
Game Theoretic Notions of Fairness in Multi-Party Coin Toss∗

Kai-Min Chung2, Yue Guo1, Wei-Kai Lin1, Rafael Pass1, and Elaine Shi1

1Cornell/CornellTech, {yueguo,wklin,rafael}@cs.cornell.edu, runting@gmail.com
2Academia Sinica, kmchung@iis.sinica.edu.tw

Abstract

Coin toss has been extensively studied in the cryptography literature, and the well-accepted
notion of fairness (henceforth called strong fairness) requires that a corrupt coalition cannot
cause non-negligible bias. It is well-understood that two-party coin toss is impossible if one
of the parties can prematurely abort; further, this impossibility generalizes to multiple parties
with a corrupt majority (even if the adversary is computationally bounded and fail-stop only).

Interestingly, the original proposal of (two-party) coin toss protocols by Blum in fact con-
sidered a weaker notion of fairness: imagine that the (randomized) transcript of the coin toss
protocol defines a winner among the two parties. Now Blum’s notion requires that a corrupt
party cannot bias the outcome in its favor (but self-sacrificing bias is allowed). Blum showed
that this weak notion is indeed attainable for two parties assuming the existence of one-way
functions.

In this paper, we ask a very natural question which, surprisingly, has been overlooked by the
cryptography literature: can we achieve Blum’s weak fairness notion in multi-party coin toss?
What is particularly interesting is whether this relaxation allows us to circumvent the corrupt
majority impossibility that pertains to strong fairness. Even more surprisingly, in answering this
question, we realize that it is not even understood how to define weak fairness for multi-party
coin toss. We propose several natural notions drawing inspirations from game theory, all of
which equate to Blum’s notion for the special case of two parties. We show, however, that for
multiple parties, these notions vary in strength and lead to different feasibility and infeasibility
results.

∗An extended abstract of this work appeared in TCC 2018.

Contents

1 Introduction 1
1.1 Our Results and Contributions . 1
1.2 Maximin Fairness . 2
1.3 Cooperative-Strategy-Proof Fairness . 4
1.4 Strong Nash Equilibrium . 4
1.5 Technical Highlight . 5

2 Preliminaries 6
2.1 Protocol Execution Model . 6
2.2 Corruption Models . 6
2.3 Additional Notations and Assumptions . 7

3 Definitions: Multi-Party Coin Toss 7
3.1 Multi-Party Coin Toss . 7
3.2 Discussions . 8
3.3 Strong Fairness . 8

4 Maximin Fairness: Feasibilities and Infeasibilities 8
4.1 Definition of Maximin Fairness . 8
4.2 The Case of Amply Divided Preference Profiles . 10
4.3 The Case for Almost Unanimous Preference Profiles 10
4.4 Informal Proof Roadmap for Theorem 7 . 11

4.4.1 Almost All Random Coins of a Lone Semi-Malicious 0-Supporter are Created
Equal . 11

4.4.2 The Lone-Wolf Condition and Wolf-Minion Conditions 12
4.4.3 Non-Blackbox Application of Cleve’s Lower Bound Conditioned on T2 12
4.4.4 Averaging over T2: A Wolf-Minion Attack with Benign Bias 13
4.4.5 Applying the Lone-Wolf Condition: A Wolf-Minion Attack with Harmful Bias 13

5 Cooperative-Strategy-Proof Fairness 14
5.1 Definition of Cooperative-Strategy-Proof Fairness . 14
5.2 Almost Unanimous Preference Profile . 15
5.3 Amply Divided Preference Profile . 17

6 Fairness by Strong Nash Equilibrium 18
6.1 Definition of Strong Nash Equilibrium (SNE) . 18
6.2 Feasibility Results for SNE Fairness . 19

7 The Case of Private Preference Profiles 20

8 Related Work 23

9 Conclusion 25

A Detailed Proofs for Maximin Fairness 28
A.1 The Case of Two Parties . 28
A.2 Proof of Claim 1 . 29
A.3 Equivalence to Group Maximin Fairness . 29
A.4 Impossibility for Malicious Adversaries and Almost Unanimous Preference Profiles . 29
A.5 Impossibility for Amply Divided Preference Profiles 37

B Additional Details for CSP Fairness 37
B.1 Preliminary: Publicly Verifiable Concurrent Non-Malleable Commitment 37
B.2 CSP Fairness For Almost Unanimous Preference Profiles 39
B.3 Impossibility for Amply Divided Preference Profiles 41

C Cooperative-Coalition-Proof Fairness 45
C.1 Generalized Execution Model for More Complex Coalition Structures 45
C.2 Protocol-Induced Games and Sub-games . 47
C.3 Cooperative-Coalition-Proof Fairness . 47
C.4 Equivalence of CCP and SNE for Coin Toss Protocols 48

D Another Natural Payoff Function 51
D.1 Maximin, Group Maximin, SNE, and CCP-Fairness 51
D.2 CSP Fairness . 51

1 Introduction

The study of coin toss protocols was initiated in Blum’s ground-breaking work [16]. Consider the
following scenario: Alice and Bob had concurrent and independent results that solved a difficult
open question in cryptography. Both submitted their papers to the prestigious Theory of Cryptog-
raphy Conference (TCC) 2018 conference with the most amazing program committee (PC). The
wise PC urged Alice and Bob to merge their results into one paper and provided them with a single
presentation slot at the conference. Now Alice and Bob would like to toss a random coin to decide
who goes to the most fabulous conference venue ever, Goa, and present the paper. Since Alice and
Bob are not in the same room, they would like to complete the coin toss by sending messages to
each other (slowly) over the Ethereum blockchain, such that anyone who observes the transcript
can determine the outcome of the coin flip. Now either party would like to make sure that he/she
has a fair chance of winning even when the other cheats and deviates from the protocol. The aca-
demic literature has since referred to Blum’s notion of fairness as weak fairness; and Blum showed
that assuming the existence of one-way functions a weakly-fair, 2-party coin toss protocol can be
constructed [16]. Interestingly, however, the vast majority of subsequent cryptography literature
has focused on a stronger notion of fairness than Blum’s, that is, a corrupt party cannot bias the
outcome of the coin toss — henceforth we refer to this notion as strong fairness [18]. It is not
difficult to see that a strongly fair coin toss protocol must also be weakly fair; but not the other
way round. In particular, a weakly fair protocol allows a corrupt party to bias the outcome of the
remaining honest party — but the bias must not be in the corrupt party’s favor. Unfortunately for
the strongly fair notion, Cleve’s celebrated result [18] proved its impossibility in a 2-party setting
even for computationally bounded, fail-stop adversaries.

In this paper, we consider multi-party extensions of Blum’s notion of weak fairness. We ask a
very natural question that seems to have been overlooked by the literature so far:

Can we achieve Blum’s weak fairness notion in multi-party coin toss protocols?

By contrast, the strong fairness notion has been extensively studied in the multi-party context [12,
27]. Well-known results tell us that the strong notion is attainable assuming honest majority and
existence of one-way functions. On the other hand, Cleve’s 2-party impossibility extends to multiple
parties with a corrupt majority [18]. Therefore, a more refined question is

Can we overcome Cleve’s impossibility for corrupt majority multi-party coin toss with weak
fairness?

Of course, to answer the above questions, we must first answer

How do we even define weak fairness in multi-party coin toss protocols?

Intriguingly, even the definition itself is non-trivial! In this paper, we propose several natural
notions of fairness that are inspired by the line of work on game theory [15,35,36,48]. Interestingly,
all of these notions equate to Blum’s notion for the special case of 2 parties; however, in general,
they differ in strengths for multiple parties and thus lead to differing feasibility and infeasibility
results.

1.1 Our Results and Contributions

Consider the following scenario: n parties would like to play a 1-bit roulette game over the Internet:
First, each party puts down 1 Ether as stake and places a publicly visible1 bet (also referred to as

1Unless otherwise noted, we consider public preference profiles. For completeness, however, we present results for
private preference profiles in the appendices, Section 7.

1

the party’s preference) on one of the bits b ∈ {0, 1}. Without loss of generality we assume that
not everyone bets on the same bit. Next, they run an n-party coin toss protocol by exchanging
messages over the Ethereum blockchain, and transcript of the protocol determines an outcome bit.
Now, those who betted correctly are called winners; and those who betted wrongly are called losers.
Finally, every loser loses its stake to the house (e.g., owner of the smart contract); and each winner
gets paid 1 Ether by the house. We require that in an honest execution, each bit is chosen with
probability 1/2. Henceforth in the paper for simplicity we shall think of the Ethereum blockchain
as a broadcast medium with identifiable abort, i.e., a public bulletin board that allows parties to
post messages.

How should we define fairness for this 1-bit roulette game? Cryptography and game theory
provide different answers. The standard notion from cryptography is again strong fairness [18],
that is, any corrupt coalition should not be able to bias the outcome by more than a negligible
amount. As mentioned strong fairness is unattainable under a corrupt majority even for fail-stop
adversaries [18]. Most of game theory, on the other hand, considers (computational) Nash Equilib-
rium [48], that is, no corrupt individual can noticeably improve its expected reward by deviating,
assuming that everyone else is playing honestly. Although Nash Equilibrium is indeed attainable
by adopting a standard, strongly fair multi-party coin toss protocol that tolerates deviation by any
single party [27], such a notion might be too weak. In particular, no guarantee is provided when
two or more parties collude (e.g., in cryptocurrency applications, an individual user can always
make up any number of pseudonyms and control the majority in a game). Therefore we would like
to explore notions in between that allow us to resist majority coalitions and provide meaningful
fairness guarantees in practical applications. In this paper, we define several notions of fairness —
all of them equate to Blum’s notion [16] for the special case of 2 parties. Thus for all of our notions,
in the 2-party case Blum’s result applies: assuming one-way functions, all notions are attainable
against malicious, computationally bounded adversaries that control one of the two parties; more-
over, for fail-stop adversaries, all our notions are attainable against even unbounded adversaries
that control one of the two parties.

Henceforth for our fairness notions, we are concerned about feasibility and infeasibility results
for 3 or more parties, and particularly for the case of corrupt majority (since for honest majority,
feasibility is known even for strong fairness, against malicious, computationally bounded adver-
saries, due to the celebrated result by Goldreich et al. [27]). As a final remark before we introduce
our notions, all our notions (as well as Blum’s notion) can be easily ruled out for computationally
unbounded, malicious adversaries [33,44].

1.2 Maximin Fairness

Definition. A natural notion, which seems to be a good fit for cryptocurrency applications,
is to require the following: an honest Alice should not be harmed even when everyone else is
colluding against her. In other words, any individual’s expected reward should not noticeably
decrease (relative to an all-honest execution) even when all others are colluding against her. This
notion has a game theoretic interpretation: the honest strategy maximizes a player’s worst-case
expected payoff (even when everyone else is colluding against her); and moreover, by playing honest,
the player’s worst-case expected payoff is not noticeably worse than an all-honest execution. For
maximin fairness, we present a complete characterization of feasibilities/infeasibilties.

Feasibility and infeasibility for almost unanimous preference profiles. For 3 or more
parties, if everyone agrees in preference except one party, we say that the preference profile is
almost unanimous. When the preference profile is almost unanimous, maximin fairness is possible

2

for fail-stop adversaries and without relying on cryptographic assumptions. Recall that a fail-
stop adversary may prematurely abort from the protocol but would otherwise follow the honest
protocol [18]. The corresponding protocol is very simple: without loss of generality assume that
one party prefers 0 (called the 0-supporter) and all others prefer 1 (called the 1-supporters). Now,
the 0-supporter chooses a random bit and broadcasts it. If the broadcast indeed happens, the bit
broadcast is declared as the outcome. Otherwise, the outcome is defined to be 1.

We then prove that for an almost unanimous preference profile, maximin fairness is impossible
for malicious adversaries even when allowing cryptographic assumptions. This result is somewhat
counter-intuitive in light of the earlier feasibility for fail-stop (and the proof rather non-trivial too).
In particular, in most of the cryptography literature, we are familiar with techniques that compile
fail-stop (or semi-honest) protocols to attain full, malicious security [12,27] — but these compilation
techniques do not preserve maximin fairness and thus are inapplicable here.

Note that for the special case of 3 parties, unless everyone has the same preference any pref-
erence profile is almost unanimous — thus for the case of 3 parties we already have a complete
characterization. For 4 or more parties, we need to consider the case when the preference profile is
more divided.

Infeasibility for amply divided preference profiles. If there are at least two 0-supporters and
at least two 1-supporters, we say that the parties have an amply divided preference profile. Note
that for 3 or more parties, unless everyone has the same preference, then every preference profile
is either almost unanimous or amply divided. For an amply divided preference profile, we show
infeasibility even against computationally bounded, fail-stop adversaries by reduction to Cleve’s
impossibility result for strong fairness [18].

We summarize our results for maximin fairness in the following theorems — although not
explicitly noted, all theorems are concerned about an adversary that may control up to n − 1
players.

Theorem 1 (Maximin fairness: upper bound (informal)). For any n ≥ 3 and any almost unani-
mous preference profile, there is an n-party coin toss protocol that achieves maximin fairness against
fail-stop and computationally unbounded adversaries.

Theorem 2 (Maximin fairness: lower bound (informal)). For any n ≥ 3 and any almost unanimous
preference profile, no n-party coin toss protocol can achieve maximin fairness against malicious and
even polynomially bounded adversaries. Further, for any n ≥ 4 and any amply divided preference
profile, no n-party coin toss protocol can achieve maximin fairness against fail-stop and even poly-
nomially bounded adversaries.

Summary. While maximin fairness appears to provide strong guarantees in cryptocurrency and
smart contract applications, we showed rather broad infeasibility results. Nonetheless it gives us
a glimpse of hope: for the case of almost unanimous preference profiles and fail-stop adversaries,
we are able to achieve positive results for corrupt majority while strong fairness cannot! We thus
continue to explore alternative notions in hope of finding one that leads to broader feasibility results.
Our high-level idea is the following: earlier, maximin fairness aims to rule out coalitions that harm
honest parties; instead we now consider notions that rule out coalitions capable of improving its
own wealth — this gives rise to two new notions, cooperative-strategy-proof fairness and Strong
Nash Equilibrium, as we discuss subsequently in Sections 1.3 and 1.4.

3

1.3 Cooperative-Strategy-Proof Fairness

Definition. Cooperative-strategy-proof (CSP) fairness requires that no deviation by a corrupt
coalition of size up to n − 1 can noticeably improve the coalition’s total expected reward relative
to an honest execution. It is not difficult to see that CSP fairness is equivalent to maximin fairness
for zero-sum cases: when exactly half prefer 0 and half prefer 1. However, the two notions are
incomparable in general.

Feasibility for almost unanimous preference profiles. When almost everyone prefers the
same bit except for one party, we show that the following simple protocol achieves CSP fairness
against malicious adversaries. For simplicity, our description below assumes an ideal commitment
functionality Fidealcomm — but this idealized oracle can be replaced with suitable non-malleable
concurrent commitment schemes [42,43] with some additional work. Without loss of generality we
assume that a single party prefers 0 and everyone else prefers 1: First, everyone picks a random bit
upfront and commits the bit to Fidealcomm. In round 0, the single 0-supporter opens its committed
bit and broadcasts it. In round 1, everyone else opens its committed bit and broadcasts the opening.
The outcome is defined to be 0 if one or more 1-supporter(s) aborted; else it is defined to be the
XOR of all bits that have been correctly opened.

Finally, for fail-stop adversaries, a variant of the above protocol without commitment can achieve
CSP fairness against even unbounded adversaries.

Infeasibility for amply divided preference profiles. For any amply divided preference profile,
we prove that it is impossible to achieve CSP fairness against even fail-stop, polynomially bounded
adversaries.

We summarize results for CSP fairness in the following theorem.

Theorem 3 (CSP fairness (informal)). For any almost unanimous preference profile, it is possible
to attain CSP fairness against fail-stop, unbounded adversaries, and against malicious, polynomially
bounded adversaries assuming one-way permutations. By contrast, for any amply divided prefer-
ence profile, it is impossible to attain CSP fairness against even fail-stop, polynomially bounded
adversaries.

1.4 Strong Nash Equilibrium

Due to earlier impossibility results for maximin fairness and CSP fairness, we ask if there is a notion
for which we can enjoy broad feasibility. To this end we consider a fairness notion inspired by Strong
Nash Equilibrium (SNE) [35], henceforth referred to as SNE fairness. SNE fairness requires that no
deviation by a coalition can improve every coalition member’s expected reward. It is not difficult
to see that for SNE fairness, we only need to resist unanimous coalitions, i.e., coalitions in which
every member prefers the same bit. Further, SNE fairness is also strictly weaker than CSP fairness
in general.

We show that a simple dueling protocol achieves SNE fairness against malicious (but polyno-
mially bounded) adversaries: pick two parties with opposing preferences (i.e., pick the two with
smallest possible party identifiers), and then have the two run Blum’s weak coin toss protocol.
Further, the computational assumptions can be removed for fail-stop adversaries and thus SNE
fairness can be guaranteed unconditionally for the fail-stop case. We summarize our results on
SNE fairness in the following theorem.

Theorem 4 (SNE fairness (informal)). For any n ≥ 3 and any preference profile: 1) there is
an n-party coin toss protocol that achieves SNE fairness against malicious, polynomially-bounded

4

adversaries assuming the existence of one-way permutations; and 2) there is an n-party coin toss
protocol that achieves SNE fairness against fail-stop, unbounded adversaries.

Alternative formulation: cooperative-coalition-proof fairness. While SNE fairness aims to
rule out coalitions that improve every coalition member’s wealth, an alternative notion would be
to resist self-enforcing coalitions that aim to improve the coalition’s overall wealth. In particular,
a coalition is said to be self-enforcing iff no self-enforcing sub-coalition can gain by deviating
from the coalition’s original strategy. Such coalitions are stable and will not implode due to
internally misaligned incentives. We formalize this notion in Section C, which we call cooperative-
coalition-proof fairness (CCP fairness). Since CCP fairness considers complex coalition and sub-
coalition behavior, we can no longer use the familiar protocol execution model used in the standard
cryptography literature — we instead propose a new, suitable protocol execution model that allows
us to characterize complex coalition structures. Our CCP fairness notion is inspired by the notion of
coalition-proof Nash equilibrium (CPNE) [15] in game theory — but unlike CPNE which considers
self-enforcing coalitions that seek to improve every member’s gain, our CCP notion considers self-
enforcing coalitions that seek to improve its overall gain, and thus our notion is stronger (i.e.,
demands stronger solution concepts).

Although for general games, SNE fairness and CCP fairness are incomparable, we prove that
for the special case of multi-party coin toss, the two notions are in fact equivalent! In this context
both notions effectively rule out unanimous coalitions where everyone prefers the same outcome.

1.5 Technical Highlight

Conceptual, definitional contributions. First, we make a conceptual contribution by introduc-
ing several natural, game-theoretical notions of fairness for multi-party coin toss — our work thus
opens a new avenue for connecting game theory and cryptography. Earlier efforts at connecting
game theory and multi-party computation typically model the correctness and/or confidentiality of
multi-party protocols as a game (see Section 8 for more discussions), whereas we consider a model
in which each party independently declares the utility for various outcomes.

A new framework for proving lower bounds. Our upper bounds are simple and intuitive in
hindsight (but note that several upper bounds were not immediately obvious to us in the beginning).
Our main lower bound results, however, are rather non-trivial to prove. The most non-trivial
proofs are 1) the impossibility of maximin fairness for almost unanimous preference profiles, against
malicious, computationally bounded adversaries; and 2) the impossibility of CSP fairness for amply
divided preference profiles, this time against fail-stop and computationally bounded adversaries.

We develop a new proof framework and apply this framework to rule out both maximin fairness
(for almost unanimous, malicious) and CSP fairness (for amply divided, fail-stop)2. In this proof
framework, we would carefully group nodes into three partitions such that we can view the execution
as a 3-party protocol (between the partitions). In both impossibility proofs, we show that the
requirements of maximin or CSP fairness imposes a set of conditions that are by nature self-
contradictory and thus cannot co-exist.

Since the lower bound proofs are highly non-trivial, to help the reader we give an informal
narrative of the maximin proof in Section 4.4. Then, in Section 5.3, we intuitively explain the
additional challenges that arise for ruling out CSP fairness (for amply divided, fail-stop) — this
proof is even more challenging than maximin fairness (for almost unanimous, malicious) partly

2Interestingly, later in Section 7, we again reuse the same proof framework to prove lower bounds for private-
preference protocols too.

5

because we need to rule out even fail-stop adversaries in this case. The full formal proofs are
deferred to the appendices due to lack of space.

2 Preliminaries

2.1 Protocol Execution Model

A protocol is a system of Interactive Turing Machines (ITMs) where each ITM is also referred to
as a party or a player. Each party is either honest or corrupt. Honest parties correctly follow the
protocol to the end without aborting. Corrupt parties, on the other hand, are controlled by an
adversary A. Corrupt parties forward all received messages to A and send messages or abort based
on A’s instructions. In this way, we can view the set of all corrupt parties as a single coalition that
collude with one another.

