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Abstract
A central challenge in the study of MPC is to balance between security guarantees, hardness

assumptions, and resources required for the protocol. In this work, we study the cost of tolerating
adaptive corruptions in MPC protocols under various corruption thresholds.

In the strongest setting, we consider adaptive corruptions of an arbitrary number of parties
(potentially all) and achieve the following results:

• A two-round secure function evaluation (SFE) protocol in the CRS model, assuming
LWE and indistinguishability obfuscation (iO). The communication, the CRS size, and
the online-computation are sublinear in the size of the function. The iO assumption can
be replaced by secure erasures. Previous results required either the communication or the
CRS size to be polynomial in the function size.

• Under the same assumptions, we construct a “Bob-optimized” 2PC (where Alice talks
first, Bob second, and Alice learns the output). That is, the communication complexity
and total computation of Bob are sublinear in the function size and in Alice’s input size.
We prove impossibility of “Alice-optimized” protocols.

• Assuming LWE, we bootstrap adaptively secure NIZK arguments to achieve proof size
sublinear in the circuit size of the NP-relation.

On a technical level, our results are based on laconic function evaluation (LFE) (Quach, Wee,
and Wichs, FOCS’18) and shed light on an interesting duality between LFE and FHE.

Next, we analyze adaptive corruptions of all-but-one of the parties and show a two-round
SFE protocol in the threshold PKI model (where keys of a threshold FHE scheme are pre-shared
among the parties) with communication complexity sublinear in the circuit size, assuming LWE
and NIZK. Finally, we consider the honest-majority setting, and show a two-round SFE protocol
with guaranteed output delivery under the same constraints.

Our results highlight that the asymptotic cost of adaptive security can be reduced to be
comparable to, and in many settings almost match, that of static security, with only a little
sacrifice to the concrete round complexity and asymptotic communication complexity.
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1 Introduction
After establishing feasibility in the 1980s [93, 58, 11, 31, 87], the rich literature of multiparty com-
putation (MPC) has focused on several performance aspects of the problem. These aspects include:
(a) studying the resources required in terms of communication rounds, total amount of commu-
nication, and total amount of computation, (b) minimizing the required complexity assumptions
under the various notions, and most importantly, (c) enhancing the notion of security, starting from
the simplest notion of static corruptions with semi-honest adversaries in a stand-alone model, to
sequential, and concurrent composition, to adaptive corruptions of parties by a malicious adversary.

Recent results have considered a few of these questions simultaneously. Despite several decades
of progress, many basic questions about feasibility and asymptotic optimality of MPC protocols
remain. The focus of this paper is to study the price of adaptive security in light of recent round-
optimal and low-communication protocols for the static-security setting.

Recall that adaptive security [10, 23] for an MPC protocol models the realistic threat in which
the adversary can corrupt a party during the execution of a protocol—in particular, after seeing
some of the transcript of a protocol. In contrast, with static corruptions, the adversary must choose
which parties to corrupt before the protocol begins. In this simpler static case, the security argument
relies on the fact that the inputs of the corrupted parties are known, and thus the simulator can
“work around” these parties to generate a reasonable, and consistent transcript for the remaining
parties. Indeed, adaptive security is known to be strictly stronger than static security [23, 25].

While the idea of allowing an adversary to corrupt parties at anytime during protocol execu-
tions seems natural, its technical formulation is captured by obliging the simulator in the security
definition to support some specific tasks. In particular, the technical difficulty in achieving adaptive
security is that the simulator must produce a transcript for the execution before knowing which
parties are corrupted. In an extreme case, the protocol can already be completed, and the adversary
can then begin to corrupt all of the parties, one by one.

Two main models are considered for adaptive corruptions. In the first and simpler one, it is
assumed that parties can securely erase certain parts (and even all) of their random tapes.1 In
this setting, when simulating a party who gets corrupted, the simulator may not be required to
provide random coins explaining all the messages previously sent by that party. In the second,
erasures-free model, there are no assumptions about the ability to erase local information. When a
party is corrupted in this adaptive-security notion, the adversary can learn all of that party’s inputs
and internal random coins. In this case, a secure protocol requires a simulator that, after producing
the transcript, can “explain” the transcript by generating the coins and inputs for a given party
after they are corrupted. In particular, the simulator only learns the input of that party after the
corruption (e.g., after the entire execution), and then must “explain” the transcript it produced
beforehand in a way that is consistent with the given input.

As a result of these difficulties, most of the literature shows that achieving adaptive security
is notoriously harder than achieving static security; in some cases, there are outright impossibility
results such as the case of fully homomorphic encryption [76], public-key encryption which can-
not exist for arbitrary messages [82], constant-round MPC in the plain model (under black-box
simulation) [51], MPC protocols with non-expander communication graphs [20], and composable

1We note that in certain cases it is reasonable to erase the random coins, e.g., when encrypting a message it is
normally fine not to store the encryption randomness; however, in some cases one cannot erase all of its random tape,
e.g., when sending a public encryption key it is normally essential to store the decryption key. We refer the reader
to [23, 21] for further discussion on secure erasures.
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broadcast protocols without an honest majority [70, 38]. All of these lower bounds, with the
exception of [51], hold also for the weaker adaptive setting with secure erasures.

1.1 Full Adaptivity: Adaptive Corruptions of All the Parties

We start by considering the strongest adversary that can adaptively corrupt, and arbitrarily con-
trol, any subset of the participating parties. We will focus on the resources required for securely
evaluating a function, balancing between the number of rounds, the communication complexity, and
the online-computational complexity (the work performed between the first and last messages).

The feasibility of adaptively secure MPC was established in the seminal CLOS protocol [24] in
a resoundingly strong manner in the UC framework [22]. This paper established the notion of fully
adaptive security as described above, in the stronger, erasures-free setting, when the adversary
can corrupt all protocol parties after execution. They then achieved this notion with a brilliant,
yet complicated protocol that worked in the uniform random string (URS) model.2 However, that
protocol’s round complexity depended on the circuit depth, and its communication was polynomially
larger than the size of the circuit being computed. Roughly 15 years later, Canetti et al. [30]
constructed a constant-round protocol under standard assumptions, and recently Benhamouda
et al. [13] constructed a two-round protocol assuming two-round adaptively secure oblivious transfer
(OT). But again, both of these recent results require communication that is larger than the circuit
size, and thus come at a larger cost than recent protocols for static corruptions that require two
rounds and sublinear communication in the circuit size [80].

Another line of recent work overcomes the communication bottleneck, but at the cost of stronger
assumptions and a large common reference string (CRS). Constant-round [41, 27] and two-round
[50, 29] protocols for adaptively secure MPC are known assuming indistinguishability obfuscation
(iO) for circuits and one-way functions (OWF). These protocols have sublinear communication
([41, 27] in the semi-honest model, [50, 29] in the malicious setting3), but require a large CRS (at
least linear in the circuit size). In particular, the approach of these results is to place an obfuscated
universal circuit into the structured reference string which can compute any function of a given
size. Thus, these results are more aptly described as bounded-circuit-size adaptively secure MPC.4
In contrast, we aim to study a setup model in which the reference string is smaller (preferably
independent) of the size of the evaluated function.

Lastly, recent advances in the static setting [86, 4] presented protocols with online-computation
that only depends on the function’s depth but not on its size. In the adaptive setting, the only
known protocols achieving this goal are [50, 29], which, as discussed above, rely on iO and a large
structured reference string.

We now present three results in the fully adaptive setting: in Section 1.1.1, a resource-efficient
MPC protocol; in Section 1.1.2, feasibility and infeasibility results regarding one-sided-optimized
two-party protocols; and in Section 1.1.3, NIZK protocols with a short proof.

2In the uniform random string model (a.k.a. the common random string model), all parties receive a uniformly
random string generated in a trusted setup phase. In the structured random string model (a.k.a. the common reference
string model), the common string is sampled according to some pre-defined distribution.

3The protocols in [41, 27] use the CLOS compiler [24] to get malicious security. Since the communication of
previously known adaptively secure ZK protocols depends on the NP relation (see [78, 64, 47] and references therein),
the communication of the maliciously secure protocols depended on the CRS. Our short NIZK (Theorem 1.3) can be
used to reduce the communication of [41, 27] in the malicious setting as well.

4The protocol in [29] considers the RAM complexity of the computation; hence, the CRS depends on the size of
the RAM program. See further discussion in Section 1.3.

2



1.1.1 Two-Round MPC with Low Communication and Online-Computation

Thus, the first result of this paper is to present a two-round fully adaptively secure MPC that
requires only sublinear communication (i.e., depends only on the inputs, outputs, and depth of the
function), sublinear online-computation, and that uses a sublinear common reference string. To
achieve our result, we combine the techniques from the recent work on Laconic Function Evaluation
(LFE) [86] (that can be instantiated under a natural variant of the learning with errors assumption,
called adaptive LWE, or ALWE for short.5) and explainability compilers [41]. In this sense, our
answer to the main question regarding the cost of adaptive security versus static security shows
a minimal cost to the communication complexity in the secure-erasures model, and the addition
of complexity assumptions in the erasures-free setting: namely the need for sub-exponentially
secure iO in order to implement the explainability compiler. Table 1 summarizes the performance
characteristics of prior work in comparison with our new result.

Theorem 1.1 (adaptively secure MPC with sublinear communication, informal). Assuming ALWE
and secure erasures (respectively, sub-exponential iO), every function can be securely computed by
a two-round protocol tolerating a malicious adversary that can adaptively corrupt all of the parties,
such that the communication complexity, the online-computational complexity, and the size of the
URS (respectively, CRS) are sublinear in the function size.

To explain the key bottleneck in achieving our result, note that almost all known methods
for succinct MPC in the static setting rely on fully homomorphic encryption [53].6 The general
template is for parties to encrypt and broadcast their inputs, independently evaluate the function
on said inputs, and then jointly decrypt the output. The problem in the case of adaptive security is
that the simulator must produce a transcript for such a protocol, consisting of the input ciphertexts
and the output ciphertext, without knowing the inputs of any parties; later after corruption, the
simulator would need to provide a decryption key that explains the ciphertexts for any given input
and for the final output. Unfortunately, Katz et al. [76] showed that this exact task is not possible
for all functions, even assuming secure erasures, since the existence of such a simulator would imply
a compact circuit that can be used to compute the function.

To get around the impossibility of adaptively secure FHE, the key insight of our approach is to
instead use a recent technique of laconic function evaluation (LFE) [86], itself an extension of the
idea of laconic OT [32]. At a high level, LFE allows a party to publish a short digest of a function;
later any party can encrypt an input to that function such that the resulting ciphertext is still
small with respect to the size of the function. In particular, both the digest and the ciphertext size
are proportional to the depth of the function. Because the computational cost of the decryption
algorithm is proportional to evaluating the function, LFE avoids the impossibility argument for
adaptive security from [76], while preserving the succinct communication pattern. LFE is in some
sense a dual notion to FHE. We extend on this duality in the discussion on the two-party case in
Section 1.1.2.

Our starting point follows the statically secure protocol from [86]. The idea is for the parties
to each locally compute a digest of the function f (this is done deterministically, using a URS for

5The basic construction in [86] holds under the standard LWE assumption; however, for the purpose of (semi-)
malicious MPC, in which the inputs to the protocol can be chosen adaptively, after the URS is published, the stronger
variant is required.

6Another approach for compact MPC is using function secret sharing (FSS) [18, 19]. This approach does not
seem to support adaptive corruptions.
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LFE parameters), and then use an MPC protocol (possibly not communication efficient) to jointly
compute the encryption of the inputs (x1, . . . , xn). The communication and online-computation
required are naturally proportional only to the encryption algorithm, which depends on the depth
of the original function but not on its size. Finally, each of the parties can then locally decrypt the
ciphertext with respect to the digest to recover the output.

Nonetheless, for adaptive security, it is unclear how to simulate the output ciphertext when
possibly all n parties can be corrupted. To circumvent this barrier, we first observe that the protocol
from [86] achieves adaptive security in the erasures model, without any additional assumptions, and
then remove the erasures using the explainability compiler technique from [41]. Loosely speaking,
an explainability compiler takes a randomized circuit C and compiles it to a circuit C̃, computing
the same function, along with an additional program Explain, such that given any input/output
pair (x, y) the program Explain can produce coins r satisfying y = C̃(x; r).

Overall, this framework achieves all of the round, communication, and online-computational
complexity goals, but it still requires a URS/CRS whose size is related to the depth of the function
being computed, and further in the erasures-free setting, it relies on iO. In contrast, in the static
corruption setting, only LWE is required.

Protocol (erasures)
Security Rounds Communication Computation

Online Setup size type
Setup Assumption

MW [80] static 2 poly(`in, `out, d, κ, n) poly(|C|, κ) poly(κ, d) URS LWE, NIZK

ABJMS [4]
QWW [86] static 2 poly(`in, `out, d, κ, n) poly(`in, `out, d, κ, n) poly(`in, d, κ, n) URS LWE

ALWE

CLOS [24] adaptive(no) O(d) |C| · poly(κ, n) poly(|C|, κ) poly(κ) URS dense-crypto
TDP, NCE

GS [51]∗ adaptive(no) O(d) |C| · poly(κ, n) poly(|C|, κ) - -
dense-crypto
TDP, NCE
CRH

CGP [27]
DKR [41] adaptive(no) O(1) |C| · poly(κ, n) poly(|C|, κ) poly(|C|, κ) CRS OWF, iO

CPV [29]†
GP [50] adaptive(no) 2 poly(`in, `out, κ, n) poly(`in, `out, κ, n) poly(|RAM|, κ)

poly(|C|, κ) CRS OWF, iO

CPV [30] adaptive(no) O(1) |C| · poly(κ, n) poly(|C|, κ) poly(κ) URS dense-crypto
NCE

BLPV [13] adaptive(no) 2 |C| · poly(κ, n) poly(|C|, κ) poly(κ) CRS 2-round OT
adaptive

This work adaptive(no)
adaptive(yes) 2 poly(`in, `out, d, κ, n) poly(`in, `out, d, κ, n) poly(`in, `out, d, κ, n)

poly(`in, d, κ, n)
CRS
URS

ALWE, iO
ALWE

Table 1: Round, communication, and online-computation of MPC tolerating any number of cor-
ruptions, for f : ({0, 1}`in)n → {0, 1}`out represented by a circuit C of depth d. URS refers to a
uniform random string, whereas CRS refers to a common reference string whose sampling coins are
secret. (∗) The results in [51] only hold in the stand-alone setting. (†) The results in [29] consider
the RAM complexity of the computation, see Section 1.3 for a detailed comparison.

1.1.2 Alice/Bob-Optimized protocols

Consider a two-message protocol for two parties, where Alice sends the first message, Bob replies
with the second, and only Alice learns the output. In this setting, it is possible for one party’s total
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computation (and thus also total communication) to depend on the size of their input and output,
while the other party (whose input may bemuch larger) “does all of the work” of securely evaluating
the function. These protocol variants are designated as “optimized for Alice” or “optimized for
Bob,” depending on which party saves the work.

In the static-corruption setting, Alice-optimized protocols can be constructed assuming FHE,
where Alice encrypts her input, Bob homomorphically evaluates the circuit and returns the en-
crypted result. Quach et al. [86] showed that Bob-optimized protocols can be constructed from
LFE, where Alice compresses the function with her input hard-wired, sends the digest to Bob who
replies with the encryption of his input. Therefore, in the static setting, FHE and LFE are dual
notions with respect to the workload of the computation. We next show that in the adaptive
setting this duality breaks. On the one hand, we extend the impossibility result of FHE [76] to
rule out adaptively secure two-round Alice-optimized protocols (even assuming secure erasures), in
situations where Alice’s input is significantly smaller than Bob’s input. On the other hand, we con-
struct an adaptively secure, semi-malicious,7 Bob-optimized protocol from LFE and explainability
compilers (alternatively, just from LFE assuming secure erasures). We note that any two-round
Bob-optimized protocol can be converted into a three-round Alice-optimized protocol, which is the
best one could hope for. Table 2 summarizes our results vis-a-vis prior work.

Theorem 1.2 (Alice/Bob-optimized protocols, informal).

1. Assuming ALWE and secure erasures (alternatively, sub-exponential iO), there exists an adap-
tively secure semi-malicious 2PC, where the total communication and Bob’s computation are
sublinear in the function size and in Alice’s input size.

2. There exists two-party functions such that in any adaptively secure, semi-honest, two-round
protocol realizing them, Bob’s message must grow linearly in his input, even assuming secure
erasures.

The key idea behind our Bob-optimized protocol is to use the same LFE approach put forth
in [86] for static security, and strengthen it to tolerate adaptive corruptions. To support an adaptive
corruption of Alice, the simulator will need to produce an equivocal first message, i.e., to simulate
the digest without knowing the input value of Alice, and upon a later corruption of Alice generate
appropriate random coins explaining the message. Our first technical contribution is to create an
equivocal version of the LFE scheme of [86]. Similarly, to support an adaptive corruption of Bob,
the simulator should be able to generate an equivocal second message, i.e., generate the ciphertext
without knowing the input of Bob, and upon a later corruption of Bob provide appropriate random
coins. This can be handled either assuming secure erasures, or using explainability compilers.

1.1.3 Succinct Adaptively Secure NIZK

Next, we consider the problem of constructing an adaptively secure non-interactive zero-knowledge
protocol (NIZK) that is “succinct,” i.e., the size of the proof and of the common reference string
should be smaller than the size of the circuit relation. The best we can hope for is for the proof
to be the size of the witness (as otherwise, the lower bound of Gentry and Wichs [54] requires a
non-standard complexity assumption). The first adaptively secure NIZK was constructed by Groth

7In the semi-malicious setting, the adversary follows the protocol as in the semi-honest case, but he can choose
arbitrary random coins for corrupted parties.
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Approach Security Setup Communication Computation Assump.
(erasures) Alice Bob Alice Bob

GC [93] static - poly(`A) poly(|f |) poly(|f |) poly(|f |) static OT
LOT [32] static O(1) O(1) poly(|f |) poly(|f |) poly(|f |) DDH, etc.
FHE [53] static - poly(`A) poly(`out) poly(`A, `out) poly(|f |) LWE
LFE [86] static poly(`B) O(1) `out · poly(`B) poly(|f |) `out · poly(`B) ALWE

GC [30]
equivocal adaptive (no) - poly(`A) poly(|f |) poly(|f |) poly(|f |) adaptive OT

This work
adaptive (yes) poly(`B) O(1) `out · poly(`B) poly(|f |) `out · poly(`B) ALWE
adaptive (no) `out · poly(`B) O(1) `out · poly(`B) poly(|f |) `out · poly(`B) ALWE, iO
adaptive (yes) poly(|f |) poly(|f |) poly(`out, `A) · o(`B) poly(|f |) poly(|f |) impossible

Table 2: Comparison of two-message semi-honest protocols for f : {0, 1}`A × {0, 1}`B → {0, 1}`out .
Alice talks first, Bob the second, and only Alice learns the output. For simplicity, multiplicative
factors that are polynomial in the security parameter κ or the circuit depth d are suppressed.
Setup refers to a URS in the static/adaptive-with-erasures cases, and a CRS in the adaptive-
without-erasures case; the impossibility holds for any common reference string.

et al. [62]; however it was not succinct. Gentry [53] and later Gentry et al. [57] combined FHE with
a standard NIZK system to construct such schemes that are secure against static corruptions, and
as observed in [57] also against adaptive corruptions in the secure-erasures setting. However, these
schemes are not secure against adaptive corruptions in the erasure-free setting. In particular, they
run into the FHE bottleneck for adaptive security by Katz et al. [76] described above.

Our main technique to overcome this lower bound is to use homomorphic trapdoor functions
(HTDFs) [59]. HTDF schemes are a primitive that conceptually unites homomorphic encryption
and homomorphic signatures. In our usage, HTDF can be thought of as fully homomorphic com-
mitment schemes which are equivocal (hence, statistically hiding), where a trapdoor can be used
to open any commitment to any desired value. Using HTDF, the prover can commit to the witness
(instead of encrypting it), evaluate the circuit over the commitments, and use adaptive but non-
succinct NIZK (e.g., from [62]) to prove knowledge of the witness and that the result commits to
1. The verifier evaluates the circuits over the committed witness, and verifies the NIZK to ensure
that the result is a commitment to 1. A summary of our results in comparison with prior work
appears in Table 3.

Theorem 1.3 (short NIZK, informal). Assuming LWE, if there exists adaptively secure NIZK
arguments for NP, then there exists adaptively secure NIZK arguments for NP with proof size
sublinear in the circuit size of the NP relation.

1.2 Adaptive Corruptions of a Strict Subset of the parties

Recall that the notion of fully adaptive security allows the adversary to corrupt all of the parties
in the execution—in which case the protocol offers no privacy of inputs. A criticism of this notion
is that it may be too strong for certain applications. In fact, the motivation behind this strong
notion arises mainly from its application to composition of protocols. Namely, in a larger protocol
that involves more parties, participants of a subprotocol may eventually all become corrupted, and
thus security of the larger protocol will depend on the fully adaptive security of the subprotocol.

It is equally justifiable, however, to consider other protocol-design tasks in which the protocol
needs only withstand a weaker adversary who can corrupt either all-but-one of the participants,
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Protocol (erasures)
Security CRS size Proof size Assumptions

Groth [61] static |C| · poly(κ) |C| · poly(κ) TDP
Groth [61] static |C| · polylog(κ) + poly(κ) |C| · poly(κ) Naccache–Stern
GOS [62] adaptive (no) poly(κ) |C| · poly(κ) pairing based
Gentry [53] adaptive (yes) poly(κ) |w| · poly(κ, d) LWE, NIZK
GGIPSS [57] adaptive (yes) poly(κ) |w|+ poly(κ, d) LWE, NIZK
This work adaptive (no) poly(κ) |w| · poly(κ, d) LWE, NIZK

Table 3: NIZK arguments for security parameter κ, circuit size |C|, depth d, and witness size |w|.

or—weaker still—only a minority of the players. We next consider adaptive security in these two
settings.

1.2.1 All-But-One Corruptions

When considering adaptive security for all-but-one corruptions, Ishai et al. [71] constructed a
constant-round, information-theoretically secure protocol in the OT-hybrid model. Garg and Sahai
[51] showed an elegant way to instantiate the trusted setup required for [71] using non-black-box
techniques and thus constructed a constant-round MPC protocol in the plain model, under stan-
dard cryptographic assumptions. The communication in both of these protocols is super-linear in
the circuit size.

In contrast, for the weaker notion of static security, Asharov et al. [5] presented a two-round
protocol with sublinear communication, albeit in the threshold-PKI model. The threshold-PKI
model is a setup in which all the participants of the protocol are privately given individualized key
shares corresponding to a public key. A single-round protocol for threshold PKI was also given
in [5], yielding a three-round protocol in a standard URS setup. Mukherjee and Wichs [80] removed
the need for this extra round, thereby presented a two-round MPC with sublinear communication
in the uniform random string model.

We can thus pose our main question regarding the cost of adaptive security for communication-
optimal protocols. Recently, Damgård et al. [46] constructed an adaptively secure three-round MPC
protocol with sublinear communication complexity in the threshold-PKI model assuming LWE.
Their main idea is to use a special threshold FHE scheme that enables equivocating encryptions of
0 to encryptions of 1. Initially, the parties broadcast encryptions of their inputs. Next, each party
locally evaluates the circuit, and the parties re-randomize the evaluated ciphertext in the second
round by broadcasting (special) encryptions of 0. The third round is a single-round threshold
decryption protocol.

To simulate this protocol, the simulator uses the equivocal mode of the public key. This way, all
ciphertexts in the first round are simulated as encryptions of 0. After extracting corrupted parties’
inputs, and obtaining the output value, the simulator uses the re-randomizing round to carefully
add nonzero encryptions, and force the joint ciphertext to be an encryption of the output. Finally,
the threshold decryption protocol is simulated. We note that using the approach of [46] (which is
based on [44]), the re-randomization round seems to be inherent, and so it is unclear how to obtain
optimal two rounds using this technique.
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Our result in this setting is to construct an adaptively secure two-round MPC assuming non-
committing encryption (NCE) and threshold equivocal FHE in the threshold-PKI setup model.
The setup assumption can be instantiated using the recent two-round protocol of [13], assuming
two-round adaptively secure OT, resulting in a four-round variant in the CRS model. All of the
necessary primitives can be instantiated from LWE in the semi-malicious setting, and security in
the malicious case follows using NIZK. Table 4 summarizes the prior work and our contribution in
this model.

Theorem 1.4 (all-but-one corruptions, informal). Assuming LWE and adaptively secure NIZK,
every function can be securely computed by a two-round protocol in the threshold-PKI model tol-
erating a malicious adversary that can adaptively corrupt all-but-one of the parties such that the
communication complexity is sublinear in the function size.

Protocol Security Rounds Communication Assumptions Setup

AJLTVW [5] static 3
2 poly(`in, `out, d, κ, n) LWE, NIZK URS

threshold PKI

MW [80] static 2 poly(`in, `out, d, κ, n) LWE, NIZK URS

IPS [71] adaptive O(1) |C|+ poly(d, log |C|, κ, n) OT-hybrid -

GS [51] adaptive O(1) |C|+ poly(d, log |C|, κ, n) dense crypto
CRH, TDP, NCE -

DPR [46] adaptive 3 poly(`in, `out, d, κ, n) LWE, NIZK threshold PKI

This work adaptive 4
2 poly(`in, `out, d, κ, n) LWE, NIZK CRS

threshold PKI

Table 4: Comparison of maliciously secure MPC for f : ({0, 1}`in)n → {0, 1}`out represented by a
circuit C of depth d, tolerating n−1 corruptions. (∗) The results in [51] only hold in the stand-alone
model.

Our protocol follows the template of [5], where every party encrypts his input in the first
round, locally evaluates the circuit over the ciphertexts, uses its key-share to partially decrypt
the result, and broadcasts the decrypted share (some additional “smudging” noise is sometimes
required to protect the decryption share). The technical challenges are: (1) the ciphertexts in
the first round must be created in an equivocal way, and (2) the simulation strategy used for the
threshold decryption in [5] (and similarly in [80]) is inherently static, and does not translate in a
straightforward way to the adaptive setting.

We overcome the first challenge by constructing a novel threshold equivocal FHE scheme. The
scheme is equipped with an equivocal key-generation algorithm. All ciphertexts encrypted in this
mode are “meaningless” and carry no information about the plaintext; a trapdoor can be used to
equivocate any ciphertext to any message. We instantiate this FHE scheme using the dual-mode
HTDF scheme of Gorbunov et al. [59] that can generate the homomorphic trapdoor functions in an
extractable mode, corresponding to the standard (meaningful) mode of the FHE, and an equivocal
mode, corresponding to the meaningless mode.

