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Abstract

We consider a setting where users store their encrypted documents on a remote server and can
selectively share documents with each other. A user should be able to perform keyword searches
over all the documents she has access to, including the ones that others shared with her. The
contents of the documents, and the search queries, should remain private from the server.

This setting was considered by Popa et al. (NSDI ’14) who developed a new cryptographic
primitive called Multi-Key Searchable Encryption (MKSE), together with an instantiation and an
implementation within a system called Mylar, to address this goal. Unfortunately, Grubbs et al.
(CCS ’16) showed that the proposed MKSE definition fails to provide basic security guarantees,
and that the Mylar system is susceptible to simple attacks. Most notably, if a malicious Alice
colludes with the server and shares a document with an honest Bob then the privacy of all of
Bob’s search queries is lost.

In this work we revisit the notion of MKSE and propose a new strengthened definition that
rules out the above attacks. We then construct MKSE schemes meeting our definition. We first
give a simple and efficient construction using only pseudorandom functions. This construction
achieves our strong security definition at the cost of increasing the server storage overhead relative
to Mylar, essentially replicating the document each time it is shared. We also show that high
server storage overhead is not inherent, by giving an alternate (albeit impractical) construction
that manages to avoid it using obfuscation.
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1 Introduction

Searchable (symmetric) encryption (SSE) [SWP00, Goh03, CM05, CGKO06] allows a user to out-
source her encrypted documents to a remote server. Later, she (or someone she authorizes) can send
the server encrypted keyword search queries and receive the set of (encrypted) documents matching
her keyword. Ideally, even a compromised server would not learn anything about the user’s data or
her queries. This functionality can in theory be achieved using techniques such as Oblivious RAM
and Fully Homomorphic Encryption, but the efficiency overhead makes the resultant schemes largely
impractical.

To allow for more practical schemes, SSE relaxes the ideal security requirement and allows the
server to learn some leakage—namely the access pattern of which documents are returned by each
query. The initial SSE definitions failed to capture natural attacks, and were revised by several follow-
up works culminating in the work of Curtmula et al. [CGKO06], who gave meaningful definitions
that captured the intuitive security goal. There are now constructions of SSE schemes that meet this
definition and are simple, practically efficient, and updatable [KPR12, SPS14, CJJ+14]. We also note
that there have been several works [NKW15, KKNO16, ZKP16] showing that the leakage provided by
SSE can already be too damaging to give meaningful security guarantees in some contexts. Despite
such attacks, it seems that in many cases SSE can provide meaningful security for certain data sets,
even if it is imperfect.

One benefit of outsourcing data to the cloud is that it allows users to easily share data with each
other. Therefore, it is natural to consider a setting where a large group of users store their individual
documents, encrypted under their own keys, on a remote cloud server, where each document can
be shared with an arbitrary subset of other users. As with SSE, a user should be able to perform
keyword search queries over all of the documents she has access to, including both her own documents
and the ones shared with her. A trivial solution is to have each user generate a new SSE key for
each set of documents she wishes to share, and provide this key to the authorized group of users.
However, this solution has two main drawbacks: the user must maintain many keys (one for each set
of documents shared with her), and the query size scales with the number of documents that have
been shared with the user. These limitations are undesirable in many realistic scenarios, since a user
may have tens of thousands of document sets shared with her.

To avoid these drawbacks, Popa et al. [PZ13, PSV+14] introduced the notion of Multi-Key Search-
able Encryption (MKSE) to specifically address the query size problem. They provided a formal
definition of MKSE along with a construction using bilinear maps, and an implementation of their
scheme within a framework called Mylar for building secure web-applications over encrypted data.
As part of the framework, they provide a number of prototype applications, including a chat room
and a medical application.

The MKSE definition of [PZ13, PSV+14] aimed at capturing the following intuitive security guar-
antee: the scheme hides the content of both queries and stored documents, and the only information
leaked is whether a given query matched any of the keywords in a given document. This should hold
even when a subset of corrupted users colludes with the server. However, Grubbs et al. [GMN+16]
showed that Mylar does not achieve this goal, and suffers from several serious security deficiencies, far
beyond the limited leakage inherent in SSE. While some of these issues only apply to the particular
design choices of Mylar and its applications, others are more general problems with the proposed
MKSE definition. Recently, Van Rompay et al. [RMÖ17] designed a different attack that pointed to
another problem with the proposed MKSE definition. All these deficiencies remain present in follow
up works that build on top of the MKSE definition of [PZ13, PSV+14], such as the work of Kiayias
et al. [KOR+16]. We outline the three main issues below.
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Separating Data and Query Privacy. The first issue with the MKSE definition is that it
separately defines data privacy and query privacy, although it is intuitively clear that data and
query privacy are inherently intertwined. Indeed, the server learns which documents are returned
in response to a query, so knowing the contents of these documents leaks information about the
contents of the query, and vice versa. Therefore, the two properties cannot be meaningfully defined
in isolation. This observation has already been made in the context of single-key SSE by Curtmula
et al. [CGKO06], who showed that earlier definitions that separated data and query privacy did not
meaningfully rule out trivially insecure schemes. The work of [GMN+16] gives analogous examples
in the context of MKSE, showing that there are trivially insecure schemes which satisfy the proposed
definition.

Malicious Users Sharing Data. The second issue with the MKSE definition is more subtle. If
an honest user Alice shares her document with a malicious user Mallory, then clearly privacy of
her document is inherently lost. This limitation is intuitive, and users know they should not share
their data with people they do not trust. But if Mallory shares her document with an honest Bob,
one does not (and should not) expect Bob’s security to be compromised. Unfortunately, [GMN+16]
show that the proposed MKSE notion of [PZ13, PSV+14] does not guarantee any privacy for Bob’s
search queries in this scenario. In particular, the security game designed to capture query privacy
in this setting [PZ13, Def. 5.6] explicitly prevents the adversary from sharing documents with the
honest user (whose queries the adversary is trying to learn). Not only is this issue overlooked in
the definition, but it is actually inherent to the proposed MKSE syntax, so every construction which
realizes this syntax (e.g., the follow-up works of [KOR+16] and [Tan14]) necessarily inherits this flaw.
According to the original MKSE definition, when Mallory shares a document with Bob, a share key
∆ is generated. The share key ∆ does not depend on Mallory’s set, and allows any query under Bob’s
key to be transformed into a query under Mallory’s key. Therefore, a malicious server, colluding with
Mallory, can use ∆ to transform every query Bob makes into a query under Mallory’s key, and the
transformed query can then be executed offline against a set of single-word documents containing
the full dictionary. Thus, if Mallory shares a document with Bob, the server can (through this offline
dictionary attack) recover all keywords Bob searched for.