A protocol’s execution is parametrized by a security parameter κ ∈ N that is public known to
all parties including the adversary A. A protocol’s execution may be randomized where all parties
and the adversary A receive and consume a string of random bits.

We assume a round-based execution model. In each round, every honest party can perform
any polynomial in κ amount of computation. At the end of the round, every party may broadcast
a message whose length must be polynomial in κ as well. We assume a synchronous broadcast
medium (with identifiable abort) for parties to communicate with each other. Messages sent by
honest parties in round r will be delivered to all honest parties at the beginning of round r + 1.
If a party i aborts the protocol in round r without sending any message, then all honest parties
can detect such abort by detecting the absence of i’s message at the beginning of round r + 1. As
an example, one can imagine that parties communicate by posting messages to a public blockchain
such as Bitcoin [25,47,50,51]3.

2.2 Corruption Models

The adversary can corrupt any number of parties. Without loss of generality, we assume that for
any fixed adversary algorithm A, the set of parties it wants to corrupt is deterministically encoded
in the description of A (i.e., for any fixed adversary A, there is no randomness in the choice of the
corrupt coalition). We assume that the adversary is capable of a rushing attack4, i.e., in any round
r, the adversary is allowed to view messages sent by honest parties in round r, before deciding what
messages corrupt parties will send in round r.

Depending on the adversary’s capability, we say that the adversary is fail-stop or malicious.
More formally, let Π denote the honest protocol under consideration. An adversarial algorithm A
is said to be fail-stop or malicious w.r.t. Π iff the following holds:

• Fail-stop: Corrupt nodes always follow the honest protocol but may abort in the middle of the
protocol. The decision to abort (or not) can depend on the corrupt parties’ view in the protocol
so far.

• Malicious: The adversary can make corrupt parties deviate arbitrarily from the prescribed
protocol, including sending arbitrary messages, choosing randomness arbitrarily, and aborting
prematurely.
3Although a blockchain typically requires honest majority assumptions to retain security, the parties involved in

the coin-toss protocol can be majority corrupt.
4We note that in a simultaneous message model where the adversary is not capable of rushing attacks, even the

standard notion of (strong) fairness [18] (which is stronger than all notions considered in this paper) is trivial to
achieve for 2-party or multi-party coin toss, even against any majority corrupt coalition.

6

2.3 Additional Notations and Assumptions

Throughout the paper, we assume that the number of parties is polynomially bounded, i.e., n =
poly(κ) for some polynomial function poly(·). We consider protocols that terminate in polynomially
many rounds. Specifically, there exists some polynomial R(·) that denotes the round complexity of
the protocol, such that with probability 1, honest parties complete execution in R(κ) even in the
presence of any (possibly computationally unbounded) adversary controlling any corrupt coalition.

We say that a function ν(·) is a negligible function iff for every polynomial function p(·), there
exists some κ0 ∈ N such that ν(κ) ≤ 1/p(κ0) for all κ ≥ κ0.

3 Definitions: Multi-Party Coin Toss

As in the standard cryptography literature, we model protocol execution as a system of Interactive
Turing Machines. We consider a synchronous model with a broadcast medium. Messages broadcast
by honest parties in the current round are guaranteed to be delivered at the beginning of the next
round. We assume identifiable abort, that is, failure to send a message is publicly detectable.

We assume that the adversary, denoted A, can control any number of parties. Without loss of
generality, we assume that the set of parties A wants to corrupt is hard-wired in the description
of A. We assume a simultaneous messaging model with the possibility of rushing attacks, that is,
the adversary can observe honest nodes’ messages before deciding corrupt nodes’ actions (including
what messages to send and whether to abort) in any round.

Recall that a fail-stop party is one that could abort prematurely but would otherwise follow the
honest protocol. By contrast, a malicious party is one that can deviate arbitrarily from the honest
protocol.

3.1 Multi-Party Coin Toss

Preference profile. Suppose that each party starts with a preference among the two outcomes 0
and 1. The vector of all parties’ preferences, denoted P := {0, 1}n, is referred to as a preference
profile. We sometimes refer to a party that prefers 1 as a 1-supporter and we refer to one that
prefers 0 as a 0-supporter. In a preference profile P := {0, 1}n, if the number of 0-supporters and
the number of 1-supporters are the same, we say that P is balanced; else we say that it is unbalanced.

Unless otherwise noted, we assume that all parties’ preferences are predetermined and public.
We discuss the private-preference case in the appendices, Section 7.

Coin-toss protocol. Consider a protocol Π where n parties jointly decide an outcome between 0
and 1. Such a protocol Π is said to be a coin toss protocol, there is a polynomial-time computable
deterministic function, which, given the transcript of the protocol execution, outputs a bit b ∈ {0, 1},
often said to be the outcome of the protocol. For correctness, we require that an honest execution
outputs each bit with probability exactly 1

2 unless all parties have the same preference. More
formally, correctness requires that

1. If some parties have differing preferences, in an all-honest execution (when all parties are honest),
the probability that the outcome is 0 (or 1) is exactly5 1/2.

2. If all parties happen to prefer the same bit b ∈ {0, 1}, the honest execution should output the
preferred bit b with probability 1.

5Our upper bounds achieve perfect correctness, but our lower bounds in fact extend easily even when allowing
negligible correctness failure.

7

Payoff function. If the protocol’s outcome is b, a party who prefers b receive a reward (or payoff)
of 1; else it receives a reward (or payoff) of 0. Note that earlier in Section 1, our 1-bit roulette
example had a −1 utility (rather than 0) for losing, but the two definitions are in fact equivalent;
and for simplicity the remainder of the paper will assume 0 utility for losing.

3.2 Discussions

Trivial case: unanimous preference profile. When everyone has the same preference, we say
that the preference profile is unanimous; otherwise we say that it is divided. In this case, we do not
require that an honest execution produce an unbiased coin, since it makes sense for the outcome to
be the bit that is globally preferred. In the remainder of the paper, for the case of public preference:
if everyone prefers the same bit b ∈ {0, 1}, we assume that the protocol simply fixes the outcome to
be the universally preferred bit b regardless of how parties act. In this way, everyone obtains a payoff
of 1, and no deviation from the protocol can influence the outcome — therefore all game-theoretic
fairness notions we consider are trivially satisfied when the preference profile is unanimous.

On public verifiability. Our definition implies public verifiability of the coin toss’s outcome.
Anyone who can observe messages sent over the broadcast medium (e.g., a public blockchain) can
independently compute the outcome of the protocol. Note that under this definition, the outcome
of the protocol is well-defined even when all parties are corrupt. Alternatively, we can define a
weaker notion where we do not require such public verifiability — instead we require that honest
parties output a bit at the end of the execution, and that they output the same bit (said to be
the outcome of the execution) with probability 1 even in the presence of an arbitrary (possibly
unbounded) adversary that corrupts up to n − 1 parties. Under this weaker notion, the outcome
of an execution is not well-defined when all parties are corrupt. We note that all lower bounds in
this paper in fact apply to this weaker notion too (which makes the lower bounds stronger).

3.3 Strong Fairness

We quickly review the classical notion of strong fairness [18]. Roughly speaking, strong fairness
requires that the outcome of the coin toss protocol be unbiased even in the presence of an adversary
(assuming that parties have divided preferences). In the definition of strong fairness, we consider
a single adversarial coalition that corrupts up to n− 1 parties.

Definition 1 (Strong fairness [18]). Let A a family of adversaries that corrupt at most n − 1
parties. An n-party coin toss protocol is said to be strongly fair against the family A, iff for every
adversary A ∈ A, there exists a negligible function negl(·) such that (as long as not all parties have
the same preference) the probability that the outcome is 1 is within [12 − negl(κ), 12 + negl(κ)] when
playing with A.

4 Maximin Fairness: Feasibilities and Infeasibilities

4.1 Definition of Maximin Fairness

Maximin fairness requires that no honest party should be harmed by any corrupt coalition. In
other words, a corrupt coalition should not be able to (non-negligibly) decrease the expected payoff
for any honest party relative to an all-honest execution. In maximin fairness, we consider a single
adversarial coalition that controls up to n− 1 parties.

8

Definition 2 (Maximin fairness). Let A be a family of adversaries that corrupt up to n−1 parties;
and let P ∈ {0, 1}n denote any divided preference profile. We say that an n-party coin toss protocol
is maximin fair for P against the family A, iff for every adversary A ∈ A, there exists some negligible
function negl(·) such that in an execution with the preference profile P and the adversary A, the
expected reward for any honest party is at least 1

2−negl(κ). More specifically, we have the following
special cases:

• Computational maximin fairness. If A is the family of all non-uniform, probabilistic polynomial-
time (henceforth denoted p.p.t.) fail-stop (or malicious resp.) adversaries that can corrupt as
many as n − 1 parties, we say that the protocol is computationally maximin fair for P against
fail-stop (or malicious resp.) adversaries.

• Statistical maximin fairness. If A is the family of all fail-stop (or malicious resp.) adversaries
(including even computationally unbounded ones) that can corrupt as many as n − 1 parties,
we say that the protocol is statistically maximin fair for P against fail-stop (or malicious resp.)
adversaries.

• Perfect maximin fairness. If a protocol is statistically maximin fair against fail-stop (or malicious
resp.) adversaries, and moreover the above definition is satisfied with a choice of 0 for the
negligible function, we say that the protocol is perfectly maximin fair for P against fail-stop (or
malicious resp.) adversaries. A perfectly maximin fair protocol does not allow any single honest
party to have even negligibly small loss in its expected payoff in comparison with an all-honest
execution.

A straightforward observation is that classical strong fairness (Definition 1) implies maximin
fairness:

Fact 1. If an n-party coin toss protocol Π is strongly fair against a family of adversaries F , then
Π is maximin fair against F for any divided preference profile P ∈ {0, 1}n.

Sometimes we also say that a protocol is computationally (or statistically, perfectly resp.)
maximin fair for P against any fail-stop (or malicious resp.) coalition of size K — and this
means the most obvious where in the above definitions, the family of adversaries A we consider is
additionally restricted to corrupting exactly K parties.

Claim 1. Let P ∈ {0, 1}n be any divided preference profile. An n-party coin toss protocol Π
satisfies computational (or statistical, perfect resp.) maximin fairness for P against any fail-stop
(or malicious resp.) coalition, iff Π satisfies computational (or statistical, perfect resp.) maximin
fairness for P against any fail-stop (or malicious resp.) coalition of size exactly n− 1.

Proof. Deferred to Appendix A.2.

Game theoretic interpretation. If a coin-toss protocol is maximin fair, then the following hold:

1. First, the honest strategy maximizes a player’s worst-case expected payoff (even when everyone
else is colluding against the player); this explains the name “maximin fairness”.

2. Moreover, when playing the honest strategy, a player’s worst-case payoff is what it would have
gained in an all-honest execution — note that a player’s worst-case (expected) payoff obviously
cannot be more than its payoff in an all-honest execution.

Equivalence to group maximin fairness. An alternative way to define “no-harm to honest
parties” is to require that any corrupt coalition cannot decrease (by more than a negligible amount)

9

the expected overall wealth (i.e., total payoff) of the honest parties. We prove that this notion,
called group maximin fairness, is in fact equivalent to maximin fairness in the context of coin toss.
We defer the formal definition and proofs to Appendix A.3.

4.2 The Case of Amply Divided Preference Profiles

As mentioned, feasibility for 2 parties or multiple parties but honest majority are already implied
by existing literature [16,27]. Henceforth we focus on the case of three or more parties and corrupt
majority.

First, we consider amply divided preference profiles, where at least two people prefer 0 and
at least two prefer 1 respectively (and hence there must be at least 4 people). It is not too
difficult to rule out maximin fairness for amply divided preference profiles, even against fail-stop,
computationally bounded adversaries, leading to the following theorem.

Theorem 5 (Maximin fairness: amply divided preference profiles). For any n ≥ 4 and for any
amply divided preference profile P ∈ {0, 1}n, no n-party coin toss protocol can achieve even com-
putational maximin fairness for P against even fail-stop adversaries.

Proof. (sketch.) We show that if there is a maximin fair protocol for any amply divided preference
profile, we can construct a 2-party strongly fair coin toss protocol (and thus violating Cleve’s lower
bound [18]). The proof follows from a standard partitioning argument: consider two partitions, each
containing at least one 0-supporter and at least one 1-supporter. Now, we can view the protocol
as a two-party protocol between the two partitions, and by maximin fairness, if either partition
aborts, it must not create any non-negligible bias towards either direction. We defer the full proof
to Appendix A.5.

4.3 The Case for Almost Unanimous Preference Profiles

Possibility of perfect maximin fairness for fail-stop adversaries. First, we show that for
fail-stop adversaries, we can achieve perfect maximin-fairness for almost unanimous preference
profiles. Without loss of generality, assume that a single party prefers 0 and everyone else prefers
1. The following simple protocol can guarantee perfect maximin fairness:

1. In the first round, the single 0-supporter flips a random coin b and broadcasts b;

2. If the single 0-supporter successfully broadcast a message b, then the outcome is b; else the
outcome is 1.

It is not difficult to see that this simple protocol satisfies perfect maximin fairness against
fail-stop adversaries: all the 1-supporters do not take any actions and they do not influence the
outcome of the protocol. For the single 0-supporter, if it deviates (by aborting), then the outcome
will be 1 with probability 1, and all honest parties utility are guaranteed to be 1. Thus we derive
the following theorem:

Theorem 6 (Possibility of perfect maximin fairness for almost unanimous preferences and fail-stop
adversaries.). For any n ≥ 3, any almost unanimous preference profile P ∈ {0, 1}n, there exists an
n-party coin toss protocol that achieves perfect maxmin fairness for P against fail-stop adversaries.

Impossibility of computational maximin fairness for malicious adversaries. Next, we
show that maximin fairness is impossible to achieve for almost unanimous preference profiles against
malicious adversaries, even when allowing computational assumptions.

10

Theorem 7 (Impossibility of maximin fairness for almost unanimous preferences and malicious
adversaries). For n ≥ 3 and any almost unanimous preference profile P ∈ {0, 1}n, no n-party coin-
toss protocol Π can ensure computational maximin fairness for P against malicious adversaries.

4.4 Informal Proof Roadmap for Theorem 7

We in fact prove a stronger lower bound than stated in Theorem 7: we show that maximin fairness
is impossible for any almost unanimous preference profile (for 3 or more parties), even against
semi-malicious, polynomially bounded adversaries. In particular, a semi-malicious adversary can
1) choose corrupt parties’ random coins arbitrarily upfront, and 2) prematurely abort; but otherwise
it follows the honest protocol.

For simplicity, we focus on the case of 3 parties but the proof generalizes directly to more
parties. Suppose that the 3 parties are called P1, P2 and P3, and they come with the preferences
1, 0, and 1 respectively.

We now present an informal proof roadmap, deferring the formal proof to Appendix A.4. We
begin by assuming that a maximin fair protocol exists for 3 parties, resisting semi-malicious, com-
putationally bounded adversaries. Our proof will seek to reach a contradiction, effectively showing
that the various conditions imposed by maximin fairness cannot co-exist.

4.4.1 Almost All Random Coins of a Lone Semi-Malicious 0-Supporter are Created
Equal

By a direct application of maximin fairness, if the single 0-supporter is semi-malicious and allowed
to program his random coins, then he should not bias the remaining two parties towards 0. However,
perhaps somewhat surprisingly at first sight, we can prove a result that is much stronger, that the
single 0-supporter in fact (almost) cannot cause bias towards either direction by programming its
random coins!

Henceforth, we shall use the notations T1, T2, T3 to denote the three parties’ random coins, where
T2 belongs to the single 0-supporter P2. Consider an honest execution of the protocol conditioned
on the fact that the single 0-supporter has its randomness fixed to T2, and let f(T2) denote the
expected outcome (where the probability is taken over P1 and P3’s randomness). We prove the
following lemma stating that (except for a negligible fraction of choices), all choices of T2 are equal
if P2 is the lone semi-malicious party.

Lemma 1 (Almost all random coins of a lone semi-malicious P2 are created equal). Suppose that
the protocol under consideration satisfies computational maximin fairness against semi-malicious
adversaries. Then, there exists a negligible function negl(·) such that except for negl(κ) fraction of
T2’s, it must be that |f(T2)− 0.5| is a negligible function in κ.

Proof. (sketch.) We present a proof sketch: by maximin fairness, we know that for all T2’s, f(T2) ≥
0.5−negl(κ). Now, notice that ET2f(T2) = 1

2 by honest execution, i.e., the expected value of f(T2)
is 1

2 when averaging over T2. This means that if there is a non-negligible fraction of T2’s that
cause non-negligible bias towards 1, then there must be a non-negligible fraction of T2’s that cause
non-negligible bias towards 0 and the latter violates maximin fairness for a semi-malicious P2. The
formal proof is presented in Appendix A.4.

11

4.4.2 The Lone-Wolf Condition and Wolf-Minion Conditions

Henceforth, our general plan is to show that if the above T2-equality lemma holds, then the following
two conditions, implied by the definition of maximin fairness, cannot co-exist.

• Lone-wolf condition. When P1 (or P3) is the only fail-stop party, it cannot cause non-negligible
bias towards either direction. Such an attack is also called a lone-wolf attack.

• Wolf-minion condition. When P1 and P2 (or P2 and P3) form a fail-stop coalition, they cannot
cause non-negligible bias towards 0. In fact we only care about attacks where P2 is a silent
accomplice (called a minion [24]) that never aborts but shares information with P1 (or P3); and
P1 (or P3) may abort depending on its view in the execution (called a wolf [24]). Such attacks
are called wolf-minion attacks.

Note that both conditions above consider only fail-stop adversaries, and in fact in the entire
proof the only place we rely on a semi-malicious adversary is in the proof of the aforementioned
T2-equality lemma.

4.4.3 Non-Blackbox Application of Cleve’s Lower Bound Conditioned on T2

Recall that we assume that a maximin fair, 3-party protocol Π exists for the sake of reaching a
contradiction. Now consider an execution of this protocol when P2’s randomness is fixed to T2, and
further, assume that P2 never aborts and always follows the honest protocol to completion. We
now view this 3-party protocol as a 2-party protocol between P1 and P3, where P2’s randomness
T2 is public and hard-wired in P1 and P3’s program — more specifically both P1 and P3 would run
the 3-party protocol Π, and they each independently simulate the actions of P2 and compute all
messages that P2 wants to send.

Due to the T2-equality lemma, if P1 and P3 are honest, we know that the expected outcome
would be 1

2 for almost all T2’s. Now, in this 2-party protocol defined by a fixed T2 (that does not
belong to the negligible fraction of bad T2’s), Cleve [18] showed that there must exist a polynomial-
time attack by one of the parties, that causes non-negligible bias — but the bias can be either
towards 0 or 1. Unfortunately, the direct implication of Cleve’s lower bound is not quite so useful
for us: it shows that a semi-malicious P2 can collude with a fail-stop P1 (or P3) and cause bias for
the remaining honest party, that is P3 (or P1) — but unless this bias is towards 0, it does not lend
to a contradiction.

Our plan is the following: we will nonetheless apply Cleve’s impossibility, but in a non-blackbox
manner. First, we will show that for any fixed T2 (except for a negligible fraction of bad ones),
either P1 or P3 can bias towards 1 with an aborting attack. Specifically, we define a sequence of
adversaries like in Cleve’s proof, denoted {Abi(1κ, T2),Bbi(1κ, T2)}i∈[R],∪{A0(1

κ, T2)} where R is the

protocol’s round complexity. Adversaries Abi(1κ, T2), Bbi(1κ, T2), and A0(1
κ, T2) are defined when

P2’s randomness is fixed to T2:

• Adversary Abi(1κ, T2):

– Abi executes the honest protocol on behalf of P1 and P2 (whose randomness is fixed to T2)
until the moment right before P1 is going to broadcast its i-th message.

– At this moment, Abi computes αi, that is, imagine that P3 aborted right after sending its
(i− 1)-th message, what would be the outcome of parties P1 and P2.

– If αi = b, then P1 aborts after sending the i-th message; else P1 aborts right now without
sending the i-th message.

12

• Adversary Bbi(1κ, T2): The definition is symmetric to that ofAbi(1κ, T2) but now P3 is the fail-stop
party.

• Adversary A0(1
κ, T2): P1 aborts upfront prior to speaking at all.

Cleve [18] showed that one of these above adversaries must be able to cause non-negligible bias
towards either 0 or 1. However, due to the requirement of maximin fairness, we may conclude that
the bias must be towards 1 except for a negligible fraction of the T2’s. Suppose this is not the case,
i.e., the bias is towards 0 for a non-negligible fraction of the T2’s — then we could easily construct
an attack (for the 3-party protocol) where a semi-malicious P2 colluding with a fail-stop P1 (or P3)
can bias the remaining party towards 0 — in fact, in our formal proof later, we show that such an
attack is even possible with a fail-stop P1 and a silent accomplice P2 who just shares information
with P1 but would otherwise follow the protocol honestly (i.e., a wolf-minion attack). Proving this
stronger statement would require a little more effort — but looking forward, later we would like
to rule out CSP fairness for even fail-stop adversaries. There we have a similar agenda: 1) reprove
the T2-equality lemma but for fail-stop adversaries and CSP fairness, and 2) show that under the
T2-equality lemma, the lone-wolf condition and the wolf-minion condition cannot co-exist. Thus in
our formal proof later we will actually rely on a wolf-minion (fail-stop) attack to rule out the 0-bias
attack.