We proceed to explain the second challenge. As observed in [5, 80], the threshold decryption
protocol may leak some information about the shares of the secret key, and the simulator for the
decryption protocol can be used to protect exactly one party. In the static setting, when the set
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of corrupted parties is known ahead of time, the simulator can choose one of the honest parties
Ph as a special party for simulating the threshold decryption. This approach does not work in the
adaptive setting since the party Ph may get corrupted after simulating the decryption protocol. The
simulator cannot know in advance which party will be the last to remain honest. For this reason,
we use a different simulation strategy which allows the simulator to “correct” his choice of the party
that is simulated as honest for the decryption protocol. Technically, this is done by having each
party send shares of zero to each other party over a secure channel (that can be instantiated via
NCE). These shares are used to hide the partial decryptions without changing their values. Since
shares exchanged between pairs of honest parties remain hidden from the eyes of the adversary, the
simulator has more freedom to replace the special party Ph upon corruption, by another honest
party, even after simulating the decryption protocol.

Thus, as it stands, the cost of adaptive security with respect to the best statically secure
protocols is either the threshold-PKI setup assumption, or the requirement of 2 additional rounds.
Removing either of these costs remains an interesting open question.

1.2.2 Honest-Majority Setting

In the honest-majority setting, it is possible to guarantee output delivery to all honest parties.
Damgård and Ishai [42] demonstrated the feasibility of constructing adaptively secure protocols that
use a constant number of rounds and only require one-way functions. However, the communication
of their protocol is super-linear in the circuit size.

In the static-corruption setting, Asharov et al. [5] constructed the first protocol with sublinear
communication using threshold FHE; their protocol requires 4 rounds in the threshold-PKI model
and 5 rounds in the URS model. Gordon et al. [60] reduced the round complexity to 2 in the
threshold-PKI model or 3 in the URS model. Recently, Ananth et al. [3] showed a three-round
protocol in the plain model with communication polynomial in the circuit size, and Badrinarayanan
et al. [6] showed a similar result with sublinear communication. Moreover, this round complexity is
tight because it is known that two-round fair protocols are impossible in the URS/CRS model [52,
60, 85].8

Our result in this setting is to construct an adaptively secure analog of [5, 6]. In particular,
we construct a two-round adaptively secure MPC with guaranteed output delivery and the same
communication complexity as in the static case, assuming NCE and threshold equivocal FHE in
the threshold-PKI model in the semi-malicious setting (all assumptions can be based on LWE).
Security in the malicious case follows using NIZK. We can compile our two-round protocol into a
constant-round protocol in the plain with the same communication complexity by computing the
threshold-PKI setup using the protocol of Damgård and Ishai [42].

Theorem 1.5 (honest majority, informal). Assuming LWE and adaptively secure NIZK, every
function can be securely computed with guaranteed output delivery by a two-round protocol in the
threshold-PKI model tolerating a malicious adversary that can adaptively corrupt a minority of the
parties such that the communication complexity is sublinear in the function size.

The two-round protocol is based on the protocol from the all-but-one case, described in Sec-
tion 1.2.1. The challenge lies in overcoming aborting parties to guarantee output delivery. We

8We emphasize that the lower bounds hold given a public-coin setup, where all parties get the same information,
and does not hold given a private-coin setup such as threshold PKI.
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combine techniques from the threshold FHE of [60] that required n/2 decryption shares to recon-
struct the output into our threshold equivocal FHE. The main idea is to share the decryption key
using Shamir’s secret sharing instead of additive secret sharing. Both Shamir’s reconstruction and
the decryption algorithm consist of linear operations, which make them compatible with each other.
As observed by Gordon et al. [60] (see also [17]), the problem with a naïve use of this technique
is that the “smudging noise” (used to protect partial decryptions from leakage) is multiplied by
the Lagrange coefficients, which may cause an incorrect decryption. Following [60], we have each
party secret shares his smudging noise using Shamir’s scheme, in a way that is compatible with the
reconstruction procedure. We show that this technique can support adaptive corruptions.

To conclude, in the threshold-PKI model, the price of adaptive security is the same as of static
security in terms of assumptions, number of rounds, and communication complexity. In the plain
model, the cost is an additional constant number of rounds. Table 5 summarizes prior work and
our results.

Protocol Security Rounds Communication Assumptions Setup

AJLTVW [5] static 5
4 poly(`in, `out, d, κ, n) LWE, NIZK URS

threshold PKI

GLS [60] static 3
2 poly(`in, `out, d, κ, n) LWE, NIZK URS

threshold PKI

ACGJ [3] static 3 |C| · poly(κ, n) PKE and zaps -

BJMS [6] static 3
2 poly(`in, `out, d, κ, n) dense crypto

LWE, zaps,
-
threshold PKI

DI [42] adaptive O(1) |C| · poly(κ, n) OWF -

This work adaptive
O(1)
2 poly(`in, `out, d, κ, n) LWE, NIZK -

threshold PKI

Table 5: Comparison of maliciously secure MPC for f : ({0, 1}`in)n → {0, 1}`out represented by a
circuit C of depth d, in the honest-majority setting.

1.3 Additional Related Work

Adaptive security tolerating an arbitrary number of corruptions has been considered in various
models, including protocols in the common string model [24, 30, 13], the sunspot model [26], the
key-registration model [8], the tamper-proof hardware model [67], the super-polynomial simulation
model [7, 65], and more generally, based on UC-puzzles [40, 92]. All of these protocols require
super-linear communication complexity.

Adaptive security in the secure-erasures model was considered in [10, 77, 72, 12, 83, 45, 66],
and in the erasures-free model tolerating all-but-one corruptions in [74, 71, 63, 46] as well as in the
honest-majority setting [39, 44, 42]. With the exception of [46], all of these protocols also require
super-linear communication complexity.

Garay et al. [49] considered information-theoretic MPC in the client–server setting, where a
constant number of clients use n servers that assist with the computation, and studied sublinear
communication in the number of servers. They gave a complete characterization for semi-honest
security with static corruptions and adaptive corruptions with or without erasures.

In the static setting, MPC with sublinear communication complexity over eventual-delivery
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asynchronous channels was constructed in [35]. We conjecture that our techniques can also be
applied in the asynchronous setting to obtain adaptive security with low communication.

We note that since the protocol of Garg and Polychroniadou [50] has low communication com-
plexity, and its CRS size depends on the circuit size, it is possible to use a more compact represen-
tation of the function, e.g., by a Turing machine (TM) (or a RAM program as considered in [29]),
and obfuscate it using iO for Turing machines. Nonetheless, the solution provided in this paper is
different in several qualitative aspects. First, to make the CRS independent of the computation at
hand, it is preferred to obfuscate a universal TM, which receives the description of the concrete
TM on its input tape; while iO for TM with bounded inputs exists under the same assumptions
as iO for circuits [14, 28, 15], iO for TM with unbounded inputs is only known under the stronger
assumption of public-coin differing-inputs obfuscation [73]. Second, it is not clear how to replace
the iO for TM assumption by secure erasures. Third, the computation may require a large auxiliary
information, e.g., access to a large database, whose description is independent of the TM; this may
result with a large description of the function. In our solution, the obfuscated circuit is sublinear
in the computation size of the function to be computed, even when a large auxiliary information is
used.

1.4 Open Questions

Our main question is to study the price of adaptive security. Dramatic improvements in the answer
to this question have emerged over the past 15 years, and this paper is able to establish almost
zero cost in terms of round or communication. Our results, however, leave the following questions
as future work.

• Reducing setup assumptions. Our results for fully adaptive, two-round, protocols without
erasures require a common reference string. Are there fully adaptively secure protocols with
sublinear communication complexity in the uniform random string (even with super-constant
number of rounds)?

• Reducing hardness assumptions. Are there fully adaptively secure protocols with sub-
linear communication without assuming secure erasures or explainability compilers/iO?

• Improving setup assumptions/round complexity for all-but-one. Our optimal-round
protocol requires a pre-distribution of the FHE keys. We show a four-round protocol in the
CRS model (equivalently, in the plain model for semi-honest). Are there two or three round
protocols with sublinear communication in the CRS model to match the results for static
adversaries?

Paper Organization

The preliminaries are presented in §2. In §3, we present our adaptively secure NIZK construction.
In §4, we present our results on fully adaptive security, and in §5.1 and §5.2, we present our results
on Bob- and Alice-optimized protocols. In §6, we consider the all-but-one corruption case, and
in §7, the honest-majority case. Some of the preliminaries (Appendix A), the model definition
(Appendix B), and the construction of threshold equivocal FHE from LWE (Appendix C) are
deferred to the appendix.
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2 Preliminaries
Basic notations. For n ∈ N let [n] = {1, · · · , n}. We denote by κ the security parameter. Let
poly denote the set all positive polynomials and let PPT denote a probabilistic algorithm that runs
in strictly polynomial time. A function negl : N → R is negligible if negl(κ) < 1/p(κ) for every
p ∈ poly and sufficiently large κ. Given a random variable X, we write x ← X to indicate that
x is selected according to X. Given a PPT Turing machine M , denote by TM (x) the polynomial
that bounds the number of random coins used by M on input x; by abuse of notation, instead of
denoting the sampling the random coins for M on input x by r ← {0, 1}TM (x) we will often write
r ← {0, 1}∗. The statistical distance between two random variables X and Y over a finite set U ,
denoted SD(X,Y ), is defined as 1

2 ·
∑
u∈U |Pr [X = u]− Pr [Y = u]|. The entropy of X is denoted

by H(X) = −
∑
x∈U Pr[X = x] log2 Pr[X = x].

Two distribution ensemblesX = {X(a, κ)}a∈{0,1}∗,κ∈N and Y = {Y (a, κ)}a∈{0,1}∗,κ∈N are compu-
tationally indistinguishable (denoted X c≡ Y ) if for every non-uniform polynomial-time distinguisher
A there exists a negligible function negl(κ), such that for every a ∈ {0, 1}∗ and every κ,

|Pr [A(X(a, κ), 1κ) = 1]− Pr [A(Y (a, κ), 1κ) = 1]| ≤ negl(κ).

The distribution ensembles X and Y are statistically close (denoted X s≡ Y ) if for every a ∈ {0, 1}∗
and every κ it holds that SD(X(a, κ), Y (a, κ)) ≤ negl(κ). We represent elements in Zq as integers
in the range (−q/2, q/2]. We denote by λ the empty string.

Cryptographic primitives. In this work, we consider secure protocols in various security set-
tings that require different cryptographic primitives. We present formal definitions for all primitives
in Appendix A. An informal description of every primitive is given before it is used in the main
body.

Security model. We present our results in the UC framework. In Appendix B, we provide a
high-level description of the framework, and refer the reader to [22] for a more detailed description.

In our secure function evaluation (SFE) protocols, we will consider two security notions. In
the honest-majority setting, we will consider security with guaranteed output delivery, informally
meaning that all honest parties will receive the correct output from the computation; we denote
by Fsfe-god the SFE functionality with guaranteed output delivery. In general, when an honest
majority is not assumed this cannot be achieved [34], and the standard requirement is for security
with abort, informally meaning that the adversary has the capability to first learn the output from
the computation and later force all honest parties to output ⊥; we denote by Fsfe-abort the SFE
functionality with abort.

All parties are connected by authenticated communication channels; that is, the adversary learns
the content of messages sent between honest parties, but cannot change them. We denote by Fauth
the authenticated-communication functionality. In some of our results, specifically in Sections 5
to 7 we further require private channels, where the adversary learns the lengths of messages sent
between honest parties, but not their content. We denote by Fsmt the secure message transmission
functionality. Private channels can be built over authenticated channels using non-committing
encryption. We denote by Fbc the broadcast channel functionality.

Guaranteed output delivery and security with abort are not to be confused with guaranteed
termination, which means that the honest parties actually finish the protocol. We emphasize that

12



UC protocols cannot provide guaranteed termination since the adversary has full control over the
communication channels, and he can simply “hang” the computation. Therefore, following the
convention of Canetti et al. [24], we exclude trivial protocols, and require that the properties
of guaranteed output delivery or security with abort will hold when the environment provides
sufficiently many activations to the parties, and the adversary delivers all messages.9 In particular,
unlike the stand-alone model, in the UC model even when a protocol guarantees output delivery,
we allow the adversary to learn the output from the computation while the honest parties do not;
however, if an honest party terminates it is guaranteed to receive the output. An alternative, is to
work in the Fsync-hybrid model [34] or to consider the framework of [75], which ensures guaranteed
termination regardless of the adversary’s actions (but, still, as long as the environment provides
sufficiently many activations to the parties).

3 Adaptively Secure NIZK
Informally speaking, universally composable non-interactive zero-knowledge arguments (UC-NIZK)
are single-message zero-knowledge protocols, that remain secure independently of the environment
in which they are run, i.e., regardless of the protocol that is calling them. Groth et al. [62] formalized
UC-NIZK as a protocol that realizes the NIZK ideal functionality, and constructed adaptively secure
UC-NIZK protocols (that remain secure even if all the participants are dynamically corrupted)
under hardness assumptions in bilinear groups. The size of the proof in [62] is |C| · poly(κ), where
C is the circuit computing the NP-relation R, i.e., C(x,w) = 1 if and only if (x,w) ∈ R.

Gentry [53] showed that assuming LWE the communication complexity can be reduced to be
sublinear in the circuit size, namely |w| · poly(κ, d). Gentry et al. [57] further reduced the proof
size to |w|+ poly(κ, d) and proved adaptive security of the scheme assuming secure erasures. The
underlying idea in [53, 57] is for the prover to encrypt the witness using an FHE scheme and
prove knowledge of the plaintexts. In addition, the prover homomorphically evaluates the circuit C
and proves that the resulting ciphertext decrypts to 1. The verifier homomorphically evaluates the
circuit C over the encrypted witness, makes sure that the result matches the one sent by the prover,
and validates the proof sent by the prover (that he knows the witness and the result decrypts to 1).
Adaptive security is obtained by having the prover erase all of his coins before sending the proof.

We next present a new adaptively secure UC-NIZK with communication complexity that only
depends on the witness size and does not rely on secure erasures. The main obstacles in translating
the ideas from [53, 57] to the erasures-free adaptive setting are: (1) the encryption of the witness
must be first simulated (without knowing the witness) and later, upon a corruption of the prover,
the encryption coins must be properly explained, and (2) the impossibility result of Katz et al. [76]
rule-out a standard use of FHE schemes in the protocol. We get around these barriers by using
homomorphic trapdoor functions (HTDFs) [59] (see Appendix A.2.3).

3.1 The UC-NIZK Ideal Functionality

The NIZK functionality, as defined in [62, 57], is based on the zero-knowledge functionality from [22],
and is adjusted to capture the special properties of a non-interactive proof. In particular, as opposed
to interactive ZK protocols, the verifiers are not always known in advance, and therefore should
not be defined as part of the interface to the functionality. Furthermore, since the NIZK argument

9Other properties such as privacy and independence of inputs are always required to hold.
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is simply a bit-string, anybody can use this string to verify the validity of the statement and can
use it to convince others.

Functionality FRnizk

FRnizk proceeds as follows, interacting with parties P1, . . . , Pn and an adversary S, and parameterized
by an NP-relation R.

Proof: On input (prove, sid, x, w) from party Pi, ignore if (x,w) /∈ R. Send (prove, Pi, sid, x) to S and
wait for (proof, sid, π). Upon receiving the answer store (sid, x, π) and send (proof, sid, π) to Pi.

Verification: On input (verify, sid, x, π) from a party Pj check whether (sid, x, π) is stored. If not
send (verify, Pj , sid, x, π) to S and wait for an answer (witness, w). Upon receiving the answer,
check whether (x,w) ∈ R and in that case, store (sid, x, π). If (sid, x, π) has been stored return
(verification, sid, x, π, 1) to Pj , else return (verification, sid, x, π, 0) to Pj .

Figure 1: The ideal NIZK proof functionality

The NIZK ideal functionality (formally described in Figure 1) is parametrized by an NP-relation
R and a set of parties P1, . . . , Pn. Every party Pi can send a prove request which consists of a pair
(x,w). The functionality verifies that (x,w) ∈ R, and asks the adversary to generate a proof π for
the statement x. The functionality stores (x, π) and returns the proof to Pi. Similarly, every party
Pj can send a verify request, consisting of a statement x and a proof π. In case the pair (x, π)
is stored, the functionality returns 1. Otherwise, the functionality asks the adversary to come up
with a witness w. If (x,w) ∈ R the functionality returns 1 to Pj ; otherwise, return 0.

3.2 Cryptographic Primitives Used in the Protocol

We informally describe the cryptographic primitives used in the construction. Formal definitions
appear in the appendix.

3.2.1 Homomorphic Trapdoor Functions (HTDFs)

We briefly recall the notion of homomorphic trapdoor functions, formally described in Ap-
pendix A.2.3. The key-generation algorithm outputs a public key and a secret key (pk, sk) ←
HTDF.Gen(1κ, 1d). The public key along with some bit x ∈ {0, 1} define an efficiently com-
putable function fpk,x : U → V, and the secret key acts as a trapdoor that enables inverting
the function, i.e., defines a function HTDF.Invsk,x : V → U . Two homomorphic evaluation algo-
rithms are defined given a function g : {0, 1}` → {0, 1} of depth d: the inner evaluation u∗ =
HTDF.Evalin(g, (x1, u1), . . . , (x`, u`)) and the outer evaluation v∗ = HTDF.Evalout(g, v1, . . . , v`).

Informally, we require the following properties from an HTDF scheme:

• Correctness. Let x1, . . . , x` ∈ {0, 1} and vi = fpk,xi(ui) for i ∈ [`]. Then, for
u∗ = HTDF.Evalin(g, (x1, u1), . . . , (x`, u`)) and v∗ = HTDF.Evalout(g, v1, . . . , v`) it holds that
fpk,y(u∗) = v∗, where y = g(x1, . . . , x`).

• Distributional equivalence of inversion. For a bit x ∈ {0, 1}, the tuple (pk, x, u, v)
computed as v = fpk,x(u) for a random u ← U is statistically close to sampling v ← V at
random and computing u = HTDF.Invsk,x(v).
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• Claw-free security. Given the public key, no efficient adversary can come up with u and u′
such that fpk,0(u) = fpk,1(u′) with more than a negligible probability.

For the remaining of the section, it will be useful to think of an HTDF scheme as a fully
homomorphic, statistically-hiding commitment scheme with a trapdoor sk.

3.2.2 Strong One-Time Signatures

Strong one-time signatures are formally defined in Appendix A.2.4. Loosely peaking, the scheme
consists of three algorithms (Sig.Gen,Sign,Vrfy) . The key-generation algorithm outputs a public
verification key and a secret signing key (vk, sigk) ← Sig.Gen(1κ). The signing algorithm uses the
signing key to sign an arbitrary message m as σ ← Signsigk(m). The verification algorithm uses the
verification key to accept or reject the signature as b = Vrfyvk(σ,m). We require that the scheme
be correct and strongly existentially unforgeable under a single chosen message attack, meaning
that except for negligible probability, no efficient adversary that chooses a message m and receives
a signature σ can come up with (m′, σ′) 6= (m,σ) such that 1 = Vrfyvk(σ′,m′).

3.3 The UC-NIZK Protocol

We proceed to present a non-interactive protocol that securely realizes FRnizk for an arbitrary NP-
relation R. Denote by d the depth of the circuit computing the relation. A proof for a statement x
with witnesses of size |w| consists of |w| ·poly(κ, d) bits (we denote the bit-length of the witness by
` = |w| below, i.e., w = w1, . . . , w`). We make two assumptions: the existence of an HTDF scheme
and that FRhtdf

nizk can be securely realized for the relation Rhtdf defined as follows:

Rhtdf =
{

((pk, v1, . . . , v`, v
∗, vk), (w1, . . . , w`, u1, . . . , u`, u

∗)) ` ∈ N, ∀i ∈ [`] : vi = fpk,wi (ui) , and v∗ = fpk,1(u∗)
}
.

We define the protocol in the common reference string model, with the distribution Dnizk that
is parametrized by an HTDF scheme Π. The distribution Dnizk samples a key-pair (pk, sk) ←
HTDF.Gen(1κ, 1d), and outputs pk. Note that since the public key in the construction of [59] is a
random string, we can consider FDnizkcrs as a uniform random string functionality.

The main idea of the protocol is to use the HTDF scheme to commit to the witness, bit by
bit, and use the homomorphic properties to evaluate the relation on the committed witness. The
prover can use a NIZK for the relation Rhtdf to prove knowledge of the witness, and that the result
of the homomorphic evaluation commits to 1. The simulator can use the equivocal properties of
the HTDF scheme to generate an equivocal commitment that can be opened to any witness.

Theorem 3.1 (Theorem 1.3 restated). Assume the existence of HTDF schemes and let R be an
NP-relation. Protocol πnizk, defined in Figure 2, UC-realizes FRnizk in the (FRhtdf

nizk ,FDnizkcrs )-hybrid
model tolerating an adaptive, malicious adversary. The proof size is ` · poly(κ, d), where ` is a
bound on the witness size and d is the multiplicative depth of R.

Proof. Let A be an adaptive, malicious adversary attacking πnizk in the (FRhtdf
nizk ,Fcrs)-hybrid model.

We will construct an ideal-process adversary S, interacting with the ideal functionality FRnizk and
with ideal (dummy) parties P̃1, . . . , P̃n,10 such that no environment can distinguish between S and

10Recall that a dummy party in UC acts as a “router” passing every message it receives from the environment to
the ideal functionality and vice versa, see Appendix B.2.
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A. Let Z be an environment. Following the lines of [57], we will construct S gradually, starting
with a simulator Sreal with “extended capabilities” that can perfectly simulate an execution of
πnizk with A and adjusting it in steps to a simulator Ssim that has the same power as in the ideal
computation; we will prove that the environment will have a negligible probability of distinguishing
between consecutive steps.

Protocol πnizk

• Common Input: An HTDF scheme, a one-time signature scheme, and an NP-relation R.

• Notation: Assume every witness to relation R is `-bits long, i.e., w = (w1, . . . , w`) ∈ {0, 1}`.
For a statement x denote by Cx the circuit that on input y ∈ {0, 1}` computes Cx(y) := R(x, y).

• Hybrid model: The parties have access to the NIZK functionality FRhtdf
nizk and to the CRS

functionality FDnizk
crs that outputs an HTDF public key pk.

• The Protocol:

1. Upon receiving (prove, sid, x, w), party Pi proceeds as follows:

(a) If (x,w) /∈ R ignore the message. Otherwise, denote w = (w1, . . . , w`).
(b) For i ∈ [`] compute vi = fpk,wi

(ui) for a uniformly distributed ui ← U .a

(c) Compute u∗ = HTDF.Evalin(Cx, (w1, u1), . . . , (w`, u`)).
(d) Compute v∗ = HTDF.Evalout(Cx, v1, . . . , v`).
(e) Generate signature keys (vk, sigk)← Sig.Gen(1κ).
(f) Send (prove, sid, (pk, v1, . . . , v`, v

∗, vk), (w1, . . . , w`, u1, . . . , u`, u
∗)) to FRhtdf

nizk .

(g) Wait for the answer (proof, sid, (pk, v1, . . . , v`, v
∗, vk), π) from FRhtdf

nizk .
(h) Compute σ ← Signsigk((x, pk, v1, . . . , v`, v

∗, π, vk)).
(i) Return (proof, sid, x, (pk, v1, . . . , v`, v

∗, π, vk, σ)).

2. Upon receiving (verify, sid, x,Π), party Pj proceeds as follows:

(a) Parse Π as (pk, v1, . . . , v`, v
∗, π, vk, σ).

(b) Verify that Vrfyvk(σ, (x, pk, v1, . . . , v`, v
∗, π, vk)) = 1. If not return (verification, sid, x,Π, 0).

(c) Verify that v∗ = HTDF.Evalout(Cx, v1, . . . , v`). If not return (verification, sid, x,Π, 0).
(d) Send (verify, sid, (pk, v1, . . . , v`, v

∗, vk), π) to FRhtdf
nizk .

(e) Wait for the answer (verification, sid, (pk, v1, . . . , v`, v
∗, vk), π, b) from FRhtdf

nizk .
(f) Return (verification, sid, x,Π, b).

aRecall that an HTDF scheme defines a function fpk,x : U → V, see Definition A.8.

Figure 2: Adaptively secure UC-NIZK protocol

Simulator Sreal. In the first mental experiment, the simulator Sreal can learn the inputs of
the ideal functionality FRnizk and control its output. It can therefore run a perfect simulation of the
parties P1, . . . , Pn and the adversary A running πnizk. The simulator Sreal starts by running A.

• To simulate the communication with Z, every input value that Sreal receives from Z is
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written on A’s input tape. Likewise, every output value written by A on its output tape is
copied to Sreal’s own output tape.

• To simulate the common reference string, the simulator S first computes (pk, sk) ←
HTDF.Gen(1κ, 1d), sets the reference string to be pk, and stores sk.

• When Sreal receives (prove, Pi, sid, x) from FRnizk, it is because an honest party P̃i has
input (prove, sid, x, w) with (x,w) ∈ R. The simulator Sreal has access to the input
of FRnizk, and so it can simulate Pi running πnizk. In particular, for simulating FRhtdf

nizk
the simulator may send (prove, Pi, sid, (pk, v1, . . . , v`, v

∗, vk)) to A and get back the answer
(proof, sid, (pk, v1, . . . , v`, v

∗, vk), π). Finally, Sreal computes a signature to prepare the proof
Π = (pk, v1, . . . , v`, v

∗, π, vk, σ) and answers (proof, sid, x,Π) to FRnizk.

• When Sreal receives (verify, Pj , sid, x,Π) from FRnizk, it is because an honest party P̃j has
input (verify, sid, x,Π) and (sid, x,Π) was not stored in FRnizk, hence has not been created
by an honest party. The simulator simulates Pj running the verification protocol on input
(verify, sid, x,Π) until obtaining output (verification, sid, x,Π, b). Next, Sreal instructs FRnizk to
return the message (verification, sid, x,Π, b) to P̃j , and to store (sid, x,Π) if b = 1. (Note that
Sreal does not send (witness, w) to FRnizk.)

• Upon a corruption request for a party Pi, the simulator corrupts the dummy party P̃i. For
every input message of the form (prove, sid, x, w) that P̃i received, set the random coins
corresponding to the proof as (u1, . . . , u`) that were used for computing (v1, . . . , v`) along
with the random coins that were used to generate the signature.

Claim 3.2. REALπnizk,A,Z ≡ IDEALSreal,FRnizk,Z
.

Proof. The only difference between an execution of πnizk in the (FRhtdf
nizk ,FDnizkcrs )-hybrid model and

the simulation by Sreal, lies in the proving protocol. In the simulation, it is guaranteed that a
proof that is generated by an honest party will always be accepting (as it is generated, and stored
by FRnizk, when invoked with (proof, sid, x, w)) and that accepted proofs will always be accepted
again. This holds also in the execution of πnizk by the correctness of the signature scheme and of
the HTDF scheme, and by the properties if FRhtdf

nizk .
It follows that to the environment, a real execution of πnizk in the (FRhtdf

nizk ,FDnizkcrs )-hybrid model
with adversary A is perfectly indistinguishable from the simulation of Sreal running with FRnizk.

