using stag and TSet and sends it to the client. This interaction

costs |DB(w1)|O(m
′) communication overhead. The client then

uses the key generation algorithm of the corresponding HVE to

form tokenc and lets server to use these tokenc to check if the

result of this query is “True” or not (using the query algorithm

of the underlying HVE scheme). This extra interaction round has

|DB(w1)|(O(m
′) + 2λ) bandwidth. It gathers all encrypted indices

ec that passes the HVE.Query into a set E. This set will be sent to

client with bandwidth |E |O(λ) as the final result and the client is

further responsible to decrypt the recovered indices using her own

secret key to the symmetric encryption Sym. Note that one round

of interaction between client and server has been added in our HXT
compared to OXT, where the server only checks a set membership

against XSet rather than employing HVE. All these are summarized

in Fig. 2.

7 EVALUATIONS
7.1 Prototype Implementation
We implement a prototype system for evaluating our HXT proto-

col. To build this prototype, we firstly implement an OXT proto-

type, because there is no open source implementation of OXT. Our
implementation use the cryptographic primitives outlined in sub-

section 6.1. Bloom filter is a essential part for both OXT and HXT
prototypes, we deploy the Bloom filter from Alexandr Nikitin as it

is the fastest Bloom filter implementation for Java [31]. In our OXT
prototype, we set the false positive rate to 10

−6
and it enables the

OXT prototype to keep the Bloom filter of XSet on the RAM of our

server.

The OXT prototype consists of twomain parts: one for encrypted

database (EDB) generation and the other for database query. Based

on the OXT prototype, we implement the proposed SHVE scheme

to enable the prototype to perform HXT protocol. By replacing

the Bloom filter of XSet to a SHVE ciphertext in EDB generation,

Figure 2: All interactions between a server and a client dur-
ing a search in HXT (all arrows) and OXT (solid arrows only).
Since the message flows corresponding to third, forth, and
fifth lines are sent in parallel over c ∈ [|t|], the HXT protocol
only has 6 message flows (or equivalently 3 rounds). This is
in contrast to OXT, which has 4 message flows (2 rounds).

and the Bloom filter query to SHVE key generation and query in

database query, the OXT prototype is adapted to an HXT one. All

above programs are implemented by a combination of Java and

Scala code and it has roughly 2000 lines of code.

The implemented prototypes are designed to fulfil the scalability

and the query efficiency characteristics of original protocols. To

reach these goals, our prototypes are implemented on distributed

platform (i.e. Hadoop [1]). Hadoop is a distributed platform in

master-slave structure: It has a master node that manages the re-

source and monitor the application execution while a group of

slave nodes which dedicate their computational resources (e.g. CPU,

RAM, disk) to execute the tasks from master node. Hadoop [1] of-

fers a distributed file system HDFS [34], in addition to a distributed

database HBase [2]. HDFS allows our prototypes to store TSet and
SHVE in multiple hard drives in different slave nodes, and reach

them concurrently. As a result, it avoids the heavy I/O overhead

on single hard drive; HBase provides efficient in-memory index

mechanism over distributed dataset, which can highly reduce the

TSet and SHVE access time.

For scalability, we take steps to further improve the read per-

formance of TSet and HVE on HBase. HBase is a column-based

database [2], that is, the data in the same column are stored in the

same file. Therefore, we follow tall narrowmodel [21] to design TSet
table to avoid a very long column value because such long value

incurs extra overhead (i.e. compaction) while loading them into

memory. In the tall narrow model, each tuple list T[w] is split into
fixed-size blocks with a stagw and a block counter. Because HBase

stores data in key lexicographically order, it stores above blocks

with the same stagw into contiguous disk area. Hence, retrieving

TSet only has one random access following by the sequential ac-

cesses. HVE is stored as key/value pairs on HBase. Because the HVE
is a vector the ciphertext, we use the index of vector as the key, and

the corresponding ciphertext as value. Due to the variety of HVE
key, it is difficult to avoid the random access of HVE ciphertext.

Therefore, we use the randomised index of HVE ciphertext as the

Table 8: Statistics of the datasets used in the evaluation

Size # of documents Distinct keywords Distinct (id,w) pairs
2.93GB 7.8 ∗ 10

5
4.0 ∗ 10

6
6.2 ∗ 10

7

8.92GB 2.7 ∗ 10
6

1.0 ∗ 10
7

1.6 ∗ 10
8

60.2GB 1.6 ∗ 10
7

4.3 ∗ 10
7

1.4 ∗ 10
9

key of HVE, because random keys help to distribute the data into

different nodes, which enables the random access in parallel [21].

To accelerate the query phase, we make use of the distributed

in-memory computing framework Spark [38]. Spark follows the

same data processing flow as MapReduce [17], which distributes

the computing tasks and execute them on different slave nodes in

parallel. Spark inherits the scalability and fault tolerance of MapRe-

duce [38], but it can execute tasks in-memory without keeping any

intermediate data on disk, it means our prototypes don’t have any

I/O operation during database query except the TSet and SHVE
query.

We deploy our prototypes on a shared Hadoop cluster with 13

slave nodes and one master node. Each node has 2x Intel Xeon

CPU E5-2660 2.2GHz (each CPU has 8 cores with dual-thread) and

128GB RAM, in addition, we have another node with the same

specification above which is served as edge node and client of our

prototypes. All nodes are connected by InfiniBand [23] network

technique. The cluster installs CDH 5.2.6 [14], one of the most

complete and popular distribution of Hadoop and its peripheral

ecosystem (contains Hadoop Yarn 2.5.0, HBase 0.96.8 and Spark

2.0.2). Based on the setup configuration and scheduling policy, we

can use at most 416 virtual cores (32 virtual cores in each slave

node) and 1248GB RAM (96GB RAM in each slave node), in addition,

each virtual core should have at least 2GB. In real world scenario,

1 virtual core and 2GB RAM are needed for running the monitor

program of a distributed application on Hadoop. As a result, our

prototypes can start 415 tasks with 1 virtual core and 3GB RAM

concurrently at most. However, our following evaluations show

that it is not necessary to use all resources to query the database:

100 concurrent tasks with 1 virtual core and 2GB RAM are sufficient

to provide a satisfactory result.

7.2 Datasets
We test our implementation on three datasets from Wikimedia

Downloads [20]: the original sizes of our datasets are 2.93GB
5
,

8.92GB
6
and 60.2GB7, respectively. A brief summary of the statisti-

cal features of the datasets is given in Table 8.

The corresponding EDB and Bloom filter size for above three

datasets are 9.3GB and 215MB, 33GB and 575MB, 256GB and 4.76GB.

In addition, the HVE size is 28GB, 76GB and 647GB. Fig 3 further

gives the frequency of keywords according to the number of docu-

ments to depict the keyword occurrence distribution of the gener-

ated EDBs.

5
enwiki-20161220-pages-articles22.xml

6
enwiki-20161220-pages-articles27.xml

7
enwiki-20171201-pages-articles.xml

>=10
0

>=10
1

>=10
2

>=10
3

>=10
4

>=10
5

>=10
6

Occurrence (keyword)

1

10

100

1000

10000

100000

1e+06

1e+07

1e+08

#
 o

f
D

o
c
u

m
e

n
ts

60.2GB Dataset

8.92GB Dataset

2.93GB Dataset

Figure 3: The keyword occurrence distribution of three
datasets.

0 50 100 150 200

of Task(s)

100

200

300

400

500

600

T
im

e
 (

s
e

c
)

60.2GB Dataset

8.92GB Dataset

2.93GB Dataset

Figure 4: HXT Server query time when # of parallel tasks in-
creases.

7.3 Evaluation Results
Our evaluation aims to verify the following: (i) our implementation

in distributed platform can ensure the efficiency of queries; (ii) the

additional query latency introduced in HXT is small; (iii) HXT keeps

the scalability property of OXT.

7.3.1 The impact of parallelism. First, we study how distributed

computing influences the query efficiency of HXT prototype. We

choose a keywordwith about 330Kmatched documents respectively

in three datasets, and we use the selected keyword as the sterm
to perform a two-terms conjunctive query in our HXT prototype.