Searching by Comparing Queries and Encrypted Keywords. The third issue is that the
MKSE definition implicitly restricts the algorithmic structure of the scheme to encrypt each keyword
in the document separately, and search in a document by comparing the given query to each of the
encrypted keywords. Thus, a “hit” reveals not only that the query appears in the document, but
also which (encrypted) keyword it matched. Van Rompay et al. [RMÖ17] show that this allows the
server to compare queries issued by different users (even if both users are honest), and encrypted
keywords from different documents (when they match the same keyword token).

1.1 Our Contribution

In this work, we propose a new MKSE definition that does not suffer from the above issues. In
particular, our definition simultaneously addresses data and query privacy in a holistic manner,
explicitly considers malicious data owners that may share data with honest users, and prevents the
adversary from comparing queries issued by different users and keywords from different documents.
We then propose a simple construction which provably satisfies our definition using only Pseudo-
Random Functions (PRFs). Queries in this scheme consist of a single PRF image, and searching
in a document is constant-time, but the server storage overhead is high. In particular, each time a
document is shared with a user, it is essentially replicated, causing the per-document server storage
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overhead to be linear in the number of users the document is shared with.
We initially conjectured that such overhead is inherent to achieving our stronger MKSE definition.

However, we show that proving such a conjecture will be quite challenging, since it will require
ruling out the existence of certain program obfuscators. Concretely, in Section 5, we construct an
MKSE scheme that uses obfuscation (specifically, public-coin differing-input obfuscation [IPS15])
and requires per-document server storage that is roughly the document size plus the number of
users it is shared with (The scheme has constant query size and polynomial time search.) We view
our construction as providing evidence that a more efficient construction may possibly achieve the
stronger MKSE notion with optimal server storage overhead.

Overview of Our MKSE Definition. We consider users that can take on two types of roles: data
owners and queriers. Data owners have a document they wish to share with some subset of the users.
Each document has its own associated data key Kd, where the data owner “encrypts” the document
using this key, and uploads the encrypted document to the server. Each user has a query key Ku that
it uses to issue search queries. When a data owner shares a document d with a user u they create
a share key ∆u,d which depends on the keys Ku,Kd, as well as the encrypted document, and store
∆u,d on the server. When a querier wants to search for some keyword, he “encrypts” the keyword
using his query key Ku, and sends the resulting encrypted query to the server. For each document d
that was shared with the user u, the server uses the share key ∆u,d to execute the encrypted query
over the encrypted document, and learns if the keyword is contained in that document. This allows
the server to return all relevant documents the querier has access to and which contain the keyword.

The main syntactic difference between our notion, and the MKSE notion used in Mylar, is in how
the share key ∆u,d is generated. As noted above, the share key in Mylar depends only on the keys
Ku,Kd, whereas in our notion it also depends on the encrypted document. By tying the share key
to the document, we can ensure that each query can only be executed on the specific documents that
were shared with the querier, rather than on arbitrary documents, even if the server has the key Kd.

To define security, we consider a share graph between data owners (documents) and queriers,
representing who shares data with whom, where some subset of data owners are malicious and collude
with the server. The desired security guarantee is that the server learns nothing about the contents
of the documents belonging to the honest data owners, or the keywords being queried, beyond the
access pattern of which documents are returned by each query (i.e., out of the documents shared
with the querier, which ones contain the queried keyword). We provide an indistinguishability-based
definition where the adversary chooses the documents and data keys belonging to the malicious data
owners, and two potential values (a “left” and a “right” value) for each query and each document
belonging to an honest data owner. The left and right values must lead to the same access pattern,
and repeated queries must appear in the same locations in both query sequences. The adversary
then gets all encrypted documents, share keys, and encrypted queries, and should not be able to
distinguish whether these were created using the left or right values.

Since the adversary only learns the access pattern of which documents are returned by each
query, the above definition captures the minimal leakage for schemes that reveal the access pattern,
which seems to be the case in all practical schemes. This is a significant qualitative improvement
over the leakage allowed by the previous definition of [PZ13] and the corresponding schemes. Most
importantly, when a malicious user Mallory is colluding with the sever and shares some data with
Bob, the previous schemes completely leaked the contents of Bob’s query wheres our definition
still only reveals the access pattern. We note that similar to single-key SSE, leaking the access
pattern does reveal some potentially sensitive information and in some scenarios (e.g., when combined
with auxiliary information about the documents) this may allow a sufficiently powerful attacker to
completely recover the query, as shown in the single-key SSE setting by the recent works [CGPR15,
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NKW15, PW16, KKNO16, ZKP16, GSB+17]. In the multi-key setting this might be amplified since,
whenever malicious data owners share documents with honest querier, the adversary already knows
(and even chooses) the contents of these documents and hence can learn more information by seeing
which of these documents match the query. For example, if the shared documents correspond to every
individual word in a dictionary, then by seeing which document matches a given query the contents of
the query are completely revealed. However, this is not a very natural scenario, and in many settings
it is reasonable to believe that leaking the access pattern alone may not reveal significant information
about the query. Furthermore, users can perform sanity checks on the documents shared with them
to test how much leakage the server will get on their queries, and refuse to accept shared documents
if they lead to too much leakage. Understanding when access pattern leakage is acceptable and when
it is not is a fascinating and important direction for future study.

One implementation concern in the above notion of MKSE comes from how the share key ∆u,d

is generated, since it relies on knowledge of both the data-owner’s key Kd for the document being
shared, the user’s querier key Ku, and the encrypted document itself. We envision that the data
owner simply sends the data key Kd to the querier via a secure channel. The querier then downloads
the encrypted document from the server, generates ∆u,d, and uploads it to the server. Note that the
querier can also check at this point that the document was encrypted correctly, and therefore in the
security definition we always assume that documents are encrypted honestly.

Finally, our default definition is selective, meaning the adversary specifies the entire share graph,
the data, and the queries ahead of time. We can also consider adaptive security for SSE (a notion
introduced by [CGKO06] in the single-user setting) in which the adversary generates queries on the
fly during the course of the attack. Furthermore, our definition is indistinguishability based, where one
could also consider a simulation-based version (as introduced in the single-user setting by [CGKO06])
in which the simulator, given the share graph, document sizes, which queries correspond to the
same keywords, and the access patters, produces the encrypted documents and queries. We discuss
these alternate variants in Section 6, and note that our PRF-based construction described below
satisfies the strongest security notion (adaptive, simulation-based) when the PRF is instantiated in
the random-oracle model.