Simulator Sext. The simulator Sext runs like Sreal when the proofs are constructed, but changes
the way proofs are verified. When Sext receives (verify, Pj , sid, x,Π) from FRnizk, it simulates Pj
running the verification protocol on input (verify, sid, x,Π). If Pj outputs (verification, sid, x,Π, 0),
then return (witness,⊥) to FRnizk. If Pj outputs (verification, sid, x,Π, 1), then Sext will try to extract
a witness w such that (x,w) ∈ R, return (witness, w) to FRnizk, and send the resulting message
(verification, sid, x,Π, 1) to P̃j (in case the extraction fails, the simulator aborts).

To extract the witness, Sext parses Π = (pk, v1, . . . , v`, v
∗, π, vk, σ). We can assume

that the signature is valid and that v∗ = HTDF.Evalout(Cx, v1, . . . , v`), since πnizk will reject
the proof otherwise. As part of the verification protocol, the functionality FRhtdf

nizk may send
(verify, Pj , sid, (pk, v1, . . . , v`, v

∗, vk), π) to A (if (sid, (pk, v1, . . . , v`, v
∗, vk), π) is not stored), who

responds with (witness, w1, . . . , w`, u1, . . . , u`, u
∗). In that case, the simulator sets w = (w1, . . . , w`)

and sends (witness, w) back to FRnizk, and aborts otherwise.
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Claim 3.3. IDEALSreal,FRnizk,Z
c≡ IDEALSext,FRnizk,Z

.

Proof. The simulated FRhtdf
nizk will only return (verification, sid, (pk, v1, . . . , v`, v

∗, vk), π, 1) if an honest
party has created a proof π or if the adversary A supplies a witness (w1, . . . , w`, u1, . . . , u`, u

∗) such
that vi = fpk,wi(ui) and v∗ = fpk,1(u∗). In the latter case, the simulator sets w = (w1, . . . , w`). By
the correctness of the HTDF scheme, it holds that (x,w) ∈ R; therefore, Sext can return (witness, w)
to FRnizk. In case an honest party has previously created the proof π on (pk, v1, . . . , v`, v

∗, vk) (and
so it was stored in the simulated FRhtdf

nizk ), then the strong existential unforgeability of the one-time
signature scheme implies that the adversary is able to produce a different valid signature σ using vk
only with a negligible probability. Therefore, Sext fails to produce a witness only with a negligible
probability.

Simulator Ssim. The simulator Ssim runs exactly like Sext, with the following modification.
Instead of running a perfect simulation of FRhtdf

nizk , the simulator Ssim allows simulated honest parties
to submit (prove, sid, (pk, v1, . . . , v`, v

∗, vk),⊥), even if (x,w) /∈ R. This means that the simulated
ideal functionality FRhtdf

nizk may ask A for a proof π for a statement (pk, v1, . . . , v`, v
∗, vk), store

(sid, (pk, v1, . . . , v`, v
∗, vk), π) as being a valid proof, and return (proof, sid, (pk, v1, . . . , v`, v

∗, vk), π)
to the calling party Pi.

When Ssim receives (prove, Pi, sid, x) from FRnizk, it changes the way the proof is simulated.
Instead of computing the values v1, . . . , v` as vi = fpk,wi(ui) for ui ← U , the simulator samples
uniformly distributed values v1, . . . , v` ← V. Upon a corruption request for a party Pi, the simulator
corrupts the dummy party P̃i. For every input message of the form (prove, sid, x, w) that P̃i received,
set the random coins corresponding to the proof as (u1, . . . , u`), where ui = HTDF.Invsk,wi(vi).

Claim 3.4. IDEALSext,FRnizk,Z
s≡ IDEALSsim,FRnizk,Z

.

Proof. This follows from the security of the HTDF scheme by using a standard hybrid argument.
First, we show that the simulated proofs of Sext are statistically close to the simulated proofs
of Ssim. We define ` + 1 experiments, where in the i’th experiment the first i − 1 values vj are
computed as vj ← V and are explained as uj ← HTDF.Invsk,wj (vj). The remaining `− i+ 1 values
are computed as vj = fpk,wj (uj) for uj ← U . The first experiment is exactly the way Sext simulates
the proof and the last experiment is exactly the way Ssim simulates the proof. By the properties
of the HTDF scheme neighboring experiments are statistically close, and therefore also the proof
simulated by Sext and Ssim.

Second, since the number of prove requests is bounded by a polynomial number, we can use a
second hybrid argument to replace the way the proofs are simulated and explained one by one, and
conclude that the simulation of Sext is statistically close to the simulation of Ssim.

Note that Ssim does not require any access to the internals of FRnizk. Therefore, we can now
define the simulator S that does not have any access to the internals of FRnizk, and operates exactly
like Ssim. As we have shown, S running with FRnizk is computationally indistinguishable from
the protocol πnizk running with A in the (FRhtdf

nizk ,Fcrs)-hybrid model. The protocol πnizk therefore
securely realizes FRnizk in the (FRhtdf

nizk ,Fcrs)-hybrid model.

By instantiating the FRhtdf
nizk with the UC-NIZK protocol from [62], we obtain the following corollary.
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Corollary 3.5. Under the decision linear assumption (equivalently, the subgroup decision problem)
in bilinear groups, and the existence of HTDF schemes, the following holds. For every NP-relation
R, the functionality FRnizk can be UC-realized in the Fcrs-hybrid model tolerating an adaptive, mali-
cious adversary such that the size of the CRS is poly(κ, d) and the size of the proofs is |w|·poly(κ, d).

4 Sublinear Communication in the Fully Adaptive Setting
In this section, we consider the fully adaptive setting (where the adversary can corrupt all parties)
and construct two-round secure protocols with sublinear communication and online-computational
complexity (in the circuit size). Our starting point is the protocol of Quach et al. [86] that is based
on laconic function evaluation (LFE) (see Appendix A.2.1).

4.1 Cryptographic Primitives used in the Protocol

We informally describe the cryptographic primitives used in the construction. Formal definitions
appear in the appendix.

Laconic function evaluation. We formally define laconic function evaluation (LFE) in Ap-
pendix A.2.1. Informally, an LFE scheme consists of 4 algorithms. The CRS generation algorithm
generates a common reference string given the security parameter and function parameters (e.g.,
function depth and input length) crs ← LFE.crsGen(1κ, params). The compression algorithm pro-
duces a small digest of a circuit digestC = LFE.Compress(crs, C; r). The encryption algorithm
encrypts the input based on the digest ct ← LFE.Enc(crs, digestC , x). The decryption algorithm
decrypts the ciphertext using the random coins used in the compression y = LFE.Dec(crs, C, r, ct).

We require the LFE to be correct, i.e., using the notation above it holds that y = C(x), and
secure, meaning that the ciphertext can be simulated given the output value y without knowing
the input x. LFE can be constructed with the function-hiding property, which ensures that the
digest can be simulated based on the function parameters without knowing the function itself. If
function hiding is not required (as is the case in this section) the compression algorithm can be made
deterministic. We consider the “adaptive” version of LFE, where the inputs to the computation can
be chosen after the CRS has been sampled. Quach et al. [86] constructed LFE schemes satisfying
this property assuming adaptive LWE (see Appendix A.1.2), where the CRS is uniform random
string.

For a function f : ({0, 1}`in)n → {0, 1}`out of depth d, the crs length is poly(κ, n, d, `in), the digest
is poly(κ), and the ciphertext ct is poly(κ, n, d, `in, `out),

Explainability compilers. We formally define explainability compilers in Appendix A.2.2. In-
formally, an explainability compiler takes as input a description of a randomized algorithm Alg, and
outputs two algorithms: Ãlg and Explain. The first algorithm Ãlg computes the same functionality
as Alg. The second algorithm Explain takes an input/output pair (x, y) and produces random coins
r such that y = Ãlg(x; r).

Assuming iO for circuits and OWF, Dachman-Soled et al. [41] constructed explainability com-
pilers with selective security, where the challenge input is selected independently of the compiled
circuit. Explainability compilers with adaptive security, where the challenge input is selected based
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on the compiled circuit, follow via complexity leveraging [16] assuming iO and OWF with sub-
exponential security (see also [27]). Looking ahead, to support adaptive inputs from the environ-
ment, our protocol requires the latter variant.

4.2 Adaptive Security with Sublinear Communication: Secure-Erasures Setting

We will show that assuming LFE with a uniform random string and a deterministic compression
algorithm, every function can be securely realized in the uniform random string model with secure
erasures, by a two-round protocol tolerating an arbitrary number of adaptive corruptions with
sublinear communication, online-computation, and CRS size. In Section 4.3, we will show how
to replace the secure-erasures assumption by assuming explainability compilers, in which case the
protocol requires a common reference string.

The basis of our protocol is the two-round protocol of Quach et al. [86, Thm. 6.2] in the
uniform random string model, that is secure against n−1 static corruptions and achieves sublinear
communication and online-computation assuming the existence of LFE. The protocol from [86] is
specified in a hybrid model with an ideally secure computation (with abort) of the function LFE.Enc
(i.e., the FLFE.Enc

sfe-abort-hybrid model). That is, the ideal functionality receives (crs, digestf , xi, ri) from
each party Pi and computes

ct = LFE.Enc(crs, digestf , x1, . . . , xn;⊕i∈[n]ri).

In case of inconsistent inputs, or if the adversary sends abort, the functionality outputs ⊥.
Given a circuit Cf computing the function f : ({0, 1}`in)n → {0, 1}`out , denote f.params =

(1n`in , 1`out , 1d) where n`in is the input size, `out the output length, and d is the depth of Cf . The
protocol of [86] is defined as follows:

• The uniform random string is computed as crs← LFE.crsGen(1κ, f.params).

• Upon receiving (input, sid, xi), every party Pi computes digestf = LFE.Compress(crs, Cf ), sam-
ples a uniformly random ri ← {0, 1}∗, and invokes the ideal functionality FLFE.Enc

sfe-abort with
(input, sid, (crs, digestf , xi, ri)).

• Upon receiving (output, sid, ct) from the ideal functionality, party Pi checks that ct 6= ⊥
(otherwise, Pi outputs (output, sid,⊥)), computes y = LFE.Dec(crs, Cf , ct), and outputs
(output, sid, y).

Proving security of the protocol against a static adversary corrupting all-but-one of the par-
ties is straightforward. Namely, by definition of LFE schemes, the simulator can simulate
the ciphertext ct based on the output y, and without knowing the input values, as ct ←
Simlfe(crs, Cf , digestf , y). Furthermore, by the properties of LFE, the size of the circuit com-
puting LFE.Enc is poly(κ, `in, `out, d, n). By instantiating the ideal functionality using a statically
secure two-round protocol (e.g., the one from [80]), Quach et al. [86] achieved a statically secure
protocol with sublinear communication and online-computational complexity.

A closer look at the protocol of [86] shows that it remains secure even facing adaptive corruptions
of all-but-one of the parties, since a single honest party suffices to keep the randomness used
for LFE.Enc hidden from the adversary. Furthermore, under the additional assumption of secure
erasures, each party can erase his random coins ri immediately after invoking FLFE.Enc

sfe-abort, and the
protocol can satisfy adaptive corruptions of all the parties. By instantiating the functionality
FLFE.Enc

sfe-abort with the two-round adaptively secure MPC from [13], we obtain the following theorem.
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Theorem 4.1 (Theorem 1.1, secure-erasures version, restated). Assume the existence of compact
LFE schemes for P/poly with a uniform random string and deterministic compression, of two-round
adaptively and maliciously secure OT, and of secure erasures, and let f : ({0, 1}`in)n → {0, 1}`out be
an n-party function of depth d.

Then, Ffsfe-abort can be UC-realized tolerating a malicious, adaptive PPT adversary by a two-
round protocol in the uniform random string model. The size of the uniform random string is
poly(κ, `in, d, n), whereas the communication and online-computational complexity of the protocol
are poly(κ, `in, `out, d, n).

Note that following [86, 13], the assumptions in Theorem 4.1 hold under the adaptive LWE
assumption.

4.3 Adaptive Security with Sublinear Communication: Erasures-Free Setting

In the erasures-free setting, it is unclear how to simulate the output ciphertext, and later upon
learning all of the inputs values of the parties, explain the random coins that are used to generate
it. We get around this barrier by using explainability compilers.

4.3.1 Two-Round Protocol Assuming Adaptive Explainability Compilers

We consider explainability compilers with adaptive security (where the challenge ciphertext is dy-
namically chosen) that can be realized by sub-exponentially secure iO and OWF. To define the com-
mon reference string for the protocol, we define the distribution Dlfe(params) that is parametrized
by an LFE scheme and by the parameters of the function to be computed params. The distribu-
tion Dlfe computes crs← LFE.crsGen(1κ, params) and ( ˜LFE.Enc,Explain)← Comp(1κ, LFE.Enc), and
outputs the reference string (crs, ˜LFE.Enc).

We would like to define the protocol in the ˜LFE.Enc-hybrid model; however, the function ˜LFE.Enc
is only given in the CRS and is not known before the protocol begins. To get around this technicality,
we define the function fC((C1, x1, r1), . . . , (Cn, xn, rn)) that receives a circuit Ci, a value xi, and
random coins ri from each party, and outputs C1(x1, . . . , xn;⊕ri) in case C1 = . . . = Cn, or ⊥
otherwise.

Theorem 4.2 (Theorem 1.1, erasures-free version, restated). Assume the existence of com-
pact LFE schemes for P/poly with deterministic compression, of explainability compilers with
adaptive security for P/poly, and of two-round adaptively and maliciously secure OT, and let
f : ({0, 1}`in)n → {0, 1}`out be a deterministic n-party function of depth d.

Then, Ffsfe-abort can be UC-realized in the FDlfecrs -hybrid model tolerating a malicious, adaptive
PPT adversary by a two-round protocol. The size of the common reference string, the communica-
tion complexity, and online-computational complexity of the protocol are poly(κ, `in, `out, d, n).

The proof of the theorem follows from Lemma 4.3 by instantiating the functionality FfCsfe-abort,
that is used to compute ˜LFE.Enc, using the two-round protocol from [13] that requires two-round
adaptively and maliciously secure OT.
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Protocol πfull

• Common Input: An LFE scheme and a circuit Cf computing the function f .

• Hybrid model: The parties have access to the CRS functionality FDlfe(f.params)
crs that outputs

a crs for the LFE scheme and a circuit ˜LFE.Enc, and to the SFE functionality FfC

sfe-abort.

• The Protocol:

1. Upon receiving (input, sid, xi), every party Pi invokes FDlfe(f.params)
crs to get (crs, ˜LFE.Enc), com-

putes digestf = LFE.Compress(crs, Cf ), samples a uniformly random ri ← {0, 1}∗, and invokes
FfC

sfe-abort with (input, sid, ( ˜LFE.Enc, (crs, digestf , xi), ri)).

2. Upon receiving ct from the ideal functionality, party Pi checks that ct 6= ⊥ (if so Pi outputs
(output, sid,⊥)), computes y = LFE.Dec(crs, Cf , ct), and outputs (output, sid, y).

Figure 3: Two-round SFE with adaptive, malicious security

Lemma 4.3. Assume the existence of compact LFE schemes for P/poly with deterministic compres-
sion, and of explainability compilers with adaptive security for P/poly, and let f be a deterministic
n-party function. Then, the protocol πfull (Figure 3) UC-realizes Ffsfe-abort tolerating a malicious,
adaptive PPT adversary in the (FDlfecrs ,F

fC
sfe-abort)-hybrid model.

Proof. The protocol πfull is defined in Figure 3 as an adjustment of the protocol from [86]. We now
turn to prove its security. Let A be the dummy adversary attacking πfull in the (FDlfecrs ,F

fC
sfe-abort)-

hybrid model. We will construct an ideal-process adversary S, interacting with the ideal function-
ality Ffsfe-abort and with ideal (dummy) parties P̃1, . . . , P̃n, such that no environment can distinguish
between S and A. Let Z be an environment. As there is no interaction between the parties, the
simulation should only explain corruption requests and the hybrid functionalities.

• To simulate the CRS, S computes crs ← LFE.crsGen(1κ, params) and ( ˜LFE.Enc,Explain) ←
Comp(1κ, LFE.Enc). Next, S gives A the string (crs, ˜LFE.Enc) and stores the function Explain.

• Upon receiving from the adversary the message (input, sid, ( ˜LFE.Enc, (crs, digestf , xi), ri)) (by
simulating the hybrid functionality FfCsfe-abort), check if the messages thus far are consistent
(meaning that all messages have the same ˜LFE.Enc, crs and digestf ), and send (input, sid, xi)
to Ffsfe-abort. Otherwise send abort and respond with ⊥ to the adversary.

• Upon receiving (output, sid, y) from Ffsfe-abort, compute ct∗ ← Simlfe(crs, Cf , digestf , y) and
respond with (output, sid, ct∗) to all corrupted parties (on behalf of FfCsfe-abort).

• Upon a corruption request of a party Pi, corrupt the dummy party P̃i, learn his input xi, and
proceeds as follows:

– If not all parties are corrupted, sample uniformly distributed random coins ri ← {0, 1}∗

and set the message to FfCsfe-abort to be (input, sid, ( ˜LFE.Enc, (crs, digestf , xi), ri)). If
the party Pi received output y from Ffsfe-abort, set the response from ˜LFE.Enc to be
(output, sid, ct∗).
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– To explain the last corruption request (say of party Pn), the simulator computes r ←
Explain((crs, digestf , x1, . . . , xn), ct∗), and sets rn = r ⊕ r1 ⊕ . . .⊕ rn−1.

We prove the indistinguishability of the execution of the protocol with the dummy adversary A
from the ideal process with Ffsfe-abort and S by defining a series of hybrid games. The output of
each game is the output of the environment.

The game HYB1
πfull,A,Z . The first hybrid is defined as the execution of the protocol πfull in the

(FDlfecrs ,F
fC
sfe-abort)-hybrid model.

The game HYB2
πfull,A,Z . The first hybrid is defined as HYB1

πfull,A,Z with the following modification.
Upon a corruption of the n’th party (for convenience, say it is Pn) replace the actual coins that
were used by Pn in the protocol with the following value rn. Let r1, . . . , rn−1 be the coins used
by the first n − 1 parties, then first compute r ← Explain((crs, digestf , x1, . . . , xn), ct), and next
compute Pn’s coins as rn = r ⊕ r1 ⊕ . . .⊕ rn−1.

Claim 4.4. HYB1
πfull,A,Z

c≡ HYB2
πfull,A,Z .

Proof. The claim holds by the security of the explainability compiler. More precisely, given a PPT
environment Z and a polynomial-time non-uniform distinguisher D that can distinguish between
HYB1

πfull,A,Z and HYB2
πfull,A,Z , we construct an attacker A′ to the game ExptExplain-Adapt

Comp,LFE.Enc,A′(κ) (defined
in Appendix A.2.2).

Upon receiving (1κ, ˜LFE.Enc) from the challenger, the attacker A′ starts by computing crs ←
LFE.crsGen(1κ) and digestf = LFE.Compress(crs, Cf ), and sends (crs, ˜LFE.Enc) to the environment.
Next, proceed to simulate the dummy honest parties receiving the input values (input, sid, xi) from
Z, and the functionality FfCsfe-abort receiving the messages (input, sid, ( ˜LFE.Enc, (crs, digestf , xi), ri))
from Z on behalf of corrupted parties (if there are inconsistent messages output a random bit b′
and halt).

Once all honest parties have been activated with input and all corrupted parties have sent
messages, set x∗ = (crs, digestf , x1, . . . , xn) and send x∗ to the challenger. Upon receiving back
(y∗, r∗) where y∗ = ct∗, respond with (output, sid, ct∗) to Z for every corrupted party. Corruption
requests are answered as in the simulation by choosing random coins ri; however, for the n’th
corruption (say of Pn), compute rn = r∗ ⊕ r1 ⊕ . . .⊕ rn−1. Once the environment halts, invoke D
on the output of the environment and output the bit b′ returned by D.

Notice that if the challenger chooses the bit b = 0, i.e., sets r∗ to be the random coins r0 used
to compute y∗ = ˜LFE.Enc(x∗; r0), then the view of the environment is identically distributed as in
an HYB1

πfull,A,Z , whereas if the challenger chooses the bit b = 1, i.e., sets r∗ to be the random coins
r1 computed as r1 ← Explain(x∗, y∗), then the view of the environment is identically distributed as
in HYB2

πfull,A,Z . Therefore, the success probability of D is the same as of A′, which is negligible by
the security of the explainability compiler.

The game HYB3
πfull,A,Z . The third hybrid is defined as the second hybrid, but the functionality

FfCsfe-abort operates differently. Upon receiving inputs (input, sid, ( ˜LFE.Enc, (crs, digestf , xi), ri)) from
all the parties, the functionality computes the function LFE.Enc(crs, digestf , x1, . . . , xn) instead of
˜LFE.Enc(crs, digestf , x1, . . . , xn).

23



Claim 4.5. HYB2
πfull,A,Z

s≡ HYB3
πfull,A,Z .

Proof. The proof follows by the statistical functional equivalence of the explainability compiler.

The game HYB4
πfull,A,Z . The fourth hybrid is defined as the third hybrid, but the functionality

FfCsfe-abort operates differently. Upon receiving inputs (input, sid, ( ˜LFE.Enc, (crs, digestf , xi), ri)) from
all the parties, the functionality computes y = f(x1, . . . , xn), creates a simulated ciphertext ct ←
Simlfe(crs, Cf , digestf , y), and returns ct to the parties.

Claim 4.6. HYB3
πfull,A,Z

c≡ HYB4
πfull,A,Z .

Proof. The claim holds by the security of the LFE scheme. More precisely, given a PPT environment
Z and a polynomial-time non-uniform distinguisher D that can distinguish between HYB3

πfull,A,Z and
HYB4

πfull,A,Z , we construct an adversary A′ and a distinguisher D′ to the games ExptLFE-real
Π,A′ (κ) and

ExptLFE-ideal
Π,A′ (κ) (defined in Appendix A.2.1).
The adversary A′, on input 1κ, starts by sending f.params to the challenger. Upon receiv-

ing crs, the adversary computes ( ˜LFE.Enc,Explain) ← Comp(1κ, LFE.Enc) and gives (crs, ˜LFE.Enc)
to the environment. Next, A′ proceeds by simulating the dummy honest parties receiving
the input values (input, sid, xi) from Z, and the functionality FfCsfe-abort receiving the messages
(input, sid, ( ˜LFE.Enc, (crs, digestf , xi), ri)) from Z on behalf of corrupted parties (if there are in-
consistent messages output abort).

Once all honest parties have been activated with input and all corrupted parties have sent
messages, set x∗ = (x1, . . . , xn) and send (x∗, Cf ) to the challenger (recall that since function-
hiding is not required, there is no need to send the coins r that are defined in the experiment).
Upon receiving back ct∗ from the challenger, respond with (output, sid, ct∗) to Z for every corrupted
party. Corruption requests are answered as in the simulation by choosing random coins ri, and
for the n’th corruption (say of Pn), compute r ← Explain((crs, digestf , x1, . . . , xn), ct∗), and set
rn = r ⊕ r1 ⊕ . . .⊕ rn−1. Once the environment halts, the adversary A′ outputs the output of the
environment. When the distinguisher D′ is invoked with the output of A′, it invokes D and outputs
the bit b′ returned by D.

Consider the experiment ExptLFE-real
Π,A′ (κ). In this case, the ciphertext ct∗ is computed as

LFE.Enc(crs, digestf , x∗) where digestf = LFE.Compress(crs, Cf ), exactly as done in HYB3
πfull,A,Z ;

hence, the view of the environment is identically distributed as in HYB3
πfull,A,Z . In the exper-

iment ExptLFE-ideal
Π,A′ (κ), the ciphertext ct∗ is computed as ct ← Simlfe(crs, Cf , digestf , y) (for

y = Cf (x1, . . . , xn)), and the view of the environment is identically distributed as in HYB4
πfull,A,Z .

Therefore, the success probability of D is the same as of D′, which is negligible by the security of
the LFE scheme.

The fourth hybrid experiment operates identically as the simulator in the ideal model computing
Ffsfe-abort, and the lemma follows.

5 Adaptively Secure Alice/Bob-Optimized Protocols
In this section, we consider two-message protocols between Alice and Bob, with respective inputs
xA ∈ {0, 1}`A and xB ∈ {0, 1}`B , where only Alice learns the output y = f(xA, xB). We say that a
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protocol is “Alice-optimized” if Alice’s computation and the total communication of the protocol
are proportional to |xA| + |y|, while the computation complexity of Bob is proportional to |f |.
We say that a protocol is “Bob-optimized” if Bob’s computation and the total communication are
proportional to |xB|+ |y|, while the computation complexity of Alice is proportional to |f |.

There exist insecure protocols which are Alice-optimized, where Alice sends her input to Bob
who computes the function and returns the output to Alice. Similarly, there exist insecure protocols
which are Bob-optimized, where Bob sends his input to Alice when she asks for it, and Alice
computes the function on her own.

Assuming FHE [53], there exist statically secure Alice-optimized protocols, where Alice sends
her encrypted input to Bob who homomorphically evaluates the function and returns the encrypted
output to Alice. Alice’s computation and the total communication of the protocol are (|xA|+ |y|) ·
poly(κ). Assuming function-hiding LFE [86], there exist statically secure Bob-optimized protocols,
where Alice sends digest← LFE.Compress(crs, fxA(·)) to Bob, who replies with his encrypted input
ct ← LFE.Enc(digest, xB), and finally Alice recovers the output. Bob’s computation and the total
communication of the protocol are (|xB|+ |y|) · poly(κ, d), where d is the depth of the function f .

The question we consider is whether there exist adaptively secure protocols which are Alice-
optimized or Bob-optimized.

5.1 Adaptively Secure Bob-Optimized Protocol

The elegant protocol from [86] is secure in the uniform random string model tolerating a static
corruption of one of the parties by a semi-malicious adversary (that can choose arbitrary random
coins for the corrupted party, but acts honestly otherwise).

Adjusting this protocol to the adaptive setting requires overcoming a few obstacles. Namely, the
simulator should be able to generate an equivocal first message, i.e., to simulate the digest without
knowing the input value of Alice, and upon a later corruption of Alice generate appropriate random
coins explaining the message. Similarly, the simulator should be able to generate an equivocal
second message, i.e., generate the ciphertext without knowing the input of Bob, and upon a later
corruption of Bob provide appropriate random coins.

