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Abstract

In a network of n nodes (modelled as a digraph), the goal of a perfectly secret message
transmission (PSMT) protocol is to replicate sender’s message m at the receiver’s end without
revealing any information about m to a computationally unbounded adversary that eavesdrops
on any t nodes. The adversary may be mobile too – that is, it may eavesdrop on a different set
of t nodes in different rounds. We prove a necessary and sufficient condition on the synchronous
network for the existence of r-round PSMT protocols, for any given r > 0; further, we show that
round-optimality is achieved without trading-off the communication complexity; specifically, our
protocols have an overall communication complexity of O(n) elements of a finite field to perfectly
transmit one field element. Apart from optimality/scalability, two interesting implications of
our results are: (a) adversarial mobility does not affect its tolerability: PSMT tolerating a static t-
adversary is possible if and only if PSMT tolerating mobile t-adversary is possible; and (b) mobility
does not affect the round optimality: the fastest PSMT protocol tolerating a static t-adversary is
not faster than the one tolerating a mobile t-adversary.

1 Introduction

We address the problem of Perfectly Secret Message Transmission (PSMT)1 defined as follows: The
sender S wishes to send a message m to the receiver R such that the adversary, that eavesdrops
on no more than t out of the n nodes (in one time-period/round) in the network, learns nothing
(except the information that the probability distribution on the message space reveals) about m.
For fast protocols, the adversary may be assumed to be static, that is, the same set of nodes are
corrupt (in every round) throughout the protocol execution. However for protocols that last long,
a more suitable model is that of a mobile adversary which corrupts different set of t nodes in
different rounds (catering to an equilibrium between (a) curing/replacing faulty machines and (b)
breaking-in to new machines during the protocol execution). Evidently, protocols tolerating mobile
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t-adversary are likely to be far more cumbersome and complex than the ones tolerating static t-
adversaries. Counter-intuitively, we show that protocols for perfectly secret message transmission
can withstand adversarial mobility for free. Specifically, for PSMT in any directed graph influenced
by a passive/eavesdropping adversary, we show that: (a) adversarial mobility does not affect its
tolerability: PSMT tolerating a static t-adversary is possible if and only if PSMT tolerating mobile
t-adversary is possible; (b) mobility does not affect the round optimality: the fastest PSMT protocol
tolerating static t-adversary is not faster than the fastest one tolerating mobile t-adversary; and
(c) mobility does not affect communication complexity: we design PSMT protocols that have linear
communication complexity in both static as well as mobile adversarial settings.

Our inquiry includes: (a) characterization: under what conditions is a solution possible? (b)
feasibility: is the characterization efficiently testable and is there an efficient protocol? (c) round
complexity: what is the fastest solution? and (d) communication complexity: what is the cheap-
est solution? Intuitively, the above questions are in increasing order of difficulty. Consequently,
question ‘(a)’ has been answered in settings that are far more general than those where optimal
solutions are known yet.

Although the literature on information theoretically secure message transmission is rich (e.g., [7,
2, 10, 36, 30, 28, 23]), there are settings where answers to none of the aforementioned four questions
are known yet. For instance, we do not know of a necessary and sufficient condition on digraphs
influenced by a Byzantine adversary corrupting up to any t nodes for the existence of protocols for
perfectly secure message transmission from S to R, where S is the sender and R is the receiver [27];
not to mention, the design of optimal protocols for the same are still far-fetched. Researchers have
therefore addressed the PSMT problem in scenarios that are not as general as mentioned above – the
harder the inquiry, the more specific the chosen setting. Notwithstanding, researchers have also
worked on interesting generalizations in some dimensions (while, of course, being more specific in
other parameters so that the problem is tractable using contemporary techniques), including hyper-
graphs (e.g.,[32, 11]), non-threshold adversaries (e.g., [26, 13]), mobile faults (e.g.,[24, 34, 25]),
mixed/hybrid faults (e.g., [9, 31, 2, 33, 3]), asynchronous networks (e.g., [28, 31, 4, 5, 1, 17, 20]),
to name a few.

The PSMT problem was conceived and first solved by Dolev et al. [7]. They assumed that the
graph is undirected. It is proved that PSMT from S to R tolerating t Byzantine faults is possible if
and only if there are at least (2t+1) vertex disjoint paths between S and R. Further, the protocols
are efficient too. However, designing round optimal protocols for PSMT (even in undirected graphs)
remains a hard open problem. Consequently, results are known only with further restrictions.

A setting where round-optimal protocols have been designed (on arbitrary digraphs) is when a
small probability of error is permitted [35] (that is, perfectness is negligibly traded-off). However,
the design of communication optimal solutions is still open as mentioned in [23].

A particular setting where communication optimum protocols for PSMT are designed is the
following: applying Menger’s theorem [22], the undirected graph can be abstracted as a collection of
wires (vertex-disjoint paths) between S and R, up to t among which are corrupted by the adversary.
In this setting, a two phase protocol for PSMT that is optimal in communication complexity is known
[18]. While the notion of phase complexity has been studied in the works of [2, 18, 8], we stress
that round complexity (e.g.,[34, 25]) is markedly different from phase complexity, even in the case
of undirected networks (see Section 2.1).

Recently, restricting to passive adversaries, Renault et al. [27] characterized the digraphs that
enable PSMT. In fact Renault et al. in [27] use a more general non-threshold adversary model,
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Figure 1: Restrictions based solutions.

characterized via an adversary structure, which is a collection of subsets of nodes in the graph,
wherein the adversary may choose to corrupt (passively in this case) the nodes in any one subset
from the collection. The protocols of [27] are, therefore, not always efficient (that is, may be
super-polynomial in n) as discussed in [23].

In summary, as depicted in the Fig. 1, all the four questions in our inquiry, with respect to the
problem of PSMT, have remained open in the general case of digraphs influenced by a Byzantine
adversary characterized via an adversary structure. However, (im)possibility results are known if
one restricts the setting to either undirected graphs [16] or passive adversary or security with error
(e.g., [27, 23]). Nevertheless, efficient protocols are still elusive. To design efficient protocols using
contemporary techniques, further restriction (apart from moving to undirected graphs) is required,
namely, threshold adversary. For instance, Dolev et al. in [7] have given one such efficient protocol,
which, however, is neither round optimal nor bit-optimal.

Round-optimal protocols are known only in the case of weaker (not perfect) security models
like statistical [35] or computational security [6]. Bit-optimal protocols have been designed in the
wires-based abstraction of the undirected graph in [18]. While a similar wires-based approach has
been used for digraphs too in [36], it is known to be inadequate to capture all digraphs on which
protocols exist as shown in [35].

2 Our Contributions

As depicted in Fig. 1, we ask: does restricting to the setting of passive threshold adversaries lead to
the design of efficient and round-optimal and/or communication optimal protocols? (or, are further
restrictions like wires-based abstractions still required?)

Interestingly, we design communication efficient and round optimal protocols, with no further
restrictions beyond assuming that the adversary passively corrupt up to t nodes in the digraph.
Incidentally, it turns out that our techniques for designing round-optimal protocols are orthogonal
to those that entail linear communication complexity – therefore, when applied together, we obtain
protocols that are simultaneously round optimal as well as communication optimal. Further, the
simplicity of our protocol ensures the implementability of highly scalable perfectly secret message
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transmission. Surprisingly, as proved in Section 7, it turns out that most of our protocols can be
adapted to work for the mobile adversary case too. In a nutshell, we address the PSMT problem
in such a way that all the four questions, namely, characterization, feasibility, communication and
round optimality, are answered in one-shot. In the subsections below, we briefly describe our results
and their significance.

2.1 Complete characterization of networks wherein an r-round secret commu-
nication protocol tolerating static adversary is (im)possible

In [7] Dolev et al. proved that (t + 1)-vertex disjoint paths are necessary and sufficient for PSMT

from S to R in undirected graphs to tolerate passive t-threshold static adversary. Consequently, as
noted in [7] too, without loss of generality, any network (undirected graph) may be abstracted as a
set of wires (vertex disjoint paths) between S and R. However, in the design of round optimal PSMT
protocols, such an abstraction is inadequate even if the length of the wires is recorded. Specifically,
using the edges connecting across these wires (or practically every edge in the network) it is possible
to design faster protocols. For example, consider the graph in Fig. 2; The two wires corresponding
to two vertex disjoint paths 〈S, v,R〉 and 〈S(= v0), v1, v2, v3, . . . vn−1, R(= vn)〉 have lengths of two
and n respectively. Following Dolev’s protocol, S sends two points on a linear polynomial whose
constant term is the secret m, individually through these two wires. The receiver R gets the two
points and hence the message after n rounds. Does a faster protocol exist? Our answer: Yes. In fact,
a 3-round protocol exists irrespective of how large n is. Perhaps it is not conspicuous at first glance
and certainly not if we continue to use the wires-based abstraction of the network. As a corollary to
our Theorem 7, we know that three rounds are necessary and sufficient for S to R PSMT in the graph
given in Fig. 2. Thus, extant techniques are insufficient to design round optimal protocols and new
techniques are necessary to design, and more importantly, prove round optimality. To summarize,
the problem of characterizing round optimal protocols in directed networks is a non-trivial and
interesting problem.

2.2 Linear Communication Complexity

Folklore suggests that optimizing the number of rounds for a distributed protocol typically increases
the communication complexity. In rare cases, round optimality can co-exist with communication-
optimality – PSMT is indeed one such case! Specifically, we prove that the number of edges used
by our protocol can be brought down to linear in the number of nodes (see Section 6.1). We also
ensure that an edge is used to send at most one field element (or in general, bits equivalent to the
size of the message). Thus, we arrive at a surprising protocol for secret communication which is
round optimal and at the same time has linear communication complexity. Even more interesting
is the case when the shortest path from S to R has Ω(n) nodes. In such cases, perfect secrecy is
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achieved for “free” because any (insecure routing) protocol would also take O(n) rounds and send
O(n) messages for transmission – one message along each edge in the shortest path.

2.3 Efficient Discriminant Algorithms

Succinctly specifying the necessary and sufficient condition does not necessarily imply that there
exists an efficient algorithm for checking the same. Indeed, the literature on possibility of PSMT
protocols in directed graphs is replete with several problem specific characterizations, none of
which are known to be efficiently testable. For instance, the possibility of reliable/secure message
transmission in Byzantine adversarial setting in digraphs is characterized in [35, 23]. However,
no efficient algorithms to test these conditions are known. In fact they may be NP-hard too as
mentioned in [21] though no such study has been carried out. In contrast, for each of the results
in this paper, we have a polynomial time algorithm for testing the same. Algorithm 5.4 is a
polynomial-time algorithm for testing the existence of an r-round secret communication protocol
in a given network (and if yes, for obtaining a round optimal one).