Overview of the PRF-based Construction. We provide a simple and efficient MKSE scheme
based only on the existence of one-way functions. As noted above, each share key ∆u,d contains a
copy of the document, which allows Search to use only this value (and not the encrypted document).

If ∆u,d is “allowed” to encode the entire document, a natural approach is to assign to each
querier a PRF key Ku for a PRF F , and store in ∆u,d the images of F (Ku, ·) on all keywords in the
document. However, this construction is fundamentally insecure, since the share keys themselves leak
information, even if the querier never makes any queries, and even if all data owners are honest. More
specifically, consider the case of two honest data owners that share their documents with an honest
querier. Then the two share keys reveal the number of keywords that appear in both documents.
This is because the token associated with each keyword depends only on the keyword and the querier
key, and not on the document.

To solve this issue we use another layer of PRF images, where the first layer generates PRF
keys for a second layer that will be applied to a document-specific random identifier. Concretely,
when generating ∆u,d, we assign a random value r to the document. For every keyword w in the
document, we generate a (second layer) PRF key kw = F (Ku, w), and compute a token tw for w
as tw = F (kw, r). Using perfect hashing [FKS82], these tokens are inserted into a hash table to
accelerate searching. The share key ∆u,d consists of r and the hash table containing the tokens.
(Notice that if r is chosen from a sufficiently large domain, then with overwhelming probability each
document is assigned a unique identifier, and so the share keys associated with two documents reveal
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no information about their intersection.)
To search for keyword w in her documents, the querier sends the query kw = F (Ku, w) to the

server. Searching for kw in a document with ∆u,d = (r,D′) (where D′ is a hash table of tokens) is
performed by searching the hash table D′ on the key F (kw, r). This query reveals no information
about w. Notice that the scheme uses the encrypted document only to generate ∆u,d, so the document
can simply be encrypted with its own unique symmetric encryption key.

1.2 Related Work

Single User Schemes. First introduced by Song et al. [SWP00], the notion of (single user) Search-
able Encryption has been extensively studied in the last decade (see [BHJP14, FVY+17] for a survey
of many of these works). The first works (e.g., [SWP00, Goh03, CM05]) constructed schemes under
several (simulation-based or indistinguishability-based) security definitions. These definitions sepa-
rated the properties of query and data privacy, and were shown by [CGKO06] to be insecure (by a
fairly simple attack). Curtmola et al. [CGKO06] also presented a unified definition that combined
both properties.

Multi-User Schemes. In this model multiple users can issue queries to a single dataset which
is encrypted under a single key that is known to all users. Consequently, most works in this set-
ting focus on access control, and efficient revocation of querying privileges. Following the work
of [CGKO06], who provided the first definitions and constructions, there have been three main
approaches to enforcing access control across the documents: traditional access control mecha-
nisms [DRD11, ZNS11, LLC+12], broadcast encryption [CGKO06, LWC+13], and attribute-based
encryption [CLH+14, LCL+14].

We emphasize that in the multi-user setting, there is a single dataset owned by a single data
owner, so using such schemes in settings with multiple data owners would require instantiating the
scheme separately for each dataset, and thus the query size would be linear in the number of datasets
shared with the querier. This should be contrasted with the multi-key setting which is the focus of
this work, in which users can search over multiple datasets by issuing a single query whose size is
independent of the number of datasets being searched.

Multi-Key Schemes. In this setting multiple users share data encrypted under their own keys,
and search across the data shared with them by issuing a single query whose size is independent
of the number of shared datasets. First introduced by Popa et al. [PSV+14], follow-up works that
build on [PSV+14] focused on optimizing server storage, and eliminating the trusted party needed
to distribute data and querier keys [KOR+16]; mitigating attacks in which a malicious data owner
shares a dictionary dataset with the querier, by having the querier explicitly determine which data
owners are allowed to share data with her [Tan14]1; and constructing schemes that are secure in
restricted security models when honest data owners only share their documents with honest queriers,
or when a single data owner has not shared his dataset with anyone else [Tan14] (in both models,
the server might be corrupted). We note that since these works use the syntax of [PSV+14] (in
particular, share keys are generated independently of the shared set), the aforementioned attacks
of [GMN+16] apply to these works as well.

Other Related Models. The notion of Key Aggregate Searchable Encryption (KASE), introduced
by [CLW16], considers a data owner who has several documents, each encrypted under a unique key.
This allows data owners to share different subsets of their documents with different users. The goal

1This functionality was also discussed in [PSV+14], but was not defined as part of the MKSE syntax.
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is to grant search access to a subset of documents by providing one aggregate key whose length is
independent of the number of documents (whereas in a naive solution, the key size would scale with
the number of documents), and the querier issues one query for every subset of documents shared
under the aggregate key (whereas in the MKSE setting, the user issues a single query, regardless of
the number of documents shared with her). Thus, this model is fundamentally different from MKSE
(as pointed out in [CLW16]). We note that the construction of [CLW16] is vulnerable to dictionary
attacks (as shown by [KOR+16]).

2 Preliminaries

In the following, λ denotes a security parameter, and negl (λ) denotes a function that is negligible
in λ. We use ≈ to denote computational indistinguishability, and S \ T to denote the difference
between sets S, T . We use Pr [E : E1, · · · , En] to denote the probability of event E given events
E1, · · · , En. For strings x = x1 · · ·xn, y = y1 · · · ym, x ◦ y denotes their concatenation, i.e., x ◦ y =
x1 · · ·xny1 · · · ym. We use standard cryptographic definitions of one-way functions (OWFs), one-way
permutations (OWPs), collision resistant hash functions (CRHFs), pseudorandom functions (PRFs),
and existentially-unforgeable signature schemes (see, e.g., [Gol01, Gol04]).

3 Defining Multi-Key Searchable Encryption

In this section we define the notion of Multi-Key Searchable Encryption (MKSE) schemes. Intuitively,
an MKSE scheme allows data owners to share their documents with queriers who can later query
these documents under their own keying material, while preserving both data and query privacy. In
the definition, documents are represented as sets of keywords, so searching in a document translates
to checking set membership; see the discussion following the definition.