To support an adaptive corruption of Alice, we enhance the LFE scheme to support an equivocal
mode (see Section 5.1.1). In this mode, the CRS is generated along with a trapdoor information.
The trapdoor can be used to explain a simulated digest as a compression of any circuit with the
appropriate parameters. Similarly to Section 4, to support an adaptive corruption of Bob, we can
use either secure erasures or explainability compilers (see Appendix A.2.2).

Theorem 5.1 (Part 1 of Theorem 1.2, restated). Assume the existence of equivocal, function-
hiding, compact LFE schemes for P/poly and of explainability compilers with adaptive security for
P/poly, and let f : {0, 1}`A ×{0, 1}`B → {0, 1}`out be a deterministic two-party function computable
by a depth-d circuit.

Then, Ffsfe can be UC-realized tolerating a semi-malicious, adaptive PPT adversary by a two-
message protocol in the common reference string model with secure channels. The size of the
common reference string, the communication complexity (of both parties), and the computational
complexity of Bob are `out · poly(κ, `B, d, n).

In Lemma 5.5, we show that protocol πbob (defined in Figure 4) securely realizes the functionality
Ffsfe with the required parameters; this, in turn, proves Theorem 5.1. In the secure-erasures setting,
we can remove the explainability compilers assumption, and get the following corollary.
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Corollary 5.2. Assume the existence of equivocal, function-hiding, compact LFE schemes for
P/poly and let f be a two-party function as above. Then, Ffsfe can be UC-realized in the secure-
erasures model tolerating a semi-malicious, adaptive PPT adversary by a two-message protocol in
the uniform random string model with secure channels. The size of the uniform random string
is poly(κ, `B, d, n), and the communication complexity and computational complexity of Bob are
`out · poly(κ, `B, d, n).

The secure channels can be instantiated over authenticated channels assuming NCE [23, 43,
33, 37]; however, delivering Bob’s public key to Alice requires either an additional communication
round or a trusted setup.

5.1.1 Equivocal LFE

We start by extending the notion of LFE to support an equivocal mode.

Definition 5.3 (equivocal LFE). A function-hiding LFE scheme Π is equivocal if there exists a
PPT simulator (Sim1

equiv-fh, Sim2
equiv-fh) for the scheme Π such that for all stateful PPT adversary

A, it holds that∣∣∣Pr
[
ExptEquivFH-real

Π,A (κ) = 1
]
− Pr

[
ExptEquivFH-ideal

Π,A (κ) = 1
]∣∣∣ ≤ negl(κ),

for the experiments ExptEquivFH-real and ExptEquivFH-ideal defined below:

ExptEquivFH-real
Π,A (κ) ExptEquivFH-ideal

Π,A (κ)

Output A(crs, digest, r)
digest = LFE.Compress(crs, C; r)
r ← {0, 1}∗

s.t. C ∈ C and C.params = params
C ← A(crs)
crs← LFE.crsGen(1κ, params)
params← A(1κ)

Output A(crs, digest, r)
r ← Sim2

equiv-fh(C, state)
s.t. C ∈ C and C.params = params

C ← A(crs)
(crs, digest, state)← Sim1

equiv-fh(1κ, params)
params← A(1κ)

In the following lemma, we show that the generic construction of function-hiding LFE from
standard LFE presented in [86] can be adjusted to provide equivocality.

Lemma 5.4. Assuming the existence of standard LFE schemes and semi-malicious, adaptively
secure, two-round OT, there exists a function-hiding, equivocal LFE scheme.

Proof (sketch). Quach et al. [86, Sec. 5] showed how to construct a function-hiding LFE scheme
given any standard LFE scheme. Recall that in an LFE scheme Alice sends digestA to Bob,
who replies with LFE.Enc(crs, digestA, xB; rB). Instead, Alice and Bob run a semi-malicious, two-
message 2PC protocol, where Alice has input digestA, Bob has input (xB, rB), and Alice learns
LFE.Enc(crs, digestA, xB; rB). The message of Alice is the new digest and the message of Bob is the
new ciphertext.

Concretely, we use the two-round adaptively secure protocol of Benhamouda et al. [13] that
requires adaptively secure two-round OT. Note that any two-party two-round protocol π where
only Alice learns the output can be adjusted into a two-message protocol π′ as follows. Alice’s
message in π′ consists of her first-round message in π. Bob’s message in π′ consists of both his
first-round and second-round messages in π. The security of π′ reduces to the security of π by the
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resiliency to rushing adversaries. Indeed, a corrupted Bob may choose his message in π′ (consisting
of the first-and second round messages in π) after seeing Alice’s first-round message; this translates
to an attack that a rushing adversary has the capability to execute in π.

By the security of the adaptively secure protocol, there exists a simulator that can simulate the
first message of Alice, and later, given the input value, can provide random coins that explain this
message accordingly.

We note that both LFE [86] and adaptively and maliciously (hence, also semi-maliciously) secure
two-round OT [13] can be instantiated assuming adaptive LWE. Hence, also equivocal FH-LFE can
be instantiated assuming adaptive LWE.

5.1.2 Semi-Malicious Bob-optimized Protocol

We proceed to our Bob-optimized protocol. Recall that the distribution Dlfe(params) samples a crs
for the LFE scheme, computes ( ˜LFE.Enc,Explain)← Comp(1κ, LFE.Enc), and outputs (crs, ˜LFE.Enc).
Lemma 5.5. Consider the notations and assumptions in Theorem 5.1. Then, protocol πbob, de-
fined in Figure 4, securely realizes the functionality Ffsfe tolerating a semi-malicious, adaptive PPT
adversary in the (Fsmt,FDlfe(f.params)

crs )-hybrid model.

Protocol πbob

• Common Input: An LFE scheme and a circuit Cf computing the function f .

• Notation: Define the algorithm LFE.Compresscrs,Cf
(x; r) by hard-wiring crs and the circuit Cf

to the compression algorithm LFE.Compress(crs, Cf (x, ·)), and given input x and randomness r,
compress the circuit Cf (x, ·) with the input x hard-wired.

• The Protocol:

1. Upon receiving (input, sid, xA), Alice samples uniformly at random rA ← {0, 1}∗, computes
digest = LFE.Compresscrs,Cf

(xA; rA), and sends (sid, digest) to Bob.

2. Upon receiving (sid, digest) from Alice, and having received (input, sid, xB), Bob computes ct←
˜LFE.Enc(crs, digest, xB), and sends (sid, ct) to Alice.

3. Upon receiving a message (sid, ct) from Bob, Alice computes y = LFE.Dec(crs, C, rA, ct) and
outputs (output, sid, y).

Figure 4: Two-round, Bob-optimized protocol with adaptive, semi-malicious security

Proof. Let A be an adaptive, semi-malicious adversary attacking πbob in the (Fsmt,FDlfecrs )-hybrid
model. We will construct an ideal-process adversary S, interacting with the ideal functionality Ffsfe
and with ideal (dummy) parties Ã and B̃, such that no environment can distinguish between S
and A. Let Z be an environment. Let Simlfe and Simequiv-fh be the simulators guaranteed to exist
by the security of the equivocal FH-LFE scheme. The simulator S constructs virtual parties Alice
and Bob, and runs the adversary A.

• To simulate the communication with Z, every input value that S receives from Z is written
on A’s input tape. Likewise, every output value written by A on its output tape is copied to
S’s own output tape.
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• To simulate the common reference string, the simulator S first computes (crs, digest, state)←
Sim1

equiv-fh(1κ, Cf .params) and ( ˜LFE.Enc,Explain)← Comp(LFE.Enc). Next, S sets the refer-
ence string to be (crs, ˜LFE.Enc) and stores (digest, state,Explain).

Since the protocol is defined over secure channels, there is no need to simulate anything as long
as both parties are honest. Upon the first corruption of one of the parties, the simulator learns his
input and can simulate the internal state as if the party was corrupted from the beginning. We can
therefore simplify the proof and consider two cases: the case where Alice is statically corrupted at
the beginning and Bob is dynamically corrupted, and the case where Bob is statically corrupted at
the beginning and Alice is dynamically corrupted.11

Case 1: Alice is corrupted first. The simulator corrupts Ã and proceeds as follows:

• Upon receiving (input, sid, xA) from the environment, S invokes A with (input, sid, xA) and
receives back the message (sid, digest) from A. The simulator reads the random coins rA that
were used by A from the witness tape of the semi-malicious A.

• Next, S sends (input, sid, xA) to Ffsfe and receives back the output (output, sid, y).

• To simulate the second message, S computes ct ← Simlfe(crs, Cf (xA, ·), rA, digest, y) and
sends (sid, ct) to A.

• To explain a corruption request of Bob, the simulator corrupts B̃, learns its input xB, and
computes the random coins as rB ← Explain((crs, digest, xB), ct). (In case Bob was not acti-
vated with an input yet, set rB to be a uniformly random string.)

Proposition 5.6. Assuming the first corruption request is of Alice, it holds that

REALπbob,A,Z
c≡ IDEALFfsfe,S,Z

.

Proof. We prove the indistinguishability of the real and ideal worlds by defining a series of hybrid
games. The output of each game is the output of the environment.

The game HYB1
πbob,A,Z . In this game, we modify the experiment REALπbob,A,Z as follows. Bob

first computes ct = ˜LFE.Enc(digest, xB; r) followed by rB ← Explain((crs, digest, xB), ct). Next, the
originals coins r are ignored, and the new coins rB are set as the random tape of Bob.

Claim 5.7. REALπbob,A,Z
c≡ HYB1

πbob,A,Z .

Proof. The claim holds by the security of the explainability compiler. More precisely, given a
PPT environment Z and a polynomial-time non-uniform distinguisher D that can distinguish be-
tween HYB1

πbob,A,Z and REALπbob,A,Z , we construct an attacker A′ to the game ExptExplain-Adapt
Comp,LFE.Enc,A′(κ)

(defined in Appendix A.2.2).
Upon receiving (1κ, ˜LFE.Enc) from the challenger, the attacker A′ starts by computing crs ←

LFE.crsGen(1κ, Cf .params), and sends (crs, ˜LFE.Enc) to the environment. Next, proceed to simulate

11This is effectively the compiler from semi-adaptive security to adaptive security of Garay et al. [48].
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the dummy honest Bob receiving the input value (input, sid, xB) from Z, and receiving (sid, digest)
from Z on behalf of the corrupted Alice.

Next, set x∗ = (crs, digest, xB) and send x∗ to the challenger. Upon receiving back (y∗, r∗)
where y∗ = ct∗, respond with (sid, ct∗) as the second message of Bob. Upon a corruption request
of Bob, set his random coins as r∗. Once the environment halts, invoke D on the output of the
environment and output the bit b′ returned by D.

Notice that if the challenger chooses the bit b = 0, i.e., sets r∗ to be the random coins r0 used
to compute y∗ = ˜LFE.Enc(x∗; r0), then the view of the environment is identically distributed as in
an REALπbob,A,Z , whereas if the challenger chooses the bit b = 1, i.e., sets r∗ to be the random coins
r1 computed as r1 ← Explain(x∗, y∗), then the view of the environment is identically distributed as
in HYB1

πbob,A,Z . Therefore, the success probability of D is the same as of A′, which is negligible by
the security of the explainability compiler.

The game HYB2
πbob,A,Z . The second hybrid is defined as the first hybrid, but instead of computing

ct← ˜LFE.Enc(crs, digest, xB), Bob computes ct← LFE.Enc(crs, digest, xB).

Claim 5.8. HYB1
πbob,A,Z

s≡ HYB2
πbob,A,Z .

Proof. The proof follows by the statistical functional equivalence of the explainability compiler.

The game HYB3
πbob,A,Z . The third hybrid is defined as the second hybrid, but instead of computing

ct← LFE.Enc(crs, digest, xB), Bob computes ct← Simlfe(crs, Cf (xA, ·), rA, digest, y) (where rA are
the coins used to compute digest, read from the tape of the semi-malicious A).

Claim 5.9. HYB2
πbob,A,Z

c≡ HYB3
πbob,A,Z .

Proof. The claim holds by the security of the LFE scheme. More precisely, given a PPT environment
Z and a polynomial-time non-uniform distinguisher D that can distinguish between HYB2

πbob,A,Z and
HYB3

πbob,A,Z , we construct an adversary A′ and a distinguisher D′ to the games ExptLFE-real
Π,A′ (κ) and

ExptLFE-ideal
Π,A′ (κ) (defined in Appendix A.2.1).
The adversary A′, on input 1κ, starts by sending f.params to the challenger. Upon receiving

crs, the adversary computes ( ˜LFE.Enc,Explain) ← Comp(1κ, LFE.Enc) and gives (crs, ˜LFE.Enc) to
the environment. Next, A′ proceeds by simulating the dummy honest Bob receiving the input
values (input, sid, xB) from Z, and receiving (sid, digest) from Z on behalf of the corrupted Alice.
When receiving Alice’s message, A′ reads the input xA and random coins rA from the witness tape
of the semi-malicious adversary.

Next, set x∗ = xB, set CA = Cf (xA, ·), and send (x∗, CA, rA) to the challenger. Upon receiving
back ct from the challenger, respond with (sid, ct) as the second message of Bob. Upon a corruption
request of Bob, set his random coins as rB ← Explain((crs, digest, xB), ct). Once the environment
halts, the adversary A′ outputs the output of the environment. When the distinguisher D′ is
invoked with the output of A′, it invokes D and outputs the bit b′ returned by D.

Consider the experiment ExptLFE-real
Π,A′ (κ). In this case, the ciphertext ct is computed as

LFE.Enc(crs, digest, x∗) where digest = LFE.Compress(crs, CA; rA), exactly as done in HYB2
πbob,A,Z ;

hence, the view of the environment is identically distributed as in HYB2
πbob,A,Z . In the exper-

iment ExptLFE-ideal
Π,A′ (κ), the ciphertext ct is computed as ct ← Simlfe(crs, CA, rA, digest, y) (for
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y = CA(xB)), and the view of the environment is identically distributed as in HYB3
πbob,A,Z . There-

fore, the success probability of D is the same as of D′, which is negligible by the security of the
LFE scheme.

The game HYB4
πbob,A,Z . In the fourth game, we modify the third game HYB3

πbob,A,Z as
follows. Instead of computing the common reference string (crs, ˜LFE.Enc) using crs ←
LFE.crsGen(1κ, Cf .params), it is computed using (crs, digest, state)← Sim1

equiv-fh(1κ, Cf .params).

Claim 5.10. HYB3
πbob,A,Z

c≡ HYB4
πbob,A,Z .

Proof. This follows by the definition of equivocal LFE.

Claim 5.11. HYB4
πbob,A,Z ≡ IDEALf,S,Z .

Proof. This follows since in the experiment HYB3 behavior of Bob is identical to the simulation done
by S. In particular, the second message ct is computed via the LFE simulator without knowing
the input value xB, and the random coins are set using Explain.

Combining Claims 5.7 to 5.10, we get that REALπbob,A,Z
c≡ IDEALFfsfe,S,Z

when the first corruption
is of Alice. This concludes the proof of Proposition 5.6.

Case 2: Bob is corrupted first. The simulator corrupts B̃ and proceeds as follows:

• Upon receiving (input, sid, xB) from the environment, and having received the notification
(input, sid, Ã) from Ffsfe, the simulator sends (sid, digest) to A (where the simulated digest was
computed at the beginning of the simulation).

• Next, S sends (input, sid, xB) to Ffsfe and receives back the output (output, sid, y).

• Finally, S receives the second message (sid, ct) from A.

• To explain a corruption request of Alice, the simulator corrupts Ã, learn her input xA, denotes
by C1 = Cf (xA, ·) the circuit Cf with the value xA hard-wired, and computes the random
coins as rA ← Sim2

equiv-fh(C1, state).

Proposition 5.12. Assuming the first corruption request is of Bob, it holds that

REALπbob,A,Z
c≡ IDEALFfsfe,S,Z

.

Proof. We prove the indistinguishability of the real and ideal worlds by defining a hybrid game.
The output of the game is the output of the environment.
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The game HYBπbob,A,Z . In this game, we modify the real-model experiment REALπbob,A,Z

as follows. Instead of computing the common reference string (crs, ˜LFE.Enc) using crs ←
LFE.crsGen(1κ, Cf .params), it is computed using (crs, digest, state) ← Sim1

equiv-fh(1κ, Cf .params).
Instead of computing digest ← LFE.Compress(crs, C1; rA) for C1 = Cf (xA, ·), Alice uses digest as
computed by Sim1

equiv-fh followed by rA ← Sim2
equiv-fh(C1, state). Next, the originals coins r are

ignored, and the new coins rA are set as the random tape of Alice.

Claim 5.13. REALπbob,A,Z
c≡ HYBπbob,A,Z .

Proof. This follows by the security of the equivocal LFE scheme, since any distinguisher between
REALπbob,A,Z and HYBπbob,A,Z immediately translates into an adversary violating Definition 5.3.

Claim 5.14. HYBπbob,A,Z ≡ IDEALFfsfe,S,Z
.

Proof. This follows since in the experiment HYB the behavior of Alice is identical to the simulation
done by S. In particular, the first message digest is computed using Sim1

equiv-fh without knowing
the input value xA, and the random coins are set using Sim2

equiv-fh.

It follows that REALπbob,A,Z
c≡ IDEALFfsfe,S,Z

when Bob is corrupted first. This concludes the
proof of Proposition 5.12.

This concludes the proof of Lemma 5.5.

5.2 Impossibility of Adaptively Secure Alice-Optimized Protocol

We now turn to show that the impossibility of adaptively secure FHE from [76] can be extended
to rule out adaptively secure Alice-optimized protocols. In fact, we prove a stronger impossibility
showing that for some functions the size of Bob’s message cannot be smaller than his input, even
if Alice’s message and the CRS are long. Intuitively, if the output of the function is simply Bob’s
input, then clearly Bob’s message cannot be compressing. We show that this is the case even if the
output is short.

For n ∈ N, we define the two-party functionality fn(xA, gB) = (gB(xA), λ),12 where Alice has
input xA ∈ {0, 1}logn, Bob has input a function gB : {0, 1}logn → {0, 1}, represented by its truth
table as an n-bit string, and Alice learns the output gB(xA). Intuitively, by adaptively corrupting
Alice and equivocating her input, we can essentially recover gB(xA) in any choice of xA from the
protocol transcript. This means that the Bob’s response must encode the entire truth table of gB,
which is of size n.

Theorem 5.15 (Part 2 of Theorem 1.2, restated). Let πn be a two-message protocol in the common
reference string model for computing fn, where Alice sends first the message m1 and Bob replies with
the message m2. If the protocol tolerates a semi-honest, adaptive adversary in the secure-erasures
model, then |m2| ≥ n.

Proof. Assume toward contradiction that |m2| < n. The protocol πn can be described as follows:

• The common reference string is set as crs← crsGen(1κ, 1n) according to some distribution.

12Recall that λ denotes the empty string.
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• Alice generates the first message as m1 = Alice1(crs, xA; rA), and possibly erases some of the
coins rA, leaving r′A.

• Bob generates the second message as m2 = Bob(crs, gB,m1; rB), and possibly erases rB.

• Alice computes the output as y = Alice2(crs, xA, r′A,m2).

Consider the adversary A and the environment Z that operate as follows:

1. The adversary A corrupts Bob.

2. The environment activates Alice with input xA.

3. The adversary waits to receive the message m1, corrupts Alice to learns her (partial) random
coins r′A, and sends (crs,m1, r

′
A) to the environment.

4. The environment, chooses a random function gB ← {0, 1}n and random coins rB ← {0, 1}∗,
runs the code for Bob to generate the message m2 = Bob(crs, gB,m1; rB), and checks whether
gB(xA) = Alice2(crs, xA, r′A,m2). If so, the environment outputs 1 (real) and otherwise out-
puts 0 (ideal).

By the assumed security of the protocol πn, there exists a simulator S, represented by a triplet
of algorithms (S1,S2,S3), that can simulate this attack. Initially, the simulator generates the
simulated crs by running an algorithm (crs, state1) ← S1(1κ, 1n). On a corruption request of Bob,
the simulator corrupts the ideal (dummy) Bob, and sends crs to A. Next, to simulate the first
message S computes (m1, state2) ← S2(state1) and sends m1 to A. Finally, upon a corruption
request of Alice, the simulator corrupts the ideal (dummy) Alice, learns her input xA, and computes
r′A ← S3(xA, state2).

Given a random function g : {0, 1}logn → {0, 1}, we will use the simulator S to construct a
circuit C∗(x) for computing the function g. We start by computing (crs, state1) ← S1(1κ, 1n) and
(m1, state2) ← S2(state1) just like S. Note that this part of the simulation is independent of the
parties’ inputs. Next, run the code of Bob on input g to compute m2 = Bob(crs, g,m1; rB) for a
uniformly distributed rB ← {0, 1}∗. Finally, sample random coins r ← {0, 1}∗ and hardwire the
value (crs, state2,m2, r) to C∗. On input x, the resulting circuit C∗crs,state2,m2,r(x) first computes
r′A = S3(x, state2; r) and later y = Alice2(crs, x, r′A,m2).

By the security of the protocol πn, it holds that with overwhelming probability, it is possible
to recover the string g by running C∗crs,state2,m2,r(x) on every x ∈ {0, 1}logn. However, the only
component in C∗crs,state2,m2,r that depends on g ism2. Denote byG the random variable representing
the function g, that takes a value uniformly at random in {0, 1}n, and by C̃ the random variable
representing the circuit C∗crs,state2,m2,r generated by the algorithm described above. Then, the
entropy of G conditioned on C̃ is

H(G | C̃) = n− |m2| > 0.

Combined together, we derive a contradiction.

32



6 Adaptive Corruptions of All-But-One of the Parties
In this section, we prove an analog result in the adaptive setting to the result of Asharov et al.
[5], who showed how to compute any function tolerating all-but-one corruptions using a two-round
protocol in the threshold-PKI model assuming threshold FHE, which in turn can be instantiated
using LWE. Our construction relies on threshold equivocal FHE (to be defined in Section 6.1.1)
that allows simulating ciphertexts for honest parties and explaining them properly upon later
corruptions.

We note that the simulation technique used in [5] (and similarly in [80]) does not translate
to the adaptive setting. As observed in [5, 80], the threshold decryption protocol may leak some
information about the shares of the secret key, and the simulator for the decryption protocol can be
used to protect exactly one party. Since [5, 80] considered static corruptions, the set of corrupted
parties was known ahead of time, and the simulator could choose one of the honest parties Ph as
a special party for the simulation. The decryption protocol was simulated with respect to Ph, as
if he is the only honest party. For this reason, proving security of exactly n− 1 corruptions in [80]
was considerably simpler than proving security of up to n− 1 corruptions.13

The simulation strategy that was used in [5, 80] does not translate to the adaptive setting, since
the party Ph that is chosen by the simulator may get corrupted after simulating the decryption
protocol. The simulator cannot know in advance which party will be the last to remain honest.
For this reason, we use a different simulation strategy, which allows the simulator to “correct” his
choice of the party that is simulated as honest for the decryption protocol. Technically, this is
done by having each party send shares of zero to each other party over a secure channel (that can
be instantiated via NCE). These shares are used to hide the partial decryptions without changing
their value. Since shares exchanged between pairs of honest parties remain hidden from the eyes
of the adversary, the simulator has more freedom to replace the special party Ph upon corruption,
by another honest party, even after simulating the decryption protocol.

6.1 Cryptographic Primitives used in the Protocol

Initially, we define equivocal FHE and show how to instantiate it assuming LWE. Next, we define
threshold equivocal FHE.

6.1.1 Equivocal FHE

An equivocal FHE is an FHE scheme that is augmented with the capability to generate a public
key in an “equivocal mode,” allowing to explain any ciphertext as an encryption of any value.

Definition 6.1. An equivocal fully homomorphic encryption (EFHE) scheme is a six-tuple of algo-
rithms (EFHE.Gen, EFHE.Enc, EFHE.Eval, EFHE.Dec, EFHE.GenEquiv, EFHE.Equiv) satisfying the
following properties:

• (EFHE.Gen,EFHE.Enc,EFHE.Eval,EFHE.Dec) is an FHE scheme.

• EFHE.GenEquiv(1κ, 1d) → (pk, td): on input the security parameter κ and a depth bound d,
the equivocal key-generation algorithm outputs a public-key pk and a trapdoor td.

13We note that the same problem arises also in the threshold FHE scheme for more general access structures [17,
Def. 5.5], where the simulation is defined only for maximal invalid party sets.
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• EFHE.Equiv(td, ct,m) → r: on input a trapdoor td, a ciphertext ct, and a plaintext m, the
equivocation algorithm outputs a value r in the randomness space.

We require the following properties:

1. (EFHE.Gen,EFHE.Enc,EFHE.Eval,EFHE.Dec) is a correct, compact, and semantically secure
FHE scheme (see Appendix A.2.6).

2. Indistinguishability of equivocal keys. For every depth bound d, the following distribu-
tions are computationally indistinguishable:

• The honestly generated public key {pk | (sk, pk)← EFHE.Gen(1κ, 1d)}κ
• The equivocal public key {pk | (pk, td)← EFHE.GenEquiv(1κ, 1d)}κ.

3. Indistinguishability of equivocated randomness. For every depth bound d and for every
message µ ∈ {0, 1}, the following distributions are computationally indistinguishable:

• The public key, a ciphertext encrypting µ, the plaintext µ, and the random coins used in
an honest encryption{

(pk, ct, µ, r) | (sk, pk)← EFHE.Gen(1κ, 1d), ct = EFHE.Enc(pk, µ; r)
}
κ
.

• The equivocal public key, an encryption of zero, the plaintext µ, and the computed random
coins generated by the equivocation algorithm{

(pk, ct, µ,EFHE.Equiv(td, ct, µ)) | (pk, td)← EFHE.GenEquiv(1κ, 1d), ct← EFHE.Encpk(0)
}
κ
.

Constructing Equivocal FHE. We next show that equivocal FHE schemes exist assuming
LWE. We will prove this statement using an extended, “dual-mode” version of homomorphic trap-
door functions from [59]. Recall that HTDF, were defined in [59] in a “meaningless” (or “equivocal”)
mode (see also Appendix A.2.3). That is, by computing (pk, sk)← HTDF.Gen(1κ, 1d) it is possible
to “commit” to x ∈ {0, 1} by computing v = fpk,x(u) for a random u ∈ U . Equivalently, it is
possible to sample a random element v ← V and “explain” it to every x ∈ {0, 1} by computing
u← HTDF.Invsk,x(v). To avoid confusion, we will denote in the remaining of this section the key-
generation algorithm in this mode by HTDF.GenEquiv. Note that using the equivocal mode, the
commitment to x is statistically hiding.

Gorbunov et al. [59] also defined a “meaningful” (or “extractable”) mode of homomorphic
trapdoor functions. In this mode, the keys are generated via a different algorithm (pk, sk) ←
HTDF.GenExtract(1κ, 1d). The public key can again be used to “commit” to x ∈ {0, 1} by computing
v = fpk,x(u) for a random u ∈ U . However, the secret key is now used to extract the bit x from v,
i.e., x ← HTDF.Extractsk(v). Note that using the extractable mode, the commitment to x is
statistically binding and computationally hiding.