We vary the number of parallel tasks from 1 to 200 before the

server start running the query to test the impact of parallelism. As

shown in Fig 4, we observe that parallelism successfully improved

the efficiency of query by a factor of 100 times on server side. In

addition, we conclude the impact in three cases: (i) when increasing

the number of parallel tasks from 1 to 10, parallelism can highly

improved the server side performance; (ii) when the number of

parallel tasks is between 10 to 100, parallelism only can slightly

improve the query efficient on server; (iii) after the number of

parallel tasks is larger than 100, parallelism doesn’t affect the query

efficiency.

The reason is that the computational cost is the dominant cost

when the server only has a small fraction of resources is allowed

to engage the computation. By increasing the parallelism factor in

1 10 100 1000 10000 100000 1e+06

Selectivity of Variable Term (v)

0.0001

0.001

0.01

0.1

1

10

100

T
im

e
 (

s
e
c
)

Selectivity of a:1284

HXT v AND a

OXT v AND a

HXT a AND v

OXT a AND v

Figure 5: Server performance comparison between HXT and
OXT in 2.93GB dataset.

1 10 100 1000 10000 100000 1e+06

Selectivity of Variable Term (v)

0.0001

0.001

0.01

0.1

1

10

100

T
im

e
 (

s
e
c
)

Selectivity of a:1284

HXT v AND a

OXT v AND a

HXT a AND v

OXT a AND v

Figure 6: Client performance comparison between HXT and
OXT in 2.93GB dataset.

above case, computation cost of each tasks can be highly reduced,

which yields a significant performance improvement. However,

with the increase of the number of parallel tasks, it incurs more

communication cost for task scheduling and monitoring between

the master and slave nodes of our cluster, and HBase also has a

I/O limits based on the underlying infrastructure. Therefore, the

computation cost is overlapped by communication cost and I/O

latency after we have more than 100 parallel tasks.

Another observation is the query latency highly depends on the

selectivity of sterm, while it is independent of the size of dataset.

We examine it deeply in the scalability test at the end of this section.

7.3.2 Performance comparison. We use the parallel factor 100 to

further investigate the additional overhead in HXT comparing with

OXT protocol. Due to the OXT and HXT protocol having the same

behaviour when performing single-keyword search, our evaluation

only report the query performance of conjunctive query.

We choose a variable term, named v, on the 2.93GB dataset. The

selectivity of v is from 2 to 337449 documents. We further choose a

fixed term a and perform two types of conjunctive queries on the

2.93GB dataset. Fig 5 shows the time spent by HXT and OXT during

the query on server side. The first conjunctive query uses the v as

sterm and the a as xterm. Hence, theOXT server time is linear to the

selectivity of v, because it needs to do an additional exponentiation

for each tuple from the TSet to check against the XSet. When the

selectivity of v is small, we observe that HXT prototype has 2%−8%

1 10 100 1000 10000 100000 1e+06

Selectivity of Variable Term (v)

0.0001

0.001

0.01

0.1

1

10

100

T
im

e
 (

s
e
c
)

Selectivity of a:1284

HXT v AND a

OXT v AND a

HXT a AND v

OXT a AND v

Figure 7: Overall query delay comparison between HXT and
OXT in 2.93GB dataset.

0 1 2 3 4 5 6

of variable term (n)

0.0001

0.001

0.01

0.1

1

10

100

T
im

e
 (

s
e
c
)

Selectivity of a:1284

HXT a AND v
1
 AND ... AND v

n

OXT a AND v
1
 AND ... AND v

n

Figure 8: Overall query delay comparison between HXT and
OXT under multi-keyword setting in 2.93GB dataset.

additional cost comparing with OXT. However, it slows down with

the increase of selectivity of v. This is because HXT requires to

access HBase to get HVE ciphertext, increasing the selectivity also

means the server needs to do more HBase access, which increase

the load of I/O.

Another conjunctive query use the a as sterm and v as xterm,

the server then runs in a steady constant time regardless of the

selectivity of v. In above case, HXT has 2% − 8% overhead against

the OXT over time. This also illustrate the importance of choosing

the least frequent term as sterm.

The query time on the client side of HXT and OXT is demon-

strated in Fig 6. Comparing with server, client doesn’t have any

I/O operation, so it purely reflects the computation costs, and it fits

well with the analysis in subsection 6.2 as HXT is 2 times slower

than OXT.
However, as we design our prototypes to perform query in par-

allel, the computation cost of HVE key generation on client side

can be overlapped by the xtag generation (it always slower than

xtoken generation because it doesn’t use preprocessed elements),

as well as the HBase I/O for loading HVE ciphertext on server side.

As shown in Fig. 7, the overall performance of HXT is not affected

by the computation on client side.

The last evaluation in this part aims to compare the performances

of HXT and OXT for querying multiple keywords. In this evaluation,

the sterm is identical to the fixed term a in previous two-keyword

3e+07 3e+08 3e+09

Database size as total number of (id, w) pairs

0.0001

0.001

0.01

0.1

1

10

100

T
im

e
 (

s
e

c
)

(a)c_small

(b)c_medium

(c)p_small

(d)p_medium

Figure 9: HXT Scalability test in various dataset, the test
is running in four cases: (a) constant small (10) result set;
(b) constant medium-size (10000) result set; (c) proportional
small result set; (d) proportional medium result set;

evaluation, but we introduce more variable terms {vn}, n ∈ [1, 5]
as xterms in the conjunctive query. As shown in Fig. 8, the query

delay increases if the query has more keywords. The underlying

reason is that the size ofm′ is proportional to the size of keyword

list, and HXT server is required to have more I/O operation with

the increasing size ofm′. However, such delay is affordable: the

HXT prototype has only 8% and 21% additional cost when the query

has two and six keywords, respectively.

7.3.3 Scalability of HXT. We leverage three EDBs we generated
from Wikimedia Downloads [20] to demonstrate the scalability

of the HXT protocol. We follow the the same evaluation method

in [12] to inject artificial query terms to randomly selected docu-

ments. Fig. 9 shows that the implementation of HXT preserves the

scalability of OXT protocol even when the database sizes exceed

the memory we assigned for database query. The query time of

HXT is independent of the size of the database. Instead, it is linear

to the size of result set.

We also evaluate the query delay for different sizes of datasets

as well as the bandwidth communication, which are given in Ap-

pendix C.

8 CONCLUSION
In this paper, we propose a new searchable encryption protocol to

obtain better security than to the current existing OXT protocol at

the cost of slightly increasing the communication and computation

overhead.

In particular, we have introduced hidden cross-tags (HXT) pro-
tocol by employing Bloom filters (BF) and newly introduced light-

weight symmetric hidden vector encryption (SHVE). It is similar to

OXT [12] except that we replace the XSet by an SHVE encryption

of BF. The search algorithm re-constructs the search tokens and

performs SHVE query algorithm instead of an XSet membership

test. It has been shown that our SHVE is selectively simulation-

secure, and our HXT is computationally correct, semantically secure

against selective adversaries. Implementation and experiments have

been conducted to compare the efficiency of the SHVE with those

pairing-based HVEs and HXT versus OXT accordingly.

Some possible further research directions are: (i) to establish a

protocol achieving a better security (by even removing WRP from

the leakage profile) robust to the recent attacks [39], while sup-

porting Boolean queries, (ii) to apply HXT to other types of queries

including rich queries [18, 19], (iii) to employ HXT in dynamic SSE

scheme with forward/backward security [7].

ACKNOWLEDGMENTS
The authors would like to thank the anonymous reviewers for their

valuable comments and constructive suggestions.

The authors would also like to thank Mr. Piotr Szul from Data61

for his kindly help in the use of High Performance Computing

Resource. The work is supported in part by the Data61-Monash CRP,

ARC Discovery Project grant DP180102199, Oceania Cyber Security

Centre POC scheme, Qualcomm India Innovation Fellowship 2017

and DRDO (Grant: DFTM/02/3111 /M/01/JCBCAT/1288/D(R&D)

dated 07 July 2017). Debdeep would also like to thank his DST

Swarnajayanti fellowship for partial support during the duration

of the project.