Definition 3.1 (Multi-key Searchable Encryption). We say that a tuple
(DataKeyGen,QueryKeyGen,ProcessSet,Share,Query, Search) of PPT algorithms is a Multi-key
Searchable Encryption (MKSE) scheme for a universe U , if the following holds.

• Syntax:

– DataKeyGen takes as input the security parameter 1λ, and outputs a data key K.

– QueryKeyGen takes as input the security parameter 1λ, and outputs a query key Ku.

– ProcessSet takes as input a data key K and a set S, and outputs a processed set T .

– Share takes as input a data key K, a query key Ku, and a processed set T , and generates
a user-specific share key ∆.

– Query takes as input an element w ∈ U and a query key Ku, and outputs a query q.

– Search takes as input a user-specific share key ∆, a query q, and a processed set T , and
outputs b ∈ {0, 1}.

• Correctness: For every security parameter λ ∈ N, data set S ⊆ U , and element w ∈ U :

Pr

Search (∆, q, T ) = b :

K ← DataKeyGen
(
1λ
)

Ku ← QueryKeyGen
(
1λ
)

T ← ProcessSet (K,S)
∆ ← Share (K,Ku, T )
q ← Query (Ku, w)

 ≥ 1− negl (λ)

Where b = 0 if w /∈ S, otherwise b = 1.
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• Security: Every PPT adversary A has only a negl (λ) advantage in the following security game
with a challenger C:

1. A sends to C:
– A set Q = {1, . . . ,m} of queriers, a set D = {1, . . . , n} of data owners, and a subset
Dc ⊆ D of corrupted data owners.

– For every i ∈ Dc, a data key Ki.

– For every i ∈ D, two sets S0
i , S

1
i ⊆ U , where

∣∣S0
i

∣∣ =
∣∣S1
i

∣∣ for i /∈ Dc, and S0
i = S1

i for
i ∈ Dc.

– A bipartite share graph G = (Q,D, E).

– For every j ∈ Q, two sequences of keywords
(
w0
j,1, . . . , w

0
j,kj

)
and

(
w1
j,1, . . . , w

1
j,kj

)
(for some kj ∈ N), such that:

∗ For every i ∈ D, if (j, i) ∈ E then for every 1 ≤ l ≤ kj , w
0
j,l ∈ S0

i if and only if

w1
j,l ∈ S1

i .

∗ For every 1 ≤ l < k ≤ kj , w0
j,l = w0

j,k if and only if w1
j,l = w1

j,k.

2. C performs the following:

– Chooses a random bit b← {0, 1}.
– For each querier j ∈ Q, generates Ku

j ← QueryKeyGen
(
1λ
)
.

– For each data owner i ∈ D \ Dc, generates Ki ← DataKeyGen
(
1λ
)
.

– For each set Sbi , i ∈ D, generates Ti ← ProcessSet
(
Ki, S

b
i

)
.

– For each edge (j, i) ∈ E, generates ∆j,i ← Share
(
Ki,K

u
j , Ti

)
.

– For each querier j and keyword wbj,l, 1 ≤ l ≤ kj , generates a query qj,l ←
Query

(
Ku
j , w

b
j,l

)
.

– Sends {Ti}i∈D, {∆j,i}(j,i)∈E , and
(
qj,1, · · · , qj,kj

)
j∈Q to A.

3. A outputs a guess b′, and its advantage is AdvA
(
1λ
)

= 1
2 − Pr [b = b′].

Discussion. In Definition 3.1, sets of keywords are shared with queriers, and share keys are gener-
ated by an honest party. Such schemes can be easily adapted to the setting in which documents are
shared between users: each document d is associated with the set S of keywords it contains; and an
encryption of d is stored alongside the processed set TS . Searching for keywords in d is performed by
searching for the keyword in S, where if the search outputs 1 then the encryption of d is returned to
the querier. Moreover, a trusted party is not needed to generate the share keys: we envision that each
user will generate her own share keys whenever a document is shared with her. More specifically,
when a data owner i shares a document di with a querier j, the data owner will send his data key
Ki to the querier via a secure channel. The querier will then download the processed set Ti and the
encryption of di from the server, and generate ∆j,i herself. This use case also clarifies our assumption
that sets are honestly processed: j can verify that Ti was honestly generated by processing Si (which
can be extracted from di) using Ki, and comparing to Ti. (Without loss of generality, ProcessSet is
deterministic since any randomness can be provided in Ki.)

Notice that in our definition, the share key is (syntactically) “tied” to the set for which it was
generated (Share depends not only on the data and query keys, but also on the processed set). This
should be contrasted with the syntax used in [PZ13, PSV+14] in which the algorithm generating the
share keys depends only on the data and query keys. Consequently, resultant schemes inherently
guarantee no query privacy when malicious data owners share their sets with honest queriers (as
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discussed in the introduction). Indeed, when ∆ is independent of the set then a malicious server
colluding with the data owner can use the data key K to encrypt any set S of his choosing (in par-
ticular, a dictionary), then use ∆ to search for the query in S. Since K was generated independently
of the set, the correctness of the scheme guarantees that the output of search will be correct, and so
the server can recover the queried keyword.

Similar to previous works in the field, our definition allows for some information leakage. Specifi-
cally, since the adversary is restricted to choosing sets and queries for which w0

j,l ∈ S0
i ⇔ w1

j,l ∈ S1
i for

every (j, i) ∈ E (see the first sub-bullet in the last bullet in Step 1 of the security game), the scheme
leaks the access pattern of which subset of documents is returned in response to each query. Addi-
tionally, since we require that repeated queries appear in the same locations in both query sequences
(see the second sub-bullet in the last bullet in Step 1 of the security game), if a querier makes repeated
queries then this might be leaked to the server. Finally, we note that our definition is selective: the
adversary is required to specify in advance the sets, queries, and share graph. Possible extensions
and generalizations include adaptive security, where the adversary can adaptively choose sets and
queries, add edges to the share graph, and corrupt data owners; and simulation-based security, which
guarantees that the view of every PPT adversary can be simulated given only the aforementioned
leakage (namely, the access patterns and the sizes of the sets). We elaborate on these alternative
definitions in Section 6.

4 MKSE with Fast Search

In this section we describe our MKSE scheme based on PRFs. Concretely, we will prove the following
theorem.

Theorem 4.1 (MKSE (Sublinear Search)). Assume that OWFs exists. Then there exists a secure
MKSE scheme in which searching for keywords in a set S takes poly (λ) time, where λ is the security
parameter.