Gorbunov et al. [59] constructed a dual-mode HTDF scheme and proved that under the LWE
assumption, the following properties are satisfied:

1. (HTDF.GenEquiv, f,HTDF.Inv,HTDF.Evalin,HTDF.Evalout) is an HTDF scheme according to
Definition A.8.
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2. For any depth-bound d and every x ∈ {0, 1} it holds that

Pr
[

HTDF.Extractsk(v) 6= x
v = fpk,x(u) for u← U

(pk, sk)← HTDF.GenExtract(1κ, 1d)
]
≤ negl(κ).

3. The public key in the equivocal mode is computationally indistinguishable from the public
key in the extractable mode:{

pk | (pk, sk)← HTDF.GenEquiv(1κ, 1d)
}
κ

c≡
{

pk | (pk, sk)← HTDF.GenExtract(1κ, 1d)
}
κ
.

We can now proceed to construct an equivocal FHE from dual-mode HTDF. The extractable
mode of the HTDF scheme will be used to define the “standard FHE,” since extracting the bit x
from v corresponds to decrypting a ciphertext (indeed, the extractable mode in [59] corresponds to
the GSW FHE scheme [56]). The equivocal mode of the HTDF scheme will be used to define the
equivocal mode of the FHE scheme, as it allows explaining a ciphertext to every bit. Formally:

• EFHE.Gen(1κ, 1d): run (pk, sk)← HTDF.GenExtract(1κ, 1d) and return (pk, sk).

• EFHE.Enc(pk, x; r): parse r as an element u ∈ U , compute v = fpk,x(u), and return v as the
ciphertext.

• EFHE.Eval(pk, C, ct1, . . . , ct`): parse each ciphertext cti as an element vi ∈ V, compute v∗ =
HTDF.Evalout(C, v1, . . . , v`), and return v∗ as the evaluated ciphertext.

• EFHE.Dec(sk, ct): parse ct as an element v ∈ V, compute x← HTDF.Extractsk(v), and return
x as the plaintext.

• EFHE.GenEquiv(1κ, 1d): run (pk, sk) ← HTDF.GenEquiv(1κ, 1d) and return (pk, sk), i.e., sk
acts as the trapdoor td.

• EFHE.Equiv(td, ct, x): parse ct as an element v ∈ V and td as sk, compute u ←
HTDF.Invsk,x(v), and return u as the random coins.

The security of the equivocal FHE scheme follows immediately from the security of the dual-mode
HTDF scheme. This proves the following lemma.

Lemma 6.2. Assuming LWE there exist equivocal FHE schemes.

Proof. As proven above, equivocal FHE schemes can be constructed from dual-mode HTDF
schemes, and the security of the EFHE scheme follows immediately from the security of the dual-
mode HTDF scheme. The lemma follows as dual-mode HTDF schemes exists under the LWE
assumption [59]. For completeness, we describe the construction in Appendix C.

6.1.2 Threshold Equivocal FHE

In a threshold FHE scheme, the key-generation and the decryption algorithms are in fact n-party
protocols. We consider the simplest case of n-out-of-n threshold FHE and require a single-round
decryption protocol (following [5, 60, 80, 46]). We note that threshold FHE for more general access
structures are also known assuming LWE [17]. A threshold equivocal FHE scheme (TEFHE) is a
threshold FHE scheme that admits an equivocal mode as in Section 6.1.1.
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Definition 6.3 (TEFHE). A threshold equivocal fully homomorphic encryption (TEFHE) is a
seven-tuple of algorithms (TEFHE.Gen, TEFHE.Enc, TEFHE.Eval, TEFHE.PartDec, TEFHE.FinDec,
TEFHE.GenEquiv, TEFHE.Equiv) satisfying the following properties:

• TEFHE.Gen(1κ, 1d, 1n)→ (pk, sk1, . . . , skn): on input the security parameter κ, a depth bound
d, and the number of parties n, the key-generation algorithm outputs a public key pk and n
secret key shares sk1, . . . , skn.

• TEFHE.Enc(pk, µ) → ct: on input a public key pk and a plaintext µ ∈ {0, 1}, the encryption
algorithm outputs a ciphertext ct.

• TEFHE.Eval(pk, C, ct1, . . . , ct`)→ ct: on input a public key pk, a circuit C : {0, 1}` → {0, 1},
and a tuple of ciphertexts (ct1, . . . , ct`), the homomorphic-evaluation algorithm outputs a ci-
phertext ct.

• TEFHE.PartDec(i, ski, ct) → pi: on input i ∈ [n], a secret key share ski and a ciphertext ct,
the partial-decryption algorithm outputs a partial decryption pi.

• TEFHE.FinDec(pk, {p1, . . . , pn}) → µ̃: on input a public key pk and a set {pi}i∈[n], the final-
decryption algorithm outputs µ̃ ∈ {0, 1,⊥}.

• TEFHE.GenEquiv(1κ, 1d)→ (pk, td): on input the security parameter κ and a depth bound d,
the equivocal key-generation algorithm outputs a public-key pk and a trapdoor td.

• TEFHE.Equiv(td, ct,m) → r: on input a trapdoor td, a ciphertext ct, and a plaintext m, the
equivocation algorithm outputs a value r in the randomness space.

In the protocol, we will require some additional properties regarding the key-generation and
threshold-decryption protocols.

Definition 6.4 (special TEFHE). A special TEFHE is a TEFHE scheme satisfying the following
properties:

1. On input 1κ, 1d, and 1n, the key-generation algorithm TEFHE.Gen outputs (pk, sk1, . . . , skn)
where the public key pk defines a prime number q, and each secret key ski of the form ski =
(−si, 1) where si is uniformly distributed in Zn′−1

q for some n′ = poly(κ, d).

2. The partial-decryption algorithm pi ← TEFHE.PartDec(i, ski, ct) operates by computing pi =
〈ct, ski〉+ e mod q.

3. For every v1, . . . , vn ∈ Zq, the final-decryption algorithm TEFHE.FinDec(pk, {p1, . . . , pn}) sat-
isfies the following linearity property

TEFHE.FinDec(pk, {p1 + v1, . . . , pn + vn}) = TEFHE.FinDec(pk, {p1, . . . , pn}) +
∑
i∈[n]

vi.

We require the following properties from a special TEFHE scheme Π:

1. The FHE scheme that is defined by setting the decryption key sk = (sk1, . . . , skn) and the
decryption algorithm is composed of executing TEFHE.PartDec(i, ski, ct) for every i ∈ [n]
followed by TEFHE.FinDec(pk, {p1, . . . , pn}) is a correct, compact, and secure equivocal FHE
scheme for circuits of depth d (according to Definition 6.1, see also Appendix A.2.6).
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2. Simulatability of partial decryption: there exists a PPT simulator Simtefhe such that for
integers n, d, and `, and every circuit C : {0, 1}` → {0, 1} of depth d, every h ∈ [n], and
every (pk, sk1, . . . , skn) in the support of TEFHE.Gen(1κ, 1d, 1n), the following distributions
are statistically close:

ExptTEFHE-real
Π,A,pk,{ski}i∈[n],h,C

(κ) ExptTEFHE-ideal
Π,A,pk,{ski}i∈[n],h,C

(κ)

Output whatever A outputs
Send ph to A
Compute ph ← TEFHE.PartDec(h, skh, ct)
Compute ct = TEFHE.Eval(pk, C, ct1, . . . , ct`)
∀j ∈ [`] compute ctj = TEFHE.Enc(pk, µj ; rj)
A sends µ1, . . . , µ` ∈ {0, 1} and r1, . . . , r` ∈ {0, 1}∗
Send (h, pk, {skj}j 6=h) to A

Output whatever A outputs
Send ph to A
Compute ph ← Simtefhe(h, ct, µ, {skj}j 6=h)
Compute µ = C(µ1, . . . , µ`)
Compute ct = TEFHE.Eval(pk, C, ct1, . . . , ct`)
∀j ∈ [`] compute ctj = TEFHE.Enc(pk, µj ; rj)
A sends µ1, . . . , µ` ∈ {0, 1} and r1, . . . , r` ∈ {0, 1}∗
Send (h, pk, {skj}j 6=h) to A

Lemma 6.5. Assuming LWE there exist special TEFHE schemes.

The lemma follows from Lemma 6.2 using standard techniques for constructing threshold
FHE [5, 80]. For completeness, we describe the construction in Appendix C.

6.1.3 The Threshold-PKI Functionality

We define the protocol assuming a trusted pre-process phase where the keys of the TEFHE scheme
are generated and distributed to the parties. We capture this assumption with the threshold-PKI
ideal functionality (Figure 5).

Functionality Fthresh-pki(Π, d)

Fthresh-pki proceeds as follows, interacting with parties P1, . . . , Pn and an adversary S, and parameter-
ized by a TEFHE scheme Π and a depth bound d.

• Upon receiving a message (init, sid) from party Pi, do:

1. If there is no value (sid, pk, sk1, . . . , skn) recorded, then compute (pk, sk1, . . . , skn) ←
TEFHE.Gen(1κ, 1d, 1n), record it, and send (sid, Pi) to S.

2. Send (sid, Pi, pk) to S and a delayed output (sid, pk, ski) to Pi.

Figure 5: The threshold-PKI functionality

6.2 Semi-Malicious Security

Theorem 6.6. Assume that special TEFHE exists, let t < n, and let f : ({0, 1}`in)n → {0, 1}`out

be an efficiently computable function of depth d. Then, Protocol πallbutone, defined in Figure 6,
UC-realizes Ffsfe-abort in the (Fthresh-pki,Fsmt)-hybrid model, tolerating an adaptive, semi-malicious,
PPT t-adversary, by a two-round protocol with communication complexity poly(`in, `out, d, κ, n).

Proof. We start by showing correctness of a non-aborting execution. In this case, for every
i ∈ [n] it holds that cti ← TEFHE.Enc(pk, xi) and

∑n
j=1 sji = 0 mod q; in addition, ct =
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TEFHE.Eval(pk, Cf , ct1, . . . , ctn). Next, each party computes pi = TEFHE.PartDec(i, ski, ct) and
sends mi = pi +

∑n
j=1 sij mod q. By the properties of special TEFHE, it holds that

TEFHE.FinDec(pk, {m1, . . . ,mn}) = TEFHE.FinDec(pk, {p1 +
n∑
j=1

s1
j , . . . , pn +

n∑
j=1

snj })

= TEFHE.FinDec(pk, {p1, . . . , pn}) +
n∑
j=1

s1
j + . . .+

n∑
j=1

snj

= TEFHE.FinDec(pk, {p1, . . . , pn}) +
n∑
j=1

sj1 + . . .+
n∑
j=1

sjn

= TEFHE.FinDec(pk, {p1, . . . , pn}) + 0 + . . .+ 0 mod q

= C(x1, . . . , xn).

Protocol πallbutone

• Private Input: Every party Pi, for i ∈ [n], has private input xi ∈ {0, 1}`in .

• Common Input: A special TEFHE scheme Π and a circuit Cf of depth d.

• The Protocol:

1. Upon receiving (input, sid, xi), party Pi proceeds as follows:

(a) Invoke Fthresh-pki(Π, d) with (init, sid) to receive (sid, pk, ski). Let q be the prime associated
with the public key pk (as per Definition 6.4).

(b) Encrypt the input as cti ← TEFHE.Enc(pk, xi).
(c) Sample uniformly distributed random values s1

i , . . . , sni ← Zq, conditioned on
∑n
j=1 sji = 0

mod q.
(d) Send (sid, cti, sji ) to Pj over a secure channel (via Fsmt).

2. In case some party aborts, output (output, sid,⊥) and halt. Otherwise, upon receiving (sid, ·)
messages from all the parties, party Pi proceeds as follows:

(a) Compute ct = TEFHE.Eval(pk, Cf , ct1, . . . , ctn).
(b) Partially decrypt the result as pi = TEFHE.PartDec(i, ski, ct).
(c) Set mi = pi +

∑n
j=1 sij mod q and send (sid,mi) to every party.

3. In case some party aborts, output (output, sid,⊥) and halt. Otherwise, upon receiving (sid, ·)
from all the parties, party Pi runs the final decrypt as y = TEFHE.FinDec(pk, {m1, . . . ,mn})
and outputs (output, sid, y).

Figure 6: Two-round MPC with semi-malicious security in the (Fthresh-pki,Fsmt)-hybrid model

We proceed to prove security of the protocol. Let A be an adaptive, semi-malicious adversary
attacking πallbutone in the (Fthresh-pki,Fsmt)-hybrid model. We will construct an ideal-process adver-
sary S, interacting with the ideal functionality Ffsfe-abort and with ideal (dummy) parties P̃1, . . . , P̃n,
such that no environment can distinguish between S and A. The simulator S constructs virtual
parties P1, . . . , Pn, and runs the adversary A. Let Simtefhe be the simulator that is guaranteed to
exist for the TEFHE scheme Π (as per Definition 6.3).
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Note that the internal state of a party Pi in the protocol consists of its input xi, the message
(pk, ski) from Fthresh-pki, the random coins that include coins rEi for encrypting the input in the
first round, coins rDi for partial decryption of the evaluated ciphertext for the second round, and
the secret shares of zero (s1

i , . . . , sni ).14 In addition, the internal state contains the messages Pi
received in the first round, including the values (ct1, . . . , ctn) and (si1, . . . , sin), and in the second
round (m1, . . . ,mn).

Simulating the communication Z: Every input value that S receives from Z is written on
A’s input tape. Likewise, every output value written by A on its output tape is copied to S’s own
output tape.

Simulating the threshold-PKI functionality Fthresh-pki: The simulator S computes (pk, td)←
TEFHE.GenEquiv(1κ, 1d), for every i ∈ [n] samples ski = (−si, 1)) with si ← Zn′−1

q (as per Defini-
tion 6.4), and gives (pk, ski) to A for every corrupted party Pi.

Simulating the first round: For every honest party Pi, compute cti ← TEFHE.Enc(pk, 0`in),
sample a secret sharing of zero (s1

i , . . . , sni ) (i.e.,
∑
j sji = 0 mod q), and send (sid, cti, sji ) to every

corrupted Pj . Next, the simulator receives from A the message (sid, ctj , sij) on behalf of every
corrupted party Pj and every honest party Pi, and reads from the special witness tape of the
semi-malicious adversary A the input and random coins (x′i, ri).

Sending input to the functionality Ffsfe-abort: In case the adversary aborted in the first round,
send (abort, sid) to the ideal functionality Ffsfe-abort. Otherwise, for every corrupted party Pi, send
the input value x′i to the ideal functionality Ffsfe-abort and receive back the output y. The simulator
does not release the output to the ideal (dummy) honest parties yet.

Simulating the second round: The simulator chooses an arbitrary honest party Ph1 . Let
ct1, . . . , ctn be the ciphertexts in the first round of the simulation, S homomorphically evaluates
the circuit as ct = TEFHE.Eval(pk, Cf , ct1, . . . , ctn), computes for every honest party Pi (except for
Ph1) the partial decryption pi = TEFHE.PartDec(i, ski, ct; rDi ), for uniformly random rDi , and for
Ph1 the simulator computes the simulated partial decryption ph1 ← Simtefhe(h1, ct, y, {skj}j 6=h1).

Next, for each honest party Pi (including Ph1), let (si1, . . . , sin) be the shares sent to Pi from
every corrupted party in the first round (by A), and were sampled to be sent to Pi from every other
honest party during the simulation (by S). The simulator S sets mi = pi +

∑
j sij mod q, gives

(sid,mi) to A, and receives messages from A on behalf of corrupted parties.
In case the adversary aborts in the second round, send (abort, sid) to the ideal functionality

Ffsfe-abort. Otherwise, release the output values to the ideal honest parties.

Simulating corruption requests of party Pi: The simulator S corrupts the dummy party P̃i
and continues as follows, depending on the timing of the corruption:

• Corruptions before the first round: In this case P̃i has not been activated with input
yet. S sets the contents of Pi’s random tape with uniformly random coins.

14The coin that determine (s1
i , . . . , sni ) can be, for example, an encoding of the first n− 1 elements (s1

i , . . . , sn−1
i )

that fully determine sni .
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• Corruptions after the first round and before the second round: In this case P̃i
has been activated with input (input, sid, xi), but did not receive output yet. S sets the
contents of Pi’s input tape to (input, sid, xi) and the contents of the random tape to rEi ←
TEFHE.Equiv(td, cti, xi) for the ciphertext cti that was used to simulate Pi’s message, and to
a uniformly random rDi (representing the random coins for the partial-decryption algorithm).
Finally, the secret shares of zero (s1

i , . . . , sni ) have already been set for Pi during the simulation.
Similarly, the messages received in the first round, i.e., (si1, . . . , sin) are set according to the
simulation both for corrupted parties (as received from A) and for honest parties (as simulated
by S).

• Corruptions after the second round: In this case P̃i has received the output. S computes
rEi ← TEFHE.Equiv(td, cti, xi) as in the previous case, but in order to set the random coins
of the partial decryption, S proceeds as follows. Let hk be the index of the recent party for
which the decryption share was simulated (i.e., hk with the largest k).

– If i 6= hk, i.e., the corrupted party is not the party that was used to simulate the threshold
decryption, then set the decryption coins rDi as the coins used in the simulation of the
second round. Set the shares of zero (s1

i , . . . , sni ) and the incoming messages (si1, . . . , sin)
according to the values set in the simulation.

– If i = hk, then sample uniformly random rDhk and compute the partial decryption
phk = TEFHE.PartDec(hk, skhk , ct; rDhk). Next, choose an arbitrary honest party Phk+1

and simulate the partial decryption as phk+1 ← Simtefhe(hk+1, ct, y, {skj}j 6=hk+1). Fi-
nally, the simulator needs to “adjust” the values for Phk and Phk+1 . In particular, it
must hold that:
1. mhk = phk +

∑
j shkj mod q.

2.
∑
j sjhk = 0 mod q.

3. mhk+1 = phk+1 +
∑
j shk+1
j mod q.

4.
∑
j sjhk+1

= 0 mod q.
The free variables the simulator can use (since they have not been released to the ad-
versary yet) are shk+1

hk+1
, shkhk , shk+1

hk
, and shkhk+1

. The simulator proceeds to solve these 4
equations with respect to the 4 variables mentioned above.

We now turn to show that no environment can distinguish between the simulation of S with
Ffsfe-abort and the execution of πallbutone with A by defining a series of hybrid games. The output of
each game is the output of the environment. Let Z be a PPT environment.

The game HYB1
πallbutone,A,Z . In this game, we modify the real-model experiment REALπallbutone,A,Z as

follows. In the second round, an arbitrary honest party Ph1 (e.g., the honest party Pi with smallest
index i) computes a simulated decryption share as ph1 ← Simtefhe(h1, ct, y, {skj}j 6=h1).

Upon a corruption request of some party Pi, let hk be the index of the recent party for
which the decryption share was simulated (i.e., hk with the largest k). If i = hk, then pro-
ceed to explain the state of Phk in the same way as done in the simulation, by computing
phk = TEFHE.PartDec(hk, skhk , ct; rDhk), choosing another honest party Phk+1 and simulating its
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partial decryption as phk+1 ← Simtefhe(hk+1, ct, y, {skj}j 6=hk+1). Finally, adjust shk+1
hk+1

, shkhk , shk+1
hk

,
and shkhk+1

by solving the four equations as done in the simulation.

Claim 6.7. REALπallbutone,A,Z
s≡ HYB1

πallbutone,A,Z .

Proof. This follows by the security of the threshold-decryption protocol of the TEFHE scheme.
Consider an adversary A, and environment Z, and a distinguisher D that can distinguish between
HYB1

πallbutone,A,Z and REALπallbutone,A,Z . Consider a mental experiment where a challenger computes
(pk, sk1, . . . , skn) ← TEFHE.Gen(1κ, 1d, 1n) and emulates the honest parties running the protocol
with A and Z (running using some random coins). Denote by h ∈ [n] an index of a party that
remained honest when Z produces output.

Now, consider an adversary A′ for the simulatability of partial decryption of the TEFHE scheme.
A′ is running either with ExptTEFHE-real

Π,A,pk,{ski}i∈[n],h,C
(κ) or with ExptTEFHE-ideal

Π,A,pk,{ski}i∈[n],h,C
(κ); initially, A′

receives (h, pk, {skj}j 6=h). It uses the same coins as the challenger above to emulate the protocol
toward A and Z, with the difference that A′ does not sample the threshold-PKI keys, but uses pk
and {skj}j 6=h. After the first round, A′ responds with the inputs values µ1, . . . , µ` and r1, . . . , r`
used in the execution and receives p̃h. Next, instead of simulating the decryption share of Ph as
TEFHE.PartDec(h, skh, ct), it uses the value p̃h. Finally, A′ invokes D on the output of Z; if D
returns HYB1 than A′ outputs ideal and if D returns REAL than A′ outputs real.

First, note that when running with ExptTEFHE-real
Π,A,pk,{ski}i∈[n],h,C

(κ), it holds that p̃h ←
TEFHE.PartDec(h, skh, ct) and A′ perfectly emulates the execution of A and Z in REALπallbutone,A,Z .
On the other hand, when running with ExptTEFHE-ideal

Π,A,pk,{ski}i∈[n],h,C
(κ), it holds that p̃h ←

Simtefhe(h, ct, µ, {skj}j 6=h) and A′ perfectly emulates the execution of A and Z in HYB1
πallbutone,A,Z .

The latter claim holds because simulated decryption shares of other corrupted parties remain per-
fectly hidden from A and Z due to the shares of zero, and are later replaced with genuine decryption
shares. Therefore, the distinguishing probability of A′ is the same as that of D, and by the assumed
security of the TEFHE scheme this distinguishing probability is negligible.

The game HYB2
πallbutone,A,Z . In this game, we modify the experiment HYB1

πallbutone,A,Z as follows.
Instead of computing (pk, sk1, . . . , skn) ← TEFHE.Gen(1κ, 1d, 1n), the threshold-PKI functionality
sets the secret-key’s shares by sampling for every i ∈ [n] the secret-key share si ← Zn′−1

q and
ski = (−si, 1) (where q is the prime specified in pk as per Definition 6.4), and gives (pk, ski) to
every party Pi.

Claim 6.8. HYB1
πallbutone,A,Z ≡ HYB2

πallbutone,A,Z .

Proof. By definition of special TEFHE (Definition 6.4), every secret-key share is of the form ski =
(−si, 1) where −si is identically distributed as uniform vectors in Zn′−1

q . Therefore, HYB1
πallbutone,A,Z

and HYB2
πallbutone,A,Z are identically distributed.

The game HYB3
πallbutone,A,Z . In this game, we modify the experiment HYB2

πallbutone,A,Z as follows.
Instead of computing (pk, sk′1, . . . , sk′n) ← TEFHE.Gen(1κ, 1d, 1n) and re-sampling si ← Zn′−1

q

and setting ski = (−si, 1), the threshold-PKI functionality sets the public key as (pk, td) ←
TEFHE.GenEquiv(1κ, 1d).

Claim 6.9. HYB2
πallbutone,A,Z

c≡ HYB3
πallbutone,A,Z .
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Proof. Given an adversaryA, an environment Z, and a distinguisherD that can distinguish between
HYB2

πallbutone,A,Z and HYB3
πallbutone,A,Z we construct a distinguisher D′ for the indistinguishability of

equivocal keys property of the TEFHE scheme (see Definition 6.1). D′ receives a public key pk as
input and runs an execution of HYB2

πallbutone,A,Z toward A and Z with the received public key pk.
That is, D′ chooses inputs x1, . . . , xn for all parties, gives pk as the public key of the threshold-
PKI, returns random secret-key shares upon corruption requests, encrypts the correct input xi for
honest parties and sends shares of zero in the first round, and simulates the decryption shares for
the second rounds and further corruption requests as explained in HYB1

πallbutone,A,Z . Next, D
′ invokes

D on the output of Z; if D outputs HYB2 then D′ outputs non-equivocal pk and if D outputs HYB3

then D′ outputs equivocal pk.
If pk is computed using TEFHE.Gen the execution is identically distributed as HYB2

πallbutone,A,Z ,
whereas in case pk is computed using TEFHE.GenEquiv the execution is identically distributed as
HYB3

πallbutone,A,Z . Therefore, the claim follows by the security of the TEFHE scheme.

The game HYB4
πallbutone,A,Z . In this game, we modify the experiment HYB3

πallbutone,A,Z as follows.
Instead of having each party encrypt its input as cti = TEFHE.Enc(pk, xi; rEi ), each party Pi
encrypts cti ← TEFHE.Enc(pk, 0`in) and computes rEi ← TEFHE.Equiv(td, cti, xi).

Claim 6.10. HYB3
πallbutone,A,Z

c≡ HYB4
πallbutone,A,Z .

Proof. Define a sequence of n + 1 hybrids, where the α’th hybrid, denoted HYB3,α
πallbutone,A,Z for

α ∈ [n+ 1], proceeds as HYB3
πallbutone,A,Z , for chosen inputs x1, . . . , xn, with the following difference:

When computing the encryption during the first round for party Pi with i < α, compute cti ←
TEFHE.Enc(pk, 0`in) and set the contents of the random tape to rEi ← TEFHE.Equiv(td, cti, xi); for
i ≥ α, sample random rEi and compute cti = TEFHE.Enc(pk, xi; rEi ).

The first hybrid is exactly an execution of HYB3, whereas the (n+ 1)’th hybrid is an execution
of HYB4. By the security of the TEFHE scheme it holds that every two neighboring hybrids are
computationally indistinguishable. Specifically, given an adversary A, an environment Z, and a dis-
tinguisher D that can distinguish between HYB3,α

πallbutone,A,Z and HYB3,α+1
πallbutone,A,Z (for some α ∈ [n]) we

construct a distinguisher D′ for the indistinguishability of equivocated randomness property. Upon
receiving (p̃k, c̃t, µ̃, r̃), D′ simulates an execution of HYB3 where the input of party Pi is set to be
xi = µ̃ with the following difference: For 1 ≤ i < α the ciphertext of an honest party Pi is computed
as cti ← TEFHE.Enc(pk, 0`in) and the encryption coins are set to be rEi ← TEFHE.Equiv(td, cti, xi);
for α < i ≤ n the encryption coins rEi are uniformly sampled and the ciphertext is computed as
cti = TEFHE.Enc(pk, xi; rEi ); and for i = α the ciphertext is set to be cti = c̃t and the encryption
coins to rEi = r̃. Next, D′ continues the simulation of HYB3 and finally outputs whatever D outputs.