4.4.4 Averaging over T2: A Wolf-Minion Attack with Benign Bias

Next, we consider the above adversaries but now averaging over T2. In other words, let Abi(1κ) be
the following attacker: choose a random T2, consider the protocol execution with P2’s randomness

fixed to T2 and with the adversary Abi(1κ, T2). B
b
i(1

κ) and A0(1
κ) are similarly defined by averaging

over T2.

Now, we prove that among these adversaries {Abi(1κ),Bbi(1κ)}i∈[R] and A0(1
κ), one of them must

be able to bias the remaining party, either P1 or P3, towards 1. This proof follows in a somewhat
standard manner from an averaging argument and we defer the details to Appendix A.4. Note
that reflecting in the 3-party protocol, this corresponds to a wolf-minion attack that creates benign
bias: P1 (or P3) acts as a fail-stop wolf, and P2 acts as a silent accomplice (i.e., the minion) that
follows the honest protocol to completion but shares information with P1 (or P3). Although this
wolf-minion is able to create bias, the bias is benign and does not violate the definition of maximin
fairness. Thus to reach a contradiction, it still remains to show an attack that creates harmful bias.

4.4.5 Applying the Lone-Wolf Condition: A Wolf-Minion Attack with Harmful Bias

We now argue that if there is a wolf-minion attack that creates benign bias, there must be one that
creates harmful bias, assuming that the lone-wolf condition holds. To show this, we consider the
adversary that flips the decisions (to abort in the present or next round) of the benign wolf-minion

attack. Without loss of generality, assume that A1
i is the successful wolf-minion attack that creates

non-negligible bias towards 1. We now consider A0
i which flips A1

i ’s decision whether to abort in

round i or i + 1, and we argue that A0
i must create non-negligible bias towards 0. At a very high

level, the proof will show that the lone-wolf condition acts like a balancing condition.

Let Q be the set of sample paths (defined by choices of T1, T2, and T3) over which A1
i decides

to abort in round i, and let Q be the remaining sample paths. Now, consider a hybrid adversary

that takes A1
i ’s decisions on Q and takes A0

i ’s decisions on Q: in other words, P1 basically always

aborts in round i! Due to the lone-wolf condition, whatever average bias towards 1 A1
i has on Q,

13

A0
i must create almost the same bias towards 0 on Q. By a symmetric argument and considering

a lone wolf P1 that always aborts in round i+ 1, whatever average bias towards 1 A1
i has on Q, A0

i

must create almost the same bias towards 0 on Q. With this, it is not difficult to see that A0
i can

bias towards 0 (almost) as well as A1
i can bias towards 1.

5 Cooperative-Strategy-Proof Fairness

5.1 Definition of Cooperative-Strategy-Proof Fairness

In a cooperative strategy, a corrupt coalition deviates from the honest protocol in an attempt to
improve the coalition’s overall wealth (i.e., the total reward). Cooperative strategies naturally
arise in contexts where a corrupt coalition is allowed to have binding side contracts that allow
the coalition to redistribute (e.g., equally) the overall wealth among its members. If a protocol is
cooperative-strategy-proof fair (or CSP-fair), it intuitively means that any corrupt coalition should
not be able to improve its overall wealth by more than negligible amounts (if the remaining parties
are faithfully following the honest protocol).

Definition 3 (Cooperative-strategy-proof fairness or CSP-fairness). Let A be a family of adver-
saries that corrupt up to n − 1 parties and let P ∈ {0, 1}n denote any divided preference profile.
We say that an n-party coin toss protocol is cooperative-strategy-proof fair (or CSP-fair) for P
and against the family A, iff for any adversary A ∈ A, there exists some negligible function negl(·),
such that in an execution with the preference profile P and the adversary A, the expected total
reward for the set of corrupt parties (denoted C) is at most σ(C) +negl(κ) where σ(C) denotes the
expected total reward for all nodes in C in an all-honest execution.

Similar as before, now depending on the family A of adversaries that we are concerned about, we
can define computational, statistical, or perfect notions for cooperative-strategy-proof fairness, and
for fail-stop, semi-malicious, or malicious adversaries respectively. We omit the detailed definitions
for conciseness.

Remark 1 (The case of a global coalition for CSP-fairness). Unless otherwise noted, the definition
of CSP-fairness considers coalitions of size up to n− 1. One could alternatively define a variant of
CSP-fairness where the corrupt coalition can contain up to n parties, i.e., CSP-fairness is desired
even against a global coalition where everyone is corrupt. For any balanced preference profile, this
variant is equivalent to the definition where not all can be corrupt since the global coalition is
indifferent to either outcome. For any unbalanced preference profile, this variant where all can be
corrupt is a stronger notion — in fact, one could easily rule out feasibility against (even computa-
tionally bounded) semi-malicious adversaries due to the following argument. By correctness, there
must exist some joint randomness ~ρ of all parties, such that an honest execution fixing the random-
ness to ~ρ would lead to the outcome that is preferred by the global coalition. Now a semi-malicious
adversary can receive this ~ρ as advice and program the parties’ joint randomness to ~ρ. For fail-stop
adversaries, we will show that perfect CSP-fairness is possible for any almost unanimous preference
profile even when all parties can be corrupt (see Corollary 2).

For any balanced preference profile, if the corrupt coalition gains in terms of overall wealth (i.e.,
total payoff) then honest overall wealth must be harmed (relative to an honest execution in both
cases). Therefore, CSP-fairness is equivalent to maximin fairness for balanced preference profiles.
The following fact is therefore straightforward:

14

Fact 2 (Equivalence of maximin fairness and CSP fairness for balanced preference profiles). Let
A denote a family of adversaries that corrupt up to n − 1 parties and let P ∈ {0, 1}n denote any
balanced profile. Then, an n-party coin toss protocol Π is maximin fair for P against the family A
iff Π is CSP-fair for P against the family A.

For unbalanced preference profiles, however, the two notions are not equivalent (and this will
become obvious later in the paper).

As mentioned, for two parties, all our fairness notions equate to Blum’s weak fairness notion [16],
and therefore the results stated later in Appendix A.1 directly apply to CSP fairness too. In the
remainder of this section, we focus on three or more parties.

5.2 Almost Unanimous Preference Profile

Recall that we consider 3 or more parties, i.e., n ≥ 3.

Possibility of perfect CSP-fairness against semi-malicious adversaries. First, we show
that for almost unanimous preference profiles and any n ≥ 3, perfect CSP-fairness is possible
against any coalition of size up to n− 1.

Let P0, . . . , Pn−1 denote the n ≥ 3 players. Without loss of generality, suppose that P0 is the
single 0-supporter (i.e., prefers 0), and everyone else prefers 1 (all other cases are equivalent by
flipping the bit and renumbering players). Consider the following simple protocol denoted Πcsp.

1. In the first round, every party i where i ∈ [0, 1, . . . , n − 1] locally tosses a random coin bi.
Further, the single 0-supporter P0 reveals its coin b0.

2. In the second round, every 1-supporter (i.e., Pi where i 6= 0) reveals coin bi.

3. The outcome of the protocol is defined as follows: if any 1-supporter aborted without revealing
its bit, output 0. Else, output the XOR of all bits that have been revealed by the parties — note
that if P0 aborted without revealing its bit b0, then we simply do not include b0 in the XOR.

It is straightforward that under an honest execution, the expected outcome is 1
2 .

Theorem 8 (Possibility of perfect CSP-fairness against semi-malicious corruptions for almost
unanimous preference profiles). For any n ≥ 3, there is an n-party coin toss protocol that achieves
perfect CSP-fairness for any almost unanimous preference profile P ∈ {0, 1}n against the family of
all semi-malicious adversaries that control at most n− 1 parties.

Proof. We analyze the aforementioned protocol Πcsp by considering the following cases:

1. P0 is the lone corrupt party. In this case, all parties who prefer 1 are honest, and since P0

makes its decision to abort prior to seeing the remaining parties’ random bits, equivalently, we
can think of the remaining parties flip their random coins after P0 makes its decision whether
to abort. Thus, regardless of P0’s strategy, the expected outcome must be 1

2 .

2. P0 and a single 1-supporter are corrupt. In this case, the definition of CSP-fairness is
trivially satisfied since the corrupt coalition would obtain a payoff of exactly 1 no matter what
the outcome of the protocol is.

3. P0 is honest and one or more 1-supporters are corrupt. Let b := (b0, . . . , bn−1) denote
the random coin tosses of all the parties. For semi-malicious corruption, we can imagine that
each party Pi chooses bi and other randomness related to aborting decisions upfront prior to

15

protocol start — honest parties sample them at random and corrupt parties choose the random
strings arbitrarily. Let C denote the corrupt coalition and let −C denote its complement. We
consider an alternative adversary B that just receives bC := {bi}i∈C as advice but all corrupt
parties follow the protocol to the end — note that such a B needs to consume only bC and no
additional randomness. For any fixed bC , and for any fixed b−C , if playing with the adversary B
who never aborts, the outcome is 0, then playing with any adversary A (who might abort), the
outcome cannot be 1. Thus for every (bC ,b−C), no adversary A can obtain a higher outcome
than B. The proof follows by seeing that for B and for any fixed bC , the expected outcome
(averaging over honest parties’ random coin flips) is 1

2 .

4. P0 and at least two 1-supporters are corrupt. In this case it must be that n ≥ 4 since
if n = 3 all parties would be corrupt. Similar to the above case, here we can argue that for
every fixed (bC ,b−C) and P0’s decision whether to abort, the adversary B such that all other
corrupt corrupt (besides P0) execute to the end makes the outcome at least as high as any other
adversary A. Additionally, for B and for any fixed bC and P0’s decision whether to abort, the
expected outcome (averaging over honest parties’ random coin flips) is 1

2 .

Corollary 1. There is an 3-party coin toss protocol that achieves perfect CSP-fairness for any
divided preference profile against the family of all semi-malicious adversaries that control at most
n− 1 parties.

Proof. Note that for 3 parties, any divided preference profile must be almost unanimous. The
corollary now follows from Theorem 8.

We observe that for fail-stop adversaries, a variant of the aforementioned protocol Πcsp actually
achieves perfect CSP-fairness even when all parties can be corrupt: Suppose that only parties in
{P1, . . . , Pn−1} flip a random coin and publish the coin; and P0 does nothing. If any of these parties
abort, the outcome is defined to be 0; else the outcome is defined to be the XOR of all published
coins. We thus have the following corollary:

Corollary 2. For any n ≥ 3, there is an n-party coin toss protocol that achieves perfect CSP-
fairness for any almost unanimous preference profile P ∈ {0, 1}n against the family of all fail-stop
adversaries that control up to n parties.

Proof. If no 1-supporter is corrupt, then obviously the expected outcome is 1
2 . If at least one 1-

supporter is corrupt, then for every choice of the joint randomness of all 1-supporters, having any
1-supporter abort does no better for the adversary than having no 1-supporter abort.

Possibility of computational CSP-fairness against malicious adversaries. It is also easy to
see that for three or more parties, statistical CSP fairness is impossible against malicious adversaries
much as the 2-party case [33,44]. Therefore for malicious adversaries we have to make computational
assumptions.

For conceptual simplicity, we first describe our protocol assuming an idealized commitment
scheme — in Appendix B, we describe how to dispense with this idealized primitive and realize it
from concurrent non-malleable commitments that can be constructed one-way permutations. For
the time being, imagine that there is a special trusted party called Fidealcomm that has the following
interface:

16

• In the first round (i.e., the commitment round), if Fidealcomm receives (commit b) from some
party i, it tells everyone (committed, i).

• In any of the subsequent rounds (i.e., the opening rounds), if Fidealcomm receives open from any
party i who has committed bi in the first round, it tells everyone (open, i, bi).

We can now upgrade our semi-malicious protocol earlier to resist even malicious adversaries
(w.l.o.g. assume that there is a single 0-supporter and everyone else is a 1-supporter):

1. In round 0, everyone commits a bit to Fidealcomm;

2. In round 1, the single 0-supporter opens its commitment;

3. In round 2, everyone else opens;

4. If any 1-supporter aborted, the outcome is 0; else the outcome is the XOR of all bits that have
been opened.

Since the commitment round basically forces corrupt parties to commit to their randomness upfront;
it is easy to see that this new protocol is CSP-fair against malicious adversaries (for the same reason
why the earlier protocol is CSP-fair against semi-honest adversaries). Note that CSP fairness holds
even for unbounded adversaries assuming the Fidealcomm ideal functionality; but in Appendix B, we
show how to remove the Fidealcomm and replace it with concurrent non-malleable commitments [42],
the resulting protocol would secure only against computationally bounded adversaries as stated in
the following theorem.

Theorem 9 (Computational CSP fairness against malicious adversaries). Assume that one-way
permutations exist, then for any n ≥ 3, there exists an n-party protocol that achieves computational
CSP fairness for any almost unanimous preference profile P ∈ {0, 1}n against malicious coalitions
of size up to n− 1.

The proof is deferred to Appendix B.

5.3 Amply Divided Preference Profile

For n = 3, any divided preference profile must be almost unanimous. For n ≥ 4, we need to
consider amply divided preference profiles: i.e., at least two parties prefer 0 and at least two parties
prefer 1. We now show a strong impossibility for divided preference profiles, that is, for any divided
preference profile P, no n-party coin toss can achieve even computational CSP-fairness for P against
even fail-stop adversaries.

We note that for the special case of amply divided and balanced preference profiles, the impos-
sibility for CSP fairness is already implied by the impossibility of maximin fairness for the same
preference profiles (Theorem 5) — recall that the two notions are equivalent for balanced preference
profiles. However, this observation does not rule out the feasibility of CSP fairness for unbalanced
and amply divided preference profiles. Thus the following theorem is non-trivial even in light of
Theorem 5.

Theorem 10 (Impossibility of CSP-fairness for n ≥ 4). Let n ≥ 4, and let P ∈ {0, 1}n be any
amply divided preference profile. Then, no n-party coin-toss protocol can achieve even computational
CSP-fairness for P, against even fail-stop adversaries.

Proof roadmap. Although for balanced and amply divided preference profiles, the infeasibility
of CSP fairness is already implied by the infeasibility of maximin fairness for the same profiles

17

(since the two notions are equivalent for balanced preference profiles), here we would like to prove
impossibility for any amply divided preference profile, even unbalanced ones. At a very high level,
our approach is to group the parties into three partitions called P1, P2, and P3, such that we
can view the execution as a 3-party protocol. This partitioning is carefully crafted such that the
definition of CSP fairness would imply the T2-equality lemma, the lone-wolf condition, and the
wolf-minion conditions like in the impossibility proof for maximin fairness — and if this is the case,
the same proof would apply and rule out CSP fairness.

Among these conditions, the T2-equality lemma is the most challenging to prove. Specifically,
earlier we relied on maximin fairness against a semi-malicious P2 to prove the T2-equality lemma;
and here would like to prove the same lemma for CSP fairness but now against a fail-stop adversary6.
This seems almost counter-intuitive at first sight since at the surface, the T2-equality lemma is
stating that if a semi-malicious adversary were to program T2 to specific strings, almost for all
such strings it would not help. But now how can we prove it by relying on CSP fairness against
only fail-stop adversaries? In our formal proof later, we will show that for any two neighboring
T2 and T ′2 (except for a negligibly small bad fraction), it must be that |f(T2) − f(T ′2)| ≤ negl(κ),
where T2 and T ′2 are said to be neighboring iff they differ only in one party’s contribution of random
coins, and f(T2) is defined similarly as before, i.e., the expected outcome of an honest execution
conditioned on P2’s randomness being fixed to T2. Now if we can show this, we can then show,
through a hybrid argument, that |f(T2)−f(T ′2)| ≤ negl(κ) for any T2 and T ′2 (except for a negligibly
small bad fraction), and this would complete the proof.

Thus the challenge is to show |f(T2) − f(T ′2)| ≤ negl(κ) for almost all neighboring T2 and T ′2
pairs. To do this, suppose that T2 and T ′2 differ in the i-th player’s contribution where i ∈ P2 — our
intuition is to compare an honest execution involving T2 with the execution where the i-th player
aborts upfront (and P2’s randomness still fixed to T2). Let gi(T2) denote the expected outcome in
the latter execution. Through a somewhat non-trivial argument, we will prove that for almost all
T2s, it must be that |f(T2)− gi(T2)| ≤ negl(κ) — otherwise we can construct a fail-stop adversary
in control of P2, and this adversary, upon generating an honest random T2, emulates polynomially
many honest executions conditioned on T2 to estimate f(T2) and gi(T2) respectively, and informed
by the estimates, decide to either have i abort upfront or not. We prove that such an adversary
can cause non-negligible bias that improves P2’s overall wealth.

Similarly, for T ′2 that is almost identical as T2 but differing in the i-th coordinate, we also have
that |f(T ′2) − gi(T ′2)| ≤ negl(κ). Finally, the proof follows by observing that, if the i-th party
aborts upfront, then its random coins do not affect the expected outcome of the execution, i.e.,
gi(T2) = gi(T ′2).

We defer the full proof of this theorem to Appendix B.3.

6 Fairness by Strong Nash Equilibrium

6.1 Definition of Strong Nash Equilibrium (SNE)

Strong Nash Equilibrium (SNE) requires that no coalition, corrupting up to n parties, can notice-
ably (i.e., non-negligibly) increase the payoff of all members of the coalition. SNE is weaker than
the earlier CSP notion since the former only needs to resist a subset of the coalition strategies
that latter must resist — CSP must not only defend against coalition strategies that benefit all of

6Note that the T2-equality lemma does not even hold for maximin fairness against fail-stop adversaries since we
have an explicit construction for almost unanimous preference profiles and fail-stop.

18

its members, but also defend against strategies that benefit coalition members on average7. More
formally, we define SNE-fairness below.

Definition 4 (Strong Nash Equilibrium or SNE-fairness). Let A be a family of adversaries that
corrupt up to n parties and let P ∈ {0, 1}n be any divided preference profile. We say that an
n-party coin toss protocol is SNE-fair for P and against the family of adversaries A iff for any
A ∈ A, there exists a negligible function negl(·), such that in an execution with the preference
profile P and the adversary A, there is at least one corrupt party whose expected payoff is less
than 1

2 + negl(κ).

Note that the definition of SNE-fairness requires that the notion be satisfied even when all
parties are corrupt. Similar as before, depending on the family A of adversaries that we are
concerned about, we can define computational, statistical, or perfect notions for SNE-fairness, and
for fail-stop, semi-malicious, or malicious adversaries respectively. We omit the detailed definitions
for conciseness.

A coalition of parties is said to be unanimous iff every party in the coalition prefers the same
bit.

Fact 3. Let A be a family of adversaries corrupting up to n parties and let A′ ⊂ A be the (maximal)
subset of A that corrupts only unanimous coalitions8. Let P ∈ {0, 1}n be any divided preference
profile. Then, an n-party coin toss protocol Π is CSP-fair for P against the family A′ iff Π is
SNE-fair for P against the family A.

Proof. For any adversary A ∈ A that corrupts a coalition that has divided preferences, if the
coalition memebers that prefer 0 have expected payoff more than 1

2 , then those who prefer 1 must
have payoff at most 1

2 — thus SNE-fairness is trivially satisfied for divided coalitions. We therefore
conclude that a protocol Π to be SNE-fair for P against A, if and only if Π is SNE-fair for P against
those adversaries in A that control unanimous coalitions — and this latter notion is equivalent to
CSP-fair for unanimous coalitions, by observing the following: since P is divided, any adversary in
A that controls unanimous coalitions corrupts only up to n − 1 parties (recall that the definition
of CSP-fair considers adversaries that corrupts upto n− 1 parties).

6.2 Feasibility Results for SNE Fairness

We show that for any n ≥ 2, there is an n-party coin toss protocol that is computationally SNE-fair
for any divided preference profile P ∈ {0, 1}n against even malicious adversaries; further, there is an
n-party coin toss protocol that is perfectly SNE-fair for any divided preference profile P ∈ {0, 1}n
against semi-malicious adversaries. On the other hand, the impossibility of statistical SNE fairness
against malicious adversaries is implied in a straightforward fashion by known lower bounds [33,44].

Achieving perfect SNE-fairness against semi-malicious adversaries. Let n ≥ 3 and let
P ∈ {0, 1}n be a divided preference profile. We can consider a simple dueling protocol: pick two
people with opposing preferences (i.e., the ones with the smallest party identifiers) and have them
play the simple 2-party protocol: each party picks a random bit upfront and both broadcast their
bit in the first round. Normally the outcome is the XOR of the two bits but if one party aborts,
the outcome is the other party’s preference.