2.4 Mobile adversary

Typically, mobile adversaries are notoriously difficult to withstand due to their dynamic movements
across the network at a scorching pace. If the problem/protocol requires sustained long-distance
collaboration for the task at hand, it is very easy for the mobile adversary to breach any kind
of purported defences in-built in the protocol. And, we notice that in PSMT protocols it appears
that the messages/packets need to travel across the network and therefore are easily susceptible to
mobile adversarial attacks. A key ingredient in our solution tolerating mobile faults is the following:
we address the problem by generating randomness across the network within a short span of time
(say within one round) so that even a mobile adversary is bound to miss substantial part of the
random coins used by the protocol. More importantly, if the random-coins are locally deleted
by the respective generators before the adversary can spy on them, there is ample scope for the
protocol to withstand adversarial mobility as easily as its static counterpart. The challenge here
is: what can be accomplished by random-coins that are ephemeral and have a very short life-span?
We show that the answer isn’t nothing; in particular, PSMT protocols can be designed with such
short-lived randomness. In Section 7 we show how to use ephemeral random-coins and modify our
static protocol to tolerate mobile faults.

3 Notations and Definitions

3.1 Notations

1. The message space is a large enough finite field 〈F,+, ?〉 and all the calculations are done in
the field F only. By “a number r is chosen randomly” we mean that “r is chosen uniformly
at random from the field F”.

2. Throughout this article, by a “faulty node” we mean that the node is “passively corrupted
by the adversary” and by “secure” we mean “perfectly secret”.

3. For brevity, by “PSMT is possible” we mean “PSMT tolerating t-threshold passive adversary is
possible”.
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4. We use [l, u] to denote the set {m ∈ Z | l ≤ m ≤ u}.

3.2 Graph and Paths

Definition 1. (Underlying Undirected Graph) The underlying undirected graph of a directed
graph G(V,E) is denoted by Gu(V,Eu), where Eu = {(u, v) | (u, v) ∈ E or (v, u) ∈ E}.

Definition 2. (Path) In a directed graph G(V,E), a sequence p : 〈v0(= u), v1, v2, . . . , vk, vk+1(=
v)〉 of nodes is a path from u to v, if and only if (vj , vj+1) ∈ E, ∀j ∈ [0, k].

Definition 3. (Weak Path) In a directed graph G(V,E), a sequence p : 〈v0(= u), v1, v2, . . . , vk,
vk+1(= v)〉 of nodes is a weak path from u to v if and only if ∀j ∈ [0, k], either (vj , vj+1) ∈ E or
(vj+1, vj) ∈ E.

Definition 4. (Corresponding Path of a Weak Path) We say that the path p′ : 〈v0(=
u), v1, v2, . . . , vk, vk+1(= v)〉 in Gu is the corresponding path of a weak path p : 〈v0(= u), v1, v2, . . . , vk,
vk+1(= v)〉 in G.

3.3 Network Model

Definition 5. (Network) We model our communication network as a directed graph G(V,E),
where each edge is a private, authentic and reliable channel. We assume that every player (node)
including the adversary completely knows the protocol specifications and the topology of the network.

Definition 6. (Synchronous Network and Round) ([19]) A network is synchronous if every
node has access to a global clock and the communication proceeds in rounds (time-steps) according to
this global clock. From the communication point of view, it takes exactly one round (one time-step)
to transmit field element(s) along any link (edge) of the network. More formally, in any round, a
player can execute commands in the following order :

1. Perform local computations.

2. Send messages to its out-neighbour(s).

3. Receive all the messages sent earlier in this round by its in-neighbour(s).

4. Perform local computations.

Definition 7. (Round Complexity) The round complexity of any synchronous protocol is defined
as the total number of rounds required to execute the protocol before its termination.

Definition 8. (Communication complexity) The communication complexity of any protocol is
defined as the total number of field elements communicated through all the links in the network
during the execution of the protocol.

3.4 Adversary

In this work we consider an adversary which can eavesdrop on the network by passively corrupting
the nodes. We formally define this type of corruption below.
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Definition 9. (Passive Corruption) ([9]) A node P is said to be (passively) corrupted if the
adversary has full access to the information and internal state of P . We note that in this corrup-
tion model the adversary has only read access to the corrupted node and cannot alter its protocol
execution. As a result, the corrupted node P honestly follows the protocol.

Definition 10. (Static Adversary) We say that the adversary is t-static if it is allowed to corrupt
only one fixed set of nodes of cardinality at most t throughout the protocol execution. In other words,
if the adversary is static then once a node is corrupted it remains corrupted in each of the subsequent
rounds of the protocol.

Definition 11. (Mobile Adversary) We say that the adversary is t-mobile if it is allowed to
corrupt different sets of nodes (except S and R) of cardinality at most t in different rounds of
the protocol. Formally, on a synchronous network G(V,E) for any protocol Π(G,S,R) with round
complexity r, in each round i ∈ [1, r], the mobile adversary is allowed to corrupt up to t nodes
(except S and R) of its choice.

Definition 12. (View of a node) ([31]) In any digraph G(V,E), we define the view of a node
v ∈ V at any point during the execution of a protocol Π, to be the information the computationally-
unbounded node can compute from its local input (if any), all the messages that it had earlier sent
or received, its random coins and the protocol specification and the topology of the network.

Definition 13. (View of the adversary) ([10, 36]) The view of the adversary at any point during
the execution of a protocol Π is defined as all the information that the computationally-unbounded
adversary can compute from the views of all the corrupted players.

3.5 Message Transmission

The following definition is inspired from [10] and [36]. We use M to denote the random variable
on the message space and V IEW to denote the random variable on the set of all possible views of
the adversary.

Definition 14. (Perfectly Secret Message Transmission (PSMT)) Let G(V,E) be a syn-
chronous network with the designated sender S and receiver R. A message transmission protocol
(for transmitting the message m from S to R) is said to be perfectly secret tolerating the computa-
tionally unbounded adversary A, if the following two properties hold:

• Perfect Reliability: At the end of the protocol the receiver R should receive the transmitted
message m with probability 1.

• Perfect Secrecy: For any two messages m and m′, it is impossible for the adversary A to
distinguish whether the message being transmitted from S to R is m or m′. Formally, for
every probability distribution on the message space, for every two messages m, m′ and every
possible view v of the adversary, P [V IEW = v|M = m] = P [V IEW = v|M = m′], where
the probabilities are taken over the coin flips of the uncorrupted nodes/parties.

4 PSMT in directed networks

In this section, we study about the design of efficient PSMT protocols in arbitrary directed graph
setting. We notice that, in a directed graph G(V,E), for a given node v ∈ V if there is no path
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from v to the receiver R, then v cannot convey any information to R in any message transmission
protocol. Therefore, we assume that each node (in the graph) has at least one path to the receiver
R. Then, in Theorem 3 we show that PSMT from S to R is possible in a directed graph G if and
only if PSMT from S to R is possible in its underlying undirected graph Gu. To show the same,
in Section 4.1.2 we present a communication efficient PSMT protocol ΠEff . Now, we move to the
existing result for PSMT (im)possibility in undirected graphs, which is as follows.

Theorem 1. (Dolev et al. [7]) In an undirected graph Gu, PSMT from S to R is possible tolerating
up to t passive faults if and only if there exist t+ 1 vertex disjoint paths from S to R.

Proof. Necessity: Suppose there exist at most t vertex disjoint paths from S to R. Then, we have
from Menger’s theorem [22], that there exists a vertex-cut of size t between S and R. Therefore,
by corrupting every node in the vertex-cut, the adversary corrupts each of these t paths and gets
the information identical to what the receiver would receive from the sender.
Sufficiency: The sufficiency is achieved using Shamir’s secret sharing scheme. The sender S
chooses a random degree-t polynomial p(x) such that p(0) is the message m. The sender S sends
p(i) to the receiver R along the ith disjoint path. We know that, t+ 1 points on p(x) are enough to
reconstruct it whereas t or fewer points reveal nothing about its constant term p(0) [29]. Therefore,
the adversary learns nothing (additional) about the message m.

4.1 Communication Efficient PSMT Protocol

This section contributes to the design of a communication efficient PSMT protocol ΠEff . In undi-
rected graphs we have seen a simple protocol, where, each disjoint path carries exactly one point
on degree-t polynomial. And, the uncorrupted path (no node of it is corrupted) guarantees the
security of the protocol. In directed graphs, we achieve the same effect with the protocol ΠEff .
The core of the protocol ΠEff is the sub-protocol ΠSim, which simulates the corresponding path
p′ of a given weak path p. By simulation we mean, for any given weak path p, the protocol ΠSim

always reliably transmits the message m from S to R using each node of p, as if p were a path.
Moreover, if no node of p is corrupted then the adversary learns nothing (additional) about the
message being transmitted using p. Thus, executing ΠSim on t + 1 disjoint weak paths results in
the PSMT protocol ΠEff . Before going into the technical details of the protocol ΠSim, we first show
that such a simulation is possible. Let p : 〈S(= u0), u1, . . . , ul, ul+1(= R)〉 be a weak path in G.
Then, we have two cases:

1. Case (1): If p is a path in G, then the simulation is trivial – S simply sends the message to
u1 and u1 forwards it to u2, u2 in turn forwards it to u3 and so on until it reaches R. As no
node of p is corrupted, the adversary learns nothing (additional) about the message, whereas
R gets the message m.

2. Case (2): If p is not a path in G, then there exist at least one ui such that the forward edge
(ui, ui+1) /∈ E. Let {ui1 , ui2 , . . . , uik} be the set of all nodes on the weak path p such that
(uij , uij+1) /∈ E for j ∈ [1, k]. Without Loss of Generality (W.L.G), we assume that ip < iq
for p < q (see Fig. 3). Also, from the context it is clear that uik 6= R; that is ik < l + 1.
In Lemma 2, we prove that such a protocol/simulation exists for this case too. We use the
following lemma to prove the correctness of Lemma 2.
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Figure 3: Weak path p.

Lemma 1. In a directed graph G, let u, v, w be three uncorrupted nodes such that PSMT from w to
u is possible and PSMT from w to v is possible. Then, PSMT from u to v is possible in G if there
exists a path from u to v in G.

Proof. Let m be the field element that u wants to secretly transmit to v. First, the node w chooses
a random field element r and sends it to both u and v secretly, as PSMT is possible from w to both
u and v. Now u masks the message m using the received number r as m − r and sends it to the
destination node v along a path from u to v, as there exists such a path. Finally, v obtains the
message m by adding r to m − r. This protocol is perfectly secure even if the adversary corrupts
the path from u to v, which carries m−r. Since, in a field 〈F,+, ∗〉 for a given x, z ∈ F, there exists
a unique y ∈ F such that x− y = z. In other words, if the adversary corrupts the path from u to v
then it learns m− r, which reveals nothing (additional) about m.