REFERENCES
[1] Apache. 2015. Hadoop. https://hadoop.apache.org[online]. (2015).

[2] Apache. 2015. HBase. https://hbase.apache.org[online]. (2015).

[3] S. Blake-Wilson, N. Bolyard, V.Gupta, C. Hawk, and B. Moeller. 2006. RFC4492:

Elliptic Curve Cryptography (ECC) Cipher Suites for Transport Layer Security

(TLS). RFC4492, Internet Engineering Task Force (2006).
[4] B.H. Bloom. 1970. Space/Time Trade-offs in Hash Coding with Allowable Errors.

Commun. ACM 13, 7 (1970), 422–426.

[5] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano. 2004. Public Key

Encryption with Keyword Search. In EUROCRYPT 2004. 506–522.
[6] D. Boneh and B. Waters. 2007. Conjunctive, Subset, and Range Queries on

Encrypted Data. In TCC’07. 535–554.
[7] R. Bost, B. Minaud, and O. Ohrimenko. 2017. Forward and Backward Private

Searchable Encryption from Constrained Cryptographic Primitives. In ACM
CCS’17. 1465–1482.

[8] A. Broder and M. Mitzenmacher. 2004. Network Applications of Bloom Filters: A

survey. Internet mathematics 1, 4 (2004), 485–509.
[9] A. De Caro and V. Iovino. 2011. JPBC: Java Pairing Based Cryptography. In IEEE

SCC 2011. 850–855.
[10] D. Cash, P. Grubbs, J. Perry, and T. Ristenpart. 2015. Leakage-Abuse Attacks

Against Searchable Encryption. In ACM CCS’15. 668–679.
[11] D. Cash, J. Jaeger, S. Jarecki, C.S. Jutla, H. Krawczyk, M-C. Rosu, and M. Steiner.

2014. Dynamic Searchable Encryption in Very-Large Databases: Data Structures

and Implementation. In NDSS’14.
[12] D. Cash, S. Jarecki, C.S. Jutla, H. Krawczyk, M-C. Rosu, and M. Steiner. 2013.

Highly-Scalable Searchable Symmetric Encryption with Support for Boolean

Queries. In CRYPTO’13. 353–373.
[13] C-K. Chu, W.T. Zhu, J. Han, J.K. Liu, J. Xu, and J. Zhou. 2013. Security Concerns

in Popular Cloud Storage Services. IEEE Pervasive Computing 12, 4 (2013), 50–57.
[14] Cloudera. 2018. CDH Overview. https://www.cloudera.com/documentation/

enterprise/5-2-x/topics/cdh_intro.html[online]. (2018).

[15] R. Cramer and V. Shoup. 1999. Signature Schemes Based on the Strong RSA

Assumption. In ACM CCS’99. 46–51.
[16] R. Curtmola, J.A. Garay, S. Kamara, and R. Ostrovsky. 2006. Searchable symmetric

encryption: improved definitions and efficient constructions. In ACM CCS’06.
79–88.

[17] J. Dean and S. Ghemawat. 2008. MapReduce: simplified data processing on large

clusters. Commun. ACM 51, 1 (2008), 107–113.

[18] I. Demertzis, S. Papadopoulos, O. Papapetrou, A. Deligiannakis, and M.N. Garo-

falakis. 2016. Practical Private Range Search Revisited. In ACM SIGMOD’16.
185–198.

[19] S. Faber, S. Jarecki, H. Krawczyk, Q. Nguyen, M-C. Rosu, andM. Steiner. 2015. Rich

Queries on Encrypted Data: Beyond Exact Matches. In ESORICS 2015. 123–145.
[20] Wikimedia Foundation. 2017. Wikimedia Downloads. https://dumps.wikimedia.

org[online]. (2017).

[21] L. George. 2011. Advanced HBase Schema Design. Technical Report. In Hadoop

World 2011.

[22] E. Goh. 2003. Secure Indexes. IACR Cryptology ePrint Archive 2003 (2003), 216.
[23] IBTA. 2017. InfiniBand Specification. http://www.infinibandta.org/[online].

(2017).

https://hadoop.apache.org
https://hbase.apache.org
https://www.cloudera.com/documentation/enterprise/5-2-x/topics/cdh_intro.html
https://www.cloudera.com/documentation/enterprise/5-2-x/topics/cdh_intro.html
https://dumps.wikimedia.org
https://dumps.wikimedia.org
http://www.infinibandta.org/

[24] V. Iovino and G. Persiano. 2008. Hidden-Vector Encryption with Groups of Prime

Order. In Pairing 2008. 75–88.
[25] M.S. Islam, M. Kuzu, and M. Kantarcioglu. 2012. Access Pattern Disclosure on

Searchable Encryption: Ramification, Attack and Mitigation. In NDSS’12.
[26] J. Katz and Y. Lindell. 2007. Introduction to Modern Cryptography. Chapman and

Hall/CRC Press.

[27] J. Katz, A. Sahai, and B. Waters. 2013. Predicate Encryption Supporting Dis-

junctions, Polynomial Equations, and Inner Products. J. Cryptology 26, 2 (2013),

191–224.

[28] K. Liang, C. Su, J. Chen, and J.K. Liu. 2016. Efficient Multi-Function Data Sharing

and Searching Mechanism for Cloud-Based Encrypted Data. In ASIACCS’16.
83–94.

[29] J.K. Liu, M.H. Au, W. Susilo, K. Liang, R. Lu, and B. Srinivasan. 2015. Secure

Sharing and Searching for Real-time Video Data in Mobile Cloud. IEEE Network
29, 2 (2015), 46–50.

[30] M. Naveed, S. Kamara, and C.V. Wright. 2015. Inference Attacks on Property-

Preserving Encrypted Databases. In ACM CCS’15. 644–655.
[31] A. Nikitin. 2016. Bloom Filter Scala. https://alexandrnikitin.github.io/blog/

bloom-filter-for-scala/[online]. (2016).

[32] T. Okamoto and K. Takashima. 2012. Adaptively Attribute-Hiding (Hierarchical)

Inner Product Encryption. In EUROCRYPT 2012. 591–608.
[33] R.A. Popa, C.M.S. Redfield, N. Zeldovich, and H. Balakrishnan. 2011. CryptDB:

Protecting Confidentiality with Encrypted Query Processing. In ACM SOSP’11.
85–100.

[34] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. 2010. The Hadoop Distributed

File System. In IEEE MSST’10. 1–10.
[35] D.X. Song, D. Wagner, and A. Perrig. 2000. Practical Techniques for Searches on

Encrypted Data. In IEEE S&P 2000. 44–55.
[36] S. Sun, J.K. Liu, A. Sakzad, R. Steinfeld, and T.H. Yuen. 2016. An Efficient Non-

interactive Multi-client Searchable Encryption with Support for Boolean Queries.

In ESORICS 2016. 154–172.
[37] The Legion of the Bouncy Castle. 2007. Bouncy Castle Crypto APIs. https:

//www.bouncycastle.org[online]. (2007).

[38] M. Zaharia, M. Chowdhury, M.J. Franklin, S. Shenker, and I. Stoica. 2010. Spark:

Cluster Computing with Working Sets. In HotCloud’10.
[39] Y. Zhang, J. Katz, and C. Papamanthou. 2016. All Your Queries Are Belong to

Us: The Power of File-Injection Attacks on Searchable Encryption. In USENIX
Security 16. 707–720.

A HARDNESS ASSUMPTIONS
The security of our construction relies on the hardness of the de-

cisional Diffie-Hellman (DDH) problem [15], the security and cor-

rectness of a PRF, and IND-CPA of a symmetric encryption. We

next briefly recall the formal definitions of these primitives and

refer the interested reader to [26] for further details.