7Since SNE only needs to defend against unanimous coalitions by Fact 3, for any divided preference profile we in
fact only need to consider coalitions of size n− 1 rather than n.

8Recall that we assume that the choice of corrupt parties is hard-wired in an adversary’s algorithm.

19

Theorem 11 (Perfect SNE-fairness against semi-malicious adversaries). For any n ≥ 2, there is
an n-party coin toss protocol that is perfectly SNE-fair for any divided preference profile P ∈ {0, 1}n
against semi-malicious adversaries.

Proof. By Fact 3, we only need to resist unanimous coalitions. Thus for the two parties selected to
duel with opposing preferences, one of them must be honest. Further, recall that a semi-malicious
adversary must select its random coins upfront without seeing any protocol message, and henceforth
the only attack it can perform is aborting. Now in the 2-party protocol, for any choice of randomness
of the 2 dueling parties, if the corrupt party aborts, it does no better than playing honestly till
completion.

Achieving computational SNE-fairness against malicious adversaries. The above protocol
can be made secure against malicious adversaries using a cryptographic commitment scheme. The
only change needed is that when the selected two parties duel, one of them (denoted P) commits
to a bit in Phase 0, then the other party (denoted P ′) sends its bit in Phase 1, and finally P opens
its commitment.

Theorem 12 (Computational SNE-fairness against malicious adversaries). For any n ≥ 2, there is
an n-party coin toss protocol that achieves computational SNE-fairness for any divided preference
profile P ∈ {0, 1}n against malicious adversaries.

Proof. Consider the dueling protocol Πduel. By Fact 3, it suffices to prove that any unanimous
coalition cannot non-negligibly improve the coalition’s total reward. Notice that any unanimous
coalition controls at most one party in the two parties selected to duel. By maximin fairness of
the 2-party protocol (which we argue in Appendix A.1), if one of the dueling parties deviates, the
deviating party cannot improve its expected payoff by more than a negligible amount.

7 The Case of Private Preference Profiles

Here we consider the case of private preference profiles, where each party’s preference is private
information only known to the party. In other words, we consider private preference coin toss
protocols, where each party’s preference is a private input, instead of public information. Clearly,
this is a more challenging setting for achieving fairness. For example, a malicious party may lie
about his preference or abort without revealing his preference. Indeed, as we shall see, we lose some
feasibility results in the private preference setting.

Recall that in the public preference setting, coin toss protocols and fairness can be naturally
defined with respect to a preference profile P. However, this is not the case for private preference.
Thus, we only consider (universal) n-party private preference coin toss protocols that are defined
for every preference profiles P ∈ {0, 1}n. All three fairness notions can be naturally defined for
such protocols. Below we only state the definition of maximin fairness in the private preference
setting formally for succinctness. The other two notions can be defined analogously.

Definition 5 (Maximin fairness). Let A be a family of adversaries that corrupt up to n−1 parties.
We say that an n-party private preference coin toss protocol is private maximin fair against the
family A, iff for every adversary A ∈ A, there exists some negligible function negl(·) such that for
every divided preference profile P ∈ {0, 1}n, in an execution with the preference profile P and the
adversary A, the expected reward for any honest party is at least 1

2 − negl(κ). For unanimous
preference profiles, the execution should output the common preference with probability 1.

20

We proceed to discuss the feasibility and impossibility of fair coin toss for private preference
protocols. As this is harder to achieve, all impossibility results in the public preference setting
trivially hold here, and it suffices to investigate cases that are feasible in the public preference
setting.

SNE-fairness. Recall that even in the public preference setting, we can only achieve general
feasibility result for the notion of SNE-fairness, where computational SNE-fairness against mali-
cious adversary and statistical SNE-fairness against semi-malicious adversary are feasible for any
n ≥ 2 parties (whereas maximum and CSP-fairness are impossible for n ≥ 4 even against fail stop
adversary). In the private preference setting, we show that SNE-fairness against malicious adver-
sary becomes impossible for n ≥ 3 parties, whereas SNE-fairness against semi-malicious adversary
remain feasible. Intuitively, the reason for the impossibility is that a malicious adversary may lie
about his preference.

Theorem 13 (Impossibility of SNE-fairness against malicious adversary). For any n ≥ 3, no
n-party private preference coin-toss protocol can achieve even computational SNE-fairness against
malicious adversaries.

Proof. (sketch) We focus on the three-party case and discuss how to handle general n ≥ 4 parties
at the end of the proof. At a high level, the proof for the three-party case relies on the same
argument as that of Theorem 7 for maximin-fairness. Recall that in the proof of Theorem 7, we
consider preference profile P = (1, 0, 1). We show that maximin-fairness implies T2-equality lemma
(Lemma 1) and the lone-wolf and wolf-minion conditions. Then we use these properties to derive
a contradiction by constructing an adversary that breaks the wolf-minion condition. Here, we
follow the same strategy to consider preference profile P = (1, 0, 1). It suffices to show that private
SNE-fairness implies the same set of properties, and a contradiction can be derived in the same
way.

Let Π be a three-party private preference coin toss protocol. Recall that we use the notation
T1, T2, T3 ∈ {0, 1}`(κ) to denote the randomness of P1, P2 and P3, respectively, and f(T2) to denote
the expected outcome when P2 uses the randomness T2 whereas P1 and P3 executed the protocol
honestly (when the preference profile is P = (1, 0, 1)).

To show that Lemma 1 holds, we adopt the same proof as presented in Appendix A.4. Observe
that both Fact 4 and 5 are implied by private SNE-fairness for the same reasons. Specifically,
Fact 4 follows by the security against semi-malicious P2 and Fact 5 follows by the correctness of the
honest execution. Thus, T2-equality lemma is implied by private SNE-fairness as well. It remains
to check the lone-wolf and wolf-minion conditions.

For the lone-wolf conditions, it may seem that SNE-fairness only implies that P1 (or P3) cannot
cause non-negligible (in κ) bias towards 1 by a fail-stop attack. This is the place that an adversary
can take the advantage of private preference. Suppose there P1 can cause non-negligible bias
towards 0 by a fail-stop attack when the preference profile is (1, 0, 1). Consider the case that the
preference profile is (0, 0, 1). An malicious P1 (with preference 0) can participate the protocol with
a pretended preference 1 and perform the fail-stop attack to cause bias toward 0 to violate fairness.
Thus, a fail stop P1 (or P3) cannot cause non-negligible bias towards either direction.

Recall that the wolf-minion condition says that when P1 and P2 (or P2 and P3) form a fail-stop
coalition, they cannot cause a non-negligible (in κ) bias towards 0. Suppose this is not the case,
e.g., a fail-stop coalition P1 and P2 can cause a non-negligible bias towards 0. We show that SNE-
fairness can be violated when the preference profile is (0, 0, 1). Indeed, in this case, an malicious
adversary corrupting P1 and P2 can pretend the preference of P1 is 1 and use the assumed fail-stop
attack to cause a non-negligible bias towards 0, which violates SNE-fairness.

21

The above shows that for three-party protocols, the properties needed in the proof of Theorem 7
are implied by private SNE-fairness. A contradiction can then be derived by the same arguments
as in Theorem 7, which proves the impossibility.

Finally, for general n ≥ 4 parties, we can use the standard trick to group P4, . . . , Pn together
with P2 to form a supernode of 0-supporters. This effectively reduce the number of parties to 3
and the same argument can be applied to show impossibility.

Theorem 14 (Perfect private SNE-fairness against semi-malicious adversaries). For any n ≥ 2,
there is an n-party private preference coin toss protocol that is perfectly private SNE-fair against
semi-malicious adversaries.

Proof. We simply modify the public preference duelling protocol by first asking all parties to reveal
their private preference. If any parties abort, we ignore them. For the remaining non-aborting
parties, we proceed with the dueling protocol as in the public preference setting. Note that since
we only consider semi-malicious adversaries, the revealed preferences must be the true preferences.

By Fact 3 (which can be verified to hold in the private preference setting with the same argu-
ment) , we only need to resist unanimous coalitions. Hence, all aborting parties must share the
same preference as their non-aborting coalition (if any), who do not gain any advantage by the
fairness of the public preference protocol. If all non-aborting parties are honest, then correctness
of the honest execution also implies that the aborting parties do not gain any advantage.

Note that Theorem 14 is proved by a protocol that first asks all parties to reveal their private
preference and then executes a public preference protocol among the non-aborting parties, and
intuitively, this works since the semi-malicious can only reveal their true preferences. However,
while this intuition turns out to be true for SNE-fairness and maximin fairness (which we discuss
later), it can be subtle for CSP-fairness since the adversary still has the advantage of aborting
before revealing his preference. We discuss this next.

CSP-fairness. Recall that in the public preference setting, Corollary 2 says that for n ≥ 3, there
exists an n-party coin toss protocol that achieves perfect CSP-fairness for any almost unanimous
preference profile against all fail-stop adversaries that can control up to n parties. In particular,
there exists a three-party perfect CSP-fair protocol against fail-stop adversaries who may corrupt
all three parties9. Interesting, this becomes impossible in the private preference setting.

Theorem 15 (Impossibility of CSP-fairness against fail-stop all-corruption adversary). No three-
party private preference coin-toss protocol can achieve computational CSP-fairness against fail-stop
adversaries that can corrupt up to three parties.

Proof. (sketch) For the sake of contradiction, suppose Π is a three-party private preference coin-
toss protocol that achieve the claimed fairness. Let us consider a scenario where P3 always abort
at the beginning, and P1 and P2 has preference 0 and 1, respectively. Note that suppose P1 and
P2 execute the protocol honestly, the outcome need to be unbiased: Suppose the outcome is biased
towards b and the private preference of P3 is also b, then the CSP-fairness is violated.

Thus, in this scenario where P3 is aborting, honest P1 and P2 execute a two-party protocol and
produce an unbiased outcome. We can apply Cleve’s lower bound argument to show the existence
of a fail-stop adversary Pa that can bias the outcome non-negligibly towards b, for some a ∈ {1, 2}
and b ∈ {0, 1}. Now, suppose the private preference of P3 is b, and consider an adversary A that
corrupts all three parties and does the following: (i) A lets P3 aborts at the beginning, and (ii) A

9We focus on the three-party case here since the case of four or more parties are impossible in the private preference
setting due to the existence of amply divided preference profiles for four or more parties.

22

let Pa to perform the fail-stop attack to cause non-negligible bias of the outcome towards b. This
violates CSP-fairness since the total utility of the corrupted parties is increased by a non-negligible
amount.

On the positive side, we observe that Corollary 1 extends to the private preference setting.

Theorem 16. There is an 3-party private preference coin toss protocol that achieves perfect CSP-
fairness against the family of all semi-malicious adversaries that control at most 2 parties.

Proof. (sketch) We follow the same strategy to first ask each party reveal his preference, and then
let the non-aborting parties to execute a fair public preference protocol. Specifically, if no party
aborts, then we run the three-party CSP-fair protocol in Corollary 1. If one party aborts and the
remaining two parties have the same preference, then they output their preference. If one party
aborts and the remaining two parties have different preferences, then they execute the dueling
protocol. If two parties abort, then the remaining party simply output his preference. It is not
hard to see by inspection that private CSP-fairness holds in all cases.

Maximin fairness. We end this section with a brief discussion on the maximin fairness for the
private preference protocols. Note that the only interesting question is whether Theorem 6, which
states the existence of perfect maximin fair coin toss protocol against fail-stop adversaries, extends
to the private preference setting. Now, observe that the definition of maximin fairness only concerns
the honest party’s utility, so an adversary who aborts without revealing his preference cannot hurt
maximin fairness. Therefore, the strategy of first asking each party to reveal his preference, and
then letting the non-aborting parties to execute a fair public preference protocol works directly for
maximin fairness.

Theorem 17 (Possibility of perfect maximin fairness for 3 parties and fail-stop adversaries.). There
exists a 3-party private preference coin toss protocol that achieves perfect maximin fairness against
fail-stop adversaries.

8 Related Work

Related works on strongly fair coin toss [18,27] as well as Blum’s notion of weak fair coin toss [16]
have been discussed earlier in Section 1. In this section, we discuss additional related work.

Game theory and cryptography. Historically, game theory [36, 48] and multi-party computa-
tion [27, 52, 53] were investigated by separate communities. Some recent efforts have investigated
the marriage of game theory and cryptography (see the excellent surveys by Katz [37] and by Dodis
and Rabin [23]). This line of work has focused on two broad types of questions:

• First, a line of works [1, 4–6, 32, 38, 49] investigated how to define game-theoretic notions of
security (as opposed to cryptography-style security notions) for multi-party computation tasks
such as secret sharing and secure function evaluation. Existing works consider a different notion
of utility than us: specifically, these works make (a subset to all of) the following assumptions
about players’ utility: players prefer to compute the function correctly; further, they prefer to
learn secrets, and prefer that other players do not learn secrets. These works then investigate
how to design protocols such that rational players will be incentivized to follow the honest
protocol.

23

• Second, a line of work has asked how cryptography can help traditional game theory. Particu-
larly, many classical works in game theory [36, 48] assumes the existence of a trusted mediator
— and recent works have shown that under certain conditions, this trusted mediator can be
implemented using cryptography [9, 22,29,34].

In this paper, we investigate game-theoretic notions of fairness for coin toss protocols. Our
notions are novel in comparison with the aforementioned related work. First, to the best of our
knowledge, we are the first to apply game theory to coin toss protocols, and asking whether we can
circumvent known impossibilities [18] by considering rational players. Second, the fairness notions
proposed in this paper are novel and to the best of our knowledge have not been investigated before
for multiple parties. Specifically, we consider a natural notion of utility for coin toss protocols,
where players have a preference over the outcome of the coin toss. We require that an honest
execution produces an unbiased coin (unless all parties prefer the same bit); however if one or more
coalition(s) deviate from the honest protocol, the coin toss outcome need not be unbiased (but
we want that certain fairness properties must be preserved). All notions of fairness defined in the
paper consider corrupt majority — since in the case of honest majority, strongly fair coin toss is
known to be possible assuming standard cryptography assumptions [27], and the standard strong
fairness notion implies all game-theoretic notions considered in this paper. In comparison, most
earlier works [1, 4–6, 9, 22, 29, 32, 34, 38, 49] at the intersection of cryptography and game theory
consider only the popular Nash equilibrium notion that is concerned about coalitions of size 1.
Our fairness definitions are inspired by equilibrium notions in game theory that resist coalitions in
various capacities [15,35].

Other notions of fairness. Our work is inspired by the study of new, financially motivated
fairness notions in blockchains and cryptocurrency applications [3,8,13,21,39–41,45]. Several recent
works [13, 21, 39, 40] show that to achieve a suitable notion of financial fairness, the protocol may
require that parties place collateral on the blockchain to participate, and misbehaving parties can
be penalized by taking away their collateral. Among these works, the most closely related to ours
are those that investigate lottery-style protocols [8,13,21,39,45]. While earlier works [3,13] require
quadratic amount of collateral, more recent works [8, 45] showed that it is possible to realize fair
lottery in the presence of a blockchain (i.e., a broadcast medium with identifiable abort) requiring
no collateral at all, by relying on a folklore tournament-tree approach. Interestingly, although not
explicitly noted, all these works on fair lottery over a blockchain [8, 13, 21, 39, 45] adopt a game
theoretic notion of fairness, that is, although a deviating coalition can bias the outcome of toss
of the n-sided dice, such bias must be towards a direction that harms the perpetrators. In fact,
the implicit fairness notion in these papers is equivalent to our notion of maximin fairness and
cooperative-strategy-proof (CSP) fairness — for 0-sum games like a lottery, these two notions are
equivalent.

Other relaxations of strong fairness have also been considered for coin toss and multi-party
computation. For example, several works [2, 7, 10, 11, 14, 17–20, 28, 30, 31, 46] consider a notion of
ε-fairness, i.e., the adversary can bias the coin by at most a non-negligible ε amount. Moran et
al. [46] showed that for general R, there is an R-round, 2-party coin toss protocol that satisfies
O(1/R)-fairness — and this is optimal since Cleve [18] showed that for every R-round 2-party coin
toss protocol, there exists an efficient adversary that can bias the honest party’s outcome by at
least Ω(1/R).

24

9 Conclusion

In this paper we proposed several natural, game theoretic notions of fairness for multi-party coin
toss protocols. In the case of two parties, all of these notions equate to Blum’s notion of weakly
fair coin toss [16]; however, for more than 2 parties, these notions differ in strength and lead to
different feasibility and infeasibility results. We summarize the strengths of various notions from
strongest to weakest (for general n and divided preference profiles).

Maximin 6= Cooperative-Strategy-Proof (CSP)>Cooperative-Coalition-Proof (CCP)
= Strong Nash Equilibrium (SNE) > Coalition-Proof > Nash

Among the above notions, we show broad feasibility results for SNE-fairness (which directly implies
feasibility for coalition-proof equilibrium and Nash Equilibrium too). For other notions, we give
a complete characterization of their feasibilities and infeasibilities — and for all of them we prove
infeasibilities for amply divided preference profiles.

Note that among these notions, cooperative-strategy-proof and cooperative-coalition-proof are
new notions first proposed in this paper — although we study them in the context of coin toss pro-
tocols, they would make sense for general games with transferrable utilities too. Finally, although
maximin fairness is incomparable to CSP-fairness in general, the two are equivalent for balanced
preference profiles (analogous to zero-sum games).

Acknowledgments

We gratefully acknowledge Iddo Bentov and Andrew Miller: discussions with the two of them pro-
vided initial motivation for this work; moreover, Iddo Bentov also contributed ideas that inspired
our lower bound proofs. We would like to acknowledge helpful technical discussions with Feng-Hao
Liu, Qiang Tang, Gilad Asharov, Ilan Komargodski, Muthu Venkitasubramaniam, Antigoni Poly-
chroniadou, and Hubert Chan. This work is supported in part by NSF grants CNS-1314857, CNS-
1514261, CNS-1544613, CNS-1561209, CNS-1601879, CNS-1617676, an Office of Naval Research
Young Investigator Program Award, a Packard Fellowship, a DARPA Safeware grant (subcontrac-
tor under IBM), a Sloan Fellowship, Google Faculty Research Awards, a Baidu Research Award,
and a VMWare Research Award.

References

[1] I. Abraham, D. Dolev, R. Gonen, and J. Halpern. Distributed computing meets game theory:
Robust mechanisms for rational secret sharing and multiparty computation. In PODC, 2006.

[2] B. Alon and E. Omri. Almost-optimally fair multiparty coin-tossing with nearly three-quarters
malicious. In TCC, 2016.

[3] M. Andrychowicz, S. Dziembowski, D. Malinowski, and L. Mazurek. Secure Multiparty Com-
putations on Bitcoin. In S&P, 2013.

[4] G. Asharov, R. Canetti, and C. Hazay. Towards a game theoretic view of secure computation.
In Eurocrypt, 2011.

[5] G. Asharov and Y. Lindell. Utility dependence in correct and fair rational secret sharing. In
CRYPTO, 2009.

25

[6] G. Asharov and Y. Lindell. Utility dependence in correct and fair rational secret sharing.
Journal of Cryptology, 24(1), 2011.

[7] B. Awerbuch, M. Blum, B. Chor, S. Goldwasser, and S. Micali. How to implement bracha’s o
(log n) byzantine agreement algorithm. Unpublished manuscript, 1985.

[8] M. Bartoletti and R. Zunino. Constant-deposit multiparty lotteries on bitcoin. In Financial
Cryptography and Data Security, 2017.

[9] A. Beimel, A. Groce, J. Katz, and I. Orlov. Fair computation with rational players. https:

//eprint.iacr.org/2011/396.pdf, full version of Eurocrypt’12 proceeding version by Groce
and Katz, 2011.

[10] A. Beimel, I. Haitner, N. Makriyannis, and E. Omri. Tighter bounds on multi-party coin
flipping via augmented weak martingales and differentially private sampling. Technical Report
TR17-168, Electronic Colloquium on Computational Complexity, 2017. 7, 2017.

[11] A. Beimel, E. Omri, and I. Orlov. Protocols for multiparty coin toss with a dishonest majority.
Journal of Cryptology, 28(3):551–600, 2015.

[12] M. Ben-or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-cryptographic
fault-tolerant distributed computation. In STOC, 1988.

[13] I. Bentov and R. Kumaresan. How to Use Bitcoin to Design Fair Protocols. In CRYPTO,
2014.

[14] I. Berman, I. Haitner, and A. Tentes. Coin flipping of any constant bias implies one-way
functions. JACM, 65(3):14, 2018.

[15] B. Bernheim, B. Peleg, and M. DWhinston. Coalition-proof nash equilibria i. concepts. Journal
of Economic Theory, 42(1), 1987.

[16] M. Blum. Coin flipping by telephone. In CRYPTO, 1981.

[17] N. Buchbinder, I. Haitner, N. Levi, and E. Tsfadia. Fair coin flipping: Tighter analysis and
the many-party case. In SODA, 2017.

[18] R. Cleve. Limits on the security of coin flips when half the processors are faulty. In STOC,
1986.