Lemma 2. In a directed graph G, let p : 〈S(= u0), u1, . . . , ul, ul+1(= R)〉 be a weak path such that
there exists a path from every node ui (of the weak path p) to R. Then, PSMT from S to R is possible
in G if no node of the weak path p is corrupted.

Proof. Recall that, if p is a path in G then S simply sends the message to R along p. Therefore,
PSMT from S to R is trivially possible in G (as no node of p is corrupted). If p is not a path in
G, then recall that {ui1 , ui2 , . . . , uik} is the set of all nodes that do not have a forward edge on
the weak path p, where ik < l + 1 (that is, uik 6= R). As the node uik is the last one satisfying
(uik , uik+1) /∈ E, there is a secure backward edge (uik+1, uik) ∈ E. For uik+1, we have two cases:
Case (1): If uik+1 = R, then PSMT from uik+1 to R is trivially possible in G (as R can securely
communicate with itself).
Case (2): If uik+1 6= R then (as no node of p is corrupted) there is a secure path from uik+1 to R
along the nodes of the weak path p itself, which implies PSMT from uik+1 to R is possible in G.
Therefore, in any case, PSMT from uik+1 to R is possible in G. This implies, by applying the
Lemma 1, we get that PSMT from uik to R is possible in G. Now, we iteratively apply the above
idea in reverse direction and show that PSMT from S to R is possible in G.

We notice that, for j = k − 1, k − 2, . . . , 1:

1. We have a secure sub-path of p from uij+1 to ui(j+1)
in G (see Fig. 3). a

2. We have already shown that PSMT from ui(j+1)
to R is possible in G.

3. The above two steps (step 1 and 2) together ensure that PSMT from uij+1 to R is possible
in G.

4. We have a secure backward edge (uij+1, uij ) ∈ E.
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Figure 4: Graph G with three vertex-disjoint weak paths.

5. The above two steps together (step 3 and 4), on applying Lemma 1, ensure that PSMT

from uij to R is possible in G.

aIn case if uij+1 = ui(j+1)
, then we trivially assume that there is a path from uij+1 to ui(j+1)

in G (as uij+1

can (securely) communicate with itself).

In particular, when j = 1, PSMT from ui1 to R is possible in G. And, we have a secure sub-path of
p from S to ui1 , therefore, PSMT from S to R is possible in G.

4.1.1 Communication Efficient Simulation

We apply the same idea (used in the Lemma 2) to design the protocol ΠSim which simulates
the corresponding path p′ of a given weak path p : 〈S(= u0), u1, . . . , ul, ul+1(= R)〉. Recall that,
{ui1 , ui2 , . . . , uik} (where uik 6= R) is the set of all nodes on the weak path p such that (uij , uij+1) /∈
E, for each j ∈ [1, k]. This implies, there exists (i) a backward edge (uij+1, uij ) ∈ E and (ii) a
sub-path of p, say pij+1, from uij+1 to ui(j+1)

in G, where W.L.G we assume that ui(k+1)
is R.

Moreover, in case if uij+1 = ui(j+1)
, then the path pij+1 is nothing but a path from uij+1 to uij+1

(which we assume trivially exists as uij+1 can (securely) communicate with itself). The Protocol
ΠSim is given below.

The Protocol ΠSim

1. For j = 1, 2, 3, . . . , k: The node uij+1 chooses a random number rij+1 and sends it to the
node ui(j+1)

(along the path pij+1) and to the node uij (along the edge (uij+1, uij )).

2. For j = 2, 3, 4, . . . , k: The node uij calculates ri(j−1)+1 − rij+1 and sends it to R along a
path from uij to R.

3. The sender S sends the messagem to the node ui1 along the path 〈S(= u0), u1, u2, . . . , ui1〉.

4. The node ui1 calculates m− ri1+1 and sends it to R along a path from ui1 to R.

5. For j = k − 1, k − 2, . . . , 1: R computes rij+1 = (rij+1 − ri(j+1)+1) + ri(j+1)+1.

6. Once R gets ri1+1 for j = 1, it finally computes m = (m− ri1+1) + ri1+1.
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r5− r7

r5
− r

7

Figure 5: Simulation of the corresponding path p′3.

Now with an example, we illustrate the execution of the protocol ΠSim. We consider the graph
G given in Fig. 4 which has a maximum of three vertex disjoint weak paths. Therefore, this graph
can tolerate up to two faulty nodes. Let three weak paths be p1 : 〈S, v1, v2, R〉, p2 : 〈S, v3, v4, R〉
and p3 : 〈S, v5, v6, R〉. The simulation of the corresponding path of the weak path p3 is shown in
Fig. 5 and works as follows:

An execution of the protocol ΠSim for the weak path p3 : 〈S,v5,v6,R〉

1. R chooses a random number r7 and sends it to v6.

2. v5 chooses a random number r5 and sends it to both S and v6.

3. v6 masks r5 with r7 as r5 − r7 and sends it to R along the path 〈v6, v4, v1, v2, R〉.

4. S masks the message m as m− r5 and sends it to R along the path 〈S, v3, v2, R〉.

5. R first unmasks r5 by adding r7 to r5 − r7 then unmasks m by adding r5 to m− r5.

The correctness of the protocol ΠSim is proved in the following theorem.

Theorem 2. Let G(V,E) be a directed graph in which S and R are two special nodes and p : 〈S(=
u0), u1, . . . , ul, ul+1(= R)〉 be a weak path such that there exists a path from every node ui (of the
weak path p) to R. Then, the protocol ΠSim secretly transmits the message m from S to R in G if
no node of the weak path p is corrupted.

Proof. Let p be the path as given in the theorem statement and m be the message being transmitted
by the protocol ΠSim. We know that the adversary cannot eavesdrop on any of these nodes as no
node uij is corrupted. However, for each j ∈ [1, k], node uij sends ri(j−1)+1 − rij+1 to R, where
ri0+1 = m. In the worst case, the adversary may intercept each of these values, in which case the
view of the adversary is {ri(j−1)+1 − rij+1|j ∈ [1, k]}. We show that the view of the adversary is
independent of the message being transmitted. In other words, we show that, for each view v of
the adversary, there is exactly one valid execution of the protocol for every message m′, and all
these executions are equally likely.

Consider the following valid execution of the protocol ΠSim. Let m′ be a message that is
different from m, and define r = m′ −m. Suppose each node uij+1 actually generates the random
number rij+1 + r, for j ∈ [1, k]. Then, as per the protocol code, for each j ∈ [1, k], node uij sends
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(ri(j−1)+1 + r) − (rij+1 + r) to R. This implies, the view of the adversary is {(ri(j−1)+1 + r) −
(rij+1 + r)|j ∈ [1, k]}, which is nothing but {ri(j−1)+1 − rij+1|j ∈ [1, k]}. This shows that, the view
of the adversary when the sender’s message is m is the same as the view of the adversary when the
sender’s message is m′, albeit for a different set of random coins of uncorrupted players. As m′ is
independent of m, the adversary’s view is independent of the message being transmitted.

To prove the same mathematically, we individually compute P [V IEW = v|M = m] and
P [V IEW = v|M = m′] and show that these two probabilities are same.

Let m be the message being transmitted and v = {v1, v2, . . . , vk} be the view of the adversary.
Then, for each j ∈ [1, k], vj = ri(j−1)+1 − rij+1 if rij+1 is the random number generated by uij+1

for each j ∈ [1, k], and ri0+1 = m. This implies:

P
[
V IEW = v|M = m

]
= P

[
(v1 = ri0+1 − ri1+1) and . . . and (vk = ri(k−1)+1 − rik+1)

∣∣ri0+1 = m
]

= P
[
(v1 = m− ri1+1) and . . . and (vk = ri(k−1)+1 − rik+1)

]
= P

[
(ri1+1 = m− v1) and . . . and (rik+1 = ri(k−1)+1 − vk)

]
=

1

|F|k

where the last step is because of k independent events, each one is occurring with probability of
1
|F| .

Similarly, let m′ be the message being transmitted and v = {v1, v2, . . . , vk} be the view of the
adversary. Then, for each j ∈ [1, k], vj = µi(j−1)+1−µij+1 if µij+1 is the random number generated
by uij+1 for each j ∈ [1, k], and µi0+1 = m′. This implies:

P
[
V IEW = v|M = m′

]
= P

[
(v1 = µi0+1 − µi1+1) and . . . and (vk = µi(k−1)+1 − µik+1)

∣∣µi0+1 = m′
]

= P
[
(v1 = m′ − µi1+1) and . . . and (vk = µi(k−1)+1 − µik+1)

]
= P

[
(µi1+1 = m′ − v1) and . . . and (µik+1 = µi(k−1)+1 − vk)

]
=

1

|F|k

In other words, for every probability distribution on the message space, for every two distinct
messages m, m′ and every possible view v of the adversary, P [V IEW = v|M = m] = P [V IEW =
v|M = m′]. Therefore the protocol ΠSim is perfectly secure.

4.1.2 Efficient Protocol

We now present a communication efficient PSMT protocol ΠEff in G if and whenever one exists.
Recall that, in Theorem 1 Dolev et al. [7] have shown that, PSMT from S to R is possible only if
there exist (t+ 1) vertex disjoint paths between S and R in Gu. This implies, t+ 1 vertex disjoint
weak paths from S to R are necessary for PSMT in G as well. Accordingly, let us assume that there
exist t + 1 vertex disjoint weak paths in G, namely pi for each i ∈ [1, t + 1]. Then, the protocol
ΠEff is as follows.
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The Protocol ΠEff

1. S chooses a random degree-t polynomial p(x) such that the constant term p(0) is the
message m being transmitted to R.

2. S sends p(i) to R by simulating the corresponding path p′i of the weak path pi using the
protocol ΠSim, for each i ∈ [1, t+ 1].

3. R reconstructs p(x) once it receives all t+ 1 points and gets the message m.

Corollary 1. The protocol ΠEff is perfectly reliable.

Proof. The perfect reliability of the protocol ΠSim assures that the receiver gets t + 1 points on
p(x). And, we know that these t+ 1 points are enough to reconstruct p(x) and the message m.

Corollary 2. The protocol ΠEff is perfectly secure.

Proof. We have t + 1 vertex disjoint weak paths and the adversary can corrupt at most t nodes.
Therefore, there exist some i ∈ [1, t + 1] such that no node of the weak path pi is corrupted.
This guarantees (from Theorem 2) that the receiver R reliably receives the point p(i), whereas the
adversary learns nothing about p(i). This implies, in the worst case, the adversary learns at most t
points on p(x). And, the rest of the proof directly follows from the Shamir’s secret sharing scheme
[29].