Definition 2 (DDH). LetG be a cyclic group of prime order p, the
DDH problem is to distinguish the ensembles {(g,ga ,gb ,gab)} from
{(g,ga ,gb ,gz)}, where the elements g ∈ G a,b, z ∈ Zp are chosen
uniformly at random. Formally, the advantage Adv

DDH
D ,G(λ) for any

PPT distinguisher D is defined as���Pr[D(g,ga ,gb ,gab) = 1] − Pr[D(g,ga ,gb ,gz) = 1]

��� .
We say that the DDH assumption holds if for any PPT distinguisher
D, its advantage Adv

DDH
D ,G(λ) is negligible in λ.

Definition 3 (PRFs). LetX andY be two sets, and let F : {0, 1}λ×

X → Y be a function. We say that F is a pseudorandom function
(PRF) if for all efficient adversaries A, AdvCor

PRF
F ,A (λ) is negligible,

for AdvCor
PRF
F ,A (λ) defined as���Pr[AF (κ , ·)(1λ) = 1] − Pr[Af (·)(1λ) = 1]

��� ,
where the probability is over the randomness of A, and κ is chosen
randomly from {0, 1}λ , and f is chosen randomly from the set of all
functions with domain X to range Y.

Definition 4 (Symmetric Encryption). A symmetric encryp-
tion scheme Sym consists of a randomised encryption algorithm
Sym.Enc, which takes a key κ ∈ {0, 1}λ and a message µ ∈ {0, 1}∗

and returns a ciphertext c , and a deterministic decryption procedure
Sym.Dec, which accepts the same key κ and the ciphertext c and
outputs a message µ.

A symmetric encryption scheme Sym is called IND-CPA if for

all PPT adversaries A, the Adv
IND−CPA
A,Sym (λ) defined as

| Pr[AO(κ ,0, ·, ·)(1λ) = 1] − Pr[AO(κ ,1, ·, ·)(1λ) = 1]|,

is negligible in λ, where κ is chosen at random from {0, 1}λ and

the oracle O(κ,b, µ0, µ1) returns ⊥ if |µ0 | , |µ1 |, and otherwise it

samples Sym.Enc(κ, µb) and returns the result. The correctness is

defined as usual.

B PROOFS
Proof of Theorem 2:

We first show a construction for the simulator S in the simula-

tion experiment. The simulator models the symmetric encryption

scheme (Sym.Enc, Sym.Dec) as an ideal cipher. In particular, the

adversary A either issues encryption queries of the form (κ, µ) or
decryption queries of the form (κ, c). The simulator S maintains a

table of the form (κ, µ, c). Upon receipt of an encryption/decryption

query, it looks up the table, and either returns an already existing

entry, or adds a uniformly random entry to the table and returns

the same. The simulator operates as follows:

• Setup phase: Suppose the adversaryA chooses an attribute

vector x ∈ Σm . The simulator S sets M = {‘True’} and

provides the same to A. It additionally randomly chooses

cl
$

←− {0, 1}λ+log λ
for l ∈ [m].

• Query phase 1: The adversary adaptively chooses pred-

icates PSHVE
vj , for j ∈ [q1]. For each such predicate, the

simulator S receives the corresponding wildcard pattern

α(vj) =
(
α j ,1, . . . ,α j ,m

)
and the decryption pattern β(vj , x).

S then does the following:

– S computes Sj = {li ∈ [m] | α j ,li = 1}. Let Sj =
{l1, l2, . . . , l |Sj |}.

– If β(vj , x) = 1, it randomly samples K
$

←− {0, 1}λ+log λ
.

Next, for i ∈ [|Sj |], it sets the following :

dj ,0 =
(
⊕i ∈[|Sj |]cli

)
⊕ K .

Finally, it setsdj ,1 = Sym.Enc(K , 0λ+log λ). Note that since

(Sym.Enc, Sym.Dec) is modeled as an ideal cipher, all the

aforementioned Sym.Enc operations are essentially imple-

mented via table-look-up operations.

– Otherwise, if β(vj , x) = 0, the simulator sets dj ,0,dj ,1
$

←−

{0, 1}λ+log λ
.

– Finally, the simulator sets the decryption key:

sj =
(
dj ,0,dj ,1, Sj

)
.

This decryption key is subsequently provided to the ad-

versary A.

• Challenge phase: The simulator S provides A with the

challenge ciphertext c =
(
{cl }l ∈[m]

)
.

https://alexandrnikitin.github.io/blog/bloom-filter-for-scala/
https://alexandrnikitin.github.io/blog/bloom-filter-for-scala/
https://www.bouncycastle.org
https://www.bouncycastle.org

• Query phase 2: The adversary runs a protocol identical to

Query phase 1, and S responds with sj for q1 + 1 ≤ j ≤ q2

as described above.

The indistinguishability of the ciphertext c and the secret keys

sj for j ∈ [q2] from the real experiment follows directly from the

following facts:

• The payload message is ‘True’ by default in the predicate-

only version of the scheme. Now, for each j ∈ [q2] such

that PSHVE
vj (x) = 1, decrypting c using sj returns ‘True’. On

the other hand, for each j ∈ [q2] such that PSHVE
vj (x) = 0,

decrypting c using sj returns ‘True’ with only negligible

probability.

• The encryption and decryption outputs of (Sym.Enc, Sym.

Dec) are indistinguishable from uniformly random since

they are modeled in the ideal cipher model.

• The outputs of the PRF F0 are indistinguishable from random

to a PPT distinguisher D that can guess the master secret

keymsk with only negligible probability (Definition 3) .

Proof of Theorem 3:
Let G0 denote the original game CorHXT

A
(λ). We want to show

Pr[G0 = 1] ≤ (1 − e
−k ·N /m)k + negl(λ). We modify G0 to obtain

G1 by replacing the employed PRFs F and Fp with keys κX , κI
with random functions. From the security of the PRFs against PPT
adversaries and the fact that |DB| is polynomial in λ, we conclude
that Pr[G1 = 1] − Pr[G0 = 1] ≤ negl(λ). We now find an upper

bound on Pr[G1 = 1]. By correctness of T-Set Γ, we know that

the simulated server will retrieve the correct set DB(w1) of id’s
matching the sterm. Also, for all id ∈ DB(w1), which match the

query (i.e id ∈ DB(wi) for 2 ≤ i ≤ n), the encrypted Bloom fil-

ter will have 1’s in positions uj = Hj

(
gFp (κX ,wi)·Fp (κI , id)

)
, so by

correctness of HVE, the client result set S contains the desired re-

sult set DB(ψ (w)). Hence the game can only be won due to false

positives, i.e. id ∈ DB(w1) which does not match the query (i.e

id < DB(wi) for some 2 ≤ i ≤ n) but is still returned by the

server. By correctness of HVE, such false positives can happen

only if the encrypted Bloom filter will have 1’s in positions uj =

Hj (g
Fp (κX ,wi)·Fp (κI , id)) for such id < DB(wi). There are two sub-

cases. The first is that gFp (κX ,wi)·Fp (κI , id) = gFp (κX ,w ′)·Fp (κI , id′)

for some other (id′,w ′) , (id,w) and id′ ∈ DB(w ′). This happens
with negligible probability O(N 4/p). The second subcase is that

(id,wi) is a false positive for the Bloom filter, but this happens with

probability ≤ (1− e
−k ·N /m)k for each id ∈ DB(w1) and hence by a

union bound with overall probability ≤ |DB(w1)| · (1 − e
−k ·N /m)k .

We conclude that Pr[G1 = 1] ≤ |DB(w1)| · (1−e
−k ·N /m)k +negl(λ),

as required.

Proof of Theorem 4:
First of all, we describe that leakage function L which consists

of two components: LHXT, the leakage from the HXT protocol, and

LT, the T-set leakage function. On input a database DB and a set of

search queries (s, x2, . . . , xn) ∈ Wn
, the leakage function L can be

computed similarly as in [12]: For everyw ∈ W, randomly choose

a key κ ∈ {0, 1}λ and initiates t as an empty vector; For a counter

c , choose a non-zero random y ∈ Zp and compute an encryption

of constant string Sym.Enc(κ, 0λ) and put this ciphertext along

with y in the c-th component of t; Once the counter reaches its

end (Tw = |T[w]|), put t into thew-th entry of T. Then the leakage

function is output as

(
(LHXT(DB, s, x2, . . . , xn)),LT(T, s),T[s]

)
.