[19] D. Dachman-Soled, Y. Lindell, M. Mahmoody, and T. Malkin. On the black-box complexity
of optimally-fair coin tossing. In TCC, 2011.

[20] D. Dachman-Soled, M. Mahmoody, and T. Malkin. Can optimally-fair coin tossing be based
on one-way functions? In TCC, 2014.

[21] K. Delmolino, M. Arnett, A. E. Kosba, A. Miller, and E. Shi. Step by step towards creating a
safe smart contract: Lessons and insights from a cryptocurrency lab. In Financial Cryptography
and Data Security, 2016.

[22] Y. Dodis, S. Halevi, and T. Rabin. A cryptographic solution to a game theoretic problem. In
CRYPTO, 2000.

[23] Y. Dodis and T. Rabin. Cryptography and game theory. In Algorithmic Game Theory, 2007.

26

https://eprint.iacr.org/2011/396.pdf
https://eprint.iacr.org/2011/396.pdf

[24] B. Games. One-night werewolf.

[25] J. A. Garay, A. Kiayias, and N. Leonardos. The bitcoin backbone protocol: Analysis and
applications. In Eurocrypt, 2015.

[26] O. Goldreich and L. A. Levin. A hard-core predicate for all one-way functions. In Proceedings
of the Twenty-first Annual ACM Symposium on Theory of Computing, STOC ’89, pages 25–32,
New York, NY, USA, 1989. ACM.

[27] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. In STOC, 1987.

[28] S. D. Gordon and J. Katz. Partial fairness in secure two-party computation. J. Cryptology,
25(1):14–40, 2012.

[29] A. Groce and J. Katz. Fair computation with rational players. In Eurocrypt, 2012.

[30] I. Haitner and E. Omri. Coin flipping with constant bias implies one-way functions. SIAM
Journal on Computing, 43(2):389–409, 2014.

[31] I. Haitner and E. Tsfadia. An almost-optimally fair three-party coin-flipping protocol. SIAM
Journal on Computing, 46(2):479–542, 2017.

[32] J. Halpern and V. Teague. Rational secret sharing and multiparty computation. In STOC,
2004.

[33] R. Impagliazzo and M. Luby. One-way functions are essential for complexity based cryptog-
raphy. In FOCS, 1989.

[34] S. Izmalkov, S. Micali, and M. Lepinski. Rational secure computation and ideal mechanism
design. In FOCS, 2005.

[35] R. J.Aumann. Acceptable points in general cooperative n-person games. Contributions to the
Theory of Games IV”, Princeton Univ. Press, Princeton, N.J., 1959.

[36] R. J.Aumann. Subjectivity and correlation in randomized strategies. Journal of Mathematical
Economics, 1(1), 1974.

[37] J. Katz. Bridging game theory and cryptography: Recent results and future directions. In
TCC, 2008.

[38] G. Kol and M. Naor. Cryptography and game theory: Designing protocols for exchanging
information. In TCC, 2008.

[39] A. E. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou. Hawk: The blockchain model
of cryptography and privacy-preserving smart contracts. In S&P, 2016.

[40] R. Kumaresan and I. Bentov. How to Use Bitcoin to Incentivize Correct Computations. In
CCS, 2014.

[41] R. Kumaresan and I. Bentov. Amortizing secure computation with penalties. In CCS, 2016.

[42] H. Lin and R. Pass. Constant-round nonmalleable commitments from any one-way function.
J. ACM, 62(1):5:1–5:30, 2015.

27

[43] H. Lin, R. Pass, and M. Venkitasubramaniam. Concurrent non-malleable commitments from
any one-way function. In TCC, 2008.

[44] H. K. Maji, M. Prabhakaran, and A. Sahai. On the computational complexity of coin flipping.
In FOCS, 2010.

[45] A. Miller and I. Bentov. Zero-collateral lotteries in bitcoin and ethereum. In EuroS&P Work-
shops, 2017.

[46] T. Moran, M. Naor, and G. Segev. An optimally fair coin toss. J. Cryptol., 29(3):491–513,
July 2016.

[47] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008.

[48] J. Nash. Non-cooperative games. Annals of Mathematics, 54(2), 1951.

[49] S. J. Ong, D. C. Parkes, A. Rosen, and S. P. Vadhan. Fairness with an honest minority and a
rational majority. In TCC, 2009.

[50] R. Pass, L. Seeman, and A. Shelat. Analysis of the blockchain protocol in asynchronous
networks. In Eurocrypt, 2017.

[51] R. Pass and E. Shi. Rethinking large-scale consensus. In CSF, 2017.

[52] A. C.-C. Yao. Protocols for secure computations. In FOCS, 1982.

[53] A. C.-C. Yao. How to generate and exchange secrets. In FOCS, 1986.

A Detailed Proofs for Maximin Fairness

A.1 The Case of Two Parties

First, as mentioned, for two parties, maximin fairness equates to Blum’s notion of weak fairness [16],
assuming that the two parties have opposing preferences. Due to well-known results [33, 44], we
immediately rule out the possibility of achieving statistical maximin fairness in this setting.

For semi-malicious adversaries, it is not difficult to see that the following simple protocol satisfies
perfect maximin fairness: both parties choose a random coin and announce it, and the outcome is
the XOR of the two coins. If either party aborts prior to broadcasting its bit, the outcome is the
other party’s preference. This protocol can be upgraded to achieve computational maximin fairness
against malicious adversaries relying on cryptographic commitments [16]: first, Alice commits
to a random bit; then Bob announces a random bit; and finally, Alice opens her commitment.
Normally the outcome is the XOR of the two bits. If one party aborts, the outcome is the other
party’s preference. It suffices to use a standard commitment scheme that is perfectly binding and
computationally hiding, and such a commitment scheme can be built from one-way functions [16,
26].

Therefore most of the paper focuses on three or more parties which is the more interesting and
unexplored case.

28

A.2 Proof of Claim 1

We present the detailed proof for Claim 1: informally, for a protocol satisfies maximin fairness
against arbitrarily many corruptions as long as it satisfies maximin fairness against all coalitions
of size n− 1.

Proof. It suffices to show that if a protocol Π is maximin fair against any coalition of size exactly
n−1, then Π is maximin fair against any arbitrarily sized coalition (the reverse direction is obvious).
We prove it below it for computational or statistical security — for perfect security, the argument
can be easily modified by requiring negligible functions to be 0.

Consider any adversary A that controls a coalition C ⊂ [n] of size at most n−1. Let C := [n]\C.
We would like to show that for any honest party i ∈ C, its expected reward cannot be less than
1
2 − p(κ) for any polynomial p(·). We can view the execution with A alternatively as the following
execution: i is the only honest party, and everyone else is corrupt. Specifically, those in C execute
the same strategy as A; for any j 6= i and j /∈ C, imagine that j is a corrupt party following
the honest protocol. Now if Π is computationally or statistically maximin fair against such an
(n − 1)-sized coalition, we conclude that i’s expected payoff in this randomized execution cannot
be negligibly smaller than 1

2 .

A.3 Equivalence to Group Maximin Fairness

We define an alternative notion called group maximin fairness, and prove that it is equivalent to
maximin fairness in the context of coin toss.

Definition 6 (Group maximin fairness). Let A be a family of adversaries that corrupt up to n− 1
parties; and let P ∈ {0, 1}n be any divided preference profile. We say that an n-party coin toss
protocol is is group maximin fair for P against the family A, iff for any adversary A ∈ A, there
exists some negligible function negl(·) such that in an execution with the preference profile P and
the adversary A, the expected total reward for the set of all honest parties (denoted H) is at least
σP(H) − negl(κ) where σP(H) denotes the expected total payoff of the set H in an all-honest
execution under the preference profile P.

Just like in Definition 2, now depending on the family A of adversaries that we are concerned
about, we can define computational, statistical, or perfect notions for group maximin fairness, and
for fail-stop, or malicious adversaries respectively. We omit the detailed definitions for conciseness.

Claim 2. Let P ∈ {0, 1}n be any divided preference profile. An n-party coin toss protocol Π
satisfies computational (or statistical, perfect resp.) maximin fairness for P against fail-stop (or
malicious resp.) adversaries, iff Π satisfies computational (or statistical, perfect resp.) group
maximin fairness for P against fail-stop (or malicious resp.) adversaries.

Proof. The fact that maximin fairness implies group maximin fairness is obvious. For the reverse
direction, observe that group maximin fairness implies maximin fairness against coalitions of size
n− 1 which implies maximin fairness against arbitrarily sized coalition by Claim 1.

A.4 Impossibility for Malicious Adversaries and Almost Unanimous Preference
Profiles

In this section, we present the formal, detailed proof for Theorem 7.
Without loss of generality, we may assume that the three parties P1, P2, and P3 prefer 1, 0, and 1

respectively. We may also assume that with probability 1, each party consumes at most `(κ) bits of

29

randomness in the protocol even in the presence of any possibly unbounded adversary. Henceforth
we use the notation T1, T2, T3 ∈ {0, 1}`(κ) to denote the random bits consumed by parties P1, P2,
and P3 respectively.

At a very high level, our proof strategy is the following: we start by assuming that some protocol
Π satisfies computational maximin fairness under semi-malicious corruptions, and assuming that
the three parties have preferences for 1, 0, 1 respectively. We then analyze such a protocol, and by
the end of the proof we will have constructed an explicit polynomial-time attack against maximin
fairness for this protocol. We thus reach a contradiction and conclude that no 3-party protocol can
satisfy computational maximin fairness.

First, consider any fixed T2 ∈ {0, 1}`(κ). We use the notation f(T2) to denote the expected
outcome when P2 uses the randomness T2 whereas P1 and P3 executed the protocol honestly.

Proof of Lemma 1. We now prove Lemma 1, i.e., almost all random coins of a lone semi-malicious
P2 are created equal. We restate the lemma here for the reader’s convenience.

Lemma 2 (Restatement of Lemma 1). Suppose that the protocol under consideration satisfies
computational maximin fairness. Then, there exists a negligible function negl(·) such that except
for negl(κ) fraction of T2’s, it must be that that f(T2) ∈ [0.5−1/p(κ), 0.5+1/p(κ)] for any polynomial
function p(·). In other words, except for negl(κ) fraction of T2’s, |f(T2)− 0.5| is a negligible function
in κ.

Proof. First, we prove the following fact.

Fact 4. For sufficiently large κ and any T2 ∈ {0, 1}`(κ), f(T2) ≥ 0.5 − 1/p(κ) for any polynomial
function p(·).

Suppose that the above fact is not true for the sake of reaching a contradiction. Then, there
must exist some T ∗2 ∈ {0, 1}`(κ) and some polynomial function p(·) such that f(T ∗2) < 0.5− 1/p(κ).
Given this, we can construct a non-uniform, semi-malicious adversary that corrupts only P2 and
breaks maximin fairness for the honest parties P1 and P3. Specifically, the adversary is given the
non-uniform advice string T ∗2 ∈ {0, 1}`(κ), and it makes P2 use T ∗2 instead of sampling an honest
random string at random; otherwise P2 follows the protocol faithfully.

Fact 5. By correctness, under all-honest execution we have that ET2(f(T2)) = 1/2.

We now proceed to prove Lemma 1. Suppose that Lemma 1 is not true for the sake of reaching
a contradiction. Then, by Fact 4, there must exist some inverse-polynomial 1/p′(κ) fraction of T2’s
such that f(T2) > 0.5 + 1/p(κ) for some polynomial p(·). Again by Fact 4, we have that for any
polynomial q(·),

ET2(f(T2)) ≥ (0.5− 1/q(κ)) · (1− 1/p′(κ)) + (0.5 + 1/p(κ)) · 1/p′(κ)

= 0.5 +
1

p · p′
− 1

q
· (1− 1

p′
)

The above is greater than 0.5 for a sufficiently large polynomial q(·) — i.e., when 1/q is sufficiently
small. This contradicts Fact 5.

Remark 2. Lemma 1 uses the fact that a lonely corrupt P2 whose randomness can be arbitrarily
programmed (but P2 otherwise follows the honest protocol to the end) cannot bias the outcome of
the coin toss. It will become clear later that this is the only place we rely on maximin fairness against
semi-malicious adversaries in the entire proof of Theorem 7. The remaining proof of Theorem 7
relies only on the fact that the protocol is maximin fair against fail-stop adversaries.

30

Definition of bias. Given an adversary A that controls a coalition C, let C denote the remaining
set of honest parties. We say that the adversary A causes µ-bias towards b ∈ {0, 1} iff in an
execution with A,

Pr[C’s outcome = b]− 1

2
≥ µ

We also sometimes say that A biases C towards b by µ.
We say that the adversary A, controlling C, causes µ-bias in either direction iff

max
{

Pr[C’s outcome = 0], Pr[C’s outcome = 1]
}
− 1

2
≥ µ

Lone-wolf and wolf-minion conditions. Now elaborating on Remark 2, the remainder of the
proof will rely on the following conditions that are implied by maximin fairness against non-uniform
p.p.t.fail-stop adversaries. Below although not explicitly noted, we assume that the adversary is
non-uniform p.p.t..

• Lone-wolf condition. When P1 (or P3) is the only fail-stop party, it cannot cause non-negligible
(in κ) bias towards either direction. Such an attack is also called a lone-wolf attack.

• Wolf-minion condition. When P1 and P2 (or P2 and P3) form a fail-stop coalition, they cannot
cause non-negligible (in κ) bias towards 0. In fact we only care about attacks where P2 is a silent
accomplice (called a minion [24]) that never aborts but shares information with P1 (or P3); and
P1 (or P3) may decide to abort depending on its view in the execution (called a wolf [24]). Such
attacks are called wolf-minion attacks.

In the remainder of the proof, we will show that if Lemma 1 holds, and moreover, if both
the lone-wolf condition and the wolf-minion condition hold, then we can construct an explicit,
polynomial-time wolf-minion attack that creates non-negligible bias towards 1 — thus reaching a
contradiction. Therefore we conclude finally that any n-party coin toss protocol cannot be (even
computationally) maximin fair against semi-malicious adversaries.

Assumptions on message schedule. Without loss of generality, we may assume that the proto-
col’s message schedule satisfies the following assumptions10. In the presence of any semi-malicious
but non-aborting adversary (i.e., no corrupt party ever aborts during protocol execution), then,
with probability 1,

• In the first round, P1 is the only party that sends message;

• In each of rounds 2, 3, . . . , R(κ), all parties send messages;

• In the last round R(κ) + 1, P3 is the only party that sends message.

If a protocol satisfies the above message schedule requirement, we say that the protocol is
regular. It is not difficult to see that if there is a non-regular, 3-party coin-toss protocol Π that
satisfies maximin fairness, we can always construct a regular, 3-party coin toss protocol Π′ that
also satisfies maximin fairness and with only O(1) additional rounds than Π: one can always insert
a dummy first (or last) round where only P1 (or P3) sends message. Further, for every intermediate
round, if a party does not want to send a message in that round by the rules of Π, it can always
just send a dummy message.

10These assumptions are without loss of generality. As it will become clear soon, these assumptions allow us to
conform to Cleve’s message delivery assumptions when we apply Cleve [18] later in the proof.

31

A sequence of adversaries. We now define a sequence of polynomial-time adversaries as inspired
by Cleve’s famous lower bound [18]. However, different from Cleve [18], here we define the sequence
of adversaries conditioned on any fixed choice of T2, and moreover, assuming that the adversary
corrupts either (P1 and P2), or (P2 and P3).

• Adversary Abi(1κ, T2) corrupts P1 and P2 and wants to bias P3 towards b:

– Abi uses the randomness T2 that is provided as input to Abi for party P2 rather than choosing
a random T2. Abi chooses a random T1 for party P1 honestly.

– Abi now executes the honest protocol on behalf of P1 and P2, until the moment right before
P1 is going to broadcast its i-th message.

– At this moment, Abi computes αi, that is, imagine that P3 aborted right after sending its
(i − 1)-th message11, what would be the outcome of parties P1 and P2. Note that αi is the
outcome of P1 and P2 if P3 aborted after sending the (i − 1)-th message, i.e., P3’s message
in round i.

– If αi = b, then P1 aborts after sending the i-th message; else P1 aborts right now without
sending the i-th message. In either case P2 does not abort and plays to the end with P3.

• Adversary Bbi(1κ, T2): corrupts P2 and P3 and wants to bias P1 towards b:

– Bbi uses the randomness T2 that is provided as input to Bbi for party P2 rather than choosing
a random T2. Bbi chooses a random T3 for party P3 honestly.

– Bbi now executes the honest protocol on behalf of P2 and P3, until the moment right before
P3 is going to broadcast its i-th message.

– At this moment, Bbi computes βi, that is, imagine that P1 aborted right after sending its i-th
message, what would be the outcome of parties P2 and P3. Note that βi is the outcome of
P2 and P3 if P1 aborted after sending the i-th message.

– If βi = b, then P3 aborts after sending the i-th message; else P3 aborts right now without
sending the i-th message. In either case, P2 does not abort and plays to the end with P1.

By definition, we assume that any Abi(1κ, T2) or Bbi(1κ, T2) can only be successful in biasing
towards b but not 1− b. Notice that in the above sequence of adversaries{

Abi(1κ, T2),Bbi(1κ, T2) : i ∈ [R(κ)], b ∈ {0, 1}
}
,

the adversary always corrupts two parties, either (P1 and P2) or (P2 and P3). Among the two
corrupt parties, P2 always plays the role of a silent accomplice that never aborts, but the other
corrupt party P1 (or P3) may abort based on certain decision criteria.

Finally, consider the following adversary:

• Adversary A0(1
κ, T2): corrupts P1 and P2 and wants to bias P3 towards either direction.

Ab0(1κ, T2) programs P2’s randomness to be the T2 that is provided as input. P2 would oth-
erwise follow the honest protocol to the end without aborting. However, P1 aborts prior to
sending any message at all.

11Note that here we make use of the fact that Abi is a rushing adversary.

32

A biasing adversary for almost all T2’s. If we consider P2’s randomness to be fixed to an
arbitrary T2, then the protocol execution depends only on the randomness T1 and T3. Lemma 1 says
that the protocol execution (fixing any T2) is a coin toss protocol between P1 and P3. Specifically,
as long as P1 and P3 are honest, the expected outcome is negligibly different from 1/2 for any fixed
T2. Cleve [18] show that for any 2-party protocol that 1) generates an unbiased coin under an
honest execution and 2) satisfies agreement under an honest execution; there exists an attack that
breaks strong fairness. Now, we can apply Cleve’s argument for the protocol execution under any
fixed T2.

More formally, fixing T2 to be an arbitrary value, we can view the 3-party protocol as a “residual
2-party protocol”: imagine that T2 is hard-wired in P1 and P3’s algorithms. Now, P1 and P3 each
simulates a copy of P2 and thus P1 and P3 can compute all messages P2 wants to send. As a result,
P2 no longer needs to send any messages at all, and the only messages sent are by either P1 or P3

(and thus we can now remove the party P2 from the protocol execution).
Earlier we defined the adversaries Abi(1κ, T2), Bbi(1κ, T2), and A0(1

κ, T2) for the 3-party protocol.
We can now define the counterparts of these adversaries in the residual 2-party protocol for any
fixed T2: basically Abi(1κ, T2) and A0(1

κ, T2) now only corrupt P1 and Bbi(1κ, T2) now only corrupts
P3. The following fact is not difficult to see:

Fact 6. Fix T2 to be any arbitrary string. Consider a sample path determined by (T1, T3) and an
adversary playing Abi(1κ, T2), Bbi(1κ, T2), or A0(1

κ, T2) in the 3-party protocol: suppose that the
honest party’s output is x in the 3-party protocol, then the honest party’s output is also x in the
residual 2-party protocol for the same sample path and when playing with the same adversary (but
now the 2-party counterpart).

Now Cleve [18]’s proof can be alternatively stated as follows:

Theorem 18 (Cleve [18]). For any fixed T2, in the residual 2-party protocol,

1. either one of adversaries in the set
{
A1
i (1

κ, T2),B1i (1κ, T2) : i ∈ R(κ)
}
∪ {A0(1

κ, T2)} can cause
1

2(4R(κ)+1) -bias towards 1; or

2. one of adversaries in the set
{
A0
i (1

κ, T2),B0i (1κ, T2) : i ∈ R(κ)
}
∪{A0(1

κ, T2)} can cause 1
2(4R(κ)+1) -

bias towards 0

where R(κ) denotes the round complexity of the protocol.

Now for almost all T2’s, none of these adversaries cannot cause non-negligible bias towards 0
since otherwise we can construct a successful wolf-minion attack that creates non-negligible bias
towards 0. We formalize this in the following lemma.

Lemma 3. There exists a negligible function negl(·) such that for all but negl(κ) fraction of T2’s,
the following hold:

1. At least one adversary in the set
{
A1
i (1

κ, T2),B1i (1κ, T2) : i ∈ R(κ)
}
∪{A0(1

κ, T2)} must success-
fully cause 1

2(4R(κ)+1) - bias towards 1.

2. No adversary in the set
{
Abi(1κ, T2),Bbi(1κ, T2) : b ∈ {0, 1}, i ∈ R(κ)

}
∪{A0(1

κ, T2)} causes 1/p(κ)-
bias towards 0 for any polynomial p(·).