Moreover, data and query keys, as well as queries, have length poly (λ), and for a set S, its
processed version and share keys have size |S| · poly (λ).

We first describe our construction, then analyze its properties.

Construction 1 (MKSE (Sublinear Search)). The construction uses a PRF F , and a symmetric-key
encryption scheme (KeyGen,Enc,Dec), as building blocks.

• DataKeyGen
(
1λ
)

outputs a symmetric key KSE ← KeyGen
(
1λ
)
.

• QueryKeyGen
(
1λ
)

outputs a uniformly random PRF key KPRF ← {0, 1}λ.

• ProcessSet (KSE,S) outputs EncKSE
(S).

• Share (KSE,KPRF, T = EncKSE
(S)) operates as follows:

– Generates a uniformly random string r ← {0, 1}λ.

– Decrypts S ← DecKSE
(T ).

– Initializes D = ∅. For each keyword wi ∈ S, computes k′i = FKPRF
(wi) and di = Fk′i (r),

and adds di to D.

– Insert D into a perfect hash table [FKS82] to obtain D′.

– Outputs ∆ = (r,D′).

10



• Query (KPRF, w) outputs FKPRF
(w).

• Search (∆ = (r,D′) , q, T ) operates as follows:

– Computes d′ = Fq (r).

– Performs a hash table query on D′ for d′, and outputs 1 if and only if d′ was found.

Remark 4.2. One can think of the share keys {∆j,i}i associated with querier j as the encrypted
documents in a specific single-user searchable encryption scheme, and the scheme of Construction 1
can in fact be instantiated based on any dynamic single-user searchable encryption scheme instead
of the double-layer PRF.2 More specifically, in this case QueryKeyGen would generate a key for the
single-user scheme; Share would use the data key to decrypt T , then encrypt it using the encryption
algorithm of the single-user scheme; and Search would run the single-user search algorithm. We
note that the underlying single-user scheme has to be dynamic since sharing documents translates
to adding a new document in the single-user scheme.

The next claim states that Construction 1 is secure, and summarizes its parameters.

Claim 4.3. Assume that Construction 1 is instantiated with a PRF F , and a secure symmetric
encryption scheme, then it is a secure MKSE scheme.

Moreover, data and query keys have length poly (λ), and for a set S the processed set has size
|S| · poly (λ). Furthermore, searching in a set S takes time poly(λ) and queries have size poly(λ).

Proof. The correctness of the scheme follows directly from the correctness of the underling primitives,
and its complexity follows directly from the construction and from the following theorem due to
Fredman et al [FKS82].

Theorem 4.4 (Perfect hashing [FKS82]). Given a set D of n keys from a universe U , there exists
a method that runs in expected O (n) time and constructs a lookup table D′ of size O (n) such that
membership queries (i.e., given x ∈ U , determine if x ∈ S) can be answered in constant time.

We now argue that the scheme is secure.
For every i ∈ D, let S0

i , S
1
i be the sets A chose for data owner i, and let W0

j ,W1
j be the sets of

queries A chose for querier j ∈ Q. Let F 1 denote the PRF called in Query and to compute k′i in Share,
and let F 2 be the PRF invoked to compute di in Share. Let view0, view1 denote the view of A in the
security game when b = 0, 1 (respectively). We show that view0 ≈ view1 using a sequence of hybrid
distributions, and conclude that A has only a negl (λ) advantage in the security game. As the data
keys, and encrypted sets, of corrupted data owners are identically distributed in both views (because
S0
i = S1

i for every i ∈ Dc), we can fix these values into view0, view1, and all hybrid distributions,
without decreasing the computational distance. Moreover, if F is sufficiently expanding then with
overwhelming probability, all images of the form F 1

K (w), and F 2
k′i

(r) (for query keys K, keywords w,

set identifiers r, and k′i) are distinct, so it suffices to bound the computational distance conditioned
on this event. We now define the hybrids.

For b ∈ {0, 1}, let Hb0 be the distribution obtained from viewb by replacing F 1 with a random
function R. (We think of R as taking two inputs, the first being a querier index. Thus, R defines
a family {Rj}j of functions, as does F 1.) That is, for all queriers j, and wl ∈ Wb

j , we have q′j,l =

R (j, wi) (the tag is used to denote queries in Hb0; queries in viewb are untagged). Then viewb ≈ Hb0
follows from the pseudorandomness of F by a standard hybrid arguments in which we replace the
invocations of F 1 (used to generate the queries and share keys) of one querier at a time.

2We thank Cédric Van Rompay for pointing this out to us.
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We now define Hb1 to be identical to Hb0, except that F 2 is replaced with the random function R
(notice that here, the first input of R corresponds to a query q′), and the keyword tokens in every
share key ∆j,i are generated as follows. For every wl ∈ Sbi ∩ Wb

j , the corresponding token di,j,l is

computed as F 2
q′j,l

(r) (i.e., identically to how it is generated in Hb0; this is needed since q′j,l appears in

Hb1 and so consistency of these tokens with F 2 can be efficiently checked). For every wl ∈ Sbi \ Wb
j ,

d′i,j,l is chosen randomly subject to the constraint that d′i,j,l /∈
{
F 2
q′
j,l′

(r) : wl′ ∈ Wb
j

}
. (This can be

efficiently achieved by re-sampling, assuming F is sufficiently stretching.) All values in ∆j,i are then
hashed.

To show that Hb0 ≈ Hb1, we first define an intermediate hybrid Hb,? in which for every querier
j, every data owner i, and every keyword wl ∈ Sbi \ Wb

j , the token d′i,j,l in ∆j,i is replaced with

a random value, subject to the constraint that it is not in

{
F 2
q′
j,l′

(r) : wl′ ∈ Wb
j

}
, where r is the

random identifier associated with ∆j,i. Then Hb0 ≈ Hb,? follows from the pseudorandomness of F by
a standard hybrid argument in which we replace the tokens one at a time (and use the assumption
that all images of F are unique).