Next, we show the proof of Theorem 4. The proof is structured

through a sequence of games. In all games, the adversary supplies

a database DB and a list of search queries q = (s, x2, . . . , xn) at the
beginning, where s and xi are the list of query sterms and xterms,

respectively. The first game Game0 is designed to have the same

distribution as RealΠ
A
(λ), where we neglect all false positives of

both TSet and BF for simplifying the proof, and the last one can be

easily simulated by an efficient algorithm SHXT. By showing that

the distributions of each two successive games are (computation-

ally) indistinguishable, we get the simulator SHXT that meets the

requirements of the security definition, thus completing the proof

of the theorem. In the following, we use Pr[Gi = 1] to denote the

probability that Gamei outputs 1.

Game0: this game is slightly modified from the real game to

make the analysis easier, the details of which are shown in Algo-

rithm 3. With (DB, s, x2, . . . , xn) as input, the game starts to sim-

ulate encrypted database EDB(1), then it computes a vector of sizeQ
of stags called STags. Particularly STags[i] ← TSet.GenTag(κT, s[i]),
for 1 ≤ i ≤ Q . Second, it computes BF similar to that of Algorithm 1

and finally inputs c into EDB(2). It finally computes the transcript ar-

ray tr, with tr[i] being (Res, ResInds, ((STags[i], xtoken[i], token[i])))
for 1 ≤ i ≤ Q , by running the last loop of Algorithm 3. Note that

the obtained ResInds in t is computed by looking up the corre-

sponding id values in DB(s[i]) ∩
⋂n

ℓ=2
DB(xℓ[i]), instead of de-

crypting the results returned by SE.Search in the real game. As-

suming no false positives happening, the distribution of the ex-

plained game is exactly the same as the real game. Therefore,

Pr[G0 = 1] ≤ Pr[RealHXT
A
(λ) = 1] + negl(λ).

Game1: in this game we replace the PRFs F and Fp with ran-

dom functions. The details of which are shown in Algorithm 4.

Note that since F (κS , ·) is only evaluated on the same input once,

its evaluations can be replaced with random selections from the

appropriate range. As to Fp (κX , ·), Fp (κI , ·) and Fp (κZ , ·), they are

replaced by fX , fI and fZ , respectively. A standard hybrid argument

implies that there exist efficient adversaries B1,1 and B1,2 such that

Pr[G1 = 1] − Pr[G0 = 1] ≤ Adv
PRF
F ,B1,1

(λ) + 3Adv
PRF
Fp ,B1,2

(λ).

Game2: this game replaces only the encryption of document

identifiers with that of constant string 0
λ
. In the game, the encryp-

tion is operated for polynomial, say poly(λ), times, so by a standard

hybrid argument we can see that the indistinguishability between

these two games can be reduced to IND-CPA security of the sym-

metric encryption. That is, there exists an efficient adversary B2,

such that Pr[G2 = 1] − Pr[G1 = 1] ≤ poly(λ) · Adv
IND−CPA
B2 ,Sym (λ).

Game3: in this game BF and xtoken are generated in an alterna-

tive but equivalent way, which is shown in Algorithm 5. Loosely

speaking, all possible values gfX (w)fI (id) for each identifier id ∈
DB(w) and keyword w ∈ W are pre-computed and stored in an

array A. Moreover, some xtoken values in transcripts, which corre-

spond to impossible matches, are generated and stored in another

array B.
Then arrays A and B are used to compute BF and xtoken. In

particular, for a given w and id ∈ DB(w) the element A[w , id]
instead of gfX (w)fI (id) is added to BF. Note that A[w , id] is exactly

Algorithm 3 : Game0

(idi , Wi)
d
i=1
← DB; κS , κI , κZ , κX

$

←− {0, 1}λ

forw ∈ W do

(¯id1 , . . . , ¯idTw) ← DB(w); σ
$

←− Perm([Tw]); WPerms[w] ← σ
t← {}; κe ← F (κS , w)
for c = 1 : Tw do

xid← Fp (κI , ¯idσ (c)); e = Sym.Enc(κe , ¯idσ (c))
z ← Fp (κZ , w | |c); y ← xid · z−1 (mod p); t[c] ← (y , e)

end for
T[w] ← t

end for
(TSet, κT) ← TSet.Setup(T)
for i = 1 : Q do STags[i] ← TSet.GenTag(κT , s[i]) end for

BF← 0
m

forw ∈ W do
η ← Fp (κX , w)
for id ∈ DB(w) do

xid← Fp (κI , id)
for j = 1 : k do

hj (id, w) ← Hj
(
дη ·xid

)
; BF[hj (id, w)] ← 1

end for
end for

end for
c← HVE.Enc(msk , µ = ‘True’, BF); EDB← (TSet, c)

for i = 1 : Q do
t← TSet.Retrieve(EDB(1), STags[i]); E[i] ← {}
for c = 1 : T do
(yc , ec) ← t; zc ← Fp (κZ , s[i] | |c); vc ← ∗m

for ℓ = 2 : n do
ηℓ ← Fp (κX , xℓ [i]); xtoken[c , ℓ] ← дzc ·ηℓ
for j = 1 : k do vc [Hj (xtoken[c , ℓ]yc)] = 1 end for

end for
tokenc [i] ← HVE.KeyGen(msk , vc)
resc [i] ← HVE.Query(tokenc [i], ec)
if resc [i] = True then
E[i] ← E[i] ∪ {ec }

end if
end for
Res← E[i]; ResInds← DB(s[i]) ∩

⋂n
ℓ=2

DB(xℓ [i])
tr[i] ← (Res, ResInds, ((STags[i], xtoken[i], token[i])))

end for
return (EDB, tr)

the value gfX (w)fI (id), so BF is the same as in previous game. In

addition, it is easy to see that the transcript tr[i] will be the same

only if xtoken[i] and token[i] are the same in both games. We

note that token[i] depends on xtoken[i], so we only focus on the

generation of xtoken[i] array in the following.

In Game2, the xtoken[c , ℓ] for the ℓ-th xterm xℓ[i] (of the i-

th query) and c ∈ [T] is set to be gfZ (s[i] | |c)·fX (xℓ [i]). In the cur-

rent game, however, xtoken[c , ℓ] is generated by first looking up

DB[s[i]] = (¯id1, . . . , ¯idTs), WPerms[s[i]] = σ and t, where t =
(fI (¯idσ (c))/fZ (s[i]| |c), ec)c ∈[Ts] by the correctness of TSet. Then
for c ∈ [Ts] and ℓ ∈ [2,n], it retrieves (yc , ec), such that yc =

fI (¯idσ (c))/fZ (s[i]| |c), and sets xtoken[c , ℓ] to beA[¯idσ (c), xℓ[i]]
1/yc =

gfZ (s[i] | |c)·fX (xℓ [i]). For c ∈ [T] \ [Ts], xtoken[c , ℓ] is set to be

B[s[i], xℓ[i], c] = gfX (xℓ [i])·fZ (s[i] | |c).
It is easy to observe from the above that the xtoken[c , ℓ] is exactly

the same as in Game2. Therefore, we have Pr[G3 = 1] = Pr[G2 = 1].