The communication complexity of the protocol ΠEff is O(|V |2). This follows from the fact that,
t+ 1 weak paths together may contain all the |V | nodes and each of these nodes may need to send
a masked value to the receiver R along some path, which in turn may contain O(|V |) nodes.

Theorem 3. Let G(V,E) be a directed graph in which S and R are two special nodes and there
exists a path from every node to R. Then, PSMT from S to R is possible in G if and only if PSMT
from S to R is possible in Gu.

Proof. Necessity: If PSMT from S to R is not possible in Gu, then clearly PSMT from S to R is not
possible in G as G is a subgraph of Gu.
Sufficiency: If PSMT from S to R is possible in Gu, then the protocol ΠEff guarantees that PSMT

from S to R is possible in G.

4.2 Polynomial time algorithm to check if PSMT from S to R is possible in G

In this section, we give a simple (efficient) algorithm to check if PSMT from S to R is possible in
a given directed graph G tolerating t faults. We know that (from Theorem 3), in G PSMT from S
to R is possible only if there exist t + 1 vertex-disjoint weak paths from S to R such that each
node of these weak paths has a path to R. Accordingly, we first construct a subgraph G′ (of G)
by removing each node of G which do not have a path to R in G. Then, we run the max-flow
algorithm to check if t+ 1 vertex-disjoint weak paths exist or not from S to R in G′, which in turn
answers whether PSMT from S to R is possible or not in G.

13



1. If either edge (R,S) ∈ E and there is a path from S to R in G or edge (S,R) ∈ E, then
return true.

2. Else:

(a) create a (induced) subgraph G′(V ′, E′) of G(V,E), where V ′ = V \ {v ∈ V | there
is no path from v to R in G} and E′ = {(u, v) ∈ E | u, v ∈ V ′}.

(b) create an auxiliary graph Gaux(V aux, Eaux) of G′ as follows:

i. Split each vertex vi ∈ V ′ \ {S,R} into two vertices vi1 and vi2 and add an edge
from vi1 to vi2.

ii. V aux = {S,R} ∪vi∈V ′\{S,R} {vi1, vi2}.
iii. Point all incoming edges of vi to vi1 as incoming edges of vi1.

iv. Point all out going edges of vi as out going edges of vi2.

v. For every edge, add uniform edge capacity of 1.

(c) In Gaux run the Max-flow algorithm to find the maximum flow, say f , from S to R.

(d) If f ≥ t+ 1, then return true else return false.

This is a polynomial time algorithm as the construction of graph G′ requires O(|V |2) time and
Max-flow runs in O(|V |3) time (see [12]).

5 Round optimality

This section contributes to the design of a round optimal protocol for perfectly secret message
transmission. At first, it appears that the longest among the t + 1 disjoint paths from S to R
would act as a lower bound for the round complexity of PSMT. This is mainly because, to execute
a protocol like ΠSim, each node needs to wait for the simulation to iteratively reach it, so that it
can securely communicate a random number to R. However, recall the Fig. 2 where it is noted
that the length of the (t+ 1)th shortest path is not necessarily related to the minimum number of
rounds required for PSMT. Intriguingly, constant round protocols can sometimes exist in very large
sparse graphs. This is because the (intermediate) nodes that need to send data to R, need not wait
(ΠSim-like protocols) to iteratively simulate a secure channel to R – as what is being sent by them
is just a random number. Specifically, in ΠSim, the receiver R receives the message masked by
another random number, which yet again is masked by another random number and so on. R also
receives securely (and iteratively) all these random numbers to successively unmask the message.
Note that the message can be kept secret as long as none of these secondary/tertiary masks are
unmasked. Therefore, all the randomness required for unmasking need not reach R in plain – in
fact, it would suffice if (some sort of) a linear combination of them reaches R. This is exactly what
we achieve through our protocol ΠRnd Eff Sim in Section 5.1.

Note that once the bottleneck-of-iteration is circumvented, it is easy to apply the protocol
ΠRnd Eff Sim to obtain a round-efficient PSMT protocol ΠStatic

Rnd Eff (see Section 5.2) in a manner
exactly analogous to how the protocol ΠEff designed using t+ 1 instances of ΠSim.

We remark that our round-efficient protocol is perhaps improvable further; thus the question
of round-optimal protocols for PSMT is still yet to be fully addressed with the ideas discussed so far
and new ideas are needed. Towards that end, we introduce in Section 5.3, the notion of a round
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evolution graph, a subgraph of G which evolves as the number of rounds increases. That is, the
round evolution graph of order i is a subgraph of the round evolution graph of order i+ 1. Further,
the full graph G evolves (in the worst case) when the order number is |V |.

Crucially, we prove in Theorem 6 that for any round evolution graph of order i, say Hi, if at
all any protocol for PSMT exists in Hi then our round efficient protocol ΠStatic

Rnd Eff is an i-round

PSMT protocol in Hi. Thus the smallest i for which our protocol ΠStatic
Rnd Eff succeeds in securely

transmitting the message in Hi is a round optimal PSMT protocol. We show that the search for
such an i can be easily accomplished via the standard binary-search method. Note that a linear-
search would also suffice for our purpose. However, we highlight that the setting is tailor-made for
the much faster binary search method. We illustrate our round optimal protocol for the ongoing
example.

5.1 Round Efficient Simulation Protocol ΠRnd Eff Sim

The protocol ΠRnd Eff Sim simulates the corresponding path p′ of a weak path p in the least possible
number of rounds as each node starts its computation and/or communication from the first round
itself; and, if it needs to send anything to R then it sends directly along a shortest path (so that
it conveys the required information to R in the least possible number of rounds). Technical details
are as follows. Let p : 〈S(= u0), u1, . . . , ul, ul+1(= R)〉 be a weak path in G and m be the message
that S wishes to send to R along the corresponding path p′. Moreover, let pui be a shortest path
from ui to R.

The Protocol ΠRnd Eff Sim

First round:

1. For each i ∈ [1, l + 1]: node ui chooses a random number ri.

2. S(= u0) initializes r0 = m as well as Left[u0] = m.

3. For each i ∈ [0, l]:

(a) if (ui, ui+1) ∈ E then:

i. ui sends ri to ui+1 and initializes Right[ui] = ri.

ii. ui+1 receives ri from ui sent earlier in this round and initializes Left[ui+1] = ri.

(b) else if (ui, ui+1) /∈ E,a then:

i. ui+1 sends ri+1 to ui and initializes Left[ui+1] = ri+1.

ii. ui receives ri+1 from ui+1 sent earlier in this round and initializes Right[ui] =
ri+1.

4. For each i ∈ [0, l + 1]: node ui calculates its value, V al[ui] = Left[ui]−Right[ui].

Second round onwards:

1. For each i ∈ [0, l]: If V al[ui] is non-zero (i.e. Left[ui] 6= Right[ui]), then in the second
round, ui sends V al[ui] to its out-neighbour of the shortest path pui . In turn, in the third
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round, the out-neighbour of ui forwards V al[ui] to its out-neighbour of pui . This process
continues till the the receiver receives V al[ui] from its in-neighbour of pui .

2. In the last round, the receiver R computes m = (
l∑

i=0
V al[ui]) + Left[ul+1].

aOn any weak path, if u and v are two adjacent vertices such that (u, v) /∈ E then by definition (v, u) ∈ E.

5.2 Round Efficient Protocol ΠStatic
Rnd Eff

We now present a round efficient PSMT protocol ΠStatic
Rnd Eff in G if and whenever one exists. We have

already seen that, in a directed graph G, PSMT from S to R is possible only if there exist t + 1
vertex disjoint weak paths from S to R in G. Accordingly, let us assume that there are t+ 1 vertex
disjoint weak paths, namely pi, for each i ∈ [1, t+ 1]. Then the protocol is as follows.

The protocol ΠStatic
Rnd Eff

1. S chooses a random degree-t polynomial p(x) and replaces the constant term p(0) with
the message m.

2. S sends p(i) to R by simulating the corresponding path p′i of the weak path pi using the
protocol ΠRnd Eff Sim, for each i ∈ [1, t+ 1].

3. R reconstructs p(x) once it receives all t+ 1 points and gets the message m.

This protocol terminates in at most |V | rounds. This is because, after sharing random numbers
with their neighbours in the first round as per the protocol code, each node u sends V al[u] (if it
is non-zero) to R along the shortest path pu. In any graph, as the length of every shortest path is
trivially bounded by |V | − 1, overall our protocol can take up to |V | rounds.

Now we prove the correctness of the protocols ΠRnd Eff Sim and ΠStatic
Rnd Eff .

Theorem 4. The protocol ΠRnd Eff Sim for sending message m from S to R is perfectly reliable.

Proof. By our protocol design, we have Right[ui] = Left[ui+1] for each node ui (except R) on the

weak path p. As R finally computes the Sum = (
l∑

i=0
V al[ui]) + Left[ul+1], we show that the Sum

is nothing but m, which ensures perfect reliability.

Sum = (

l∑
i=0

(Left[ui]−Right[ui])) + Left[ul+1]

= (

l∑
i=0

(Left[ui]− Left[ui+1])) + Left[ul+1]

= Left[u0]− Left[ul+1] + Left[ul+1] = Left[u0] = m

Corollary 3. The protocol ΠStatic
Rnd Eff for sending message m from S to R is perfectly reliable.

16



Proof. The perfect reliability of the protocol ΠRnd Eff Sim ensures that R gets t + 1 points on
degree-t polynomial p(x). And, we know that these t + 1 points on p(x) are enough to get the
message m [29].

Theorem 5. The protocol ΠRnd Eff Sim for simulating the corresponding path p′ of a weak path
p : 〈S(= u0), u1, . . . , ul, ul+1(= R)〉, secretly transmits the message m from S to R if no node of p
is corrupted.

Proof. Proof is analogous to the proof given in Theorem 2. We notice that, other than R, each
node ui on the weak path p sends V al[ui] (if it is non-zero) to the receiver R along the shortest
path pui . In the worst case, the adversary may learn V al[ui], for each i ∈ [0, l]. In this case too,
we show that the adversary learns nothing (additional) about m by showing that the view of the
adversary is independent of the message being transmitted.

In the execution of the protocol ΠRnd Eff Sim for the sender’s message m, the view of the
adversary is {V al[ui]|i ∈ [0, l]}, where Left[u0] = m and V al[ui] = Left[ui]−Right[ui] = Left[ui]−
Left[ui+1]. Let us denote Left[ui] = r′i for each i ∈ [0, l + 1], thus the view of the adversary is
{r′i − r′i+1|i ∈ [0, l]}.