In case (p̃k, c̃t, µ̃, r̃) is computed using TEFHE.Gen and TEFHE.Enc the execution is identically
distributed as HYB3,α

πallbutone,A,Z whereas in case (p̃k, c̃t, µ̃, r̃) is computed using TEFHE.GenEquiv and
TEFHE.Equiv the execution is identically distributed as HYB3,α+1

πallbutone,A,Z . Therefore, the claim follows
by the security of the TEFHE scheme via a standard hybrid argument.

The execution in HYB4 is exactly like the simulation done by S in the ideal model; therefore,
the theorem follows from Claims 6.7 to 6.10.
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6.3 Malicious Security

We now proceed to achieve security against malicious and adaptive adversaries. The underlying
idea is to compile the semi-malicious protocol from Section 6.2 (Figure 6) to provide malicious
security. Following the GMW paradigm, Asharov et al. [5, Thm. E.3] showed how to compile any
semi-maliciously secure protocol into a maliciously secure protocol in the ZK-hybrid model that
tolerates the same number of corruptions; using NIZK, their compiler does not increase the round
complexity. The compiler in [5] is analyzed in the static-corruption setting. We start by proving an
analogous result for the adaptive setting. We show how to compile a protocol tolerating an adaptive,
semi-malicious adversary that is defined over a broadcast channel, into a protocol tolerating an
adaptive, malicious adversary in the NIZK-hybrid model. The NIZK can be instantiated via the
protocol in [62], or with shorter proofs via the construction in Section 3.

6.3.1 Malicious Security from Semi-Malicious Security

We consider a semi-malicious protocol in the correlated-randomness hybrid model (looking ahead,
we will use the threshold-PKI model) represented by the next-message functions of the parties,
i.e., next-msgρi (xi, vi, ri,m1, . . . ,mρ−1) represents the next message function of party Pi in round ρ
taking the input value xi, correlated randomness vi, random coins ri, and transcript of prior rounds
m1, . . . ,mρ−1, where mj = (m1

j , . . . ,m
n
j ) are the messages broadcasted in round j. At the last

round of the protocol, next-msgRi returns the output value. We define the NP-relation Rnxtmsg
consisting of pairs (x,w) where the statement x = (m1, . . . ,mρ−1,m

i
ρ) and witness w = (xi, vi, ri)

satisfy mi
ρ = next-msgρi (xi, vi, ri,m1, . . . ,mρ−1).

Lemma 6.11 (semi-malicious to malicious security). Let f be an n-party function, let t < n,
and let πsm be an n-party protocol that UC-realizes Ffsfe-abort in the (Fbc,FDcorr-rand)-hybrid model
(for some distribution D) tolerating an adaptive, semi-malicious t-adversary. Then, the protocol
πmal = compsm-to-mal(πsm) (see Figure 7) UC-realizes Ffsfe-abort in the (Fbc,FDcorr-rand,F

Rnxtmsg
nizk )-hybrid

model tolerating an adaptive, malicious t-adversary.

Proof. Let Zmal be an environment running with protocol πmal and the dummy adversary Amal. We
will construct a semi-malicious environment Zsm running with protocol πsm and a dummy adversary
Asm. The environment Zsm starts by invoking Zmal on its inputs and proceeds as follows.

• When Zmal sends (input, sid, xi) to some honest party Pi, the environment Zsm forwards
the message to the relevant party, and whenever an honest party sends (output, sid, y), the
environment Zsm forwards the message to Zmal.

• In every round ρ′, the environment Zsm stores the message-vector mρ′ that were broadcasted
in the round ρ′. Once Zsm receives a message (sid,mi

ρ) in round ρ from honest party Pi (via
the adversary), it simulates Fnizk by sending (prove, sid, Pi, (m1, . . . ,mρ−1,m

i
ρ)) to Zmal and

receiving back (sid, (m1, . . . ,mρ−1,m
i
ρ),Πi

ρ). Next, Zsm sends (sid,mi
ρ,Πi

ρ) to Zmal.

• Once Zmal sends (sid,mi
ρ,Πi

ρ) on behalf of a corrupted party Pi, the environment Zsm sends
(verify, Pj , (m1, . . . ,mρ−1,m

i
ρ),Πi

ρ) to Zmal (for some honest Pj), and waits for the answer
(witness, (xi, vi, ri)). Next, Zsm verifies that mi

ρ = next-msgρi (xi, vi, ri,m1, . . . ,mρ−1). If the
witness satisfies the relation, then broadcast (sid,mi

ρ) on behalf of Pi in the protocol πsm and
write the witness (xi, vi, ri) on the special witness tape; otherwise, abort for Pi.
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• Whenever Zmal asks to corrupt an honest party Pi, the environment Zsm corrupts Pi, learns
his internal state, adds the calls to Fnizk with the witness (xi, vi, ri) and the proofs {Πρ

i } that
were used during the attack, and forwards the internal state to Zmal.

• Once Zmal output some value, Zsm outputs the same value and halts.

Protocol compsm-to-mal(π)

• Common Input: An R-round, semi-malicious protocol π, represented by the next-message
functions {next-msgρi (·)}i∈[n],ρ∈[R].

• Private input: Each party has a private input xi ∈ {0, 1}∗ and random coins ri ∈ {0, 1}∗.

• Hybrid model: The parties have access to the NIZK functionality FRnxtmsg
nizk , to the broadcast

functionality Fbc, and to a correlated-randomness functionality FDcorr-rand.

• The Protocol:

1. Upon receiving (input, sid, xi), party Pi invokes FDcorr-rand and gets back vi.

2. For every round ρ ∈ [R], party Pi proceeds as follows:

(a) Compute mi
ρ = next-msg(xi, vi, ri,m1, . . . ,mρ−1).

(b) Send the message (prove, sid, (m1, . . . ,mρ−1,m
i
ρ), (xi, vi, ri)) to FRnxtmsg

nizk and receive back
(proof, sid, (m1, . . . ,mρ−1,m

i
ρ),Πi

ρ).
(c) Broadcast the message (sid,mi

ρ,Πi
ρ).

(d) When receiving (sid,mj
ρ,Πj

ρ) from Pj (via Fbc), send (verify, sid, (m1, . . . ,mρ−1,m
j
ρ),Πj

ρ)
to FRnxtmsg

nizk and receive back (verification, sid, (m1, . . . ,mρ−1,m
j
ρ),Πj

ρ, b
j
ρ).

(e) If bjρ = 0 for some j ∈ [n], proceed as if the party aborted (i.e., sent ⊥).
(f) After receiving the message mj

ρ from Pj , for every j ∈ [n[, set mρ = (m1
ρ, . . . ,m

n
ρ ).

3. Compute y = next-msg(xi, vi, ri,m1, . . . ,mR) and output (output, sid, y).

Figure 7: Compiling semi-malicious security to malicious security

By the construction above, it holds that

REALπmal,Amal,Zmal ≡ REALπsm,Asm,Zsm .

By the security of πsm, there exists a simulator Ssm such that

IDEALFfsfe,Ssm,Zsm

c≡ REALπsm,Asm,Zsm .

We now turn to construct a simulator Smal using Ssm and Zsm. Whenever Smal receives a message
from the environment Zmal it emulates Zsm receiving the message and communicating with Ssm. if
Ssm sends a message to Ffsfe, then Smal sends the same message to the ideal functionality. If Smal
receives a message from Ffsfe, he forwards the message to Ssm. It follows by construction that

IDEALFfsfe,Ssm,Zsm
≡ IDEALFfsfe,Smal,Zmal

.
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From the above we conclude that

REALπmal,Amal,Zmal
c≡ IDEALFfsfe,Smal,Zmal

.

This concludes the proof of Lemma 6.11.

6.3.2 Malicious Security with Sublinear Communication

In Section 6.3.1, it is important that the semi-malicious protocol will be defined purely over a
broadcast channel; however, the protocol in Section 6.2 uses secure channels. To resolve this issue,
the secret shares of zero that were sent over secure point-to-point channels should be encrypted
and transmitted over the broadcast channel. As we consider adaptive corruptions, we need to use
non-committing encryption (see Appendix A.2.5) instead of standard public-key encryption, and
each non-committing public key should be used to encrypt n elements in Zq. We consider the
distribution of the NCE public keys as part of the threshold-PKI functionality.15 Alternatively, the
public keys can be exchanged at the cost of an additional communication round.

Theorem 6.12 (Theorem 1.4, restated). Assume the existence of special TEFHE schemes and
NCE schemes, let t < n, and let f : ({0, 1}`in)n → {0, 1}`out be an efficiently computable function
of depth d. Then, Ffsfe-abort can be UC-realized in the (Fthresh-pki,Fbc,Fnizk)-hybrid model, tolerating
an adaptive, malicious, PPT t-adversary, by a two-round protocol with communication complexity
poly(`in, `out, d, κ, n).

By instantiating the threshold-PKI functionality using an adaptively secure protocol, we get a
protocol that is defined in the CRS-hybrid model. Using the recent protocol of Benhamouda et al.
[13] we obtain the following corollary.

Corollary 6.13. Assume the existence of two-round adaptively secure OT in the CRS model,
and the additional assumptions in Theorem 6.12. Then, Ffsfe-abort can be UC-realized in the
(Fcrs,Fbc,Fnizk)-hybrid model, tolerating an adaptive, malicious PPT t-adversary, by a four-round
protocol with communication complexity poly(`in, `out, d, κ, n).

7 The Honest-Majority Setting
In this section, we show how to adjust the protocol from Section 6 that provides security with abort,
into guaranteeing output delivery in the honest-majority setting. Gordon et al. [60] constructed a
two-round protocol in the threshold-PKI model that guarantees output delivery assuming an honest
majority in the static-corruption setting and has sublinear communication complexity. We apply
some of the techniques from [60] on our adaptively secure protocol designed for the all-but-one
setting, and achieve a matching result tolerating adaptive corruptions.

In the all-but-one case (Section 6) the decryption key was shared using additive secret sharing.
As observed in [60], since the decryption of the GSW-based threshold FHE consists of linear oper-
ations, it is possible to use Shamir’s secret sharing [91] instead. The problem with a naïve use of
this idea is that when the partial decryptions are reconstructed, each decryption share is multiplied
by the Lagrange coefficient, and thus also the smudging noise. This will result in blowing up the

15Note that unlike the TEFHE keys, the NCE keys can only be used an a priori bounded number of times.
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noise and may end up with an incorrect decryption. Gordon et al. [60] overcame this problem by
having each party secret share (using Shamir’s scheme) its smudging noise in the first round of the
protocol, and parties added shares of the smudging noise of non-aborting parties in a way that is
compatible with the decryption algorithm.16

7.1 Cryptographic Primitives used in the Protocol

7.1.1 Threshold Secret Sharing Scheme

A key ingredient in the construction of the TEFHE scheme for the honest-majority setting is
Shamir’s (t + 1)-out-of-n secret sharing [91]. Given integers t < n and a prime q > n, Shamir’s
scheme consists of two algorithms.

• (s1, . . . , sn) ← Share(s) : to share a secret s ∈ Zq, choose a random polynomial p(x) over Zq
of degree t conditioned on p(0) = s, and set the shares as si = p(i) for every i ∈ [n].

• s′ = Recon({si}i∈S) : given shares {si}i∈S for some subset S ⊆ [n] of size |S| ≥ t+ 1, compute
s′ =

∑
j∈S Lj(0) · sj , where Lj(x) is the Lagrange polynomial with respect to the set S

Lj(x) =
∏

k∈S\{j}

x− k
j − k

.

Shamir’s secret sharing perfectly hides the secret given any subset of at most t shares, and, as
shown above, any subset of t + 1 shares enables an efficient reconstruction of the secret. For the
remaining of the section, we will consider t = dn/2e − 1.

In the proof of protocol we will use an additional property of Shamir’s scheme, which allows to
generate “new” shares for a “new” secret in a way that is compatible to less than t “old” shares.

• (s̃1, . . . , s̃n) ← Reshare(s, {si}i∈S): To re-share a secret s ∈ Zq given a set of shares {si}i∈S ,
where |S| ≤ t, choose a random polynomial p(x) over Zq of degree t conditioned on p(0) = s
and p(i) = si for i ∈ S, and set the new shares as s̃j = p(j) for every j ∈ [n].

7.1.2 Honest-Majority Threshold Equivocal FHE

In Section 6, the threshold FHE was defined using an n-out-of-n secret sharing of the decryption
key. We now adjust the definition of TEFHE to the honest-majority setting. The main adjustments
are using an n/2-out-of-n Shamir secret sharing of the decryption key, and separating the smudging
noise from the encryption and decryption algorithms so it is external to the scheme. We still require
though the ability to simulate the smudging noise in a similar way to Definition 6.3.

Definition 7.1. A special n/2-out-of-n TEFHE scheme is defined using the same syntax as in
Definition 6.3, with the following adjustments:

• The key-generation algorithm (pk, sk1, . . . , skn)← TEFHE.Gen(1κ, 1d, 1n) outputs a public key
pk that defines a prime q and a smudging-noise bound Bsmdg. In addition, the algorithm
outputs Shamir shares (sk1, . . . , skn)← Share(t) of a value t = (−s, 1), where s← Zn′−1

q for
some n′ = poly(κ, d).

16Recently, Boneh et al. [17] showed that this problem can be overcome in a different way, by using a special secret
sharing scheme that ensures the Lagrange coefficients are binary values.
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• The partial-decryption algorithm pi ← TEFHE.PartDec(i, ski, ct) operates by computing pi =
〈ct, ski〉 mod q.

• The final-decryption algorithm TEFHE.FinDec(pk, {pi}i∈S), for S ⊆ [n] of size n/2, executes
Shamir’s reconstruction, i.e., outputs Recon({pi}i∈S).

We require the following properties from a special n/2-out-of-n TEFHE scheme:

1. Correctness: Consider the FHE scheme that is defined by setting the decryption key sk =
Recon(sk1, . . . , skn), and where the decryption algorithm consists of choosing an arbitrary set
S ⊆ [n], sampling for every j ∈ S smudging noise ej ← [−Bsmdg, Bsmdg], and outputting
〈sk, ct〉 +

∑
j∈S ej . Then, this FHE scheme is a correct, compact, and secure equivocal FHE

scheme for circuits of depth d (according to Definition 6.1).

2. Simulatability of partial decryption: there exists a PPT simulator Simtefhe such that for
integers n, d, and `, and every circuit C : {0, 1}` → {0, 1} of depth d, every h ∈ [n], and
every (pk, sk1, . . . , skn) in the support of TEFHE.Gen(1κ, 1d, 1n), the following distributions
are statistically close:

ExptTEFHE-hm-real
Π,A,pk,{ski}i∈[n],h,C

(κ) ExptTEFHE-hm-ideal
Π,A,pk,{ski}i∈[n],h,C

(κ)

Output whatever A outputs
Send ph + eh to A
Sample eh ← [−Bsmdg, Bsmdg]
Compute ph ← TEFHE.PartDec(h, skh, ct)
Compute ct = TEFHE.Eval(pk, C, ct1, . . . , ct`)
∀j ∈ [`] compute ctj = TEFHE.Enc(pk, µj ; rj)
A sends µ1, . . . , µ` ∈ {0, 1} and r1, . . . , r` ∈ {0, 1}∗
Send (h, pk, {skj}j 6=h) to A

Output whatever A outputs
Send ph to A
Compute ph ← Simtefhe(h, ct, µ, {skj}j 6=h)
Compute µ = C(µ1, . . . , µ`)
Compute ct = TEFHE.Eval(pk, C, ct1, . . . , ct`)
∀j ∈ [`] compute ctj = TEFHE.Enc(pk, µj ; rj)
A sends µ1, . . . , µ` ∈ {0, 1} and r1, . . . , r` ∈ {0, 1}∗
Send (h, pk, {skj}j 6=h) to A

Lemma 7.2. Assuming LWE there exist special n/2-out-of-n TEFHE schemes.

Proof. The lemma follows from Lemma 6.2 by sharing the secret key sk using Shamir’s scheme,
defining the partial decryption as the inner product of the ciphertext and the share of the key,
and the final decryption as the Shamir’s reconstruction. Correctness follows by linearity of inner
product. Simulatability of partial decryption follows identically as in Section 6.1.2. We note that
the security of the scheme is not proven directly, but is combined with the security of the protocol
below.

7.2 Semi-Malicious Security

Theorem 7.3. Assume the existence of special n/2-out-of-n TEFHE schemes, let t < n/2, and
let f : ({0, 1}`in)n → {0, 1}`out be an efficiently computable function of depth d. Then, Protocol
πhm, defined in Figure 8, UC-realizes Ffsfe-god in the (Fthresh-pki,Fsmt)-hybrid model, tolerating an
adaptive, semi-malicious, PPT t-adversary, by a two-round protocol with communication complexity
poly(`in, `out, d, κ, n).
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Protocol πhm

• Private Input: Every party Pi, for i ∈ [n], has private input xi ∈ {0, 1}`in .

• Common Input: A special n/2-out-of-n TEFHE scheme Π and a circuit Cf of depth d.

• The Protocol:

1. Upon receiving (input, sid, xi), party Pi proceeds as follows:

(a) Invoke Fthresh-pki(Π, d) with (init, sid) to receive (sid, pk, ski). Let q be the prime associated
with pk and let Bsmdg the associated smudging-noise bound (as per Definition 7.1).

(b) Encrypt the input as cti ← TEFHE.Enc(pk, xi).
(c) Sample smudging noise ei ← [−Bsmdg, Bsmdg].
(d) Secret share ei using Shamir’s secret sharing as (si,1, . . . , si,n)← Share(ei).
(e) Send (sid, cti, si,j) to Pj over a secure channel (via Fsmt).

2. Denote by S1 the set of parties who sent an (sid, ·) message, party Pi proceeds as follows:

(a) Let Cf,S1 be the circuit Cf where for every j /∈ S1 a default input value is hard-wired.
(b) Compute ct = TEFHE.Eval(pk, Cf,S1 , {ctj}j∈S1).
(c) Partially decrypt the result as pi = TEFHE.PartDec(i, ski, ct).
(d) Set mi = pi +

∑
j∈S1

sj,i and send (sid,mi) to every party.

3. Denote by S2 the set of parties who sent an (sid, ·) message. Party Pi computes the final
decryption as y = TEFHE.FinDec(pk, {mj}j∈S2) and outputs (output, sid, y).

Figure 8: MPC with g.o.d. and semi-malicious security in the (Fthresh-pki,Fsmt)-hybrid model

Proof. We start by showing correctness. Denote by S1 the set of non-aborting parties in round 1,
then for every i ∈ S1 it holds that cti ← TEFHE.Enc(pk, xi) and (si,1, . . . , si,n) are Shamir
shares of ei; in addition, ct = TEFHE.Eval(pk, Cf,S1 , {ctj}j∈S1). Next, each party computes
pi = TEFHE.PartDec(i, ski, ct) and sends mi = pi +

∑
j∈S1 sj,i mod q. Denote by S2 the set of

non-aborting parties in round 1. By linearity of inner product, and since |S2| ≥ n/2 (due to the
honest-majority assumption), it holds that:

TEFHE.FinDec(pk, {mi}i∈S2
) = TEFHE.FinDec(pk, {pi +

∑
j∈S1

sj,i}i∈S2)

=
∑
i∈S2

Li(0) · (pi +
∑
j∈S1

sj,i)

=
∑
i∈S2

Li(0) · (〈ct, ski〉+
∑
j∈S1

sj,i)

= 〈ct,
∑
i∈S2

Li(0) · ski〉+
∑
j∈S1

∑
i∈S2

Li(0) · sj,i

= 〈ct, sk〉+
∑
j∈S1

ej .

By correctness of the special n/2-out-of-n TEFHE scheme, the decryption is correct and outputs
Cf,S1({xi}i∈S1

)
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We proceed to prove security of the protocol. Let A be an adaptive, semi-malicious adversary
attacking πhm in the (Fthresh-pki,Fsmt)-hybrid model. We will construct an ideal-process adversary
S, interacting with the ideal functionality Ffsfe-god and with ideal (dummy) parties P̃1, . . . , P̃n, such
that no environment can distinguish between S and A. The simulator S constructs virtual parties
P1, . . . , Pn, and runs the adversary A. Let Simtefhe be the simulator that is guaranteed to exist for
the TEFHE scheme Π.

Note that the internal state of a party Pi in the protocol consists of its input xi, the message
(pk, ski) from Fthresh-pki, the random coins that include coins rEi for encrypting the input in the first
round, coins rsmi for sampling the smudging noise ei, and its secret sharing (si,1, . . . , si,n) of ei.17

In addition, the internal state contains the messages Pi received in the first round, including the
values (ct1, . . . , ctn) and (s1,i, . . . , sn,i), and in the second round (m1, . . . ,mn).

Simulating the communication Z: Every input value that S receives from Z is written on
A’s input tape. Likewise, every output value written by A on its output tape is copied to S’s own
output tape.

Simulating the threshold-PKI functionality Fthresh-pki: The simulator S computes (pk, td)←
TEFHE.GenEquiv(1κ, 1d), samples s← Zn′−1

q (as per Definition 7.1), sets sk = t = (−s, 1), computes
Shamir shares (sk1, . . . , skn)← Share(sk), and gives (pk, ski) to A for every corrupted party Pi.

Simulating the first round: For every honest party Pi, compute cti ← TEFHE.Enc(pk, 0`in),
sample ei ← [−Bsmdg, Bsmdg], share it as (s(0)

i,1 , . . . , s
(0)
i,n)← Share(ei), and send (sid, cti, s(0)

i,j ) to every
corrupted Pj . Finally, the simulator receives from A the message (sid, ctj , s(0)

j,i ) on behalf of every
corrupted party Pj and every honest party Pi, and reads from the special witness tape of the
semi-malicious adversary A the input and random coins (x′i, ri).

Sending input to the functionality Ffsfe-god: On behalf of every aborting corrupted party, set
x′i to be the default input value (e.g., zero), and for every non-aborting corrupted party Pi set the
input value x′i as read from the witness tape. Send the input values {x′i} to the ideal functionality
Ffsfe-god and receive back the output y.

Simulating the second round: Let I be the set of currently corrupted parties, and let {ctj}j∈S1

be the ciphertexts of non-aborting parties in the first round of the simulation. S homomor-
phically evaluates the circuit as ct = TEFHE.Eval(pk, Cf,S1 , {ctj}j∈S1) and chooses an arbitrary
honest party Ph1 . For every honest party Pi with i 6= h1, S computes the partial decryp-
tion pi = TEFHE.PartDec(i, ski, ct), and for h1, S computes the simulated partial decryption
p̃h1 ← Simtefhe(h1, ct, y, {skj}j 6=h1) (recall that the simulated p̃h1 includes the smudging noise);
S re-shares the smudging noise eh1 to shares of zero as (s(1)

h1,1, . . . , s
(1)
h1,n

) ← Reshare(0, {s(0)
h1,j
}j∈I).

For every i 6= h1 and j set s(1)
i,j = s(0)

i,j (i.e., the shares sent to honest parties from corrupted parties
in the first round (by A), and were sampled (by S) to be sent by honest parties, except for Ph1).

17Without loss of generality, we can assume that (s1
i , . . . , sni ) fully determine the coins used to sample ei and to

share it.
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Finally, the simulator S sets mi = pi+
∑
j s(1)
j,i mod q, gives (sid,mi) to A, and receives messages

from A on behalf of corrupted parties.

Simulating corruption requests of party Pi: The simulator S corrupts the dummy party P̃i
and continues as follows, depending on the timing of the corruption:

• Corruptions before the first round: In this case P̃i has not been activated with input
yet. S sets the contents of Pi’s random tape with uniformly random coins.

• Corruptions after the first round and before the second round: In this case P̃i
has been activated with input (input, sid, xi), but did not receive output yet. S sets the
contents of Pi’s input tape to (input, sid, xi) and the contents of the random tape to rEi ←
TEFHE.Equiv(td, cti, xi) for the ciphertext cti that was used to simulate Pi’s message.

Finally, the secret shares of the smudging noise (s(0)
i,1 , . . . , s

(0)
i,n) have already been set for Pi

during the simulation. Similarly, the messages received in the first round, i.e., (s(0)
1,i , . . . , s

(0)
n,i)

are set according to the simulation both for corrupted parties (as received from A) and for
honest parties (as simulated by S).

• Corruptions after the second round: In this case P̃i has received the output. S computes
rEi ← TEFHE.Equiv(td, cti, xi) as in the previous case.
Let hk be the index of the recent honest party that was “chosen” during the simulation; in
particular, all of the secret shares are denoted as s(k)

i,j .

– If i 6= hk, i.e., the corrupted party is not the “chosen” honest party, then set the shares of
the smudging noise (s(k)

i,1 , . . . , s
(k)
i,n ), and the incoming messages (s(k)

1,i , . . . , s
(k)
n,i ) according

to the values set in the simulation.
– If i = hk, then the simulator needs to adjust the secret shares to be compatible with

the view of the adversary. Let I be the set of currently corrupted parties. To “fix” the
shares sent by Phk , the simulator computes phk = TEFHE.PartDec(hk, skhk , ct), samples
a new smudging noise e′hk ← [−Bsmdg, Bsmdg] and re-shares it as (s(k+1)

hk,1 , . . . , s(k+1)
hk,n

) ←
Reshare(e′hk , {s

(k)
hk,j
}j∈I).

Next, to “fix” the incoming shares, the simulator chooses another honest party Phk+1 ,
computes p̃hk+1 ← Simtefhe(hk+1, ct, y, {skj}j 6=hk+1), and “adjusts” the shares of Phk+1

to be shares of zero. In particular, it must hold that:
1. mhk = phk +

∑
j shkj mod q.

2.
∑
j sjhk = ehk mod q.

3. mhk+1 = p̃hk+1 +
∑
j shk+1
j mod q.

4.
∑
j sjhk+1

= 0 mod q.
The simulator can use the free variables (that have not been released to the adversary
yet) shk+1

hk+1
, shkhk , shk+1

hk
, and shkhk+1

. The simulator proceeds to solve these 4 equations with
respect to the 4 variables mentioned above.

We now turn to show that no environment can distinguish between the simulation of S with
Ffsfe-god and the execution of πhm with A by defining a series of hybrid games. The output of each
game is the output of the environment. Let Z be a PPT environment.
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The game HYB1
πhm,A,Z . In this game, we modify the real-model experiment REALπhm,A,Z as follows.

Denote the shares sent from party Pi to party Pj by s(0)
i,j . After the first round, once the output

value y is already determined by the inputs, an arbitrary honest party Ph1 (e.g., the honest party
Pi with smallest index i) replaces the smudging noise eh1 used for the first round (and the shares
(s(0)
h1,1, . . . , s

(0)
h1,n

)← Share(eh1)) as follows:
Let I be the set of currently corrupted parties. First, the simulated decryption share is com-

puted as p̃h1 ← Simtefhe(h1, ct, y, {skj}j 6=h1) (recall that the simulated p̃h1 includes the simu-
lated smudging noise). Next, set the shares of Ph1 to be shares of zero as (s(1)

h1,1, . . . , s
(1)
h1,n

) ←
Reshare(0, {s(0)

h1,j
}j∈I). For all other i, j, denote the shares s(1)

i,j = s(0)
i,j . The parties compute the

second-round messages using the “new” shares s(1)
i,j .