To show that Hb1 ≈ Hb,?, we define a series of sub-hybrids, replacing F 2 with a random function
for a single query of a single querier at a time. (Notice that each distinct keyword queried by each
querier represents a unique key for F 2 in all share keys associated with that querier.) Concretely,
denote m = |Q|, and for every j ∈ Q, let lj denote the number of distinct keywords in Wb

j . For

every 1 ≤ j ≤ m and 0 ≤ l ≤ lj , define Hb,j,l to be the distribution obtained from Hb,? by generating
the queries of the first j − 1 queriers, and the queries corresponding to all occurrences of the first l
distinct keywords queried by querier j, with R (instead of F 2), and generating the keyword tokens in
share keys accordingly. Then Hb,1,0 = Hb,?, and Hb,m,lm = Hb1. For every 1 ≤ j ≤ m and 1 ≤ l ≤ lj ,
Hb,j,l ≈ Hb,j,l−1 by the pseudorandomness of F 2. Moreover, Hb,j,0 = Hb,j−1,lj−1 for every 1 < j ≤ m,
so Hb,1,0 ≈ Hb,m,lm (since m = poly (λ), and lj = poly (λ) for every j ∈ Q).

Finally, let Hb2 be identical to Hb1 except that the encrypted sets of all honest data owners i /∈ Dc
encrypt ~0 (instead of Sbi ). Then Hb1 ≈ Hb2 follows from the security of the encryption scheme by
a standard hybrid argument in which the encrypted sets are replaced one at a time. Notice that
H0

2 = H1
2 and so view0 ≈ view1.

Remark 4.5. Notice that Hb2 depends only on the share graph, the sets of corrupted data owners,
the sizes of sets of honest data owners, the pattern of repeated queries, and the access patterns; and
can be efficiently generated given these values. This implies that the view of every PPT adversary
can be efficiently simulated given only these values, namely, Construction 1 is simulation-secure (as
defined in Section 6).

The proof of Theorem 4.1 now follows as a corollary from Claim 4.3.

Proof of Theorem 4.1. We instantiate Construction 1 with any sufficiently stretching PRF (e.g., F :
{0, 1}λ × {0, 1}n → {0, 1}2(λ+n), whose existence follows from the existence of OWFs), and a secure
symmetric encryption scheme (which can be constructed from F ). Then the security of the scheme,
as well as the length of data keys, query keys, and processed sets, follow directly from Claim 4.3.
As for search time, since keywords have length O (λ) then evaluating F takes poly (λ) time, and the
outputs have length poly(λ). Searching in a set S takes 1 hash query and thus the overall time is
poly (λ) time, and queries have length poly (λ).
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5 MKSE with Short Share Keys

In this section we describe an MKSE scheme with short share keys which employs a program obfus-
cator as a building block. We first show (Section 5.1) a scheme based on differing-inputs obfuscation
(diO), then show (Section 5.2) that a slightly modified construction can be based on public-coin
differing-inputs obfuscation (pc-diO). We note that though there is evidence that diO for general
circuits might not exist [GGHW14, BSW16], no such implausibility results are known for pc-diO.
The relevant definitions appear in Appendix A.

5.1 MKSE from Differing-Inputs Obfuscation

We construct a secure MKSE scheme which employs a diO obfuscator for Turing Machines (TMs).
Concretely, we prove the following for a universe U of size |U| ≤ poly

(
2λ
)
:

Theorem 5.1 (MKSE (Short Share Keys)). Assume that CRHFs, and diO for TMs with polynomial
blowup, exist. Then there exists a secure MKSE in which share keys have size poly (λ), where λ is
a security parameter. Moreover, data and query keys, as well as queries, have length poly (λ), and
given a set S, its processed version has size |S| · poly (λ), and searching in it takes poly (λ, |S|) time.

The high-level idea of the constructions is to encrypt sets under their data key, and queries under
the query key of the querier, using a standard (symmetric) encryption scheme. The share key will
be an obfuscation of a program that has both keys hard-wired into it, and thus allows for searching
(even though queries and sets are encrypted under different keys) by decrypting the ciphertexts and
comparing the underlying keywords. However, to make this rough intuition work, we need to handle
a few subtleties.

First, to obtain security, the program should take the entire set as input. Otherwise (i.e., if it
operates on a single set element at a time), its output would reveal not only whether the queried
keyword appears in the set, but also where it appears. To see why this violates security, consider the
case in which the same set Si is shared with two different queriers j and j′: the additional information
of where in the set a query appears allows the server to check whether j and j′ queried the same
keyword (even when j, j′ and data owner i are all honest). Notice that since the program takes the
entire set as input, it cannot be represented as a circuit (since then share keys will not have sublinear
size). Therefore, we implement the program as a TM, and use an obfuscator for TMs.

Second, as noted in the introduction, share keys should only allow searching for keywords in the
sets for which they were generated. That is, a share key ∆j,i between querier j and data owner i
should be “tied” to the set Si of i. We achieve this by hard-wiring a hash h (Si) of Si into the program
Pj,i obfuscated in ∆j,i, where Pj,i checks that its input set is consistent with the hash. Notice that
the hard-wired hash prevents us from using an indistinguishability obfuscator [BGI+01]. Indeed, if i
is honest then in the security game (Definition 3.1), the adversary chooses a pair S0

i , S
1
i of (possibly

different) sets for i, and ∆j,i has either h
(
S0
i

)
(in the game with b = 0) or h

(
S1
i

)
(in the game with

b = 1) hard-wired into it. In particular, the underlying programs are not functionally equivalent, so
we cannot rely on indistinguishability obfuscation, and need to use a stronger primitive. Concretely,
our constructions rely on the existence of a diO, or a pc-diO, obfusctor. We proceed to describe the
diO-based construction (the pc-diO-based construction is described in Section 5.2).

The last ingredient we need is a signature scheme, which will be used to sign queries. Specifically,
a query for keyword w will consist of an encryption c of w, and a signature on c; and share keys
will have the corresponding verification key hard-wired into them. Intuitively, signatures are used
to guarantee the server can only search for queries the querier actually issued, similar to the way
the hashed set prevents the server from searching in sets that were not shared with the querier.
Concretely, the signatures guarantee that the share keys in the security game for b = 0 and b = 1
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are differing-inputs even given the entire view of the adversary, and allows us to rely on diO security.
(Roughly, a pair of programs are differing-inputs if it is infeasible for a PPT algorithm to find an
input on which their outputs differ, see Definition A.1 in Appendix A.)

Remark 5.2. We note that if one is willing to change the MKSE syntax, allowing the server to return
encrypted answers which the querier then decrypts, then a scheme with similar complexity could be
constructed from Fully Homomorphic Encryption (using Oblivious RAM or Private Information
Retrieval). However, following previous works in the field [PSV+14, KOR+16, GMN+16] we focus on
the setting in which the server gets the answers in the clear (and queriers do not need to decrypt). This
may be crucial in some situations, e.g., when huge documents are associated with small keyword sets.
In a solution based on Fully Homomorphic Encryption, the computation of a search is proportional
to the total size of all the huge documents, while in our obfuscation-based MKSE scheme the work
is proportional to the total number of keywords, and the size of the returned documents.