Consider the following valid execution of the protocol ΠStatic
Rnd Eff . Let m′ be a message that

is different from m, and define r = m′ −m. Suppose the node ui actually generates the random
number ri+r, for each i ∈ [1, l+1]. Then, as per the protocol code, for each i ∈ [0, l], node ui sends
(r′i + r)− (r′i+1 + r) to R. This implies, the view of the adversary is {(r′i + r)− (r′i+1 + r)|i ∈ [0, l]},
which is nothing but {r′i − r′i+1|i ∈ [0, l]}. The rest of the proof follows exactly as in the proof of
the Theorem 2. Therefore, the protocol ΠRnd Eff Sim is perfectly secure.

Corollary 4. The protocol ΠStatic
Rnd Eff for sending message m from S to R is perfectly secure.

Proof. As the adversary can corrupt at most t nodes, there exists i ∈ [1, t+1], such that no node of
the weak path pi is corrupted. And, the protocol ΠRnd Eff Sim assures that p(i) is perfectly secure.
We have from Shamir’s secret sharing scheme that t or fewer points on a degree-t polynomial reveal
nothing about the constant term, which is the message.

5.3 PSMT in Round Evolution Graphs

Graphs have been used as a very powerful abstraction of the network by modelling the physical
link from one player to another as a directed edge between the corresponding vertices of the graph.
However, in this kind of modelling of the network, the edges of the graph only indicate the link
between two spatial locations. It does not contain any temporal information. To incorporate the
notion of time (rounds) in our graph, we propose a representation named round evolution graph
that contains both spatial and temporal information.

Definition 15. Let G(V,E) be a directed graph in which R is a special node such that there exists a
path from every node to R. Then, given a round number r, the round evolution graph G(r)(V,E(r))
of order r is a subgraph of G, defined as (edge set) E(r) = E \ {(u, v) ∈ E | dv ≥ r}, where dv
denotes the length of the shortest path from v to R. In other words, remove those edges from which
R can not receive any information in r rounds.

Theorem 6. Let G(V,E) be a directed graph in which S and R are two special nodes and there
exists a path from every node to R. Then, PSMT from S to R is possible in G(r) if and only if an
r-round PSMT protocol (from S to R) exists in G(r).
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Proof. Sufficiency: If an r-round PSMT protocol (from S to R) exists in G(r), then PSMT from S
to R is trivially possible in G(r).
Necessity: Suppose PSMT from S to R is possible in G(r), then we show that the round efficient
protocol ΠStatic

Rnd Eff given in Section 5.2 achieves PSMT (from S to R) in r rounds. As the protocol

ΠStatic
Rnd Eff is nothing but executing t+ 1 times the protocol ΠRnd Eff Sim, it is enough to show that

the protocol ΠRnd Eff Sim succeeds in r-rounds. In other words, it is enough to show that every
node ui can send the required information to R in r-rounds (which implies, R can reconstruct the
message in r-rounds).

We observe that, each node ui on the weak path p : 〈S(= u0), u1, . . . , ul, ul+1(= R)〉, (if required)
sends the chosen random number ri to its neighbour(s) in the first round as per the protocol
ΠRnd Eff Sim. We have three cases for each node ui of the weak path p:

1. If (ui−1, ui) ∈ E(r), then by our construction of G(r) we have dui ≤ r − 1. Therefore, even if
ui takes one round (entire first round) to receive random numbers from its neighbour(s), it
can send V al[ui] to R in a total of r-rounds.

2. If (ui, ui+1) /∈ E(r), then by definition (ui+1, ui) ∈ E(r). Moreover, by our construction of
G(r) we have dui ≤ r − 1. The rest follows as in previous case.

3. If (ui−1, ui) /∈ E(r) but (ui, ui+1) ∈ E(r), then V al[ui] = Left[ui] − Right[ui] = ri − ri = 0.
This implies, ui is not required to send its value to the receiver R as per the protocol code.

Theorem 7. Let G(V,E) be a directed graph in which S and R are two special nodes and there
exists a path from every node to R. Then, an r-round PSMT protocol (from S to R) exists in G if
and only if PSMT from S to R is possible in the round evolution graph G(r) of order r.

Proof. Sufficiency: If PSMT from S to R is possible in G(r), then, the theorem directly follows
from Theorem 6 as G(r) is a subgraph of G.
Necessity: Assume that an r-round PSMT protocol Π exists in G. We show that for the same
protocol Π, the extra edges which are present in E but not in E(r) never convey any information to
R. This implies, at the end of the protocol Π, the view of the receiver R remains the same whether
these edges are present or not. Therefore, any such r-round protocol Π achieves PSMT in G(r).

Let (u, v) be an edge in E but not in E(r). This implies, by definition of E(r), dv ≥ r. As the
shortest distance from v to R is at least r, any message sent by v takes at least r rounds to reach
R. Also we know that, if u sends a message m to v along the edge (u, v) then by definition one
round is required for m to reach v. Therefore, a total of at least r + 1 rounds are required for any
message to reach R from u via edge (u, v). Therefore, these edges are of no use in any r-round
protocol. This concludes the proof.

Corollary 5. Let G(V,E) be a directed graph in which S and R are two special nodes and there
exists a path from every node to R. Then, an r-round PSMT protocol (from S to R) exists in G if
and only if an r-round PSMT protocol (from S to R) exists in G(r).

Proof. Directly follows from Theorem 6 and Theorem 7.
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5.4 Polynomial time algorithm for identifying the optimal number of rounds

We have from Corollary 5 that the optimal number of rounds required for PSMT from S to R in G
is nothing but the least r for which PSMT from S to R is possible in G(r). Also, it is easy to see
that if PSMT from S to R is possible in G(r), then PSMT from S to R is trivially possible in G(r+1)

(as G(r) is a subgraph of G(r+1)). Combining these two together, we get the optimal r for which
PSMT is possible in G if we perform standard binary search over r ∈ [1, |V |] while we check for
PSMT possibility from S to R in G(r). Since the overhead of binary search is logarithmic, we just
need to show that each iteration of binary search takes only polynomial time. In each iteration,
we are constructing the subgraph G(r) of G and checking if PSMT from S to R is possible in G(r).
Constructing a subgraph G(r) of G requires only quadratic (polynomial) time. And, in Section 4.2,
we have already shown that we can efficiently check if PSMT from S to R is possible in any given
graph.

5.5 An Example of Round Optimal Protocol

In this section, we illustrate the execution protocol ΠStatic
Rnd Eff with an example. Let us consider the

graph G given in Fig. 4. We have already seen that, in G PSMT from S to R is possible tolerating
two faults but not three.

We need a shortest path from each node to R to execute our round optimal protocol. Also, we
have to find the least r for which PSMT from S to R is possible in G(r) tolerating two faults. For
quick reference, the shortest distance and a shortest path from each node to R is shown in Fig. 6.
And, round evolution graphs G(3) of order three and G(4) of order four are depicted in Fig. 7 and
Fig. 8 respectively.

We notice that the shortest distance from S to R is three. Therefore, any protocol will take at

least three rounds. However, in G
(3)
u there is only one vertex disjoint path from S to R. Thus, it

fails to meet the necessary conditions of Theorem 3 tolerating two faults. This implies that PSMT

from S to R is impossible in G(3). On the other hand, there are three vertex disjoint paths from

S to R in G
(4)
u , and every node on these paths has a path to R in G. Thus, PSMT from S to R is

possible in G(4) tolerating two faults. Therefore, the minimum number of rounds required for PSMT
in G is four.

Now we execute our protocol ΠStatic
Rnd Eff in G(4), which achieves PSMT tolerating two faults in

four rounds as follows.

An execution of four round protocol in G(4)

First round:

1. The sender S chooses a random degree-2 polynomial p(x) and replaces the constant term
p(0) with the message m.

2. Every node v, except S and R, chooses a random number rv.

3. R chooses three random numbers rR1 , rR2 , rR3 .
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Node Shortest path to R Shortest distance

S pS : 〈S, v3, v2, R〉 3

v1 pv1 : 〈v1, v2, R〉 2

v2 pv2 : 〈v2, R〉 1

v3 pv3 : 〈v3, v2, R〉 2

v4 pv4 : 〈v4, v3, v2, R〉 3

v5 pv5 : 〈v5, v6, v3, v2, R〉 4

v6 pv6 : 〈v6, v3, v2, R〉 3

Figure 6: Shortest paths from each node to the receiver R for the graph given in Fig. 4.

S

v1 v2

v3 v4

v5 v6

R

Figure 7: Round Evolution Graph G(3) of order three for the graph given in Fig. 4.

S

v1 v2

v3 v4

v5 v6

R

Figure 8: Round Evolution Graph G(4) of order four for the graph given in Fig. 4.
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4. The node v1 sends rv1 to the node v2 as well as the sender S(= S1) and both the nodes
v2 and S(= S1) receive rv1 .

5. The node v2 sends rv2 to the receiver R and R receives rv2 .

6. The node S(= S2) sends p(2) to the node v3 and v3 receives p(2).

7. The node v4 sends rv4 to the node v3 and v3 receives rv4 .

8. The receiver R sends rR2 to the node v4 and v4 receives rR2 .

9. The node v5 sends rv5 to the node v6 as well as the sender S(= S3) and both the nodes
v6 and S(= S3) receive rv5 .

10. The receiver R sends rR3 to the node v6 and v6 receives rR3 .

11. Every node v, except R, calculates its value, V al[v]:

(a) V al[S1] = p(1)− rv1 , V al[v1] = rv1 − rv1 , V al[v2] = rv1 − rv2
(b) V al[S2] = p(2)− p(2), V al[v3] = p(2)− rv4 , V al[v4] = rv4 − rR2

(c) V al[S3] = p(3)− rv5 , V al[v5] = rv5 − rv5 , V al[v6] = rv5 − rR3

Second round:

1. The node S1 sends its value V al[S1] to the node v3 and v3 receives V al[S1].

2. The node S3 sends its value V al[S3] to the node v3 and v3 receives V al[S3].

3. The node v2 sends its value V al[v2] to the receiver R and R receives V al[v2].

4. The node v3 sends its value V al[v3] to the node v2 and v2 receives V al[v3].

5. The node v4 sends its value V al[v4] to the node v3 and v3 receives V al[v4].

6. The node v6 sends its value V al[v6] to the node v3 and v3 receives V al[v6].

Third round:

1. The node v2 sends V al[v3] to the receiver R and R receives V al[v3].

2. The node v3 sends V al[S1], V al[S3], V al[v4] and V al[v6] to the node v2 and v2 receives
V al[S1], V al[S3], V al[v4] and V al[v6].

Fourth round:

1. The node v2 sends V al[S1], V al[S3], V al[v4] and V al[v6] to the receiver R and R receives
V al[S1], V al[S3], V al[v4] and V al[v6].

2. R computes:
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(a) p(1) = V al[S1] + V al[v1] + V al[v2] + rv2 = p(1)− rv1 + 0 + rv1 − rv2 + rv2 = p(1).