Upon a corruption request of party Pi, let hk be the index of the recent honest party that was
“chosen.” In particular, all of the secret shares are denoted as s(k)

i,j . If i 6= hk, then the state of Phk
is revealed to the adversary without any change. If i = hk, then proceed to explain the state of Phk
in the same way as done in the simulation, by adjusting the secret shares to be compatible with
the view of the adversary. Let I be the set of currently corrupted parties.

• To “fix” the state of Phk , compute phk = TEFHE.PartDec(hk, skhk , ct), sample a new smudging
noise e′hk ← [−Bsmdg, Bsmdg], and re-share it as (s(k+1)

hk,1 , . . . , s(k+1)
hk,n

)← Reshare(e′hk , {s
(k)
hk,j
}j∈I).

• To “fix” the incoming shares, choose another honest party Phk+1 , compute p̃hk+1 ←
Simtefhe(hk+1, ct, y, {skj}j 6=hk+1), and adjust s(k+1)

hk+1,hk+1
, s(k+1)
hk,hk

, s(k+1)
hk,hk+1

, and s(k+1)
hk+1,hk

by solv-
ing the four equations as done in the simulation.

• For all other values i, j set s(k+1)
i,j = s(k)

i,j .

Claim 7.4. REALπhm,A,Z
s≡ HYB1

πhm,A,Z .

Proof. This follows by the security of the threshold-decryption protocol of the TEFHE scheme
and by the honest-majority assumption. Consider an adversary A, and environment Z, and
a distinguisher D that can distinguish between HYB1

πhm,A,Z and REALπhm,A,Z . Consider a mental
experiment where a challenger computes (pk, sk1, . . . , skn) ← TEFHE.Gen(1κ, 1d, 1n) and emulates
the honest parties running the protocol with A and Z (running using some random coins). Denote
by h ∈ [n] an index of a party that remained honest when Z produces output.

Now, consider an adversary A′ for the simulatability of partial decryption of the
TEFHE scheme (Definition 7.1). A′ is running either with ExptTEFHE-hm-real

Π,A,pk,{ski}i∈[n],h,C
(κ) or with

ExptTEFHE-hm-ideal
Π,A,pk,{ski}i∈[n],h,C

(κ); initially, A′ receives (h, pk, {skj}j 6=h). It uses the same coins as the chal-
lenger above to emulate the protocol toward A and Z, with the difference that A′ does not sample
the threshold-PKI keys, but uses pk and {skj}j 6=h. After the first round, A′ responds with the
inputs values µ1, . . . , µ` and r1, . . . , r` used in the execution and receives p̃h. Next, instead of
simulating the decryption share of Ph as TEFHE.PartDec(h, skh, ct) and sampling and sharing the
smudging noise eh ← [−Bsmdg, Bsmdg], it sets the decryption share to the value p̃h, and prepares
shares of zero on behalf of Ph. Finally, A′ invokes D on the output of Z; if D returns HYB1 than
A′ outputs ideal and if D returns REAL than A′ outputs real.
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First, note that when running with ExptTEFHE-hm-real
Π,A,pk,{ski}i∈[n],h,C

(κ), it holds that p̃h ←
TEFHE.PartDec(h, skh, ct) + eh with eh ← [−Bsmdg, Bsmdg] and A′ perfectly emulates the execu-
tion of A and Z in REALπhm,A,Z . On the other hand, when running with ExptTEFHE-hm-ideal

Π,A,pk,{ski}i∈[n],h,C
(κ),

it holds that p̃h ← Simtefhe(h, ct, µ, {skj}j 6=h) and A′ perfectly emulates the execution of A and Z
in HYB1

πhm,A,Z . The latter claim holds because simulated decryption shares of other corrupted par-
ties remain perfectly hidden from A and Z, and are later replaced with genuine decryption shares.
Therefore, the distinguishing probability of A′ is the same as that of D, and by the assumed security
of the TEFHE scheme this distinguishing probability is negligible.

The game HYB2
πhm,A,Z . In this game, we modify the experiment HYB1

πhm,A,Z as follows. Instead
of computing (pk, sk1, . . . , skn) ← TEFHE.Gen(1κ, 1d, 1n), the threshold-PKI functionality sets the
secret-key’s shares by sampling for every i ∈ [n] the secret-key share s← Zn′−1

q (where q is the prime
specified in pk as per Definition 6.4) and sk = t = (−s, 1), computes (sk1, . . . , skn) ← Share(sk),
and gives (pk, ski) to every party Pi.

Claim 7.5. HYB1
πhm,A,Z ≡ HYB2

πhm,A,Z .

Proof. By definition of special n/2-out-of-n TEFHE scheme (Definition 7.1), the secret key if of
the form sk = t = (−s, 1) where s ← Zn′−1

q is uniform distributed, and (sk1, . . . , skn) are Shamir
shares of sk. Therefore, HYB1

πhm,A,Z and HYB2
πhm,A,Z are identically distributed.

The game HYB3
πhm,A,Z . In this game, we modify the experiment HYB2

πhm,A,Z as follows. In-
stead of computing (pk, sk1, . . . , skn) ← TEFHE.Gen(1κ, 1d, 1n) and re-sampling the key shares,
the threshold-PKI functionality sets the keys as (pk, td) ← TEFHE.GenEquiv(1κ, 1d) and samples
the secret key as before.

Claim 7.6. HYB2
πhm,A,Z

c≡ HYB3
πhm,A,Z .

Proof. Given an adversaryA, an environment Z, and a distinguisherD that can distinguish between
HYB2

πhm,A,Z and HYB3
πhm,A,Z we construct a distinguisher D′ for the indistinguishability of equivocal

keys property of the TEFHE scheme (see Definition 6.1). D′ receives a public key pk as input and
runs an execution of HYB2

πhm,A,Z towardA and Z with the received public key pk. That is, D′ chooses
inputs x1, . . . , xn for all parties, gives pk as the public key of the threshold-PKI, samples a random
secret-key and computes corresponding Shamir shares, encrypts the correct input xi for honest
parties and sends shares of the smudging noise in the first round, and simulates the decryption
shares for the second rounds and further corruption requests as explained in HYB1

πhm,A,Z . Next, D
′

invokes D on the output of Z; if D outputs HYB2 then D′ outputs non-equivocal pk and if D outputs
HYB3 then D′ outputs equivocal pk.

In case pk is computed using TEFHE.Gen the execution is identically distributed as HYB2
πhm,A,Z

whereas in case pk is computed using TEFHE.GenEquiv the execution is identically distributed as
HYB3

πhm,A,Z . Therefore, the claim follows by the security of the TEFHE scheme.

The game HYB4
πhm,A,Z . In this game, we modify the experiment HYB3

πhm,A,Z as follows. Instead
of having each party encrypt its input as cti = TEFHE.Enc(pk, xi; rEi ), each party Pi encrypts
cti ← TEFHE.Enc(pk, 0`in) and computes rEi ← TEFHE.Equiv(td, cti, xi).
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Claim 7.7. HYB3
πhm,A,Z

c≡ HYB4
πhm,A,Z .

Proof. Define a sequence of n+1 hybrids, where the α’th hybrid, denoted HYB3,α
πhm,A,Z for α ∈ [n+1],

proceeds as HYB3
πhm,A,Z , for chosen inputs x1, . . . , xn, with the following difference: When computing

the encryption during the first round for party Pi with i < α, compute cti ← TEFHE.Enc(pk, 0`in)
and set the contents of the random tape to rEi ← TEFHE.Equiv(td, cti, xi); for i ≥ α, sample random
rEi and compute cti = TEFHE.Enc(pk, xi; rEi ).

The first hybrid is exactly an execution of HYB3, whereas the (n+ 1)’th hybrid is an execution
of HYB4. By the security of the TEFHE scheme it holds that every two neighboring hybrids are
computationally indistinguishable. Specifically, given an adversary A, an environment Z, and a
distinguisher D that can distinguish between HYB3,α

πhm,A,Z and HYB3,α+1
πhm,A,Z (for some α ∈ [n]) we

construct a distinguisher D′ for the indistinguishability of equivocated randomness property. Upon
receiving (p̃k, c̃t, µ̃, r̃), D′ simulates an execution of HYB3 where the input of party Pi is set to be
xi = µ̃ with the following difference: For 1 ≤ i < α the ciphertext of an honest party Pi is computed
as cti ← TEFHE.Enc(pk, 0`in) and the encryption coins are set to be rEi ← TEFHE.Equiv(td, cti, xi);
for α < i ≤ n the encryption coins rEi are uniformly sampled and the ciphertext is computed as
cti = TEFHE.Enc(pk, xi; rEi ); and for i = α the ciphertext is set to be cti = c̃t and the encryption
coins to rEi = r̃. Next, D′ continues the simulation of HYB3 and finally outputs whatever D outputs.

In case (p̃k, c̃t, µ̃, r̃) is computed using TEFHE.Gen and TEFHE.Enc the execution is identically
distributed as HYB3,α

πhm,A,Z whereas in case (p̃k, c̃t, µ̃, r̃) is computed using TEFHE.GenEquiv and
TEFHE.Equiv the execution is identically distributed as HYB3,α+1

πhm,A,Z . Therefore, the claim follows
by the security of the TEFHE scheme via a standard hybrid argument.

The execution in HYB4 is exactly like the simulation done by S in the ideal model; therefore,
the theorem follows from Claims 7.4 to 7.7.

7.3 Malicious Security

We proceed to prove security against malicious and adaptive adversaries in an analog way to
Section 6.3, using the compiler from semi-malicious security to malicious security. Note that the
output of the compiled protocol is the output of the underlying, semi-maliciously secure protocol,
where malicious parties who cheat in their proofs are considered as aborting parties. Thus, if the
underlying protocol guarantees output delivery, so does the compiled protocol. As in the all-but-one
case, we require all communication to be sent over a broadcast channel; hence, the secret shares of
the smudging noise should be encrypted using non-committing encryption (see Appendix A.2.5).
We consider the distribution of the NCE public keys as part of the threshold-PKI functionality.

Theorem 7.8 (Theorem 1.5, restated). Assume the existence of special n/2-out-of-n TEFHE
schemes and of NCE schemes, let t < n/2, and let f : ({0, 1}`in)n → {0, 1}`out be an efficiently
computable function of depth d. Then, Ffsfe-god can be UC-realized in the (Fthresh-pki,Fbc,Fnizk)-
hybrid model, tolerating an adaptive, malicious PPT t-adversary, by a two-round protocol with
communication complexity poly(`in, `out, d, κ, n).

By instantiating the threshold-PKI functionality using the adaptively secure protocol of
Damgård and Ishai [42], we get a protocol that is defined in the plain model.
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Corollary 7.9. Consider the same assumptions as in Theorem 7.8. Then, Ffsfe-god can be UC-
realized in the (Fbc,Fnizk)-hybrid model, tolerating an adaptive, malicious PPT t-adversary, by a
constant-round protocol with communication complexity poly(`in, `out, d, κ, n).
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A Preliminaries (Cont’d)
In Appendix A.1, we define the LWE and adaptive LWE assumptions. In Appendix A.2, we formally
define the cryptographic primitives used in the paper.
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A.1 Cryptographic Assumptions

A.1.1 Learning With Errors

The decisional learning with errors (LWE) problem, introduced by Regev [88], is defined as follows.

Definition A.1 (decision LWE). Let n = n(κ) and q = q(κ) be integer parameters and χ = χ(κ)
be a distribution over Z. The learning with errors (LWE) assumption LWEn,q,χ states that for all
polynomials m = poly(κ) the following distributions are computationally indistinguishable:

(A, sTA + e) c≡ (A,u),

where A← Zn×mq , s← Znq , e← χm, and u← Zmq .

We rely on LWE security with the following range of parameters. We assume that for any
polynomial p = p(κ) = poly(κ) there exists some polynomial n = n(κ) = poly(κ), some q = q(κ) =
2poly(κ), and some B = B(κ)-bounded distribution χ = χ(κ) such that q/B ≥ 2p and the LWEn,q,χ
assumption holds. Throughout the paper, the LWE assumption without further specification refers
to the above parameters. The sub-exponentially secure LWE assumption further assumes that
LWEn,q,χ with the above parameters is sub-exponentially secure, meaning that there exists some
ε > 0 such that the distinguishing advantage of any polynomial-time distinguisher is 2−κε .

A.1.2 Adaptive Learning With Errors

Quach et al. [86] used the following natural variant of the LWE problem, denoted adaptive LWE.

Definition A.2 (decision ALWE). We define the decision adaptive LWE assumption ALWEn,k,q,χ
with parameter n, k, q ∈ Z and a distribution χ over Z which are all parametrized by the security
parameter κ. Let m = n · dlog qe. We let G ∈ Zn×m be the gadget matrix (as defined in [79], see
also Appendix C.1). For any polynomial m′ = m′(κ), we consider the following two games GAMEβ

for β ∈ {0, 1}, between a challenger and an adversary A.

• The Challenger picks k random matrices Ai ← Zn×mq for i ∈ [k], and sends them to A.

• A adaptively picks x1, . . . , xk ∈ {0, 1}, and sends it to the Challenger.

• The Challenger samples s← Znq and computes for all i ∈ [k]{
bi = sT (Ai − xi ·G) + ei where ei ← χm, if β = 0.
bi ← Zmq , if β = 1.

The Challenger also picks Ak+1 ← Zn×m′q and computes{
bk+1 = sTAk+1 + ek+1 where ek+1 ← χm

′
, if β = 0.

bk+1 ← Zm′q , if β = 1.

The challenger sends Ak+1 and {bi}i∈[k+1] to the adversary.

The ALWEn,k,q,χ assumption states that for all polynomial m = m(κ), the games GAME0 and GAME1

are computationally indistinguishable.
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A.2 Cryptographic Primitives

A.2.1 Laconic Function Evaluation

Quach et al. [86] introduced the notion of laconic function evaluation (LFE), and constructed an
LFE scheme for all circuits under the adaptive LWE assumption. At a high level, LFE allows to
“compress” a function into a short digest that enables encrypting the input to the function as a
short ciphertext. The size of the digest and the ciphertext (and therefore the computational cost
of the encryption algorithm) only depend on the depth of the circuit representing the function, and
are independent of the circuit size.

Quach et al. [86] considered another variant of LFE that is function-hiding, meaning that the
digest hides all partial information about the underlying function. Following [86], we assume that
the circuit class C associates every circuit C ∈ C with some circuit parameters C.params that
remain unhidden. Unless specified otherwise, we will consider C to be the class of all circuits with
C.params = (1`in , 1`out , 1d) consisting of the input size `in, output size `out, and the depth d of the
circuit.

Definition A.3 (LFE). A laconic function evaluation (LFE) scheme for a class of circuits C
consists of four algorithm Π = (LFE.crsGen, LFE.Compress, LFE.Enc, LFE.Dec).

• LFE.crsGen(1κ, params) → crs: given an input the security parameter and circuit parameters
params the CRS generation algorithm outputs a uniformly random common random string
crs.

• LFE.Compress(crs, C)→ digestC : given as input the common random string crs and a circuit
C ∈ C, the compression algorithm outputs a digest digestC .

• LFE.Enc(crs, digestC , x)→ ct: given as input the common random string crs, a digest digestC ,
and a message x, the encryption algorithm outputs a ciphertext ct.

• LFE.Dec(crs, C, r, ct) → y: given as input the common random string crs, a circuit C ∈ C,
the compression random coins r, and a ciphertext ct, the deterministic decryption algorithm
outputs a message y.

We require the following properties from an LFE scheme Π:

Correctness. For every security parameter κ, parameters params, and circuit C ∈ C with
C.params = params it holds that:

Pr

 y = C(x)

y = LFE.Dec(crs, C, r, ct)
ct← LFE.Enc(crs, digestC , x)

digestC = LFE.Compress(crs, C; r)
crs← LFE.crsGen(1κ, params)

 = 1.

Security. There exists a PPT simulator Simlfe for the scheme Π such that for every stateful PPT
adversary A, it holds that∣∣∣Pr

[
ExptLFE-real

Π,A (κ) = 1
]
− Pr

[
ExptLFE-ideal

Π,A (κ) = 1
]∣∣∣ ≤ negl(κ),

for the experiments ExptLFE-real and ExptLFE-ideal defined below:
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ExptLFE-real
Π,A (κ) ExptLFE-ideal

Π,A (κ)

Output A(ct)
ct← LFE.Enc(crs, digestC , x∗)
digestC = LFE.Compress(crs, C; r)

s.t. C ∈ C and C.params = params
x∗, C, r ← A(crs)
crs← LFE.crsGen(1κ, params)
params← A(1κ)

Output A(ct)
ct← Simlfe(crs, C, r, digestC , C(x∗))
digestC = LFE.Compress(crs, C; r)

s.t. C ∈ C and C.params = params
x∗, C, r ← A(crs)
crs← LFE.crsGen(1κ, params)
params← A(1κ)

(Statistical) Function-Hiding. An LFE scheme Π is function hiding if there exists a PPT
simulator Simfh for the scheme Π such that for all stateful PPT adversary A, it holds that∣∣∣Pr

[
ExptFH-real

Π,A (κ) = 1
]
− Pr

[
ExptFH-ideal

Π,A (κ) = 1
]∣∣∣ ≤ negl(κ),

for the experiments ExptFH-real and ExptFH-ideal defined below:

ExptFH-real
Π,A (κ) ExptFH-ideal

Π,A (κ)

Output A(digestC)
digestC ← LFE.Compress(crs, C)

s.t. C ∈ C and C.params = params
C ← A(crs)
crs← LFE.crsGen(1κ, params)
params← A(1κ)

Output A(digestC)
digestC ← Simfh(crs, C.params)

s.t. C ∈ C and C.params = params
C ← A(crs)
crs← LFE.crsGen(1κ, params)
params← A(1κ)

Compactness. Consider the class C of all circuits with C.params = (1`in , 1`out , 1d) consisting of
the input size `in, the output length `out, and the depth d of the circuit. We say the LFE scheme
is compact if

• The CRS is of size poly(κ, `in, d). The digest is of size poly(κ).

• The running time of the encryption algorithm and the size of its output (the ciphertext) are
Õ(`out) · poly(κ, `in, d).

• The running time of the compression and the decryption algorithms is Õ(|C|) · poly(κ, `in, d).

Theorem A.4 ([86]). Assuming sub-exponential hardness of LWE there exists a function-hiding
LFE scheme that is compact for circuits C with C.params = (1`in , 1`out , 1d) of depth d, input size `in,
and output size `out such that the CRS is a uniform random string. Further, if the function-hiding
property is not required, the compression algorithm LFE.Compress can be made deterministic.

A.2.2 Explainability Compiler

The notion of an explainability compiler was introduced by Dachman-Soled et al. [41] in the context
of adaptively secure MPC as an extension of the technique of Sahai and Waters [90] for constructing
sender-deniable encryption. At a high-level, the compiler can take any randomized algorithm Alg
and produce an algorithm Ãlg with the same functionality and has roughly the same size, along
with an Explain algorithm. For any input/output pair (x, y), the Explain algorithm can produce
coins r such that y = Ãlg(x; r). A similar notion was also used by Canetti et al. [27].

62



Definition A.5 (selective explainability compiler). A PPT algorithm Comp is an explainability
compiler with selective security for a circuit class C if for every efficient, randomized circuit Alg ∈ C,
the following hold:

• Polynomial slowdown. There is a polynomial p(·) such that, for any (Ãlg,Explain) output
by Comp(1κ,Alg) it holds that |Ãlg| ≤ p(κ) · |Alg|.

• Statistical functional equivalence. With overwhelming probability over the choice of
(Ãlg, ·) as output by Comp(1κ,Alg), the distribution of Ãlg(x) is statistically close to the dis-
tribution of Alg(x) for every input x.

• Explainability. For every stateful PPT adversary A it holds that∣∣∣Pr
[
ExptExplain-Static

Comp,Alg,A (κ) = 1
]∣∣∣ ≤ 1/2 + negl(κ),

for the experiment ExptExplain-Static defined below:

ExptExplain-Static
Comp,Alg,A (κ)

Output 1 if and only if b′ = b
Compute b′ ← A(Ãlg, y∗, rb)
Sample b← {0, 1}
Compute r1 ← Explain(x∗, y∗)
Compute y∗ = Ãlg(x∗; r0)
Sample r0 ← {0, 1}∗
(Ãlg,Explain)← Comp(1κ,Alg)
x∗ ← A(1κ)

Theorem A.6 ([41]). Assuming the existence of an indistinguishable obfuscator for P/poly and of
one-way functions, there exists an explainability compiler with selective security for P/poly.

The definition and construction in [41] achieve selective security in the sense that the adver-
sary must choose the challenge input x∗ before learning the compiled algorithm Ãlg. In some of
our constructions, it will be simpler to use explainability compilers with adaptive security, where
the adversary can choose the challenge input after seeing Ãlg. We denote the adaptive game as
ExptExplain-Adapt

Comp,Alg,A (κ). Adaptive security follows from selective security via complexity leveraging [16]
by assuming sub-exponential security of the cryptographic primitives.

ExptExplain-Adapt
Comp,Alg,A (κ)

Output 1 if and only if b′ = b
Compute b′ ← A(y∗, rb)
Sample b← {0, 1}
Compute r1 ← Explain(x∗, y∗)
Compute y∗ = Ãlg(x∗; r0)
Sample r0 ← {0, 1}∗
x∗ ← A(1κ, Ãlg)
(Ãlg,Explain)← Comp(1κ,Alg)

Corollary A.7. Assuming the existence of an indistinguishable obfuscator for P/poly and of one-
way functions, both with sub-exponential security, there exists an explainability compiler with adap-
tive security for P/poly.
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A.2.3 Homomorphic Trapdoor Functions

Homomorphic trapdoor functions (HTDFs) were introduced by [59] as a unification of homomorphic
encryption and homomorphic signatures.

Definition A.8 (HTDF [59]). A homomorphic trapdoor function (HTDF) consists of the follow-
ing five polynomial-time algorithms (HTDF.Gen, f,HTDF.Inv,HTDF.Evalin,HTDF.Evalout) with the
following syntax:

• HTDF.Gen(1κ, 1d)→ (pk, sk): given an input the security parameter and the depth-bound, the
key-generation procedure outputs a public key pk and a secret key sk. The security parameter
defines the index space X , the input space U , the output space V and some efficiently sam-
pleable input distribution DU over U . We require that membership in the sets U ,V,X can be
efficiently tested and that one can efficiently sample uniformly at random from V.

• fpk,x : U → V: the algorithm f is parametrized by a public key pk and an index x ∈ X .

• HTDF.Invsk,x : V → U : the algorithm HTDF.Inv is parametrized by a secret key pk and an
index x ∈ X .

• u∗ = HTDF.Evalin(g, (x1, u1), . . . , (x`, u`)) and v∗ = HTDF.Evalout(g, v1, . . . , v`) are determin-
istic input/output homomorphic-evaluation algorithms. The algorithms take as input some
function g : X ` → X and values xi ∈ X , ui ∈ U , vi ∈ V. The outputs are u∗ ∈ U and v∗ ∈ V.

We require the following properties from an HTDF scheme:

• Correctness. Let (pk, sk)← HTDF.Gen(1κ, 1d), let x1, . . . , x` ∈ X , let g : X ` → X of depth
at most d, and let y := g(x1, . . . , x`). Let u1, . . . , u` ∈ U and set vi := fpk,xi(ui) for i ∈ [`].
Let u∗ = HTDF.Evalin(g, (x1, u1), . . . , (x`, u`)) and let v∗ = HTDF.Evalout(g, v1, . . . , v`). Then,
we require that u∗ ∈ U and fpk,y(u∗) = v∗.

• Distributional equivalence of inversion. The following distributions are statistically
close:{

(pk, sk, x, u, v) | (pk, sk)← HTDF.Gen(1κ, 1d), x ∈ X , u← U , v = fpk,x(u)}κ
s≡{

(pk, sk, x, u′, v′) | (pk, sk)← HTDF.Gen(1κ, 1d), x ∈ X , v′ ← V, u′ = HTDF.Invsk,x(v′)
}
κ ,

where x ∈ X is an arbitrary random variable that depends on (pk, sk).

• Claw-free security. For every PPT adversary A, it holds that

Pr
[
u, u′ ∈ U , x, x′ ∈ X , x 6= x′

fpk,x(u) = fpk,x′(u′)
(x, x′, u, u′)← A(1κ, pk)

(pk, sk)← HTDF.Gen(1κ, 1d)
]
≤ negl(κ).

Theorem A.9 ([59]). Under the LWE assumption, there exists an HTDF scheme.
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A.2.4 Strong One-Time Signatures

Definition A.10 (strong one-time signatures). A strong one-time signatures scheme consists of
three polynomial-time algorithms (Sig.Gen,Sign,Vrfy) with the following syntax:

• Sig.Gen(1κ)→ (vk, sigk): given an input the security parameter, the key-generation procedure
outputs a public verification key vk and a secret signing key sigk.

• Signsigk(m) → σ: given an input a signing key sigk and a message m, the signing algorithm
outputs a signature σ.

• b = Vrfyvk(σ,m): given an input a verification key vk, a signature σ, and a message m, the
verification algorithm outputs a bit b ∈ {0, 1}.

We require the following properties from the signature scheme:

• (Perfect) correctness. For every message m ∈ {0, 1}∗, it holds that

Pr
[
Vrfyvk(σ,m) = 1 | (vk, sigk)← Sig.Gen(1κ), σ ← Signsigk(m)

]
= 1.

• Strong existential unforgeability under one-time chosen message attack. For every
PPT adversary A, it holds that

Pr

 Vrfyvk(σ′,m′) = 1
(m′, σ′) 6= (m,σ)

(m′, σ′)← A(σ)
σ ← Signsigk(m)
m← A(vk)

(vk, sigk)← Sig.Gen(1κ)
 ≤ negl(κ).

We will use a strong one-time signature scheme that has fixed-length signatures, i.e., where
there is a polynomial upper bound `SIG(κ) on the length of the signatures. Fixed-length strong one-
time signatures can be constructed from one-way functions (from universal one-way hash functions
[81] and Lamport signatures used in combination with Merkle trees [89]). The existence of fully
homomorphic trapdoor functions therefore implies the existence of fixed-length strong one-time
signatures.

A.2.5 Non-Committing Encryption

A non-committing encryption scheme [23, 9, 43] is a public-key encryption scheme with the capa-
bility to efficiently simulate a public key and a ciphertext that can be explained as an encryption
of any message.