33

Proof. Suppose that the second claim is not true. Then, there must exist some

a(1κ, ·) ∈
{
Abi(1κ, ·),Bbi(1κ, ·) : b ∈ {0, 1}, i ∈ R(κ)

}
∪ {A0(1

κ, ·)}

such that a(1κ, ·) can cause p(κ)-bias towards 0 on 1/q(κ) fraction of the T2’s for some polynomial
p(·) and q(·). We now construct the following fail-stop (non-uniform) adversary denoted A∗ that
breaks maximin fairness (and specifically it breaks the wolf-minion condition). The adversary A∗ is
given the following (non-uniform) advice: i) which adversary a is successful in causing bias towards
0; and ii) the polynomial p(·). Depending on a, the adversary corrupts either (P1 and P2) or (P2

and P3).
Now, A∗ picks a random T2 for party P2. It will first check whether the chosen T2 is a good T2

for a (a good T2 helps a create bias towards 0). To do this, A∗ repeats the following p2(κ) times:
sample a random T1 and T3 and simulate the protocol execution playing with a. If the outcome is
0 more than 1

2 + 1
2p(κ) fraction of the time, determine T2 to be good; else determine T2 to be bad.

By a simple application of the Chernoff bound, the following claim must hold — henceforth we say
that g(T2) = ν iff fixing T2 but sampling T1 and T3 at random, and running the protocol with a,
the probability that the outcome is 0 is ν.

Claim 3. If g(T2) ≥ 1
2 + 1

p(κ) then except with negligible in κ probability in the above experiment,

T2 is determined to be good. If g(T2) ≤ 1
2 then except with negligible in κ probability in the above

experiment, T2 is determined to be bad.

Now, if T2 is good, A∗ runs a; else it follows the honest protocol. It is not difficult to see that
A∗ can cause 1/p′(κ)-bias towards 0 for some polynomial p′(·).

So far we have proved that the second claim is true. If so, the first claim also follows from
Theorem 18. This concludes the proof of Lemma 3.

Remark 3. We note that Lemma 3 would be much easier to prove if we relied on maximin fairness
against semi-malicious adversaries. However, here we present a stronger proof: besides relying on
Lemma 1 and Theorem 18, we additionally use only the fact that the protocol is maximin fair against
fail-stop adversaries (and specifically the wolf-minion condition) — this stronger proof is reusable
later in the paper for proving impossibilities for cooperative-strategy-proof fairness (Section 5.3).

We now construct the following randomizing adversary X (1κ, T2) and Y(1κ, T2) for any fixed
T2:

• X (1κ, T2) corrupts P1 and P2. It picks a random adversary from the set

SA(T2) :=
{
A1
i (1

κ, T2) : i ∈ [R(κ)]
}
∪ {A0(1

κ, T2)}

and follows the strategy of this randomly chosen adversary.

• Y(1κ, T2) corrupts P2 and P3. It picks a random adversary from the set

SB(T2) :=
{
B1i (1κ, T2) : i ∈ [R(κ)]

}
and follows the strategy of this randomly chosen adversary.

Lemma 4. There exists a negligible function negl(·) such that for all but negl(κ) fraction of T2’s,
either X (1κ, T2) successfully causes 1/p(κ)-bias towards 1 for some polynomial p(·), or Y(1κ, T2)
successfully causes 1/p(κ)-bias towards 1 for some polynomial p(·).

34

Proof. Follows directly from Lemma 3, the definition of X (1κ, T2) and Y(1κ, T2), and the fact that
R(·) is a polynomial function.

So far, for almost all T2’s, we have constructed an adversary that corrupts either (P1 and P2)
or (P2 and P3), and biases the remaining honest party towards 1. Such an adversary, however,
does not break maximin fairness because 1 is precisely what the remaining honest party prefers!
To actually construct an adversary that causes harmful bias to the remaining honest P1 or P3, we
consider the world when one takes average over the choice of T2.

Averaging over T2. Consider the following adversaries X (1κ) and Y(1κ) who chooses a random
T2 rather than receives a specific T2 as input:

• X (1κ) (or Y(1κ) resp.) picks a random T2 honestly; it then plays the strategy of X (1κ, T2) (or
Y(1κ) resp.), i.e., corrupting the parties X (1κ, T2) (or Y(1κ) resp.) wants to corrupt and follows
how X (1κ, T2) (or Y(1κ) resp.) interacts with the remaining honest party.

Claim 4. Either X (1κ) causes 1/p(κ)-bias towards 1 for some polynomial p(·), or Y(1κ) causes
1/p(κ)-bias towards 1 for some polynomial p(·).

Proof. Follows directly from Lemma 4 and the definition of X (1κ) and Y(1κ).

It is not difficult to see that an alternative but equivalent way to view the adversaries X (1κ)
and Y(1κ) is the following. First, we define a sequence of 4R(κ) + 1 adversaries analogous to those
in the set S(T2) but now, the 4R(κ) + 1 adversaries are not given a T2 as input, but rather, chooses
a T2 at random.

• Adversary Abi(1κ) where i ∈ [R(κ)] and b ∈ {0, 1}: picks a random T2 and runs Abi(1κ, T2). Note

that Abi(1κ) corrupts P1 and P2 among whom only P1 may abort and P2 is a silent accomplice.

• Adversary Bbi(1κ) where i ∈ [R(κ)] and b ∈ {0, 1}: picks a random T2 and runs Bbi(1κ, T2). Note

that Bbi(1κ) corrupts P2 and P3 among whom only P1 may abort and P2 is a silent accomplice.

• Adversary A0(1
κ): picks a random T2 and runs A0(1

κ, T2).

Now, we can equivalently view X (1κ) as the adversary that picks a random adversary from the
following set SA and executes its strategy:

SA :=
{
A1
i (1

κ) : i ∈ [R(κ)]
}
∪
{
A0(1

κ)
}

Similarly, we can equivalently view Y(1κ) as the adversary that picks a random adversary the
following set SB and executes its strategy:

SB :=
{
B1i (1κ) : i ∈ [R(κ)]

}
Lemma 5. Either one of the adversaries in the set SA\{A0(1

κ)} can cause 1/p(κ)-bias towards
1 for some polynomial function p(·) or one of the adversaries in the set SB can cause 1/p(κ)-bias
towards 1 for some polynomial function p(·).

Proof. Due to Claim 4 and by the above alternative interpretation of X (1κ) and Y(1κ), it suffices
to prove that A0(1

κ) cannot cause non-negligible bias towards either direction. To see this, observe
that in an execution with A0(1

κ), it is as if P2 is honest and P1 is the lone wolf that always aborts
prior to sending any message at all. It follows from the lone-wolf condition that A0(1

κ) cannot
cause non-negligible bias towards either direction.

35

An adversary that causes harmful bias. Finally, we show that if some A1
i can cause large

bias towards 1, then its mirroring adversary A0
i (i.e., flipping its choice whether to abort prior to

or after sending the i-th message) must cause large bias towards 0; and such bias would indeed be

harmful towards the remaining honest party P3. Similarly, if some B1i can cause large bias towards

1, then its mirroring adversary B0i must cause large bias towards 0 too.
More formally, we prove the following Lemma 6. Note that if Lemma 6 holds, then we can

conclude the proof of Theorem 7 since we will have identified an adversary that corrupts either
(P1 and P2) or (P2 and P3), and causes non-negligible and harmful bias for the remaining honest
party. This breaks the notion of (computational) maximin fairness — more specifically it violates
the wolf-minion condition and results in a contradiction (recall that our proof assumes that the
protocol under consideration is maximin fair).

Lemma 6. For i ∈ [R(κ)], if A1
i (or B1i resp.) can cause µ(κ)-bias towards 1, then A0

i (or B0i
resp.) can cause (µ(κ)− negl(κ))-bias towards 0 for some negligible function negl(·).

Proof. We prove the lemma for A1
i and A0

i since the argument is symmetric for B1i and B0i .
A sample path is defined by the choice of T1, T2, and T3. Let Q denote the set of sample paths

for which A1
i decides to abort before sending the i-th message. Let Q denote the set of sample

paths for which A1
i decides to abort after sending the i-th message. By definition, A0

i would abort
after sending the i-th message on Q and abort before sending the i-th message on Q.

• For b ∈ {0, 1}, we define a partitioning of Q: let Q = U
〈b〉
0 ∪U

〈b〉
1 where U

〈b〉
0 is the set of sample

paths for which P3’s outcome is 0 when playing with Abi , and U1 is the set of sample paths for

which P3’s outcome is 1 when playing with Abi .

• Similarly, for b ∈ {0, 1}, we define a partitioning of Q: let Q = U
〈b〉
0 ∪ U

〈b〉
1 where U

〈b〉
0 is the set

of sample paths for which P3’s outcome is 0 when playing with Abi , and U1 is the set of sample

paths for which P3’s outcome is 1 when playing with Abi .

Now, consider a hybrid adversary that takes A1
i ’s decisions on Q and takes A0

i ’s decisions on
Q. Such an adversary effectively always makes P1 abort before sending the i-th message. Since
this adversary also chooses T2 at random, effectively an execution with this hybrid adversary can
be viewed as if only a single party P1 is corrupt and P2 is honest. Now by the lone-wolf condition,
P3’s outcome must not be biased towards either direction (except by negligibly small amounts).
We conclude that

U
〈1〉
0 + U

〈0〉
0 ≈ U

〈1〉
1 + U

〈0〉
1

where x(κ) ≈ y(κ) means that |x(κ) − y(κ)| ≤ negl(κ) for some negligible function negl(·). By a
symmetric argument and considering a P1 that always aborts after sending the i-th message, we
have that

U
〈0〉
0 + U

〈1〉
0 ≈ U

〈0〉
1 + U

〈1〉
1

We thus conclude that

(U
〈0〉
0 + U

〈0〉
0)− (U

〈0〉
1 + U

〈0〉
1) ≈ (U

〈1〉
1 + U

〈1〉
1)− (U

〈1〉
0 + U

〈1〉
0)

The proof concludes by observing that the above means that A0
i ’s ability to bias towards 0 is

negligibly different from A1
i ’s ability to bias towards 1.

36

A.5 Impossibility for Amply Divided Preference Profiles

In an amply divided preference profile, at least two parties prefer 0 and two parties prefer 1. We
can show strong impossibility in this case, that is, no n-party coin toss protocol can achieve even
computational maximin fairness against even fail-stop adversaries. The proof follows by a simple
reduction to Cleve’s lower bound of strongly fair, 2-party coin toss [18] as we explain below.

Proof of Theorem 5.

Proof. Imagine that we divide all n parties into two disjoint partitions denoted A and B respectively,
such that each partition contains at least one party who prefers 0 and one party who prefers 1.
Now in an n-party coin toss protocol, imagine the family (denoted A) of all non-uniform p.p.t.
fail-stop adversaries that either control all nodes in A or control all nodes in B. Further, all nodes
in the corrupt coalition (either A or B) act in accordance in any round: they either all abort or
all continue. By the definition of maximin fairness, no adversary in A can cause any non-negligible
bias to the outcome of the protocol.

Now, we can construct a 2-party coin-toss protocol where one party simulates all parties inside
the partition A and another party simulates all parties inside B. We abuse notation and use A
and B to denote these two nodes. Now, every adversary in A naturally maps an adversary in the
2-party protocol, where either A or B is a fail-stop party that may (or may not) decide to abort
prematurely depending on the prefix of the execution (possibly after having observed the messages
the other party wants to send in the same round, i.e., through a rushing attack). We conclude
that no non-uniform p.p.t. fail-stop adversary can cause non-negligible bias in this 2-party coin
toss protocol — but this violates Cleve’s lower bound on strongly fair coin toss [18].

B Additional Details for CSP Fairness

Earlier in Section 5.2, we described a protocol that achieves CSP fairness for almost unanimous
preference profiles in the presence of malicious adversaries; however, for simplicity we assumed
an ideal commitment functionality Fidealcomm. In this section, we elaborate on how to remove the
need for Fidealcomm, and instantiate a protocol using special concurrent non-malleable commitments
that enjoy public verifiability (which in turn can be instantiated assuming the existence of one-way
permutations [42]).

Then, we provide a full proof of Theorem 10, i.e., the impossibility of achieving CSP fairness
for amply divided preference profiles.

B.1 Preliminary: Publicly Verifiable Concurrent Non-Malleable Commitment

A publicly verifiable commitment scheme (C,R,V) consists of a pair of interacting Turing machines
called the committer C and the receiver R respectively, and a deterministic, polynomial-time public
audit function denoted V. Suppose the commitment protocol completes successfully and produces
some transcript Γ (which includes an ordered sequence of all bits transmitted between C and R),
then V(Γ) outputs either a bit b ∈ {0, 1} to accept or ⊥ which indicates rejection. If a bit b ∈ {0, 1}
is output (and not ⊥), we call it the accepting bit. Henceforth we assume that the protocol has
two phases, a commitment phase and an opening phase, and that all algorithms receive a security
parameter κ as input. Henceforth we often use the notation 〈C∗(z),R∗(z′)〉 to indicate a (possibly
randomized) execution between C∗ that is invoked with the input z and R∗ that is invoked with
the input z′.

37

Perfectly correct. We require a strong notion of correctness, that is, for either b ∈ {0, 1}, and
for any κ ∈ N, if C is honest and receives the input bit b, then for any (possibly unbounded)
non-aborting R∗, with probability 1, the execution 〈C(1κ, b),R∗(1κ)〉 will successfully complete with
the accepting bit b. Note that here we assume that if the malicious receiver R∗ sends malformed
messages outside the appropriate range, it is treated the same way as aborting. This notion of
correctness implies that an honest sender can always complete the protocol correctly opening its
bit, and an arbitrarily malicious (non-aborting) receiver cannot cause it to be stuck.

Perfectly binding. We can denote the transcript as Γ := (Γ0,Γ1) ∈ {0, 1}`(κ) where the former
term denotes the transcript by the end of the commitment phase and the latter term denotes
the transcript of the opening phase, and `(·) is a fixed polynomial function in κ that denotes the
maximum length of the transcript in each phase. We require that for any κ ∈ N, any Γ0,Γ1,Γ1 ∈
{0, 1}`(κ), if V(1κ,Γ0,Γ1) = b and V(1κ,Γ0,Γ

′
1) = b′ where b, b′ ∈ {0, 1}, then it must be that

b = b′. In other words, the transcript by the end of the commitment phase determines at most one
bit that can be successfully opened (even when both the committer and receiver are corrupt and
unbounded).

Computationally hiding. Henceforth let p(1κ, v) denote the probability that R∗ outputs 1 at the
end of the commitment phase in the execution 〈C(1κ, v),R∗〉 where C runs the honest committer.
We say that a commitment scheme is computationally hiding, iff for every non-uniform p.p.t. R∗,
there exists a negligible function negl(·) such that for every κ ∈ N, for every v1, v2 ∈ {0, 1}κ, it
must hold that |p(1κ, v1)− p(1κ, v2)| ≤ negl(κ).

Concurrent non-malleability. We use the definition of concurrent non-malleability by Lin
et al. [43] — note that this notion implies computationally hiding. To define concurrent non-
malleability, we will consider a man-in-the-middle adversary A that participates in m left inter-
actions and m right interactions: on the left it interacts with an honest committer who runs the
commitment phase of the protocol and commits to values v1, . . . , vm using identities id1, . . . , idm;
on the right A interacts with an honest receiver attempting to commit to a sequence of values
v′1, . . . , v

′
m, again using identities of its choice id′1, . . . , id

′
m. If any of the right commitments are

invalid its value is set to ⊥. For any i ∈ [m], if id′i = idj for some j ∈ [m], v′i is set to ⊥. Now,
let mitmA(1κ, v1, . . . , vm, z) denote a random variable that describes the values v′1, . . . , v

′
m and the

view of A in the above experiment — note that v′1, . . . , v
′
m are well-defined if the commitment is

perfectly binding.

Definition 7 (Concurrent non-malleability). A commitment scheme is said to be concurrent non-
malleable (w.r.t. commitment) if for every polynomial p(·) and every non-uniform p.p.t. adversary
A that participates in at most m = p(κ) concurrent executions, there exists a polynomial-time
simulator S such that the following ensembles are computationally indistinguishable:{

mitmA(1κ, v1, . . . , vm, z)
}
v1,...,vm∈{0,1}κ,κ∈N,z∈{0,1}∗ and {S(1κ, z)}v1,...,vm∈{0,1}κ,κ∈N,z∈{0,1}∗

Theorem 19 (Publicly verifiable concurrent non-malleable commitment [42]). Assume that one-
way permutations exist. Then there exists a publicly verifiable commitment scheme that is perfectly
correct, perfectly binding, and concurrent non-malleable.

Proof. Lin and Pass [42] construct a concurrent non-malleable commitment scheme starting from
any non-interactive or 2-round commitment scheme. If we instantiate this commitment with the
perfectly-correct and perfectly-binding non-interactive commitment scheme of Blum [16] based on
one-way permutations, then the resulting protocol will inherit these properties.

38

B.2 CSP Fairness For Almost Unanimous Preference Profiles

Let (C,R,V) be a publicly verifiable commitment scheme that is perfectly correct, perfectly binding,
computationally hiding, and concurrent non-malleable as defined in Section B.1. Without loss of
generality, suppose that there are n ≥ 3 players, and only one of them is a 0-supporter, the remaining
are 1-supporters. Now consider the following protocol where we assume that all commitment
instances have unique session identifiers:

1. Phase 0: Everyone player i ∈ [n] a random bit bi ∈ {0, 1}, and it invokes a separate commitment
instance for every j 6= i, and commits to bi to player j.

2. Phase 1: The single 0-supporter opens all of its commitments.

3. Phase 2: Every 1-supporter opens all of its commitments.

4. Phase 3: If for some party, in all of its commitment instances (where it acts as committer)
the receiver aborted prematurely, this party (who must be honest) simply broadcasts the bit it
wanted to commit to — and this bit is considered as a valid opening for this party.

5. Outcome: At the end of the execution, if any player has aborted, it is disqualified. For any
player that is not disqualified yet, consider all of its commitment instances (where it acts as the
committer) in which the corresponding receiver did not abort: unless all these instances opened
to the same bit the player is disqualified as well.

The outcome of the protocol is defined as follows: if any 1-supporter is disqualified, the outcome
is defined to be 0; else, the output is the XOR of the unique bit that has been opened for all
players that have not been disqualified. Note that for any player that has not been disqualified,
its opening is uniquely defined: either in some instances (where the player is committer) the
receiver did not abort and all instances open to the same bit; or in all instances the receiver
aborted in which case the opening is the bit the party announces in Phase 3.

Theorem 20 (Computational CSP fairness against malicious adversaries). Assume that one-way
permutations exist, then for any n ≥ 3, there exists an n-party protocol that achieves computational
CSP fairness for any almost unanimous preference profile P ∈ {0, 1}n against malicious coalitions
of size up to n− 1.

Proof. Consider the protocol described above. Correctness follows trivially. We now prove CSP
fairness. We number the parties from 0 to n − 1, and w.l.o.g. let 0 be the single 0-supporter.
Consider the following cases:

1. The single 0-supporter is corrupt and all 1-supporters are honest: Due to the perfect correctness
of the commitment scheme, the coin toss outcome depends only on the 0-supporter’s actions be-
fore the beginning of Phase 2, and does not depend on its actions after Phase 2. Let o1, . . . , on−1
denote the n− 1 values it opened before the begin of Phase 2 (recall that any instance in which
the committer aborted prior to opening, we define the opening to be ⊥). Let b1, . . . , bn−1 denote
all honest parties’ random coin tosses that they commit to in Phase 1. Then, the outcome of the
execution can be thought of as f(o1, . . . , on−1) ⊕ b1 ⊕ b2, . . . ,⊕bn−1 where f is a function that
we do not care. Had (o1, . . . , on−1) been picked from a joint distribution that is independent of
b1⊕ b2, . . . ,⊕bn−1, then the expected outcome obviously would be 1

2 (where probability is taken
over the randomness of the simulator and honest parties). The proof concludes by observing that
due to the concurrent non-malleability and the perfect binding properties of the commitment

39

scheme, for any fixed b1, b2, . . . , bn−1 input to the honest committers, (o1, . . . , on−1) is computa-
tionally indistinguishable from the output of a simulator that is unaware of b1, b2, . . . , bn−1

12.

2. A single 0-supporter and a single 1-supporter are corrupt: For this case the definition is trivially
satisfied since the corrupt coalition is indifferent to the outcome.

3. The single 0-supporter is honest and one or more 1-supporters are corrupt. Let C denote the
corrupt coalition, let bC := {bi}i∈C denote the vector of bits committed to by the corrupt
coalition by the end of Phase 1 — specifically each bi where i ∈ C is defined as follows:

• Consider all instances where i is the committer and the receiver did not abort by Phase 1.

• If in all these instances the committer did not abort, and the committed values are the same
bit b ∈ {0, 1} and not ⊥, then bi := b; else bi is defined to be ⊥ (note that we implicitly
use perfectly binding here).