Game4: this game is almost identical to the previous one, except

that the single boxed code in Algorithm 5 is also included: the values

y are now drawn randomly from Z∗p . Due to the modifications made

in Game3, the random function fZ is chosen during the first steps of

the algorithm and never evaluated again later, so z is uniformly and

independently distributed. Moreover, since y = xid · z−1
, for any

w ∈ W and c ∈ [Tw], the value ofy is also uniform and independent

of the rest of the randomness in the game. Thus replacing y with

Algorithm 4 : Game1 and Game2

(idi , Wi)
d
i=1
← DB; fS , fI , fZ , fX

$

←− Func({0, 1}λ , Z∗p)

forw ∈ W do

(¯id1 , . . . , ¯idTw) ← DB(w); σ
$

←− Perm([Tw]); WPerms[w] ← σ

t← {}; κe
$

←− {0, 1}λ

for c = 1 : Tw do
xid← fI (¯idσ (c)); e = Sym.Enc(κe , ¯idσ (c))

e = Sym.Enc(κe , 0
λ)

z ← fZ (w | |c); y ← xid · z−1 (mod p); t[c] ← (y , e)
end for
T[w] ← t

end for
(TSet, κT) ← TSet.Setup(T)
for i = 1 : Q do STags[i] ← TSet.GenTag(κT , s[i]) end for

BF← 0
m

forw ∈ W do
η ← fX (w)
for id ∈ DB(w) do

xid← fI (id)
for j = 1 : k do

hj (id, w) ← Hj
(
дη ·xid

)
; BF[hj (id, w)] ← 1

end for
end for

end for
c← HVE.Enc(msk , µ = ‘True’, BF); EDB← (TSet, c)

for i = 1 : Q do
t← TSet.Retrieve(EDB(1), STags[i]); E[i] ← {}
for c = 1 : T do
(yc , ec) ← t; zc ← fZ (s[i] | |c); vc ← ∗m
for ℓ = 2 : n do

ηℓ ← fX (xℓ [i]); xtoken[c , ℓ] ← дzc ·ηℓ
for j = 1 : k do vc [Hj (xtoken[c , ℓ]yc)] = 1 end for

end for
tokenc [i] ← HVE.KeyGen(msk , vc)
resc [i] ← HVE.Query(tokenc [i], ec)
if resc [i] = True then
E[i] ← E[i] ∪ {ec }

end if
end for
Res← E[i]; ResInds← DB(s[i]) ∩

⋂n
ℓ=2

DB(xℓ [i])
tr[i] ← (Res, ResInds, ((STags[i], xtoken[i], token[i])))

end for
return (EDB, tr)

random values does not affect the distribution of the resulted game,

so we have Pr[G4 = 1] = Pr[G3 = 1].

Game5: this game is similar to the previous game, except that it

also includes the doubly boxed code in Algorithm 5. That is, all the

values of A and B arrays are selected at random from G. Under the
DDH assumption, there exists an efficient algorithm B3 such that

Pr[G5 = 1] − Pr[G4 = 1] ≤ Adv
DDH
G,B3

(λ).

To show the indistinguishability between these two games, a

simple reduction can be conducted similarly as in [12]. Briefly

speaking, the values of X array in G4 are the ga values, and the X
values are raised to the power of xid when computing A and to the

power of fZ (w | |c) when computing B, where xid and fZ (w | |c) act
as the b values of the DDH tuple. Thus, A and B in G4 have values

of the form gab , while in G5 they are replaced with random values.

Differentiating between them can be easily reduced to breaking the

DDH assumption, we omit the details here.

Game6: in this game TSet is generated by using simulator ST ,

which is shown in Algorithm 6. The existence of such a simulator is

guaranteed by the security notion of T-Sets. In addition, we remove

some irrelevant code (some selecting random functions) and other

routines remained the same as G5. Similar to the analysis shown

Algorithm 5 : Game3, Game4 , and Game5

(idi , Wi)
d
i=1
← DB; fS , fI , fZ , fX

$

←− Func({0, 1}λ , Z∗p)

forw ∈ W do
for id ∈ DB(w) do

η ← fX (w); X [w] ← дη ; xid← fI (id); A[w , id] ← X [w]xid

A[w , id]
$

←− G

end for
end for

forw ∈ W do

(¯id1 , . . . , ¯idTw) ← DB(w); σ
$

←− Perm([Tw]); WPerms[w] ← σ

t← {}; κe
$

←− {0, 1}λ

for c = 1 : Tw do
xid← fI (¯idσ (c)); e = Sym.Enc(κe , 0

λ)

z ← fZ (w | |c); y ← xid · z−1 (mod p)

y
$

←− Z∗p

t[c] ← (y , e)
end for
T[w] ← t
for u ∈ W \ {w } do

for c = Tw + 1, . . . , T do
B[w , u , c] ← X [u]fZ (w | |c)

B[w , u , c]
$

←− G

end for
end for

end for
(TSet, κT) ← TSet.Setup(T)
for i = 1 : Q do STags[i] ← TSet.GenTag(κT , s[i]) end for

BF← 0
m

forw ∈ W do
for id ∈ DB(w) do

for j = 1 : k do
hj (id, w) ← Hj (A[w , id]) ; BF[hj (id, w)] ← 1

end for
end for

end for
c← HVE.Enc(msk , µ = ‘True’, BF); EDB← (TSet, c)

for i = 1 : Q do
t← TSet.Retrieve(EDB(1), STags[i]); E[i] ← {}
(¯id1 , . . . , ¯idTs) ← DB[s[i]]; σ ←WPerms[s[i]]
for c = 1 : T do

vc ← ∗m
for ℓ = 2 : n do

if c ≤ Ts then
(yc , ec) ← t[c]; xtoken[c , ℓ] ← A[¯idσ (c) , xℓ [i]]1/yc

else
xtoken[c , ℓ] ← B[s[i], xℓ [i], c]

end if
for j = 1 : k do vc [Hj (xtoken[c , ℓ]yc)] = 1 end for

end for
tokenc [i] ← HVE.KeyGen(msk , vc)
resc [i] ← HVE.Query(tokenc [i], ec)
if resc [i] = True then
E[i] ← E[i] ∪ {ec }

end if
end for
Res← E[i]; ResInds← DB(s[i]) ∩

⋂n
ℓ=2

DB(xℓ [i])
tr[i] ← (Res, ResInds, ((STags[i], xtoken[i], token[i])))

end for
return (EDB, tr)

in [12], there exists an efficient algorithm B4, under the security

definition of TSet, such that Pr[G6 = 1] − Pr[G5 = 1] ≤ Adv
TSet
B4

(λ).

Game7: this game is like the previous one, except that the boxed

codes are also included in Algorithm 6. In this game, the second

part of EDB (i.e., EDB(2) = c) and the search tokens token[i] are
generated by running the simulator SHVE of HVE. To show the

indistinguishability between Game7 and Game6, we let α(vc) =
[m] \ {Hj [xtoken[c , ℓ]yc]}j ∈[1,k]

ℓ∈[2,n] and β(vc ,BF) = PHVE
vc (BF). Now

Algorithm 6 : Game6 and Game7

(idi , Wi)
d
i=1
← DB

forw ∈ W and id ∈ DB(w) do A[w , id]
$

←− G end for
forw ∈ s do WPerms[w] ← Perm([Ts]) end for
forw ∈ W do

t← {}; κe
$

←− {0, 1}λ

for c =1 :Tw do e =Sym.Enc(κe , 0
λ); y

$

←−Z∗p ; t[c]←(y , e) end for
T[w] ← t
for u ∈ W \ {w } do

for c = Tw + 1, . . . , T do B[w , u , c]
$

←− G end for
end for

end for
(TSet, STags) ← ST (LT (DB, s), T[s])

BF← 0
m

forw ∈ W do
for id ∈ DB(w) do

for j = 1 : k do
hj (id, w) ← Hj (A[w , id]) ; BF[hj (id, w)] ← 1

end for
end for

end for
c← HVE.Enc(msk , µ = ‘True’, BF); EDB← (TSet, c)

c← SHVE(µ = ‘True’)

for i = 1 : Q do
t← TSet.Retrieve(EDB(1), STags[i]); E[i] ← {}
(¯id1 , . . . , ¯idTs) ← DB(s[i]); σ ←WPerms[s[i]]
for c = 1 : T do

vc ← ∗m
for ℓ = 2 : n do

if c ≤ Ts then
(yc , ec) ← t[c]
if ¯idσ (c) ∈ DB(s[i]) ∩

⋂n
ℓ=2

DB(xℓ [i]) then // β (vc , BF) = 1 ⇐

PHVE
vc (BF) = 1

xtoken[c , ℓ] ← A[¯idσ (c) , xℓ [i]]1/yc

else // β (vc , BF) = 0⇐ PHVE
vc (BF) = 0

xtoken[c , ℓ] ← A[¯idσ (c) , xℓ [i]]1/yc
end if

else
xtoken[c , ℓ] ← B[s[i], xℓ [i], c]

end if
for j = 1 : k do vc [Hj (xtoken[c , ℓ]yc)] = 1 end for

end for
tokenc [i] ← HVE.KeyGen(msk , vc)