Definition A.11 (NCE). A non-non-committing (bit) encryption scheme consists of four algorithms
(NC.Gen,NC.Enc,NC.Dec,NC.Sim) such that the following properties hold:

• The triplet (NC.Gen,NC.Enc,NC.Dec) forms a public-key encryption scheme.

• NC.Sim is a simulation algorithm that on input 1κ, outputs (pk, ct, ρ0
G, ρ

0
E , ρ

1
G, ρ

1
E), such that

for any µ ∈ {0, 1} the following distributions are computationally indistinguishable:
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– the joint view of an honest sender and an honest receiver in a normal encryption of µ

{(pk, ct, rG, rE) | (sk, pk) = NC.Gen(1κ; rG), ct = NC.Enc(pk, µ; rE)} ,

– the simulated view of an encryption of µ{
(pk, ct, ρµG, ρ

µ
E) | (pk, ct, ρ0

G, ρ
0
E , ρ

1
G, ρ

1
E)← NC.Sim(1κ)

}
.

NCE schemes exist under wide range of assumptions, including LWE [33, 84, 68, 69].

A.2.6 Fully Homomorphic Encryption

Definition A.12. A (leveled) fully homomorphic encryption scheme (FHE) consists of 4 PPT algo-
rithms:

• FHE.Gen(1κ, 1d) → (pk, sk): on input the security parameter κ and a depth bound d, the key
generation algorithm outputs a public key pk and a secret key sk.

• FHE.Enc(pk, µ) → ct: on input a public key pk and a plaintext µ ∈ {0, 1}, the encryption
algorithm outputs a ciphertext ct.

• FHE.Eval(pk, C, ct1, . . . , ct`) → ct: on input a public key pk, a circuit C : {0, 1}` → {0, 1},
and a tuple of ciphertexts (ct1, . . . , ct`), the homomorphic-evaluation algorithm outputs a ci-
phertext ct.

• FHE.Dec(sk, ct) → µ̃: on input a secret key sk and a ciphertext ct, the decryption algorithm
outputs µ̃ ∈ {0, 1}.

We require the FHE scheme to be correct, meaning that when initialized with depth bound d
the scheme correctly evaluates all circuits of depth at most d, and compact, meaning that the size
of the decryption circuit (and of the evaluated ciphertext) is independent of d.

Definition A.13. Let Π = (FHE.Gen,FHE.Enc,FHE.Dec,FHE.Eval) be an FHE scheme.

• Π is correct if for every depth bound d ∈ N+, every circuit C : {0, 1}` → {0, 1} of depth at
most d and every series of inputs µ1, . . . , µ` ∈ {0, 1} it holds that

Pr [FHE.Dec (sk,FHE.Eval (pk, C,FHE.Enc(pk, µ1), . . . ,FHE.Enc(pk, µ`))) 6= C (µ1, . . . , µ`)]
≤ negl(κ).

• Π is compact if there exists a polynomial s(·) such that for every κ, every depth bound d, every
circuit C : {0, 1}` → {0, 1} of depth at most d, and every µ1, . . . , µ` ∈ {0, 1}, the following
holds. For (pk, sk) ← FHE.Gen(1κ, 1d), ciphertexts ctj ← FHE.Enc(pk, µj) for j ∈ [`], and
ct← FHE.Eval(pk, C, ct1, . . . , ct`), we have that |ct| ≤ s(κ).

• Π is semantically secure if for every κ and every depth bound d, it holds that for every PPT
adversary A the following experiment Exptfhe

A,Π(1κ, 1d) outputs 1 with negligible probability.

Exptfhe
A,Π(1κ, 1d)

66



1. On input the security parameter 1κ and depth bound 1d, the challenger generates
(pk, sk) ← FHE.Gen(1κ, 1d), chooses a random b

R← {0, 1}, and computes the ciphertext
ct← FHE.Enc(pk, b). Next, the challenger hands (pk, ct) to A.

2. A outputs b′. The experiments outputs 1 if b = b′.

By abuse of notation, we consider in the paper encryption strings rather than bits. This should be
interpreted as encrypting the string bit by bit.

B The UC Framework
In this section, we describe the UC framework, for more details see [22].

B.1 The Real Model

An execution of a protocol π in the real model consists of n ppt interactive Turing machines (ITMs)
P1, . . . , Pn representing the parties, along with two additional ITMs: an adversary A, describing
the behavior of the corrupted parties and an environment Z, representing the external network
environment in which the protocol operates. The environment gives inputs to the honest parties,
receives their outputs, and can communicate with the adversary at any point during the execution.
The adversary controls the operations of the corrupted parties.

In more details, each ITM is initialized with the security parameter κ and random coins, where
the environment receives an additional auxiliary input. The protocol proceeds by a sequence of
activations, where the environment is activated first and at each point a single ITM is active. When
the environment is activated it can read the output tapes of all honest parties and of the adversary,
and it can activate one of the parties or the adversary by writing on its input tape. Once a party
is activated it can perform a local computation, write on its output tape or send messages to other
parties by writing on its outgoing communication tapes. After the party completes its operations
the control is returned to the environment. Once the adversary is activated it can send messages on
behalf of the corrupted parties or send a message to the environment by writing on its output tape.
In addition, A controls the communication between the parties, and so it can read the contents of
the messages on outgoing tapes of honest parties and write messages on their incoming tapes. We
assume that only messages that were sent in the past by some party can be delivered, and each
message can be delivered at most once.18 A can also corrupt an honest party, gain access to all
its tapes and control all its actions. Whenever a party is corrupted the environment is notified.
If A wrote on the incoming tape of an honest party, this party is activated next, otherwise the
environment is activated. The protocol completes once Z outputs a single bit.

A semi-honest adversary always instructs the corrupted parties to follow the protocol. A ma-
licious adversary may instruct the corrupted parties to deviate from the protocol arbitrarily. In
this work we also consider semi-malicious adversaries [5], that instruct the corrupted parties to
follow the protocol but can choose arbitrary random coins for them. Formally, the adversary has
a special witness tape. In each round of the protocol, whenever the adversary produces a new
protocol message m on behalf of some party Pk, it must also write to its special witness tape some

18We assume that all the communication is authenticated yet visible to the adversary; formally, we work in the
Fauth-hybrid model.
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pair (x, r) of input x and randomness r that explains its behavior. More specifically, all of the pro-
tocol messages sent by the adversary on behalf of Pk up to that point, including the new message
m, must exactly match the honest protocol specification for Pk when executed with input x and
randomness r. Note that the witnesses given in different rounds need not be consistent. Also, we
assume that the attacker is rushing and hence may choose the message m and the witness (x, r) in
each round adaptively, after seeing the protocol messages of the honest parties in that round (and
all prior rounds). Lastly, the adversary may also choose to abort the execution on behalf of Pk in
any step of the interaction.

Let REALπ,A,Z(κ, z, r) denote Z’s output on input z and security parameter κ, after in-
teracting with adversary A and parties P1, . . . , Pn running protocol π with random tapes
r = (r1, . . . , rn, rA, rZ) as described above. Let REALπ,A,Z(κ, z) denote the random variable
REALπ,A,Z(κ, z, r), when the vector r is uniformly chosen.

B.2 The Ideal Model

A computation in the ideal model consists of n dummy parties P1, . . . , Pn, an ideal-process adver-
sary (simulator) S, an environment Z, and an ideal functionality F . As in the real model, the
environment gives inputs to the honest (dummy) parties, receives their outputs, and can communi-
cate with the ideal-process adversary at any point during the execution. The dummy parties act as
channels between the environment and the ideal functionality, meaning that they send the inputs
received from Z to F and vice versa. The ideal functionality F defines the desired behavior of the
computation. F receives the inputs from the dummy parties, executes the desired computation
and sends the output to the parties. The ideal-process adversary does not see the communication
between the parties and the ideal functionality; however, S can communicate with F .

Hiding the communication between the ideal functionality and the parties from the adversary
may be too restrictive; it is often desired to provide the adversary the power to determine when a
party will receive the message. We say that the ideal functionality F sends a delayed output v to a
party P if F first sends to the adversary a message that it is ready to generate an output to P . In
case the output is public F sends v to the adversary. When the adversary replies to the message,
F outputs the value v to P .19

Let IDEALF ,S,Z(κ, z, r) denote Z’s output on input z and security parameter κ, after interacting
with ideal-process adversary S and dummy parties P1, . . . , Pn that interact with ideal functionality
F with random tapes r = (rS , rZ) as described above. Let IDEALF ,S,Z(κ, z) denote the random
variable IDEALF ,S,Z(κ, z, r), when the vector r is uniformly chosen.

Definition B.1. We say that a protocol π UC-realizes an ideal functionality F in the presence of
adaptive malicious (resp., semi-malicious) adversaries, if for any ppt adaptive malicious (resp.,
semi-malicious) adversary A and any ppt environment Z, there exists a ppt ideal-process adversary
S such that the following two distribution ensembles are computationally indistinguishable

{REALπ,A,Z (κ, z)}κ∈N,z∈{0,1}∗
c≡ {IDEALF ,S,Z (κ, z)}κ∈N,z∈{0,1}∗ .

19The ideal-process adversary may never release messages from the ideal functionality to the dummy parties and
so termination of the computation is not guaranteed. In order to rule out trivial protocols that never produce output,
we follow [24] and consider non-trivial protocols that have the following property: if the real-model adversary delivers
all messages and does not corrupt any parties, then the ideal-process adversary also delivers all messages and does
not corrupt any parties. We note that using techniques from [75] guaranteed termination can be enforced.
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B.3 The Hybrid Model

The F-hybrid model is a combination of the real and ideal models, it extends the real model with
an ideal functionality F . The parties communicate with each other in exactly the same way as
in the real model described above; however, they can interact with F as in the ideal model. An
important property of the UC framework is that the ideal functionality F in a F-hybrid model can
be replaced with a protocol that UC-realizes F .

Let the global output HYBRIDFπ,A,Z(κ, z) denote Z’s output on input z and security parameter
κ, after interacting in a F-hybrid model with adversary A and parties P1, . . . , Pn with uniformly
distributed random tapes r = (r1, . . . , rn, rA, rZ) running protocol π.

Theorem B.2 (Canetti [22]). Let F be an ideal functionality and let ρ be a protocol that UC-
realizes F in the presence of adaptive malicious (resp., semi-malicious) adversaries, and let π be
a protocol that UC-realizes G in the F-hybrid model in the presence of adaptive malicious (resp.,
semi-malicious) adversaries. Then for any ppt adaptive malicious (resp., semi-malicious) real-
model adversary A and any ppt environment Z, there exists a ppt adaptive malicious (resp.,
semi-malicious) adversary S in the F-hybrid model such that{

REALπρ,A,Z (κ, z)
}
κ∈N,z∈{0,1}∗

c≡
{

HYBRIDFπ,S,Z (κ, z)
}
κ∈N,z∈{0,1}∗

.

B.4 Some Ideal Functionalities

We next describe several ideal functionalities that are used throughout the paper.

B.4.1 Common Reference String

The common reference string functionality samples a string from some pre-determined distribution
and provides the string to all the parties. The CRS functionality is described in Figure 9.

Functionality FDcrs

FDcrs proceeds as follows, running with parties P1, . . . , Pn and an adversary S, and parametrized by a
distribution D.

• Upon receiving a message (init, sid) from party Pi, do:

1. If there is no value (sid, crs) recorded, then sample crs← D and record it.
2. Send (sid, crs) as a public delayed output to Pi.

Figure 9: The common reference string functionality

In case the distribution D is the uniform distribution, we refer to the functionality as a uniform
reference string functionality.

B.4.2 Secure Message Transmission

The secure message transmission (SMT) functionality models a secure and private channel between
two parties. The sender can send a message to the receiver such that the adversary learns only
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a specified leakage of the message, e.g., its length. If the sender is corrupted before the message
was delivered to the receiver, the adversary is allowed to change the message. The secure message
transmission functionality is described in Figure 10.

Functionality Fsmt

Fsmt proceeds as follows, running with a sender T , a receiver R and an adversary S.

• Upon receiving a message (send, T,R, sid,m) from T , send the message (sent, T,R, sid, |m|) to
S, generate a private delayed output (sent, T, sid,m) to R and halt.

• Upon receiving a message (corrupt, sid, P ) from S, where P ∈ {T,R}, disclose m to S. Next,
if S provides a value m′ and P = T , and no output has been written yet to R, then output
(sent, T, sid,m′) to R and halt.

Figure 10: The secure message transmission functionality

B.4.3 Secure Function Evaluation

Secure function evaluation (SFE) is a multiparty primitive where a set of n parties wish to compute
a (possibly randomized) function f : ({0, 1}∗)n×{0, 1}∗ → ({0, 1}∗)n, where f = (f1, . . . , fn). That
is, for a vector of inputs x = (x1, . . . , xn) ∈ ({0, 1}∗)n and random coins r ∈R {0, 1}∗, the output-
vector is (f1(x; r), . . . , fn(x; r)). The output for the i’th party (with input xi) is defined to be
fi(x; r). The secure function evaluation functionality, Ffsfe, is presented in Figure 11.

Functionality Ffsfe

Ffsfe proceeds as follows, running with parties P1, . . . , Pn and an adversary S, and parametrized by an
n-party function f : ({0, 1}∗)n × {0, 1}∗ → ({0, 1}∗)n. For every Pi initialize an input value xi = ⊥
and an output value yi = ⊥.

• Upon receiving a message (input, sid, v) from some party Pi, set xi = v and send a message
(input, sid, Pi, |v|) to S.

• Upon receiving a message (output, sid) from some party Pi, do:

1. If xj = ⊥ for some honest Pj , ignore the message.
2. Otherwise, if y1, . . . , yn have not been set yet, then choose r ∈R {0, 1}∗ and compute

(y1, . . . , yn) = f(x1, . . . , xn; r).
3. Generate a delayed output (output, sid, yi) to Pi and send (output, sid, Pi) to S.

Figure 11: The secure function evaluation functionality

Note that UC protocols do not provide guaranteed termination, since the adversary has full
control over the communication. Therefore, it is standard to claim about security in situations where
the environment provides sufficiently many activations to the parties, and the adversary delivers
all the messages (see [24] for further discussion). We would like to define UC analogs to security
with abort and guaranteed output delivery that are normally defined in the stand-alone model (see
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[36]). One way is to use the synchronous model of UC [75], where guaranteed termination can be
achieved independently of the adversary. Another way is to slightly adjust the Fsfe functionality,
as discussed below.

Note that the Fsfe functionality in some sense guarantee the output delivery, since although the
adversary has the power to “hang” the computation, he cannot force an honest party to output an
incorrect result. Stated differently, if the protocol terminates, i.e., the adversary provides inputs
and deliver the output then the protocol satisfies guaranteed output delivery. For clarity, we
denote this functionality by Fsfe-god. In the no-honest-majority setting, the adversary has an extra
capability, as he can force all parties to output ⊥ even when the protocol terminates. To capture
this capability, we denote by Fsfe-abort the Fsfe functionality that allows the adversary to send a
special (abort, sid) message at any time. In case some honest party has already received the output
value, the functionality ignores this message. Otherwise, the functionality sets the output of all
honest parties to ⊥.

B.4.4 Broadcast

The broadcast functionality enables a sender to reliably deliver a message to all other parties. If
the sender is corrupted before the message was delivered to the receivers, the adversary is allowed
to change the message. We model this functionality as a special case of the SFE functionality for
the function f(x, λ, . . . , λ) = (x, . . . , x) (where λ denotes the empty string).

C Constructing TEFHE From LWE
In this section, we present an explicit construction of threshold equivocal FHE scheme. we start by
describing in Appendix C.1 the GSW scheme, followed by its equivocal variant in Appendix C.2.
In Appendix C.3, we present the threshold equivocal FHE. Unlike the rest of the paper, in this
section we use n to denote the dimension of the lattice, and N to denote the number of parties.

C.1 GSW Fully Homomorphic Encryption

We now describe the GSW [56] fully homomorphic encryption scheme. We use in the construction
the public gadget matrix as defined by Micciancio and Peikert [79], which is a matrix G ∈ Zn×mq

with some special structure, such that given a matrix V ∈ Zn×mq everyone can compute a “short”
matrix G−1(V) ∈ Zm×mq satisfying G ·G−1(V) = V. The GSW scheme is defined as follows:

• params ← GSW.Setup(1κ, 1d): Choose a lattice dimension parameter n = n(κ, d), a Bχ-
bounded error distribution χ = χ(κ, d), and a modulus q of size q = Bχ2ω(dκ log κ) such that
LWEn−1,q,χ,Bχ holds. Choose m = n log(q) + ω(log κ). Finally, choose a random matrix
B ∈ Zn−1×m

q . Output params := (q, n,m, χ,Bχ,B). We stress that all the other algorithms
implicitly get params as input even if we usually do not write this explicitly.

• (pk, sk) ← GSW.Keygen(params): We separately describe two sub-algorithms to generate
secret-key and public-key, respectively:

– sk ← GSW.SKGen(params): Sample uniformly at random s ← Zn−1
q and output sk =

t = (−s, 1) ∈ Znq .
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– pk← GSW.PKGen(params, sk): Let sk = t = (−s, 1), sample e← χm, set b := s ·B+e ∈

Zmq and output pk = A where A ∈ Zn×mq is defined as A =
[

b
B
]
.

• ct ← GSW.Enc(pk, µ): Choose a short random matrix as the randomness R ← {0, 1}m×m.
Then, output the encryption of the message µ ∈ {0, 1} as C ∈ Zn×mq , defined as

C = AR + µG.

• µ′ = GSW.Dec(sk, ct): We decompose the decryption algorithm into two parts:

– v = GSW.Dec1(sk, ct): Let sk = t and ct = C. Consider the public vector w =
(0, . . . , 0, dq/2e) ∈ Znq and output v = t ·C ·G−1(wT ) ∈ Zq.

– µ′ = GSW.Dec2(v): Output µ′ =
∣∣∣⌊ v
q/2

⌉∣∣∣.
• GSW.Eval: We define the homomorphic evaluation by defining addition and multiplication.

Given ciphertexts C1,C2 ∈ Zn×mq , define:

– GSW.Add(C1,C2): Output C(+) = C1 + C2 ∈ Zn×mq .

– GSW.Mult(C1,C2): Output C(×) = C1 ·G−1(C2) ∈ Zn×mq .

Theorem C.1 ([56]). The scheme as defined above is a secure FHE scheme under the LWEn−1,q,χ,Bχ
assumption.

Proof (sketch). Semantic security of the scheme is proved in two steps. First, the public key
A is replaced with a uniformly random matrix A ← Zn×mq ; this step is secure under the LWE
assumption. Second, the ciphertext C = AR + µG is replaced with a uniformly random matrix
C ← Zn×mq ; this step is secure due to the leftover hash lemma. We refer the reader to [56] for
further details.

To prove correctness, we start by defining noisy ciphertexts.

Definition C.2. A β-noisy ciphertext of some message µ under secret key sk = t ∈ Znq is a matrix
C ∈ Zn×mq such that tC = µtG + e for some e satisfying ‖e‖∞ ≤ β.

We proceed to analyze the noise behavior of ciphertexts under encryption, evaluation, and decryp-
tion operation.

• Encryption. Consider a public key A and a secret key t generated by GSW.Keygen(1κ, 1d);
it holds that tA = e with ‖e‖∞ ≤ Bχ. Therefore, a ciphertext C = AR + µG ←
GSW.Enc(pk, µ) satisfies tC = eR + µtG with ‖eR‖∞ ≤ mBχ. That is, C is a mBχ-noisy
ciphertext of µ under secret key t. We denote βinit = mBχ.

• Addition. Let C1 (resp. C2) be a β1-noisy (resp. β2-noisy) ciphertext of µ1 (resp. µ2) under
secret key t, i.e., tCi = µitG+ei with ‖ei‖∞ ≤ βi for i ∈ {1, 2}. Then, for C(+) = C1 +C2 it
holds that tC(+) = (µ1 +µ2)tG+ e1 + e2, i.e., C(+) is a (β1 +β2)-noisy ciphertext of µ1 +µ2
under t.

72



• Multiplication. Let C1 and C2 as above. Then, for C(×) = C1G−1(C2) it holds that
tC(×) = µ1µ2tG + e where e = e1G−1(C2) + µ1e2. Therefore, ‖e‖∞ ≤ (mβ1 + β2), i.e.,
C(×) is a (mβ1 +β2)-noisy ciphertext of µ1µ2 under t. The same calculation holds for NAND
gates.

• Decryption. Let C be a β-noisy ciphertext of µ under t, i.e., tC = µtG+e with ‖e‖∞ ≤ β.
Then, tCG−1(wT ) = µ dq/2e + e′ with e′ = 〈e,G−1(wT )〉. it holds that |e′| ≤ mβ. The
decryption will be correct as long as |e′| ≤ q/4, i.e., as long as β ≤ q/(4m). We denote
βmax = q/(4m).

Consider a homomorphic evaluation of Boolean circuit of depth d consisting of NAND gates.
The inputs are encrypted as βinit-noisy ciphertexts, and each level multiplies the noise by a factor of
at most (m+ 1). Therefore, the final output is βfinal-noisy ciphertexts, where βfinal = (m+ 1)dβinit.
To ensure correctness of decryption, we require that βfinal ≤ βmax meaning Bχ4m2(m + 1)d < q
which is satisfied by the choice of parameters for the scheme.

C.2 GSW/GVW Equivocal Fully Homomorphic Encryption

We now describe the construction of the additional algorithms for the equivocal FHE scheme based
on the GSW FHE scheme, following [59].

Lemma C.3 ([1, 55, 2, 79]). There exist efficient algorithms TrapGen, SamPre, and Sam such that
the following holds. Given integers n ≥ 1 and q ≥ 2, there exists some m∗ = m∗(n, q) = O(n log q)
and βsam = βsam(n, q) = O(n

√
log q) such that for all m ≥ m∗ and all k (polynomial in n) it holds

that:

1. U ← Sam(1m, 1k, q) samples a matrix U ∈ Zm×kq which satisfies ‖U‖∞ ≤ βsam (with proba-
bility 1).

2. We have the statistical indistinguishability requirements:

A s≡ A′ and (A, td,U,V) s≡ (A, td,U′,V′),

where A is sampled as (A, td) ← TrapGen(1n, 1m, q) and A′ ← Zn×mq is uniformly random.
Likewise, U ← Sam(1m, 1k, q), V = AU, V′ ← Zn×kq is uniformly random, and U′ ←
SamPre(A,V′, td). The statistical distance is negligible in n. Moreover, we guarantee that
any U′ ∈ SamPre(A, V ′, td) always satisfies AU′ = V′ and ‖U′‖∞ ≤ βsam.

We proceed to define the additional algorithms for the equivocal FHE:

• (pk, td)← GSW.GenEquiv(params): Select (A, td)← TrapGen(1n, 1m, q) and set pk = A.

• GSW.Equiv(td, ct, µ): Let ct = C and output SamPre(A,C− µG, td).

C.3 Threshold Equivocal Fully Homomorphic Encryption

We proceed by adjusting the EFHE scheme to support threshold key-generation and decryption.

• TEFHE.Gen(1κ, 1d, 1N ) → (pk, sk1, . . . , skN ): Compute params ← GSW.Setup(1κ, 1d), set
(pk, sk) ← GSW.Keygen(params), and let (sk1, . . . , skN ) be a linear secret sharing of sk, i.e.,∑
i∈[N ] ski = sk mod q.
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• TEFHE.Enc(pk, µ)→ ct: Output GSW.Enc(pk, µ).

• TEFHE.Eval(pk, C, ct1, . . . , ct`)→ ct: Output GSW.Eval(pk, C, ct1, . . . , ct`).

• TEFHE.PartDec(i, ski, ct)→ pi: Output partial decryption pi = GSW.Dec1(ski, ct) + ei, where
ei ← [−Bsmdg, Bsmdg] is some random “smudging noise,” where Bsmdg = 2dκ log κBχ.

• TEFHE.FinDec(pk, {p1, . . . , pN})→ µ̃: Output GSW.Dec2(
∑N
i=1 pi).

• TEFHE.GenEquiv(1κ, 1d)→ (pk, td): Output GSW.GenEquiv(params).

• TEFHE.Equiv(td, ct, µ)→ r: Output GSW.Equiv(td, ct, µ).

We will use the following “smudging lemma” [5] to prove correctness of the threshold scheme.

Lemma C.4 ([5]). Let B1 = B1(κ) and B2 = B2(κ) be positive integers, and let e1 ∈ [−B1, B1] be
a fixed integer. Let e2 ← [−B2, B2] be chosen uniformly at random. Then, the distribution of e2 is
statistically indistinguishable from that of e2 + e1 as long as B1/B2 = negl(κ).

To prove correctness, we need to show that given a ciphertext matrix C, it holds that by
computing pi = GSW.Dec1(ski, ct) + ei for ei ← [−Bsmdg, Bsmdg] followed by GSW.Dec2(

∑N
i=1 pi),

we get the same result as computing v = GSW.Dec1(sk,C) followed by GSW.Dec2(v). Note that
by defining C1 = CG−1(wT ) ∈ Znq , it holds by linearity of inner product that:

N∑
i=1

pi =
N∑
i=1

(GSW.Dec1(ti,C) + ei) =
N∑
i=1

(tiCG−1(wT ) + ei) =
N∑
i=1

(tiC1 + ei)

=
N∑
i=1

(〈ti,C1〉+ ei) = 〈
N∑
i=1

ti,C1〉+
N∑
i=1

ei = 〈t,C1〉+
N∑
i=1

ei

= GSW.Dec1(t,C) +
N∑
i=1

ei.

To prove simulatability, we construct a simulator Simtefhe that receives as input the ciphertext
ct describing a matrix C ∈ Zn×mq , a plaintext µ ∈ {0, 1}, and the secret key of all parties but
the i’th {skj}j 6=i, where each skj is of the form tj = (sj , 1) ∈ Znq . The simulator starts by setting
C1 = CG−1(wT ) for w = (0, . . . , 0, dq/2e) ∈ Znq , and computing γj = 〈tj ,C1〉 for every j 6= i.
Next, sample smudging noise esmi ← [−Bsmdg, Bsmdg] and set

p′i = µ dq/2e+ esmi −
∑
j 6=i

γj .

To prove the statistical indistinguishability, note that by the same calculation as used to argue
correctness, we know that

∑
j∈[N ] γj = µ dq/2e + e′ with |e′| ≤ βfinalmN = 2O(d log κ)Bχ. Denote

that real partial decryption is pi = γi + esmi , then it holds that

pi = µ dq/2e+ esmi + e′ −
∑
j 6=i

γj .

The difference between the real value pi and the simulated value p′i is the noise e′ of norm |e′| =
2O(d log κ)Bχ. By Lemma C.4, the distributions esmi and esmi + e′ are statistically close since esmi ←
[−Bsmdg, Bsmdg] for Bsmdg = 2O(dκ log κ)Bχ, hence Bsmdg/|e′| ≥ 2κ.
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