(b) p(2) = V al[S2] + V al[v3] + V al[v4] + rR2 = 0 + p(2)− rv4 + rv4 − rR2 + rR2 = p(2).

(c) p(3) = V al[S3] + V al[v5] + V al[v6] + rR3 = p(3)− rv5 + 0 + rv5 − rR3 + rR3 = p(3).

3. Finally R reconstructs the polynomial and hence gets the message.

The shortest distance from each node (except v5) to the receiver R is less than or equal to three.
And, each node in G may have to receive random number(s) from its neighbour(s) in the first round.
Therefore, each node (except v5) can send its value to the receiver R in at most four rounds. As per
the protocol code, v5 does not send anything to R since the value of the node v5 is zero. Therefore,
this protocol terminates in four rounds.

6 Linear communication complexity

This section contributes to the design of a round optimal PSMT protocol, whose communication
complexity is linear in the number of vertices of the graph. In Section. 4.1.2, we have seen that
the communication complexity of the protocol ΠEff is O(|V |2) due to the following reason. Once
sharing (of random numbers) is done in the first round, each node sends its value to the receiver
along a shortest path. In particular, each of these shortest paths may contain O(|V |) nodes, leading
to quadratic complexity. However, we notice that, many of these shortest paths may have several
edges in common. And, each such edge has to carry k field elements if it is part of k shortest
paths. We make sure that such edges carry only one field element, leading us to the design of a
linear-communication protocol. More details are as follows. We construct a subgraph H of G such
that PSMT from S to R is possible in G iff PSMT from S to R is possible in H. And, H contains
only O(|V |) edges. Therefore, if we design a protocol in H such that each edge in H carries at most
one field element then trivially we get a linear communication protocol in G. As this technique
can be adapted to any graph, we work with the round evaluation graph G(r) of order r, where r
is the optimal number of rounds required for PSMT; to get a round optimal protocol with linear
communication complexity. The graph H holds the following properties:

1. H contains only O(|V |) edges – The edge set of H is the union of two sets of edges. First one
is the set of edges of t+ 1 vertex disjoint weak paths. And, the other one is the set of edges
of a tree with R as its root. More elaborately, suppose the shortest distance from a node u
to R is d. Then, to send any information to R possibly in least number of rounds, the node u
must use another node whose shortest distance to R is d− 1. We realize this by constructing
a tree T of G with R as its root such that each node has exactly one path to R in the tree T .
That is, a node in the ith level connected to only one of its parent which is in the (i − 1)th

level, assuming R is at 0th level. We already know that, no tree can have more than |V | − 1
edges. Therefore, H contain only O(|V |) edges.

2. PSMT from S to R is possible in H whenever PSMT from S to R is possible in G – If PSMT from
S to R is possible in G then G contains t+ 1 disjoint weak paths. As H contains every edge
of these t+ 1 disjoint weak paths, nodes can share their random numbers with neighbours in
the first round as per the protocol ΠStatic

Rnd Eff . Also, each node can send its value to R as it
has a shortest path to R in the tree.
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3. Each edge in H carries at most one field element – Instead of working with random degree-t
polynomial, the sender randomly chooses t + 1 field elements, say mi for i ∈ [1, t + 1], such
that their sum is the message m. To get the message m, it is not necessary for R to know
each individual mi but it is enough if R gets the corresponding sum. Therefore, instead of
pushing the calculation to R at the end, each node locally adds all the values it received from
its children with its value and sends as a single field element to its parent in the tree T . In
other words, if an edge is part of multiple shortest paths, then instead of carrying multiple
messages, it carries only one field element which is the sum of the corresponding multiple
messages.

Now we are ready to formally introduce required definitions.

Definition 16. Let G(V,E) be a directed graph in which R is a special node such that there exists
a path from every node to R. Then, a Reverse Directed Rooted Tree of G rooted at R is a
digraph TG(V,ET ;R) such that a node u is at the ith level (R is at level 0) if and only if the shortest
distance from u to R is exactly i in G.

A Note on Reverse Directed Rooted Tree: Every node in the tree has exactly one parent,
else we would get cycles in tree TG. Moreover, as there are no cycles, the maximum number of
edges present in tree TG is |V | − 1.

Definition 17. Let G(V,E) be a directed graph in which S and R are two special nodes and there
exist k vertex disjoint weak paths from S to R, namely pi for each i ∈ [1, k] such that every node
in these k weak paths has at least one path to R. Moreover, let TG(V,ET ;R) be a Reverse Directed
Rooted Tree of G. Then, a communication graph of the digraph G(V,E) of order k is denoted by

Gk(V, E) and defined as E = Ep ∪ET , where Ep =
k⋃

i=1
E(pi) and E(pi) is the set of all edges in the

weak path pi.

Theorem 8. Let G(V,E) be a directed graph in which S and R are two special nodes and there
exists a path from every node to R. Then, PSMT from S to R is possible in G if and only if PSMT
from S to R is possible in communication graph G(t+1) of order t+ 1.

Proof. Sufficiency: Suppose PSMT from S to R is possible in G. Then from Theorem 3, we know
that there exist at least t+ 1 vertex disjoint weak paths from S to R such that every node on these
weak paths has a path to R in G. Observe that, by definition of G(t+1), every edge of these t+1 weak
paths is present in G(t+1). Therefore, along these edges, nodes can share their random numbers
with their neighbours in the first round as per the protocol ΠStatic

Rnd Eff . Also, by the definition of
Reverse Directed Rooted Tree of G, each node on these t + 1 weak paths has a (unique) shortest
path to R in TG. Therefore, each node on these t + 1 weak paths can send its value to R as per
protocol ΠStatic

Rnd Eff .
Necessity: If PSMT from S to R is impossible in G then trivially PSMT from S to R is impossible
in the subgraph G(t+1) as well.

6.1 Round optimal protocol with linear communication complexity

In this section, we present a round optimal linear communication protocol ΠStatic
Rnd Opt Lin if PSMT

from S to R is possible in G. As we discussed earlier, the protocol ΠStatic
Rnd Opt Lin is same as the
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protocol ΠStatic
Rnd Eff except that (1) we run the protocol in G(t+1) (2) for each i ∈ [1, t + 1], p(i) is

replaced with mi, where the sum of these mi’s is the message m and (3) if an edge (u, v) carries
more than one field element then u adds corresponding field elements and sends to its parent v in
T as a single field element. Now, we move to the technical details of the protocol.

Let r be the optimal number of rounds required for PSMT possibility from S to R in G tolerating
t-threshold static adversary. Then, we have from Corollary 5 that, PSMT from S to R is possible
in G(r). This implies, combing with Theorem 8, PSMT from S to R is possible in communication
graph G(t+1) of the digraph G(r)(V,E). Therefore, (t+ 1) vertex disjoint weak paths from S to R
exist in G(t+1), namely pi : 〈ui0(= S), ui1, . . . , uiki , ui(ki+1)(= R)〉, for each i ∈ [1, t+ 1]. Moreover,

let the height of a Reverse Directed Rooted Tree TG(r) of G(r) be h with root R is at the 0th level.
Here we notice that, each ui0 is S and each ui(ki+1) is R.

The Protocol ΠStatic
Rnd Opt Lin

First round:

1. For each i ∈ [1, t+ 1] and j ∈ [0, ki + 1]: node uij , except u(t+1)0, picks a random number
rij ∈ F.

2. The sender S(= u(t+1)0) computes r(t+1)0 = m−
t∑

i=1
ri0.

3. For each i ∈ [1, t+ 1]: S(= ui0) initializes Left[ui0] = ri0.

4. For each i ∈ [1, t+ 1] and j ∈ [0, ki]:

(a) if (uij , ui(j+1)) ∈ E(r), then:

i. uij sends rij to ui(j+1) and initializes Right[uij ] = rij .

ii. ui(j+1) receives rij from uij sent earlier in this round and initializes Left[ui(j+1)] =
rij .

(b) if (uij , ui(j+1)) /∈ E(r), then:

i. ui(j+1) sends ri(j+1) to uij and initializes Left[ui(j+1)] = ri(j+1).

ii. uij receives ri(j+1) from ui(j+1) sent earlier in this round and initializesRight[uij ] =
ri(j+1).

5. For each i ∈ [1, t+ 1] and j ∈ [0, ki]: node uij calculates its value, V al[uij ] = Left[uij ]−
Right[uij ].

6. The sender S computes its grand value, V al[S] =
t+1∑
i=1

V al[ui0].

Second round onwards:

1. If S is a leaf node (at level h) in TG(r) and its grand value, V al[S], is non zero then
S sends V al[S] to its parent which is at (h − 1)th level. And, the parent of S receives
V al[S].
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2. Else If S is at kth level (k ∈ [1, h− 1]) then S receives values, which are non-zero, from
its children (sent earlier in that round) which are at (k + 1)th level. Subsequently, S
adds all the received values to its grand value V al[S] and sends to its parent which is at
(k − 1)th level. And, the parent of S receives the corresponding sum.

3. For each i ∈ [1, t+ 1] and j ∈ [1, ki]:

(a) If uij is a leaf node (at level h) in TG(r) and its value, V al[uij ], is non zero then
uij sends V al[uij ] to its parent which is at (h − 1)th level. And, the parent of uij
receives V al[uij ].

(b) If uij is at kth level for some k ∈ [1, h − 1] (not a leaf node) then uij receives
values, which are non-zero, from its children (sent earlier in that round) which are
at (k+ 1)th level. Subsequently, uij adds all the received values to its value V al[uij ]
and sends to its parent which is at (k − 1)th level. And, the parent of uij receives
the corresponding sum.

4. In the last round, the receiver R adds the sum of all the values it received from its children

with the sum of all its Left Values (i.e.
t+1∑
i=1

Left[ui(ki+1)]) to get the message m.

Now we prove the correctness of the protocol ΠStatic
Rnd Opt Lin in the following two theorems.

Theorem 9. The protocol ΠStatic
Rnd Opt Lin is perfectly reliable.

Proof. It is clear that the receiver R eventually gets the sum of the grand value of S and the
sum of the values of each uij , for i ∈ [1, t + 1] and j ∈ [1, ki]. As R computes the Sum =

V al[S] + (
t+1∑
i=1

ki∑
j=1

V al[uij ]) +
t+1∑
i=1

Left[ui(ki+1)] to get the message, we should show that the Sum is

nothing but the message m. Recall that, for each uij we have Right[uij ] = Left[ui(j+1)], where
i ∈ [1, t+ 1] and j ∈ [0, ki].