We now describe our MKSE scheme. As will become evident from the security proof, due to the
technicalities of using diO security we will need a special type of encryption (which, nonetheless, can
be constructed from any standard encryption scheme) that we call double encryption. It is similar to
the encryption scheme used in the “2-key trick” of Naor and Yung [NY90] (to convert a CPA-secure
encryption scheme into a CCA-secure one), except it does not use a non-interactive zero-knowledge
proof to prove that ciphertexts encrypt the same value.

Definition 5.3 (Double encryption). Let λ ∈ N be a security parameter. Given a symmet-
ric encryption scheme (KeyGen,Enc,Dec), we define a double symmetric encryption scheme E2 =(
KeyGen2,Enc2,Dec2

)
as follows:

• KeyGen2, on input 1λ, generates KL ← KeyGen
(
1λ
)

and KR ← KeyGen
(
1λ
)
, and outputs

K = (KL,KR).

• Enc2, on input a key K = (KL,KR) and a message m, computes cL ← Enc (KL,m) and cR ←
Enc (KR,m), and outputs c = (cL, cR).

• Dec2, on input a key K = (KL,KR) and a ciphertext c = (cL, cR), outputs Dec (KL, cL). (Notice
that decryption disregards the “right” component of c.)

We are now ready to describe our MKSE scheme.

Construction 2 (MKSE (Short Share Keys)). The MKSE uses the following building blocks:

• an obfuscator O,

• a hash function h,

• a double symmetric encryption scheme (KeyGen,Enc,Dec), and

• a signature scheme (KeyGens,Sign,Ver),

and is defined as follows:

• DataKeyGen
(
1λ
)

generates a random encryption key K← KeyGen
(
1λ
)

and outputs K.

• QueryKeyGen
(
1λ
)

generates a random encryption key Ku ← KeyGen
(
1λ
)
, and a random

signing and verification key pair (sku, vku)← KeyGens
(
1λ
)
, and outputs Ku = (Ku, sku, vku).

• ProcessSet (K,S) encrypts each element s ∈ S as c (s) ← Enc (K, s), and outputs
{c (s) : s ∈ S}.
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PK,(Ku,vku),h(TS)

Hard-wired values: encryption keys K,Ku (for a set and a querier, respectively), a signature
verification key vku, and a hash h (TS) of an (encrypted) set TS .
Inputs: an (encrypted) set T ′S , a ciphertext c, and a signature σ.
Output: 0 (indicating that c does not encrypt an element in the set encrypted by T ′S), or 1.
Operation:

1. Checks that Ver (vkv, σ, c) = 1, otherwise outputs 0.

2. Checks that h (T ′S) = h (TS), otherwise outputs 0.

3. Initializes found = false.

4. Decrypts w = Dec (Ku, c).

5. For every c′ ∈ T ′S :

(a) Decrypts w′ = Dec (K, c′).

(b) If w = w′ sets found = true.

6. Outputs found.

Figure 1: Program PK,(Ku,vku),h(TS) used to generate share keys in Construction 2

• Share (K,Ku = (Ku, sku, vku) , TS) generates P̃ ← O
(
PK,(Ku,vku),h(TS)

)
where PK,(Ku,vku),h(TS)

is the TM defined in Figure 1, and outputs ∆ = P̃ .

• Query (Ku = (Ku, sku, vku) , w) generates c ← Enc (Ku, w) and σ ← Sign (sku, c), and outputs
(c, σ).

• Search (∆, q, TS) outputs ∆ (TS , q).

The following claim states that if the obfuscator O used in Construction 2 is a secure diO ob-
fuscator, and all other building blocks are secure, then Construction 2 is an MKSE scheme (as in
Definition 3.1).

Claim 5.4 (MKSE (Short Share Keys)). Assume that Construction 2 is instantiated with:

• a secure diO obfuscator O for TMs,

• a family of collision-resistent hash functions h,

• a double symmetric encryption scheme
(
KeyGen2,Enc2,Dec2

)
, and

• an existentially-unforgeable signature scheme,

then Construction 2 is a secure MKSE.
Moreover, if the encryption and signature schemes have poly (λ)-length keys, and incur a poly (λ)

overhead, then data and query keys, as well as queries, have length poly (λ), and for a set S, its
corresponding processed set has size |S| · poly (λ). Furthermore, if: (1) evaluating h on length-n
inputs takes HT (n) time, and outputs a hash of length H` (n); and (2) there exist functions s, TO :
N → N such that for every TM M , |O (M)| ≤ s (|M |), and running O (M) on inputs of length n
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takes TO (TIME (M,n)) time, where TIME (M,n) is the running time of M on length-n inputs; then
running Search on a set S takes TO (HT (|S| · poly (λ)) + |S| · poly (λ)) time, and share keys have size
s (H` (|S| · poly (λ)) · poly (λ)).

Remark 5.5. We note that the security of Construction 2 does not require the diO obfuscator to be
secure with relation to arbitrary auxiliary inputs, but rather it is only required to guarantee security
against a specific class of auxiliary inputs, as specified in the proof of Claim 5.4.

Proof of Claim 5.4. The correctness of the scheme follows directly from the correctness of the un-
derlying primitives. We now argue that the scheme is secure.

Let A be a PPT adversary in the security game of Definition 3.1, let Ki be the data key A chose
for data owner i, and let W0,W1 be the sets of queries A chose (for all other values chosen by A,
we use the notation of Definition 3.1). We proceed through a sequence of hybrids. Recall that the
view of A in the security game consists of the encrypted sets TSb

i
for every i ∈ D, queries q for every

w ∈ Wb, and for every edge (j, i) ∈ E, the obfuscated program ∆j,i. In particular, since the keys, and
encrypted sets, of corrupted data owners are identically distributed when b = 0, 1 (because S0

i = S1
i

for every i ∈ Dc, and they are encrypted using the same keys), we can fix these values into all hybrid
distributions, without decreasing the computational distance. Moreover, we assume without loss of
generality that all data keys Ki chosen by A are valid keys. We now define the hybrids.

view0 : view0 is the view of A in the security game with b = 0.