Let b−C denote the bits the honest parties want to commit to.

Now, conditioned on bC and b−C which are well-defined by the end of Phase 1 due to perfect
binding, with probability 1, the outcome cannot be greater than ⊕i∈{0,...,n−1}bi where if bi = ⊥ it
is treated as 0 in the XOR computation; this arises due to the following: 1) all honest committers
can successfully open due to perfect correctness (if in all instances where the player is committer
the corresponding receiver aborted, the opening is the bit announced in Phase 3); and 2) if for
some i ∈ C, bi 6= ⊥, then if i aborts without decommitting after Phase 1, the outcome is 0.

By the concurrent non-malleability of the commitment scheme, for any fixed b−C input to the
honest parties’s commitments, bC is computationally indistinguishable from what a simulator
unaware of b−C would have output. Now had bC been output by this simulator, bC would be
independent of b−C and thus ⊕i∈{0,...,n−1}bi would have expected value 1

2 (recall that we treat
⊥ as 0 in the XOR), where probability is taken over the randomness of the honest parties as
well as that of the simulator.

4. The single 0-supporter and at least two 1-supporters are corrupt. In this case it must be that
n ≥ 4. Consider all commitment instances where the single 0-supporter is the committer and
let (o1, . . . , on−1) denote the n − 1 values opened before the begin of Phase 2 (recall that any
instance in which the committer aborted prior to opening, we define the opening to be ⊥). Let o
be ⊥ if not all of (o1, . . . , on−1) are the same or if some of them are ⊥; else let o be the consistent
bit defined by (o1, . . . , on−1). Let S denote the set of 1-supporters that are corrupt. Let bS be
defined similarly as the earlier definition of bC (see Case 3) but now for the set S. Let H denote
the set of honest players, and let bH denote the vector of bits honest players want to commit
to.

Now, conditioned on bS , bH , and (o1, . . . , on−1), with probability 1, the outcome cannot be
greater than the XOR of all of bS , bH , and o where ⊥ is treated as 0 in the XOR. Due to the
concurrent non-malleability and the perfect binding properties of the commitment scheme, for
any fixed bH input to the honest parties’s commitments, (o1, . . . , on−1,bS) must be computation-
ally indistinguishable from what a simulator would have output not knowing bH . Now imagine
(o1, . . . , on−1,bS) were indeed output by such a simulator, then it must be that (o1, . . . , on−1,bS)
is independent of bH . The proof follows by observing that the XOR of all of bS , bH , and o

12Without loss of generality, we may assume that the opening phase has only a single message where the committer
broadcasts its committed bit and randomness. Thus the adversary must make a decision whether to abort in Phase
1 based on its view in Phase 0.

40

has expectation 1
2 , where probability is taken over randomness of the simulator and of honest

parties.

B.3 Impossibility for Amply Divided Preference Profiles

We restate Theorem 10 for the reader’s convenience.

Theorem 21 (Restatement of Theorem 10: impossibility of CSP-fairness for n ≥ 4). Let n ≥ 4,
and let P ∈ {0, 1}n be any amply divided preference profile. Then, no n-party coin-toss protocol
can achieve even computational CSP-fairness for P, against even fail-stop adversaries.

Proof. For n = 4, any divided preference profile P ∈ {0, 1}4 must be balanced, and in this case
CSP-fairness is equivalent to maximin fairness. Thus the case of n = 4 is implied by Theorem 5.
Similarly, for any n ≥ 6 and for any balanced preference profile P ∈ {0, 1}6, the theorem also
follows from Theorem 5. Henceforth we focus on the case when n ≥ 5 and P ∈ {0, 1}n is amply
divided but unbalanced. Without loss of generality, we will assume that more players prefer 1 than
0.

Recall that we refer to a party that prefers 1 as a 1-supporter and we refer to one that prefers
0 as a 0-supporter.

Viewing it as a 3-party protocol. Our overall proof strategy is similar to that of Theorem 7
for maximin-fairness. We will divide the parties into three disjoint partitions called P1, P2, and P3

respectively. The division algorithm guarantees the following:

1. For either b ∈ {0, 1}, the number of b-supporters in P1 is the same as the number of b-supporters
in P3;

2. The number of 0-supporters in P1 is the same as the number of 1-supporters in P1 and the same
holds for P3; and

3. P2 has at most one 0-supporter, and at least one 1-supporter. Further P2 has more 1-supporters
than 0-supporters.

In other words, we are evenly dividing the 0-supporters among P1 and P3. In case the total
number of 0-supporters is odd, the leftover 0-supporter is placed in P2. We then place as many
1-supporters in each of P1 and P3 as the number of 0-supporters in either of these partitions. All
the remaining 1-supporters get placed in P2. Since by our assumption, there are more 1-supporters
than there are 0-supporters, there is at least one 1-supporter in P2; and further, the 1-supporters
strictly outnumber 0-supporters in P2.

We now regard all the parties in the same partition as a supernode, such that in any round they
act in accordance: either jointly abort or jointly continue. In this way, we can view the protocol as
a 3-party protocol between P1, P2, and P3.

Lone-wolf and wolf-minion conditions. In this 3-party protocol, we make the following obser-
vation.

Claim 5 (Lone-wolf and wolf-minion conditions). In this 3-party protocol, lone-wolf condition and
the wolf-minion condition (see the proof of Theorem 7 for definitions) both hold.

41

Proof. The wolf-minion condition follows directly from the definition of CSP-fairness against fail-
stop adversaries. We now prove that the lone-wolf condition also holds. We prove it for the case
when P1 is the lone wolf since the argument is symmetric for P3. Suppose that the lone-wolf
condition is not true, i.e., P1 is the lone wolf and can cause non-negligible bias towards some
b ∈ {0, 1}. Recall that outside P1 there is at least one b-supporter left henceforth denoted P ∗.
Now, consider the fail-stop coalition containing the parties in P1 and P ∗ — this coalition prefers
b. Moreover, this coalition can cause non-negligible bias towards b by having parties in P1 act P1’s
strategy and having P ∗ act honestly. This violates CSP-fairness.

Honest execution is unbiased even when conditioning on T2. Now, consider an honest
execution but conditioned on the fact that P2’s randomness is T2. Let f(T2) denote the expected
outcome of an honest execution, conditioned on the fact that P2’s randomness is T2. Our next goal
is to prove the following lemma which is akin to Lemma 1 in the proof of Theorem 7 — however,
in comparison with Lemma 1, here we allow a negligible fraction of T2’s to not satisfy the stated
condition.

Lemma 7 (Honest execution is unbiased even when conditioning on T2). There exists a negligible
function negl(·) such that for all but negl(κ) fraction of T2’s |f(T2)− 1

2 | is a negligible function in
κ.

If we could prove the above lemma, the remainder of the proof would follow in exactly the
same manner as that of Theorem 7. Recall that the proof of Theorem 7 goes as follows: assume
that Lemma 1 holds and moreover, both the lone-wolf and the wolf-minion conditions hold, now
we can construct a polynomial-time attack that violates the wolf-minion condition which creates a
contradiction.

In our proof of Theorem 10, we shall follow exactly the same proof strategy as Theorem 7,
except that now Lemma 1 is replaced with the slightly weaker version of Lemma 7 which deducts
a negligible fraction of bad T2’s. It is not difficult to see that even with this slightly weakened
version, all the remainder of the proof of Theorem 7 would nonetheless hold (simply by deducting
the negligible fraction of bad T2’s from consideration whenever appropriate).

The crux therefore is to prove Lemma 7 which is the slightly weakened form of Lemma 1.
The challenge is the following: earlier in Theorem 7, we proved Lemma 1 by relying on maximin
fairness against semi-malicious adversaries. Here, however, we only have that the protocol is CSP-
fair against fail-stop adversaries (c.f. note that Lemma 1 does not hold for maximin fairness against
fail-stop adversaries).

Proof of Lemma 7. We now prove Lemma 7. By correctness of a coin toss protocol, we trivially
have that ET2 [f(T2)] = 1

2 . Now, we would like to prove that in fact f(T2) is negligibly different
from 1

2 almost everywhere, i.e., for all but a negligible fraction of T2’s.

Proof intuition. It seems challenging to directly compare f(T2) with f(T ′2) for arbitrary T2 6= T ′2.
Recall that T2 consists of the randomness from m parties where m is the size of the partition P2.
We can thus regard T2 := {tp}p∈P2 as a vector where each coordinate tp is one party’s contribution
towards the randomness. To overcome the above challenge, our high-level idea is the following:

1. First, we will compare f(T2) with the expected outcome in the following execution conditioning
on T2. Suppose that there is a single fail-stop party in P2 henceforth called the lone wolf and
denoted w ∈ P2. Further, the wolf always aborts upfront prior to any one speaks. We will show
that for almost all T2’s, f(T2) must be almost the same as the expected outcome in the latter
execution with the wolf also conditioning on T2.

42

2. Next, we will show that for almost all choices of T2 and T ′2 that differ only in the wolf’s ran-
domness (henceforth we say that T2 and T ′2 are neighboring), it must be that f(T2) and f(T ′2)
are negligibly apart. To see this, we can compare f(T2) or f(T ′2) to the expected outcome when
fixing P2’s randomness to T2 or T ′2, but when the wolf aborts upfront. If the wolf aborts up-
front, however, then the wolf’s randomness does not matter to the expected outcome — thus the
expected outcome should depend only on the part of T2 or T ′2 excluding the wolf’s randomness.

Now, with the above arguments, we shall conclude that f(T2) is negligibly different from 1
2 for

almost all T2’s.

Formal proof. Below we formalize the above intuition. Let w ∈ P2 be any fixed party in P2. Let
A(w) be an adversary that controls w alone and always makes w abort upfront prior to anyone
speaks.

For any fixed wolf w ∈ P2, let gw(T2) denote the expected outcome of an execution when playing
with A(w), and conditioned on the fact that P2’s randomness is T2.

Lemma 8 (A lone wolf in P2 cannot cause noticeable bias conditioned on T2.). For any fixed
w ∈ P2, there exists a negligible function negl(·), such that for all but negl(κ) fraction of T2’s, it
holds that |f(T2)− gw(T2)| is negligibly small in κ.

Proof. Suppose that the lemma is not true, i.e., for some fixed w ∈ P2, there are polynomials p(·)
and q(·) such that for 1/q(κ) fraction of T2’s, |f(T2)−gw(T2)| ≥ 1/p(κ). Now, observe the following
claim.

Claim 6. Fix any w ∈ P2, it holds that |ET2 [gw(T2)]− 1
2 | is negligible in κ.

Proof. It suffices to prove that in execution where w always aborts upfront, the expected outcome is
negligibly different from 1

2 . If not, then w must be able to cause non-negligible bias either towards
0 or 1. If it can create non-negligible bias towards b ∈ {0, 1}, then obviously a fail-stop coalition
containing w (who always aborts upfront) and two additional b-supporters (who simply follow the
honest algorithm) can cause non-negligible bias towards b — this violates CSP-fairness. Notice
that the two additional b-supporters must exist (e.g., one from P1 and one from P3) due to our
partition creation algorithm.

Given the above claim, and recalling that by honest execution ET2 [f(T2)] = 1
2 , we have that

|ET2 [f(T2)] − ET2 [gw(T2)]| = |ET2 [f(T2) − gw(T2)]| is negligible small in κ for any fixed w. Thus
if there are non-negligible fraction of T2’s such that f(T2)− gw(T2) ≥ 1/p′(κ) for some polynomial
p′(·), i.e. the wolf biases noticeably towards 0 on non-negligible fraction of T2’s, then there must
be non-negligible fraction of T2’s such that gw(T2) − f(T2) ≥ 1/p′′(κ) for some polynomial p′′(·),
i.e. the wolf biases noticeably towards 1 on non-negligible fraction of T2’s; and vice versa.

Recall that 1-supporters strictly outnumber 0-supporters in P2. We can now construct a
polynomial-time fail-stop adversary A∗ that controls the coalition P2 and can cause non-negligible
bias towards 1. A∗ receives a non-uniform advice string containing some polynomial p(·); p(·) is
chosen such that there are non-negligible fraction of T2’s for which gw(T2) − f(T2) ≥ 1/p(κ) for
sufficiently large κ — henceforth if a T2 satisfies this condition we say that the T2 is good for A∗.
A∗ now performs the following experiment:

• First, A∗ samples a random T2 for P2.

• Next, for p2(κ) times, A∗ samples T1 and T3 at random for P1 and P3 respectively and emulates
an execution playing with the wolf, and conditioned on all parties’ randomness being fixed
to T1, T2, T3. By averaging the outcomes of these executions, it obtains an estimate g̃w(T2).

43

Similarly, for p2(κ) times, A∗ samples T1 and T3 at random and emulates an honest execution
conditioned on T1, T2, T3. By averaging the outcomes of these executions, it obtains an estimate
f̃(T2).

• Now, if g̃w(T2) > f̃(T2), A∗ does not make the wolf abort upfront; else it makes the wolf abort
upfront.

Observe that by a simple application of the Chernoff bound, the following claim holds.

Claim 7. For any fixed T2 that is good for A∗, except with negligible in κ probability in the above
experiment, it must hold that g̃w(T2) > f̃(T2).

Now, on the non-negligible fraction of good T2’s, the adversaryA∗ can cause 1/p(κ)-bias towards
1 relative to f(T2); and for all other T2’s the expected outcome is simply f(T2). It is not difficult
to see that averaging over T2, A∗ can cause non-negligible bias towards 1.

This concludes the proof of Lemma 8.

Recall that T2 is formed by concatenating m players’ random strings where m is the size of the
set P2. Henceforth we view T2 := {tp}p∈P2 as a vector where tp is the contribution of player p ∈ P2.
Now, if T2 and T ′2 differ in exactly one tp, we say that T2 and T ′2 are neighboring w.r.t. p ∈ P2.

Fact 7. For any w ∈ P2, for any T2 and T ′2 that are neighboring w.r.t. w, it must hold that
gw(T2) = gw(T ′2).

Proof. Follows in a straightforward fashion by observing the following: if the wolf w aborts up-
front, then the expected outcome conditioning on T2 depends only on the part of T2 excluding w’s
contribution.

We use the notation T ′2 := T−i2 to denote the fact that T ′2 is almost identical as T2 except with
the i-th bit flipped (note that the i-th bit is part of some player’s randomness since each player
may consume multiple random bits).

Lemma 9. For any i ∈ [|T2|], there exists a negligible function negl(·) such that for all but negl(κ)
fraction of T2’s, |f(T2)− f(T ′2)| is negligibly small in κ where T ′2 := T−i2 .

Proof. Suppose that the i-th bit is contributed by party w ∈ P2. Pick a random T2. Now, for any
fixed polynomial p(·), define bad event badp1 to be when T2 satisfies |f(T2)− gw(T2)| ≥ 1/p(κ). For
any fixed polynomial p(·), define bad event badp2 to be when T ′2 := T−i2 satisfies |f(T ′2)− gw(T2)| ≥
1/p(κ). Now for any polynomial p(·), the probability that badp1 happens is negligibly small in κ by
Lemma 8. Similarly, for any polynomial p(·), the probability that badp2 happens is negligibly small
in κ. By union bound, for any polynomial p(·), the probability that neither badp1 nor badp2 happens
is 1 − negl(κ) for some negligible function negl(·). The lemma follows by observing that for any
fixed polynomial p(·), if neither badp1 nor badp2 happens, then |f(T2)− f(T ′2)| ≤ 2/p(κ).

Lemma 10. Pick a random T2 and a random T ′2, then except with negligible in κ probability in the
choice of T2 and T ′2, it holds that |f(T2)− f(T ′2)| is negligibly small in κ.

Proof. Pick a random T2 and a random T ′2, each of which contains ` = poly(κ) bits. Now, for
i = 0, 1, . . . , `, let T i be the first i bits from T ′2 concatenated with the last `− i bits of T2. Clearly
T 0 = T2 and T ` = T ′2.

Now, for i = 0, 1, . . . , ` − 1 and for some polynomial p(·), let bad event badpi be such that
|f(T i) − f(T i+1)| ≥ 1/p(κ). By Lemma 9, for any polynomial p(·), and any i ∈ {0, 1, . . . , ` − 1},
badpi happens with negligible probability (over the choice of T2 and T ′2) — to see this, observe that

44

the marginal distribution of T i is uniformly at random; and further either T i+1 = T i or T i+1 is
almost identical to T i but with the (i+ 1)-th bit flipped.

By union bound, the probability that none of the badpi events happen is 1 − negl(κ) for some
negligible function negl(·). Now for any fixed polynomial p(·), if none of the badpi events happen for
any i ∈ {0, 1, . . . , `−1}, then by triangle inequality we have that |f(T i)−f(T i+1)| ≤ (`+1)/p(κ).

We now continue to prove Lemma 7. Suppose the lemma is not true — since we know that
ET2 [f(T2)] = 1

2 , it must be that there exist 1/p(κ) fraction of T2’s such that f(T2) ≥ 1
2 +1/q(κ) and

moreover there exist 1/p′(κ) fraction of T2’s such that f(T2) ≤ 1
2 − 1/q′(κ) for some polynomials

p, p′, q, q′. However, suppose that this is true, then if we pick T2 and T ′2 at random, then with
non-negligible probability we have that |f(T2) − f(T ′2)| ≥ 1/q′′(κ) for some polynomial q′′ — and
this violates Lemma 10.

C Cooperative-Coalition-Proof Fairness

In this section, we consider another notion of fairness, called cooperative-coalition-proof (CCP)
fairness, that is inspired by game theory. Imagine the following coalition formation process. Suppose
that before protocol execution starts, the parties can freely discuss with each other and decide
whether and how to form coalitions, as well as the coalition’s strategy. Suppose that a set of
parties, denoted S ⊆ [n], decide that forming a coalition and playing a dishonest (cooperative)
strategy M will improve the coalition’s overall wealth (i.e., expected total payoff). Such a coalition,
however, may not be stable (also referred to as self-enforcing henceforth): for example, suppose
that a sub-coalition S′ ⊂ S decide that if S\S′ plays the strategy M and everyone else plays honest,
then S′ is better off (in terms of overall wealth) playing another dishonest strategy M ′ 6= M . Now
if M ′ is a self-enforcing strategy itself, then the sub-coalition S′ will be incentivized to deviate
from the coalition S’s strategy M . Now, CCP fairness requires that we defend, not against every
cooperative coalition strategy that can improve the coalition’s overall wealth (as in CSP-fairness),
but only against those that are self-enforcing, i.e., no self-enforcing sub-coalition can be better
off by further deviations (note that the definition of self-enforcing is recursive). Therefore, CCP
fairness is a relaxation of the earlier notion CSP fairness (see Section 5.1).

After defining CCP fairness, we will prove that it is in fact equivalent to Strong Nash in the
context of coin toss protocols (Theorem 22). Note that the equivalence does not hold for general
games — for general games, these two notions are incomparable.

C.1 Generalized Execution Model for More Complex Coalition Structures

To formally define the notion of CCP fairness, we need to model complex coalition behavior that
reflects self-interestedness, and not just that all corrupt nodes always form a single coalition (as
in the standard cryptography literature). For example, we need to consider the possibility that
sub-coalitions may arise from within a coalition and the sub-coalition may decide to deviate from
the predetermined coalition strategy.

Thus we need to define a more general execution model that allows us to characterize such
more complex coalition dynamics. Our modeling techniques can be viewed as an independent
contribution of this paper, and can be used to study new, game-theoretic notions of security in the
context of more general cryptographic protocols (and not just coin-toss protocols).

The execution model describe below can be viewed as a generalization of that in Section 2.1
(where it was assumed that all corrupt parties form a single coalition). Like in Section 2.1, we still
adopt a round-based execution model where parties exchange messages through a public broadcast

45

channel (with identifiable abort). To model more sophisticated coalition behavior, we introduce
the notion of back-channeling that characterizes how corrupt nodes within a coalition may share
information with each.

Back-channelling. We assume that corrupt nodes may share arbitrary information with other
corrupt nodes (in the same coalition or other coalitions) through a back channel, i.e., a out-of-
band private communication channel. We assume that such back channel information sharing can
take place at any time, even in the middle of a round. Further, (possibly multiple rounds of)
back-channelling can take place before protocol start, e.g., for a coalition of players to decide on a
strategy.

Rushing attack. Corrupt parties in any coalition can perform a rushing attack, i.e., any corrupt
party can decide that in some round r, it wants to hear messages from a subset of other parties first
before it chooses its own message to send in the same round r. In a rushing attack, a corrupt party
can not only wait for an honest party to send message, it can also wait for a corrupt party in the
same or a different coalition. For example, a coalition may jointly decide to take a strategy where
some parties in the coalition wait for others to speak before they speak in the same round — and
such rushing within the same coalition may help stabilize the coalition and prevent sub-coalitions
from deviating.