Sum = V al[S] +
( t+1∑

i=1

ki∑
j=1

V al[uij ]
)

+

t+1∑
i=1

Left[ui(ki+1)]

=
t+1∑
i=1

V al[ui0] +
( t+1∑

i=1

ki∑
j=1

V al[uij ]
)

+
t+1∑
i=1

Left[ui(ki+1)]

=

t+1∑
i=1

(
Left[ui0]−Right[ui0]

)
+
( t+1∑

i=1

ki∑
j=1

(
Left[uij ]−Right[uij ]

))
+

t+1∑
i=1

Left[ui(ki+1)]

=

t+1∑
i=1

(
Left[ui0]− Left[ui1]

)
+
( t+1∑

i=1

ki∑
j=1

(
Left[uij ]− Left[ui(j+1)]

))
+

t+1∑
i=1

Left[ui(ki+1)]

=

t+1∑
i=1

(
Left[ui0]− Left[ui1]

)
+
( t+1∑

i=1

(
Left[ui1]− Left[ui(ki+1)]

))
+

t+1∑
i=1

Left[ui(ki+1)]
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=

t+1∑
i=1

Left[ui0]−
t+1∑
i=1

Left[ui1] +

t+1∑
i=1

Left[ui1]−
t+1∑
i=1

Left[ui(ki+1)] +

t+1∑
i=1

Left[ui(ki+1)]

=
t+1∑
i=1

Left[ui0] =
t+1∑
i=1

ri0 = m.

Theorem 10. The protocol ΠStatic
Rnd Opt Lin is perfectly secure.

Proof. The proof directly follows from the security proof of the protocol ΠRnd Eff Sim given in
Theorem 5. In Theorem 5, we showed that, once sharing of random numbers is done in the first
round, in subsequent rounds even if the adversary gets V al[ui], for each uncorrupted node ui of the
weak path p, the adversary learns nothing (additional) about the message m being transmitted to
R. The protocol code of the first round of the current protocol ΠStatic

Rnd Opt Lin is same as that of the
protocol ΠRnd Eff Sim. Also, as we have t+ 1 vertex disjoint weak paths from S to R, there exists
at least one weak path pi such that no node of it is corrupted, for some i ∈ [1, t + 1]. Combining
all together, we get, the adversary learns nothing about ri0. Thus, the adversary learns nothing

(additional) about the message m =
t+1∑
j=1

rj0.

The communication complexity of the protocol ΠStatic
Rnd Opt Lin is linear. The reason is as follows.

In the first round, each edge of the weak paths carries exactly one field element rij , for some
i ∈ [1, t+ 1] and j ∈ [0, ki + 1]. As the weak paths are disjoint, the number of edges is bounded by
|V |. Also, each edge of the Reverse Directed Rooted Tree TG(r) carries at most one field element.
And, the number of edges in TG(r) is also bounded by |V | − 1. Therefore, to transmit a single field
element secretly, all the edges together carry at most O(|V |) field elements.

An interesting implication of this protocol is the following. If the shortest distance from Sto
R is Ω(|V |), then we achieve perfect secrecy for free. Because any reliable but insecure routing
protocol would also takes O(|V |) rounds and send O(|V |) messages (one message along each edge
in the shortest path) for transmission.

6.2 An example of the round optimal protocol with linear communication com-
plexity

In this section we illustrate the protocol ΠStatic
Rnd Opt Lin with an example. Consider the graph G

given in Fig. 4. In earlier section, we have seen that the minimum number of rounds required for
PSMT possibility in G is four. Accordingly, we execute the protocol ΠStatic

Rnd Opt Lin on communication

graph G(3) of the graph G(4) given in Fig. 8. We represent G(3) with three vertex disjoint weak
paths and a Reverse Directed Rooted Tree TG(4) rooted at R in Fig. 9. Furthermore, a value
sent by a node u to a node v as per the protocol code, is depicted over an edge (u, v) ∈ E.
The first round computation of the protocol, that is, sharing of random numbers and calculating
corresponding values, is depicted at the top of the Fig. 9 using three disjoint weak paths. Whereas,
the computations of the second and subsequent rounds are depicted at the bottom using the tree
TG(4) .
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Figure 9: An execution of the protocol ΠStatic
Rnd Opt Lin on G(3) of the graph G(4) given in Fig. 8
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An execution of the protocol ΠStatic
Rnd Opt Lin on G(3)

First round:

1. The sender S chooses two random numbers rS1 , rS2 and initializes rS3 = m− (rS1 + rS2).

2. Every node v, except S and R, chooses a random number rv.

3. The receiver R chooses three random numbers rR1 , rR2 , rR3 .

4. The node v1 sends rv1 to the node v2 as well as the sender S and both the nodes v2 and
S receive rv1 .

5. The node v2 sends rv2 to the receiver R and R receives rv2 .

6. The node S sends rS2 to the node v3 and v3 receives rS2 .

7. The node v4 sends rv4 to the node v3 and v3 receives rv4 .

8. The receiver R sends rR2 to the node v4 and v4 receives rR2 .

9. The node v5 sends rv5 to the node v6 as well as the sender S and both the nodes v6 and
S receive rv5 .

10. The receiver R sends rR3 to the node v6 and v6 receives rR3 .

11. The sender S computes its grand value, V al[S] = (rS1 − rv1) + (rS2 − rS2) + (rS3 − rv5) =
rS1 − rv1 + rS3 − rv5 .

12. Every node v, except S and R, calculates its value V al[v]:

(a) V al[v1] = rv1 − rv1 , V al[v2] = rv1 − rv2 and V al[v3] = rS2 − rv4 .

(b) V al[v4] = rv4 − rR2 , V al[v5] = rv5 − rv5 and V al[v6] = rv5 − rR3 .

Second round:

1. The node v4 sends V al[v4] = rv4 − rR2 to the node v3 and v3 receives V al[v4].

2. The node v6 sends V al[v6] = rv5 − rR3 to the node v3 and v3 receives V al[v6].

3. The sender S sends V al[S] = rS1 − rv1 + rS3 − rv5 to the node v3 and v3 receives V al[S].

4. The node v3 calculates: Sum(v3) = V al[v3] + V al[v4] + V al[v6] + V al[S] = (rS2 − rv4) +
(rv4 − rR2) + (rv5 − rR3) + (rS1 − rv1 + rS3 − rv5) = rS2 − rR2 − rR3 + rS1 − rv1 + rS3 .

Third round:

1. The node v3 sends Sum(v3) = rS1 + rS2 + rS3 − rv1 − rR2 − rR3 to the node v2 and v2
receives Sum(v3).
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2. The node v2 calculates Sum(v2) = V al[v2] + Sum(v3) = (rv1 − rv2) + (rS1 + rS2 + rS3 −
rv1 − rR2 − rR3).

Fourth round:

1. The node v2 sends Sum(v2) = rS1 + rS2 + rS3 − rv2 − rR2 − rR3 to the receiver R and R
receives Sum(v2).

2. The receiver R calculates the message m = (rv2 + rR2 + rR3) + Sum(v2) = (rv2 + rR2 +
rR3) + (rS1 + rS2 + rS3 − rv2 − rR2 − rR3) = rS1 + rS2 + rS3 .

7 PSMT tolerating mobile adversary

We have been considering the static adversary so far. In static adversary, a node once corrupted
remains corrupted subsequently. Thus, the static adversary can corrupt only one fixed set of t-nodes
throughout the protocol execution. Here, we relax this requirement by allowing the adversary to
corrupt a different set of t nodes of its choice in different rounds. The adversary of this kind is
called the mobile adversary. Intuitively we know that it is difficult to tolerate the mobile adversary
due to its dynamic nature. And, the design of appropriate PSMT protocols for tolerating the mobile
adversary offers better security guarantees compared to the static adversary counterpart.

We notice that, if nodes cannot wipe/delete the data from their memory, then given sufficient
time (rounds) the adversary can eavesdrop the required number of nodes to get the secret (in the
worst case the adversary can eavesdrop each node of the network after certain number of rounds
though the protocol might have terminated). Therefore, it is necessary for the nodes to have the
data deletion capability to tolerate the mobile adversary. Also, we assume that once data is deleted
it cannot be recovered by any means. We use the notation DEL[U] to denote the deletion of
every element from the subset U of the field F. We now present the intuition behind the protocol
ΠMobile

Rnd Opt Lin, which tolerates the mobile t-adversary if PSMT from S to R is possible tolerating the
static t-adversary.

Assume that there exist t+ 1 vertex-disjoint weak paths from S to R in G then there exists at
least one weak path (say p) such that no node of it is corrupted in the first round. Then, before
the adversary corrupts any node from the weak path p in subsequent rounds, each pair of adjacent
nodes of p exchange information, which eventually guarantees PSMT from S to R tolerating mobile
adversary. Once adjacent nodes are done with exchanging information, each node u: (1) locally
computes a function f on its local information (2) stores the output of f and (3) completely deletes
the local information. The function f has the property that looking at the output of the function
adversary learns nothing about the corresponding inputs. More precisely, let u be a node from the
uncorrupted weak path p. Consider the following two cases.
Case 1: Suppose node u is an in-neighbour of R (i.e., (u,R) ∈ E) and wants to send the message
m to R. Then, u simply forwards the message m to R and deletes m from its memory. The receiver
R gets the message by the end of the round but the adversary learns nothing (additional) about
the message even if it eavesdrops the node u in subsequent rounds as the message is already deleted
by node u.
Case 2: Suppose u is not directly connected to R but u is an out-neighbour of R (i.e., (R, u) ∈ E)
and the node u wishes to send a message m to R. The protocol works as follows. In first round, R
sends a random key KR to u and u receives KR. Then, the node u calculates m−KR and deletes
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both m and KR from its memory. Observe that by corrupting node u in any subsequent rounds,
the adversary gets m−KR which reveals nothing about either m or KR. Therefore, in subsequent
rounds node u can send m−KR to R along any path (from u to R), which may be eavesdropped
by the adversary. Once R receives m−KR, R adds KR to m−KR and gets the message m.

We use this simple idea to design the protocol ΠMobile
Rnd Opt Lin to tolerate the mobile t-adversary.

This protocol is the same as the protocol ΠStatic
Rnd Opt Lin except that at the end of the first round

each node u deletes its left-value Left[u] and right-value Right[u] after calculating its value V al[u].
Consider a communication graph G(t+1) of the digraph G(r)(V,E), where r be the optimal

number of rounds required for PSMT possibility in G tolerating t-threshold static adversary. Let
(t+ 1) vertex disjoint weak paths of G(t+1) are, namely pi : 〈ui0(= S), ui1, . . . , uiki , ui(ki+1)(= R)〉,
for each i ∈ [1, t + 1]. And, the height of a Reverse Directed Rooted Tree TG(r) of G(r) be h with
root R is at the 0th level. Then, the protocol code is as follows.