α (vc) ← {i ∈ [m] : vc [i] , 1}; β (vc , BF) ← PHVE
vc (BF)

tokenc [i] ← SHVE(α (vc), β (vc , BF))

resc [i] ← HVE.Query(tokenc [i], ec)
if resc [i] = True then
E[i] ← E[i] ∪ {ec }

end if
end for
Res← E[i]; ResInds← DB(s[i]) ∩

⋂n
ℓ=2

DB(xℓ [i])
tr[i] ← (Res, ResInds, ((STags[i], xtoken[i], token[i])))

end for
return (EDB, tr)

we consider the following adversaryB5 against selective simulation

security of HVE. B5 starts to simulate Game6/Game7 by generating

TSet,BF and xtoken exactly as in Game6, and then simulates c and
token with the response from the real/ideal game of HVE. Note that,
assuming no false positive happens, it holds that PHVE

vc (BF) = 1 iff
¯idσ (c) ∈ DB(s[i]) ∩

⋂n
ℓ=2

DB(xℓ[i]), hence B5 can derive the input

(α(vc), β(vc ,BF)) of SHVE from BF and xtoken[c , ℓ].
By the description of Game6 and Game7, we know that the

real game of HVE with B5 perfectly simulates Game6, while the

ideal game with B5 perfectly simulates Game7, so we have that

Pr[G7 = 1] − Pr[G6 = 1] ≤ Adv
HVE
B5

(λ).

Game8: To enable the final simulator to work well with its given

leakage profile, the way of array A being accessed is changed to an

Algorithm 7 : Game8

(idi , Wi)
d
i=1
← DB

forw ∈ W and id ∈ DB(w) do A[w , id]
$

←− G end for
forw ∈ s do WPerms[w] ← Perm([Ts]) end for
forw ∈ W do

t← {}; κe
$

←− {0, 1}λ

for c =1 :Tw do e =Sym.Enc(κe , 0
λ); y

$

←−Z∗p ; t[c]←(y , e) end for
T[w] ← t

end for
(TSet, STags) ← ST (LT (DB, s), T[s])

c← SHVE(µ = ‘True’)

for i = 1 : Q do
t← TSet.Retrieve(EDB(1), STags[i]); E[i] ← {}
(¯id1 , . . . , ¯idTs) ← DB(s[i]); σ ←WPerms[s[i]]
for c = 1 : T do

vc ← ∗m
for ℓ = 2 : n do

if c ≤ Ts then
(yc , ec) ← t[c]
if ¯idσ (c) ∈ DB(s[i]) ∩

⋂n
ℓ=2

DB(xℓ [i]) then

xtoken[c , ℓ] ← A[¯idσ (c) , xℓ [i]]1/yc

else if ∃j , i and ν ∈ [2, n] :
¯idσ (c) ∈ DB(s[j]) ∧ xℓ [i] = xν [j] then

xtoken[c , ℓ] ← A[¯idσ (c) , xℓ [i]]1/yc
else

xtoken[c , ℓ]
$

←− G
end if

else

xtoken[c , ℓ]
$

←− G
end if
for j = 1 : k do vc [Hj (xtoken[c , ℓ]yc)] = 1 end for

end for
α (vc) ← {i ∈ [m] : vc [i] , 1}; β (vc , BF) ← PHVE

vc (BF)
tokenc [i] ← SHVE(α (vc), β (vc , BF))
resc [i] ← HVE.Query(tokenc [i], ec)
if resc [i] = True then
E[i] ← E[i] ∪ {ec }

end if
end for
Res← E[i]; ResInds← DB(s[i]) ∩

⋂n
ℓ=2

DB(xℓ [i])
tr[i] ← (Res, ResInds, ((STags[i], xtoken[i], token[i])))

end for
return (EDB, tr)

alternative but equivalent way. We note that the array A in Game7

is only accessed when generating the xtoken, and not ever used

for producing c because the simulator of HVE does not receive the

actual BF (as mentioned in the ideal game of HVE). More specifically,

in this game we replace with a random selection the access of

array A during the generation of xtoken for the case of
¯idσ (c) <

DB(s[i]) ∩
⋂n

ℓ=2
DB(xℓ[i]), except for the repeated accesses, which

does not affect the distribution of xtoken. Note that, a repeated

access to the same position of A happens only if it is called during

two distinct search queries, since computing xtoken for one single

query touches only unique position of A. More precisely, for an

element indexed by (id,w) to be accessed twice, it must hold that

id ∈ DB(s[i]) ∩ DB(s[j]) for some i , j and xα [i] = xβ [j] for some

α , β ∈ [2,n]. The condition for such a repeated access is exactly

captured by the third “if” statement in the last loop of this game

(exactly, the IP leakage component). If this condition does not apply,

the xtoken is randomly selected from G. Furthermore, it is easy

to observe that both token and c rely heavily on (α(vc), β(vc ,BF))
which are derived from xtoken, so we have that Pr[G8 = 1] =

Pr[G7 = 1].

Simulator: In the following, we present a simulator SHXT that

takes as input the leakage profile L(DB, s, x2, . . . , xn) consisting

Algorithm 8 : Simulator SHXT

forw ∈ x̂ and id ∈
⋃
i=1

(
WRP[i] ∪

⋃
j,i ,α ,β IP[i , j , α , β]

)
do

A[id, w]
$

←− G
end for

forw ∈ EP do WPerms[w]
$

←− Perm([SP[i]]) end for
(TSet, STags) ← ST (LT (DB, s), T[s])
c← SHVE(α (vc), β (vc , BF))
EDB← (TSet, c)

for i = 1 : Q do
t← TSet.Retrieve(EDB(1), STags[i]); σ ←WPerms[EP[i]]; E[i] ← {}
R[i] ←WRP[i] ∪

⋃
j,i ,α ,β IP[i , j , α , β]; T ′ ← |R[i] |

(¯id1 , ¯id2 , · · · , ¯idT ′ , ⊥, · · · , ⊥︸ ︷︷ ︸
SP[i]−T ′

) ← DB[EP[i]]

for c = 1 : T do
vc ← ∗m
for ℓ = 2 : n do

if c ≤ SP[i] then
(yc , ec) ← t[c]
if ¯idσ (c) , ⊥ ∧ ¯idσ (c) ∈ WRP[i] then

xtoken[c , ℓ] ← A[¯idσ (c) , x̂[i , ℓ]]1/yc

else if ¯idσ (c) , ⊥ ∧ ¯idσ (c) ∈
⋃
j,i ,ν IP[i , j , ℓ, ν] then

xtoken[c , ℓ] ← A[¯idσ (c) , x̂[i , ℓ]]1/yc
else

xtoken[c , ℓ]
$

←− G
end if

else

xtoken[c , ℓ]
$

←− G
end if
for j = 1 : k do vc [Hj (xtoken[c , ℓ]yc)] = 1 end for

end for
tokenc [i] ← SHVE(α (vc), β (vc , BF))
resc [i] ← HVE.Query(tokenc [i], ec)
if resc [i] = True then
E[i] ← E[i] ∪ {ec }

end if
end for
Res← E[i]; ResInds← DB(s[i]) ∩

⋂n
ℓ=2

DB(xℓ [i])
tr[i] ← (Res, ResInds, ((STags[i], xtoken[i], token[i])))

end for
return (EDB, tr)

of (N , EP, SP,WRP, IP,LT (DB, s),T[s])8 and outputs a simulated

EDB and tr. By showing that the simulator produces the same

distribution as Game8 and then combining the relations between

the games, we get the simulator satisfying the requirements in

Theorem 3.