Since each corrupt party can be blocked waiting for other parties to speak, a deadlocking
situation may occur: e.g., when party i is blocked waiting for party j to send message which in
turn is waiting for party i to send message (and the cycle can be longer too). Henceforth in this
paper, we assume that whenever such circular dependencies happen that cause a deadlock, all
parties involved in the circular dependency effectively abort from the protocol in the round r in
which the circular dependency takes place — and such aborting may be detected at the beginning
of round r + 1.

Henceforth we will assume the honest algorithm of any well-defined protocol must satisfy the
following:

1. does not send any messages over back channels and ignores all messages received over a back
channel;

2. in each round, sends messages at the beginning of the round without performing any rushing
attack.

We define the following families of adversarial algorithms w.r.t. to some honest protocol Π:

• Fail-stop. An algorithm A (executed by a party) is said to be a fail-stop adversary w.r.t. the
honest protocol Π iff A would otherwise follow the honest protocol Π except that it can 1) send
and receive information over back channels; 2) perform rushing attacks; and 3) decide to abort
prematurely based on the party’s view in the protocol (including back-channel messages) so far.

• Semi-malicious. An algorithm A (executed by a party) is said to be a semi-malicious adversary
w.r.t. the honest protocol Π iff A would otherwise follow the honest protocol Π except that
it can deviate in all the ways that a fail-stop adversary could, and moreover, prior to protocol
execution, A can participate in (possibly multiple rounds of) back-channel discussion and choose
the party’s random string arbitrarily based on its view in the back-channel discussion.

• Malicious. An algorithm A (executed by a party) is said to be a malicious adversary w.r.t. Π iff
it can deviate arbitrarily from Π, send arbitrary protocol messages, and perform all the attacks
that a semi-malicious adversary could.

46

Remark 4 (Special case: a single corrupt coalition). The earlier model in Section 2.1 assumed
that all corrupt nodes form a single coalition — this can be viewed as a special case of the more
generalized model. Specifically, due to the way we define back-channelling, when all corrupt nodes
form a single coalition, we can equivalently think of all corrupt nodes as being controlled by a
single adversary A. All corrupt nodes share their views in the protocol with A. The adversary A
can now instruct corrupt nodes how to behave based on the joint views of all corrupt nodes in the
protocol. For the special case of a single coalition, during a rushing attack, corrupt parties wait
only for honest parties to speak before they speak in the same round.

C.2 Protocol-Induced Games and Sub-games

To define CCP fairness, we need to consider games and sub-games that are induced by a protocol’s
execution. Here, we view a protocol’s execution as a game. Recall that we adopt the generalized
execution model described in Section C.1 that allows us to characterize complex coalition structures.

Protocol-induced game. A protocol-induced game among n players is a tuple

G := ([n],M, u)

where [n] denotes the set of players,M is a family of possibly randomized algorithms that denotes
every player’s strategy space, and u is a utility function where ui(M1, . . . ,Mn) determines player
i’s expected utility when all players play the strategy vector (M1, . . . ,Mn) ∈Mn. Recall that each
Mi where i ∈ [n] not only can interact with other parties through the broadcast channel, but can
also communicate with any chosen subset of other nodes through an out-of-band back channel.

Under this definition, we can view any n-player coin toss protocol as a game. In particular,
the utility function u is well-defined given the parties’ preference profile P ∈ {0, 1}n, and given
that the outcome of the protocol can be deterministically computed from the protocol’s transcript.

Sub-games. Let G := ([n],M, u) denote a protocol-induced game among n players. Let S ⊂ [n]
be a non-empty coalition of players, let −S := [n]\S denote the complement of S. Suppose that
we fix the strategies of −S to M−S ∈M|−S|, and let the set S freely choose their strategies from a
family of (possibly randomized) algorithmsM′. We henceforth refer to this as a sub-game induced
on S by the strategies M−S of the set −S of players. We use GSM to denote this induced sub-game
among the players in S: if i ∈ S decides to play the strategy Qi(1

κ) ∈M′, then the utility of player
i ∈ S in the sub-game GSM is denoted ui(Q

S ,M−S). Thus, we can denote GSM as

GSM := (S,M′, {ui(·,M−S)}i∈S)

Note that any sub-game is also a (protocol-induced) game.

C.3 Cooperative-Coalition-Proof Fairness

As mentioned, cooperative-coalition-proof (CCP) fairness is a relaxation of cooperative-strategy-
proof fairness. In a cooperative-coalition-proof fair (CCP-fair) protocol, the honest protocol only
needs to defend against any cooperative strategy that is self-enforcing. A cooperative strategy
among a coalition C is said to be self-enforcing, iff no self-enforcing cooperative sub-coalition can be
better off by further deviation (note the recursive nature of the definition). Our CCP fairness notion
is inspired by the coalition-proof notion that is standard in game theory [15]. Cooperative-coalition-
proof differs from coalition-proof in the following sense: the latter notion defends against self-
enforcing coalition strategies that seek to improve the payoff of every player in the coalition; whereas

47

the former defends against self-enforcing cooperative coalition strategies that seek to improve the
overall wealth of the coalition.

In the formal definition below, we consider protocol-induced games and sub-games.

Definition 8 (Cooperative-coalition-proof). In a single-player game G := ([1],M, u1) , a (possibly
randomized) algorithm M∗(1κ) ∈M is said to be is a cooperative-coalition-proof Nash Equilibrium
(CCPNE) iff there is some negligible function negl(·) such that for every algorithm M(1κ) ∈M, it
holds that u1(M

∗) ≥ u1(M)− negl(κ).
Now, let n > 1 and assume that CCPNE has been defined for all games with fewer than n

players. For any n-player game G := ([n],M, u), let M(1κ) := (M1(1
κ), . . .Mn(1κ)) ∈ Mn denote

some strategy profile for all players. We define self-enforcing and CCPNE for an n-player game as
follows.

1. We say that M(1κ) is self-enforcing iff for any proper subset S ⊂ [n], MS is a CCPNE in the
induced sub-game GSM .

2. We say that M(1κ) is a CCPNE if it is self-enforcing and there exists a negligible function negl(·),
such that for every self-enforcing strategy M ′(1κ) := (M ′1(1

κ), . . .M ′n(1κ)) ∈ Mn, it must be
that

∑
i=1∈[n] ui(M) ≥

∑
i=1∈[n] ui(M

′)− negl(κ).

Definition 9 (Cooperative-coalition-proof fairness). Let Π denote an n-party coin-toss protocol,
and let M denote a family of adversarial algorithms (executed by one party) that includes the
honest algorithm defined by Π. Let P ∈ {0, 1}n denote a divided preference profile. The protocol
Π is said to be cooperative-coalition-proof fair (or CCP-fair for short) for P w.r.t. the family M
iff the strategy profile where all players follow the honest algorithm is a CCPNE in the protocol-
induced game G := ([n],M, uP), where uP is the utility function for all players given the preference
profile P.

Specifically, if M is the class of all non-uniform p.p.t. fail-stop (or semi-malicious, malicious
resp.) adversarial algorithms w.r.t. to the honest protocol, we say that the protocol is computa-
tionally CCP-fair against fail-stop (or semi-malicious, malicious resp.) adversaries. If M is the
class of all possibly unbounded fail-stop (or semi-malicious, malicious resp.) adversarial algorithms
w.r.t. the honest protocol, we say that the protocol is statistically CCP-fair against fail-stop (or
semi-malicious, malicious resp.) adversaries. If the protocol satisfies CCP-fairness with a choice of
0 for the negligible function, then the protocol is said to be perfectly CCP-fair.

C.4 Equivalence of CCP and SNE for Coin Toss Protocols

In this section, we show that our notion of CCP-fairness is equivalent to Strong Nash in the
context of coin-toss protocols. To prove this, we must first adapt the earlier SNE-fairness definition
to our generalized model of execution defined in Section C.1. Recall that here we model a corrupt
coalition by the vector of their strategies (rather than a single adversary A), and we allow sharing
of information between coalition members through back channels.

Definition 10 (SNE in protocol-induced games). Let G := ([n],M, u) be a protocol-induced game.
We say that the strategy profile M ∈ Mn is a Strong Nash Equilibrium (SNE), iff for any sub-
coalition S ⊆ [n] containing up to n parties, for any coalition strategy QS ∈ M|S|, there exists a
negligible function negl(·) and some i ∈ S such that ui(Q

S ,M−S) ≤ ui(M) + negl(κ).

In other words, SNE requires that in the equilibrium strategy, if any sub-coalition decides to
deviate, at least one coalition member will not have noticeable gain.

48

Definition 11 (SNE-fairness in the generalized execution model). Let Π denote an n-party coin
toss protocol, and let M be a family of adversaries (executed by one party) that includes the
honest algorithm defined by Π. Let P ∈ {0, 1}n be any divided preference profile. We say that Π
is SNE-fair for P and w.r.t.M, iff the strategy profile where all parties play the honest protocol Π
is an SNE in the Π-induced game G := ([n],M, uP) where uP is the utility function for all players
under the preference profile P.

The following fact says that in any (sub-)game induced by a coin toss protocol, an SNE strategy
only needs to defend against deviations by unanimous sub-coalitions (i.e., coalitions where members
have consistent preference).

Definition 12 (Resists deviation from coalition). Let G := ([n],M, u) be a (sub-)game induced
by a multi-party coin toss protocol. We say that a strategy profile M ∈ Mn resist deviation from
some coalition S ⊆ [n] containing up to n parties, iff for any coalition strategy QS ∈ M|S|, there
exists a negligible function negl(·) such that uS(QS ,M−S) ≤ uS(M) + negl(κ), where uS(M ′) :=∑

i∈S ui(M
′) denotes the total payoff of the coalition S.

Claim 8. Let G := ([n],M, u) be a (sub-)game induced by a multi-party coin toss protocol. Then,
M ∈Mn is an SNE iff M resists deviation from any unanimous coalition.

Proof. First, the following fact is straightforward:

Fact 8. For any unanimous coalition S, uS(M0) ≤ uS(M1) + negl′(κ) iff there exists i ∈ S,
ui(M0) ≤ ui(M1) + negl′(κ) for some other negligible function negl′(·).

• (SNE =⇒ resists unanimous coalition): If a strategy M is an SNE, by definition of SNE, for
any unanimous coalition S and strategy Q ∈M|S|, there exists a negligible function negl(·) and
some i ∈ S such that ui(Q

S ,M−S) ≤ ui(M) + negl(κ). For a unanimous coalition S, by Fact 8,
we have that uS(QS ,M−S) ≤ uS(M) + negl′(κ) for some negligible function negl′(·).

• (Resists unanimous coalition =⇒ SNE): Suppose that for any unanimous coalition S and strategy
Q ∈M|S|, uS(QS ,M−S) ≤ uS(M) + negl(κ) for some negligible function negl(·). By Fact 8, for
any unanimous coalition S and strategy Q ∈M|S|, there exists some negligible function negl(·)
and i ∈ S such that ui(Q

S ,M−S) ≤ ui(M) + negl(κ)

Now, consider a divided coalition S ⊆ [n]. If the parties in S that prefer b ∈ {0, 1} have expected
reward more than ui(M) by deviating, then those who prefer 1 − b in S have expected reward
less than ui(M). This concludes the proof.

We can now prove the equivalence of CCPNE and SNE in the context of coin toss protocols
and induced (sub-)games.

Theorem 22 (Equivalence of SNE and CCP for multi-party coin toss). Let Π denote an n-party
coin toss protocol, and letM be a family of adversarial algorithms (executed by one party) including
the honest strategy defined by the protocol Π. Let P ∈ {0, 1}n be any divided preference profile.
Then, Π is CCP-fair for P and w.r.t. M iff Π is SNE-fair for P and w.r.t. M.

Proof. It suffices to prove that for any game induced by a coin-toss protocol or any sub-game among
n players, let G := ([n],M, u) denote this game or sub-game — then, a strategy profile M ∈ Mn

is a CCPNE iff M is an SNE.

49

For n = 1, the claim holds trivially by definitions of CCPNE and SNE. Now, suppose that the
claim holds for any ñ < n, we now prove it inductively for the case of n.

We first prove a useful lemma.

Lemma 11. Suppose that the induction hypothesis holds for any ñ < n. Then, in n-party game
induced by a coin toss protocol, M ∈ Mn is is self-enforcing iff M resists deviation from any
unanimous sub-coalition of size at most n− 1.

Proof. M is self-enforcing iff for any proper sub-coalition S ⊂ [n], MS is a CCPNE in GSM . By
induction hypothesis, this means that M is self-enforcing iff for any proper sub-coalition S ⊂ [n],
MS is an SNE in GSM . The lemma now follows by Claim 8.

We now proceed with the induction step.

1. CCPNE =⇒ SNE: suppose that in an n-player game or sub-game (denoted G) induced by a
coin-toss protocol, some strategy profile M is a CCPNE, we would like to show that M is an SNE
too. To show this, it suffices to show that M resists deviation from any unanimous coalition.

By definition of CCPNE, we know that M is self-enforcing. By Lemma 11, M resists deviation
from any proper unanimous coalition.

It remains to prove that if all parties prefer the same bit b, then M resists the deviation by the
global coalition (i.e., the coalition that includes everyone). Let M̃ ∈ Mn be the strategy such

that u[n](M̃) ≥ u[n](M
′) for all M ′ ∈ Mn. It suffices to show that M̃ must be self-enforcing —

if so, it cannot be that u[n](M̃) > u[n](M) + p(·) since otherwise it would violate the fact that
M is a CCPNE.

To show that M̃ ∈ Mn is self-enforcing, by Lemma 11, it suffices to show that M̃ resists
deviation from any proper sub-coalition S ⊂ [n] — this is guaranteed by the construction of M̃
and all parties prefer the same bit.

2. SNE =⇒ CCPNE: Suppose that M is an SNE, and we would like to show that M is a CCPNE. By
Claim 8, M resists deviation from any unanimous coalition. By Lemma 11, M is self-enforcing.
It suffices to show that no self-enforcing M ′ improves the global coalition’s utility by more than
a negligible amount. There are two cases.

• Case 1: if everyone in [n] has the same preference, the conclusion follows from the fact that
M is SNE.

• Case 2: if not everyone in [n] has the same preference, then suppose for the sake of con-
tradiction there is a self-enforcing that outperforms M by more than a negligible amount in
terms of global payoff (i.e., the sum of everyone’s payoff) — henceforth let M ′ be the self-
enforcing strategy that maximizes the global payoff. If the global coalition obtains the same
payoff for both outcomes 0 and 1, then the claim follows directly since the global coalition
is indifferent. Otherwise, we may without loss of generality assume that the global coalition
obtains higher payoff when the outcome is 1. Now, consider a hybrid strategy Mhyb where
the 0-supporters in [n] play their respective strategies defined by M , and the 1-supporters in
[n] play their respective strategies defined by M ′. Since M ′ is the best self-enforcing global
strategy, it must be that Mhyb achieves a global payoff that is not negligibly smaller than the
global payoff of M ′ — if so, then the 0-supporters are better off deviating and M ′ would not
be self-enforcing by Lemma 11. Therefore, we conclude that in M , the 1-supporters will be
better off deviating to their strategies in Mhyb. This means that M cannot be SNE.

50

D Another Natural Payoff Function

So far we have focused on a natural payoff function where winners obtain unit payoff and losers
obtain nothing — henceforth we refer to this payoff function as unit payoff (see Section 3.1). In
this section, we consider another natural payoff function henceforth referred to as zero-sum payoff.
Imagine the following game: every player expresses a public preference for an outcome that is either
0 or 1. Additionally, every player puts down a bet of 1 Ether — thus the total pot is n Ethers
where n denotes the number of players If the coin flip turns out to be b, the b-supporters evenly
split the pot. More formally, suppose there are nb b-supporters for b ∈ {0, 1} such that n0 +n1 = n:
if the outcome of the coin toss is b, then, each b-supporter obtains a pay-off of n−nb

nb
; and the

(1 − b)-supporters each has a payoff of −1. All of our game-theoretic fairness notions (including
maximin, group maximin, CSP, SNE, and CCP) are well-defined for this new pay-off function too.

We now discuss the (in)feasibility of achieving game-theoretic notions of fairness for this new
payoff function.

D.1 Maximin, Group Maximin, SNE, and CCP-Fairness

For almost all game-theoretic notions we considered with the exception of CSP-fairness, it turns out
that fairness under unit payoff is equivalent to fairness under zero-sum payoff (assuming that we
consider coalitions of up to n−1 parties for maximin and group maximin fairness, and coalitions of
up to n parties for SNE and CCP fairness). More concretely, we show that the following theorem:

Theorem 23. Let X ∈ {maximin, group maximin, SNE, CCP}. Let P ∈ {0, 1}n be any preference
profile and let n ≥ 2. An n-party coin-toss protocol Π satisfies computational (or statistical, perfect
resp.) X-fairness against fail-stop (or malicious resp.) for the earlier unit payoff function, iff
Π satisfies computational (or statistical, perfect resp.) X-fairness against fail-stop (or malicious
resp.) for the zero-sum payoff.

Thus for all aforementioned notions excluding CSP-fairness, all the feasibility and infeasibility
results described earlier are directly applicable to the zero-sum utility.

We now prove the above Theorem 23.

Proof of Theorem 23. We now prove Theorem 23.

• Maximin and group maximin fairness. It is not difficult to see that Claim 2 holds for
the new 0-sum payoff too. Therefore, a coin-toss protocol Π is not maximin-fair under the unit
utility iff there exists an adversary controlling n − 1 parties and some polynomial p such that
the coin toss’s outcome is b with probability 0.5 − 1/p where b is the remaining honest party’s
preference. Moreover, the same holds for the 0-sum utility too.

• SNE and CCP. For SNE fairness, we only care about coalitions with unanimous preferences.
For both payoff functions, a protocol is not SNE-fair for P iff for some b ∈ {0, 1}, an adver-
sary controlling all the b-supporters can cause the outcome to be b with higher than 0.5 + 1/p
probability for some polynomial function p.

For CCP fairness, it is not difficult to see that the equivalence between SNE and CCP fairness
(i.e., Theorem 22) holds for the new zero-sum payoff function too.

D.2 CSP Fairness

CSP fairness for the zero-sum payoff is not equivalent to CSP fairness for the earlier unit payoff.
However, since the new payoff function is always zero-sum, it is straightforward to see that under

51

the new payoff function, CSP fairness and group maximin fairness are equivalent. More formally,
the following fact is straightforward:

Fact 9 (Equivalence of group maximin fairness and CSP fairness for the zero-sum utility). Let
A denote a family of adversaries that corrupt up to n − 1 parties and let P ∈ {0, 1}n denote any
balanced profile. Then, under the zero-sum payoff, an n-party coin toss protocol Π is group maximin
fair for P against the family A iff Π is CSP-fair for P against the family A.

Therefore, under the new zero-sum payoff, the feasibility and infeasibility results for CSP fairness
equate to the feasibility and infeasibility of maximin fairness under the previous unit payoff (see
Section 4).

52

	Introduction
	Our Results and Contributions
	Maximin Fairness
	Cooperative-Strategy-Proof Fairness
	Strong Nash Equilibrium
	Technical Highlight

	Preliminaries
	Protocol Execution Model
	Corruption Models
	Additional Notations and Assumptions

	Definitions: Multi-Party Coin Toss
	Multi-Party Coin Toss
	Discussions
	Strong Fairness

	Maximin Fairness: Feasibilities and Infeasibilities
	Definition of Maximin Fairness
	The Case of Amply Divided Preference Profiles
	The Case for Almost Unanimous Preference Profiles
	Informal Proof Roadmap for Theorem 7
	Almost All Random Coins of a Lone Semi-Malicious 0-Supporter are Created Equal
	The Lone-Wolf Condition and Wolf-Minion Conditions
	Non-Blackbox Application of Cleve's Lower Bound Conditioned on T2
	Averaging over T2: A Wolf-Minion Attack with Benign Bias
	Applying the Lone-Wolf Condition: A Wolf-Minion Attack with Harmful Bias

	Cooperative-Strategy-Proof Fairness
	Definition of Cooperative-Strategy-Proof Fairness
	Almost Unanimous Preference Profile
	Amply Divided Preference Profile

	Fairness by Strong Nash Equilibrium
	Definition of Strong Nash Equilibrium (SNE)
	Feasibility Results for SNE Fairness

	The Case of Private Preference Profiles
	Related Work
	Conclusion
	Detailed Proofs for Maximin Fairness
	The Case of Two Parties
	Proof of Claim 1
	Equivalence to Group Maximin Fairness
	Impossibility for Malicious Adversaries and Almost Unanimous Preference Profiles
	Impossibility for Amply Divided Preference Profiles

	Additional Details for CSP Fairness
	Preliminary: Publicly Verifiable Concurrent Non-Malleable Commitment
	CSP Fairness For Almost Unanimous Preference Profiles
	Impossibility for Amply Divided Preference Profiles

	Cooperative-Coalition-Proof Fairness
	Generalized Execution Model for More Complex Coalition Structures
	Protocol-Induced Games and Sub-games
	Cooperative-Coalition-Proof Fairness
	Equivalence of CCP and SNE for Coin Toss Protocols

	Another Natural Payoff Function
	Maximin, Group Maximin, SNE, and CCP-Fairness
	CSP Fairness