7.1 The Protocol ΠMobile
Rnd Opt Lin

The Protocol ΠStatic
Rnd Opt Lin

First round:

1. For each i ∈ [1, t+ 1] and j ∈ [0, ki + 1]: node uij , except u(t+1)0, picks a random number
rij ∈ F.

2. The sender S(= u(t+1)0) computes r(t+1)0 = m−
t∑

i=1
ri0.

3. For each i ∈ [1, t+ 1]: S(= ui0) initializes Left[ui0] = ri0.

4. For each i ∈ [1, t+ 1] and j ∈ [0, ki]:

(a) if (uij , ui(j+1)) ∈ E(r), then:

i. uij sends rij to ui(j+1) and initializes Right[uij ] = rij .

ii. ui(j+1) receives rij from uij sent earlier in this round and initializes Left[ui(j+1)] =
rij .

(b) if (uij , ui(j+1)) /∈ E(r), then:

i. ui(j+1) sends ri(j+1) to uij and initializes Left[ui(j+1)] = ri(j+1).

ii. uij receives ri(j+1) from ui(j+1) sent earlier in this round and initializesRight[uij ] =
ri(j+1).

5. For each i ∈ [1, t+ 1] and j ∈ [0, ki], node uij :

(a) calculates its value, V al[uij ] = Left[uij ]−Right[uij ].
(b) performs the deletion operation, DEL[{Left[uij ], Right[uij ]}].

6. The sender S computes its grand value, V al[S] =
t+1∑
i=1

V al[ui0].
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Second round onwards:

1. If S is a leaf node (at level h) in TG(r) and its grand value, V al[S], is non zero then
S sends V al[S] to its parent which is at (h − 1)th level. And, the parent of S receives
V al[S].

2. Else If S is at kth level (k ∈ [1, h− 1]) then S receives values, which are non-zero, from
its children (sent earlier in that round) which are at (k + 1)th level. Subsequently, S
adds all the received values to its grand value V al[S] and sends to its parent which is at
(k − 1)th level. And, the parent of S receives the corresponding sum.

3. For each i ∈ [1, t+ 1] and j ∈ [1, ki]:

(a) If uij is a leaf node (at level h) in TG(r) and its value, V al[uij ], is non zero then
uij sends V al[uij ] to its parent which is at (h − 1)th level. And, the parent of uij
receives V al[uij ].

(b) If uij is at kth level for some k ∈ [1, h − 1] (not a leaf node) then uij receives
values, which are non-zero, from its children (sent earlier in that round) which are
at (k+ 1)th level. Subsequently, uij adds all the received values to its value V al[uij ]
and sends to its parent which is at (k − 1)th level. And, the parent of uij receives
the corresponding sum.

4. In the last round, the receiver R adds the sum of all the values it received from its children

with the sum of all its Left Values (i.e.
t+1∑
i=1

Left[ui(ki+1)]) to get the message m.

Theorem 11. The protocol ΠMobile
Rnd Opt Lin is perfectly reliable and perfectly secure.

Proof. Perfect Reliability: The protocol ΠMobile
Rnd Opt Lin is same as the protocol ΠStatic

Rnd Opt Lin, ex-
cept that, each node uij , after computing V al[uij ] performs an extra delete operation, DEL[{Left[uij ]
, Right[uij ]}]. However, in the protocol ΠStatic

Rnd Opt Lin, for each node uij , V al[uij ] is enough to re-
construct the message m, whereas individual values Left[uij ] and Right[uij ] are not necessary.
Therefore, perfect reliability is guaranteed.
Perfect Security: We know that there exists at least one weak path pi (for some i ∈ [1, t+1) such
that no node of it is corrupted in the first round. Then, notice that, by the end of the first round,
each node uij of pi calculates its value, V al[uij ] = Left[uij ] − Right[uij ] and performs the delete
operation, DEL[{Left[uij ], Right[uij ]}]. Therefore by corrupting pi in subsequent rounds, the ad-
versary gets V al[uij ] = Left[uij ] − Right[uij ] but nothing about either Left[uij ] or Right[uij ].
In Theorem 10, we already showed that even if the adversary gets V al[uij ] for each uij , it learns
nothing about ri0 and thus nothing (additional) about the message m.

8 Multicast

Although point to point transmission is common, there are numerous applications in which the
same message needs to be delivered to many receivers. To encompass this natural generalization
we define Secret Multicast, from the sender S to the set of receivers R̂ = {R1, R2, . . . , Rk},
k ≥ 1, as follows: The sender S wishes to secretly communicate a message m to each receiver
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Ri ∈ R̂ such that the adversary, who can passively corrupt up to t nodes other than sender S and
any receiver in R̂, learns nothing (additional) about the message m.

The simple idea of achieving Secret Multicast by doing separate PSMT from the sender to
each of the receivers does not work. In fact, there are graphs in which PSMT from the sender S
to a single receiver R1 is not possible, however, after making node R2 (of the same graph) the
second receiver, Secret Multicast from S to {R1, R2} becomes possible. For example, we can
consider a graph in which, individually, PSMT from S to R2 is possible and PSMT from R2 to R1 is
possible, whereas PSMT from S to R1 is not possible. The main idea in characterizing multicast is
realizing the fact that the receivers can never be corrupted by the adversary and hence can be used
as intermediate (uncorrupted) senders. Now, we define the following notion to help us model this
transitive communication.

Definition 18. Let V1, V2, . . . , Vk and W be any subsets of V . We say that V1, V2, . . . , Vk are pair-
wise disjoint modulo W if Vi ∩ Vj ⊆ W for every i, j(6= i) ∈ [1, k]. By extending this definition to
weak paths in G, we say that any k weak paths p1, p2, . . . , pk are pair-wise vertex disjoint modulo
a set W , if V (p1), V (p2), . . . , V (pk) are pair-wise disjoint modulo W , where V (pi) is the set of all
vertices of the weak path pi. In other words, no two distinct weak paths can share a common node
except the nodes from W .

Now we present the theorem which characterizes the Secret Multicast from S to R̂ =
{R1, R2, . . . , Rk}, k ≥ 1.

Theorem 12. Let G(V,E) be a directed graph in which S,R1, R2, . . . , Rk are k + 1 special nodes.
Then, Secret Multicast from S to R̂ = {R1, R2, . . . , Rk} is possible in G tolerating up to t
passive faults if and only if at least one of the following two conditions hold for each Ri ∈ R̂:

1. There exists a path from S to Ri containing nodes only from R̂ ∪ {S}.

2. There exist at least t + 1 vertex disjoint weak paths modulo R̂ ∪ {S} from S to Ri such that
each node on these weak paths must have a path to Ri in G.

Proof. Necessity: Consider a weak path p from S to Ri such that some node u of p has no path
to Ri in G. Then clearly, the sender S can never convey any information to Ri along p. At best,
node u may receive message from the sender S but would not be able to forward it to the receiver
Ri, making the weak path p useless for S to Ri communication. Hence, we consider only the weak
paths in which every node has a path to Ri. Let us assume on contrary that, for some Ri ∈ R̂,
there exist only t vertex disjoint weak paths modulo R̂ ∪ {S} from S to Ri such that each node
on these t weak paths has a path to Ri and there is no path containing only nodes from R̂ ∪ {S}.
Then, there exist a vertex cut of size t between S and Ri. Thus, by corrupting each node from
vertex cut, the adversary learns each piece of information exchanged between S and Ri. Therefore,
the view of the adversary is the same as the view of the receiver.
Sufficiency: We give a modified PSMT protocol for secretly transmitting the message m to each Ri.

Suppose, there exists a path p from S to Ri containing nodes only from R̂ ∪ {S}. Then, S
simply forwards the message to Ri along the nodes on the path p. As no node of p is corrupted,
perfect reliability and security are guaranteed.

Otherwise, assume that there exist at least t + 1 vertex disjoint weak paths modulo R̂ ∪ {S}
from S to Ri, namely pi for each i ∈ [1, t + 1] such that each node on these t + 1 weak paths has
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Figure 10: An example graph in which all the edges are critical for Secret Multicast

a path to Ri. The sender S simply runs the linear communication protocol ΠMobile
Rnd Opt Lin given in

section 7.1.
Notice that these t+ 1 weak paths are pairwise vertex disjoint modulo R̂∪{S}. Therefore each

node which is common to any of these weak paths must be from R̂∪{S}. Moreover, the adversary
cannot corrupt the nodes from R̂ ∪ {S}, this implies that, the adversary must corrupt at least two
nodes to corrupt any two (vertex) disjoint weak paths, one from each of the two disjoint paths.
Therefore by corrupting t nodes, the adversary can corrupt maximum of t weak paths. Also, the
protocol ΠMobile

Rnd Opt Lin reveals nothing about the message m to the adversary which can corrupt up
to t different weak paths in each round. Therefore, this modified PSMT protocol is perfectly reliable
and perfectly secure, completing the proof.

8.1 Communication Complexity

Multicast can be achieved by executing modified PSMT protocol from S to each of the receivers.
For this, we use the protocol ΠMobile

Rnd Opt Lin from Section 7.1, which has O(|V |) communication
complexity. As the number of receivers can be O(|V |), the communication complexity of our
protocol becomes O(|V |2). To show that this is asymptotically the best we can achieve, we
present a graph which has Ω(|V |2) critical edges. Consider the digraph G(V,E) represented in

Fig.10, which has vertex set V = {S, v1, v2, . . . , vn, R1, R2, . . . , Rn} and edge set E =
{
{S} ×

{v1, . . . , vn}
}
∪
{
{v1, . . . , vn} × {R1, . . . , Rn}

}
. Here the sender S wishes to Secret Multicast

to R̂ = {R1, R2, . . . , Rn} tolerating up to n− 1 passive faults. As this graph satisfies the necessary
conditions for Theorem 12, S to R̂ Secret Multicast is possible, however, removing even a
single edge makes it impossible.
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8.2 Round Complexity

As the modified PSMT protocol for each of the receivers can be executed concurrently, the optimal
protocol for multicast can be as fast as the slowest among these protocols. More formally, if ri is
the optimal number of rounds required for PSMT from S to Ri, then the optimal number of rounds
for Secret Multicast from S to R̂ is r = Max{r1, r2, . . . , r|R̂|}.

9 Concluding Remarks

We completely characterized the feasibility and optimality of protocols for perfectly secret message
transmission in arbitrary networks under the influence of passive static adversary. We subsequently
extended the same to tolerate mobile faults. We proved that empowering the adversary to move
around and corrupt different set of t nodes (of its choice) in each round, alters neither the con-
nectivity requirements nor the efficiency parameters. We also extended our ideas to incorporate
multiple receivers (multicast), and arrive at optimal protocols in the more general setting. Notwith-
standing, the problem of characterizing digraphs over which PSMT tolerating (static) t-Byzantine
faults is possible, remains a hard open problem.
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