First of all, our simulator SHXT will compute a restricted equal-

ity pattern of x � (x2, . . . , xn) as below, denoted by x̂. Then it

proceeds to produce its final output through Algorithm 8. The re-

stricted equality pattern x̂ can be computed as follows in terms of

the leakage IP by defining a table such that x̂[t1,α] = x̂[t2, β] iff
IP[t1, t2,α , β] , ∅. The table x̂ describes which xterms are “known"

to be equal by the adversarial server. In particular, we have that

x̂[t1,α] = x̂[t2, β] =⇒ x[t1,α] = x[t2, β], and (3)

(x[t1,α] = x[t2, β]) ∧ (DB(s[t1]) ∩ DB(s[t2]) , ∅)

=⇒ x̂[t1,α] = x̂[t2, β]. (4)

Taking as input the leakage profile (N , EP, SP,WRP, IP,LT (DB,
s),T[s]) and the restricted equality pattern x̂ computed as above,

the simulator then works as in Algorithm 8 to generate the EDB =
(TSet, c) and the transcript tr.

In the simulation, array A is only filled out for positionsw ∈ x̂
and id ∈

⋃
i=1

(
WRP[i] ∪

⋃
j,i ,α ,β IP[i , j ,α , β]

)
, which is used

to keep the reuse pattern of A during the generation of xtoken.

8
Note that LT (DB, s) and T[s] are computed in the same way as [12].

Similarly, the permutations σ ’s are assigned with respect to EP, the
repetition of which captures that of sterms s. When computing the

transcript tr[i] for the i-th query, the simulator sets the “revealed"

indices for that query as R[i] ← WRP[i] ∪
⋃
j,i ,α ,β IP[i , j ,α , β]

and puts them in canonical order, calling them
¯id1, ¯id2, · · · , ¯id |R[i] | .

Since R[i] ⊆ DB(s[i]), the simulator then pads R[i] up to size SP[i]
by setting

¯idk for k ∈ [|R[i]|, SP[i]] to be dummy symbols ⊥. After

that, the simulator uses SP,WRP, IP to simulate xtoken as described

in Algorithm 8.

Next we show the output of the simulator SHXT is identically

distributed as that of Game8. It is clear that the distributions of

t, (yc , ec) are identical to Game8, as (TSet, STags) are computed

exactly in the same way. In addition, the permutations σ ’s have
the same distribution, since they are chosen uniformly at random

and reused in the same pattern in both cases. Moreover, we can see

that identifiers in DB(s[i])/DB(SP[i]) are used in the random order

determined by σ , except identifiers not appearing as relevant results
are padded with dummy symbols in DB(SP[i]), and that they follow
the same logic in both Game8 and the simulated game (cf. Algo-

rithm 8): if σ (c)-th identifier is in either DB(s[i]) ∩
⋂n

ℓ=2
DB(xℓ[i])

or the set of identifiers containing the sterm of another query with

some same xterm, then the corresponding position of A is accessed;

otherwise, a random group element is selected. At last, what we

need to do is to show the accessed entries from A follow the same

repetition in both games, which is analyzed as below.

Suppose that (id1, xℓ[i]) and (id2, xν [j]) are any two identifier/key-
word pair accessed fromA in Game8. Then the simulator SHXT will

read the positions (id1, x̂[i , ℓ]) and (id2, x̂[j ,ν]) instead. To show

the simulation is identical to Game8, next we argue that

(id1, xℓ[i]) = (id2, xν [j]) ⇐⇒ (id1, x̂[i , ℓ]) = (id2, x̂[j ,ν]).

Obviously, the⇐ direction follows readily from (3). As to the other

direction, we know that id1 = id2 are members of the following set(
WRP[i]∪

⋃
k,i ,α ,β

IP[i ,k ,α , β]
)
∩
(
WRP[j]∪

⋃
k,j ,α ,β

IP[j ,k ,α , β]
)
,

as the games only use identifiers from these sets when computing

xtoken. This indicates that id � id1 = id2 belongs to DB(s[i]) ∩
DB(s[j]), and thus we can get from (4) that x̂[i , ℓ] = x̂[j ,ν].

Finally, regarding the distributions of output c and token, they
rely heavily on the distribution of xtoken and can be simulated by

running SHVE with α(vc) and β(vc ,BF) as input. Recall that α(vc)
and β(vc ,BF) can be derived from xtoken and WRP directly. Up to

now, we get that SHXT perfectly simulates Game8 with its leakage.

Proof of Theorem 5:
The main idea of proving this theorem, as shown in [12], is

similar to that of Theorem 4, except that we need to invoke the

adaptive TSet simulator and respond queries adaptively. Roughly

speaking, to handle the adaptivity, the simulator with input N
choosesN random group elements and then adds them to BF. When

simulating the response to each query, the simulator adaptively

“assigns” elements of the BF to id-keyword pairs. This is in contrast

to the non-adaptive simulator, where it first initializes the A array

and then adds the elements to the BF, as determined by the leakage.

Currently, the simulator first chooses the elements of the BF, and
then uses them or independent elements to initialise A adaptively.

1 10 100 1000 10000 100000 1e+06

Selectivity of Variable Term (v)

0.0001

0.001

0.01

0.1

1

10

100

T
im

e
 (

s
e
c
)

Selectivity of a:1284

HXT v AND a in 2.93GB

HXT a AND v in 2.93GB

HXT v AND a in 8.92GB

HXT a AND v in 8.92GB

HXT v AND a in 60.2GB

HXT a AND v in 60.2GB

Figure 10: Overall query delay comparison of HXT for differ-
ent sizes of datasets.

1 10 100 1000 10000 100000 1e+06

Selectivity of Variable Term (v)

0.0001

0.001

0.01

0.1

1

10

100

A
m

o
u
n
t
o
f
In

te
ra

c
ti
o
n
 (

M
B

)

Communication in HXT

Communication in OXT

Figure 11: Bandwidth communication comparison of HXT
and OXT in 2.93GB dataset.

C HXT SUPPLEMENTARY RESULTS
Finally, some supplementary results are presented in this section.

Query delay. We present the query delay comparison of HXT
in our three datasets to illustrate the efficiency and scalability of

HXT, In this evaluation, we use the execution time of HXT in 2.93

GB dataset as the baseline. Fig. 10 shows the efficiency of HXT, as
there is only a negligible difference between these execution times

of HXT protocol on different sizes of datasets. It also demonstrates

the highly scalable property of HXT, because the invariant query
delay implies that the delay is independent to the size of dataset,

even if the encrypted dataset is larger than the size of RAM.

Communication overhead comparison. Finally, we use the
test query with various selectivities in Sec. 7.3 (i.e. variable term v
AND fixed term a) to compare the communication overhead of OXT
andHXT. The evaluate is conducted in 2.93GB dataset. However, the

communication overhead is identical for different datasets, because

it only correlates with the selectivity of v (see Table 7).

The evaluation result (see Fig. 11) shows thatHXT needs 1.5 times

more in communications to transmit the token for HVE, since OXT
only requires the client to transmit xtoken. Such communication

overhead is moderate in our test system, because the client only

sends 100MB tokens at most for a querywith about 330K documents,

which can be handled with in several milliseconds. However, it

introduces extra delay for the queries if the selectivity of v is large

and the network bandwidth is limited.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 T-set
	2.2 Searchable Encryption: Definition and Security
	2.3 Bloom Filters
	2.4 Hidden Vector Encryption and its Security

	3 Lightweight Symmetric-Key Hidden Vector Encryption
	3.1 Detailed SHVE Construction
	3.2 Security of SHVE

	4 HXT Construction
	4.1 Hidden Cross Tags (HXT) Protocol

	5 Security
	5.1 Leakage Function Comparison
	5.2 Security Analysis of HXT

	6 Performance Comparison
	6.1 Comparison between HVE Schemes
	6.2 Comparison between OXT and HXT

	7 Evaluations
	7.1 Prototype Implementation
	7.2 Datasets
	7.3 Evaluation Results

	8 Conclusion
	Acknowledgments
	References
	A Hardness Assumptions
	B Proofs
	C HXT Complementary Results