H0 : In hybrid H0, the keys K = (KL,KR) ,Ku = (KuL,K
u
R) in every obfuscated program

PK,(Ku,vku),h(TS0) are replaced with the keys K′ =
(
KL,~0

)
,Ku′ =

(
KuL,~0

)
.

H0 ≈ view0 by the diO security of O (and a standard hybrid argument (over all obfuscated
programs in view0,H0), because the TMs in each of the share keys ∆j,i in view0,H0 are differing-
inputs. Indeed, they are actually functionally equivalent (given any auxiliary input), since Dec2

completely disregards the right ciphertext, and so replacing the right secret key with the all-0
string does not affect functionality.

H1 : In hybrid H1, the encrypted set Ti of every honest data owner i /∈ Dc is generated as the
encryption of

(
S0
i , S

1
i

)
with EncL (see Definition 5.7 below) instead of Enc2. (Notice that this

also affects the share keys.)

To prove that H0 ≈ H1, we will use the following lemma.

Lemma 5.6. Let ? ∈ {L,R}. For every pair (mL,mR) of messages, the following distributions
are computationally indistinguishable, when E2,E? use the same underlying encryption scheme E =
(KeyGen,Enc,Dec).

• D1: generate K = (KL,KR)← KeyGen2
(
1λ
)

and c← Enc2 (K,m?), and output (K?, c).

• D2: generate K = (KL,KR)← KeyGen?
(
1λ
)

and c← Enc? (K, (mL,mR)), and output (K?, c).

Proof. We prove the lemma for the case ? = L (the case ? = R is similar) by showing that indistin-
guishability follows from the security of the underlying scheme E. Given a distinguisher D between
D1,D2, we construct a distinguisher D′ (that has mL hard-wired into it) between encryptions ac-
cording to E of mL,mR. Given a ciphertext c, D′ operates as follows: generates K′ ← KeyGen

(
1λ
)
,

computes c′ ← Enc
(
K′,mL

)
, and outputs D

(
K′, (c′, c)

)
. Notice that if c encrypts mL then the input

to D is distributed according to D1, otherwise it is distributed according to D2, so the distinguishing
advantage of D′ is equal to that of D which (by the security of E) is negligible.
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By a standard hybrid argument, Lemma 5.6 implies that polynomially many ciphertexts (gen-
erated either by E2 or by EL, with the same or different keys), together with the keys of the “left”
component, are computationally indistinguishable.

We prove H0 ≈ H1 by reducing any distinguisher D between H0,H1 to a distinguisher D′ between
encryptions generated according to EL or E2. We hard-wire into D′ the querier keys and their queries,
as well as the keys and encrypted sets of corrupted data owners, and the share keys associated with
them. (This is possible because the encryption and signing keys of queriers, and their queries, are
identically distributed in H0,H1, and independent of the encrypted sets; and since the share keys
∆j,i for i ∈ Dc depend only on the keys of data owner i, querier j, and the encrypted set Ti, which
are identically distributed in both hybrids.) D′ operates as follows: given a sequence of ciphertexts
(the encrypted sets of honest data owners), and the keys corresponding to the ciphertexts in the left
components, D′ honestly generates the hashes of encrypted sets of honest data owners, and uses the
hard-wired querier keys, together with the keys for the left component in the ciphertexts of honest
data owners, to generate the share keys between queriers and honest data owners. (Notice that since
we have removed the key of the right component in ciphertexts of honest data owners, these are not
needed to generate the share keys.) The values obtained in this way are distributed identically to
H0 (if the input ciphertexts were generated with E2) or H1 (if they were generated with EL), so D′

has the same distinguishing advantage as D.
We now define the next hybrids.

H2 : In hybrid H2 the queries
(
w0
j,1, · · · , w0

j,kj

)
of every querier j ∈ Q are generated using EncL

with message
(
w0
j,l, w

1
j,l

)
, 1 ≤ l ≤ kj , instead of Enc2.

H1 ≈ H2 by a similar argument to the one used to show H0 ≈ H1, and since repeated queries
appear in the same locations in both query sequences.

H3 : In hybrid H3, the generation of share keys ∆j,i is modified as follows: (1) the hard-wired keys

are
(
~0,KR,i

)
,
(
~0,KuR,j

)
, where (KL,i,KR,i) ,

(
KuL,i,K

u
R,j

)
are the encryption keys of data owner

i and querier j, respectively; and (2) the program P uses DecR (instead of Dec2) to decrypt c,
and the elements of T ′S .

H3 ≈ H2 by the diO security of O, as we now show. Let d denote the number of share keys
available to the adversary (i.e., d = |E|), and order them in some arbitrary way: ∆1, · · · ,∆d. We
define a sequence of hybrids H0, · · · ,Hd, where in Hl, the first l share keys are generated as in H3 (we
denote these keys by ∆′k), and all other share keys are generated as in H2. We show that Hl ≈ Hl−1

for every 1 ≤ l ≤ d, and conclude that H2 = H0 ≈ Hd = H3.
Fix some 1 ≤ l∗ ≤ d, and let (j, i) be the edge for which ∆l∗ was generated. We fix all the

keywords W0,W1, and the sets S0
i′ , S

1
i′ for i′ ∈ D, into Hl∗ ,Hl∗−1 (this is possible because these

values are identical in both hybrids). We additionally fix the keys of every querier j′, j′ 6= j and
data owner i′, i′ 6= i, the queries that querier j′ makes, the processed sets Ti′ , i

′ 6= i, and share keys
∆j′,i′ ,∆

′
j′,i′ (this is possible because these values are identically distributed in both hybrids). We

now argue that ∆′j,i,∆j,i sampled in Hl∗ ,Hl∗−1 (respectively) form a differing-sinputs family of TMs

with respect to the auxiliary information aux available to A (and so Hl∗ ≈ Hl∗−1 by the diO security
of O). This auxiliary information consists of the values we have fixed into Hl∗ ,Hl∗−1, the public
verification key vkuj for signatures of querier j, all queries querier j makes, the encrypted set Ti of
data owner i, and all ∆j,i′ ,∆j′,i for i′ 6= i, j′ 6= j such that (j, i′) , (j′, i) ∈ E. Let P,P ′ denote
the distributions over programs obfuscated in ∆j,i,∆

′
j,i, and let D be a PPT algorithm that obtains

(P, P ′) ← P × P ′ and aux. In particular, notice that D knows the hash h (Ti), and the encryption
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keys Ki,K
u
j (but not the secret signing key skuj ), since these appear in either P or P ′. We show that

D succeeds in finding a differing input only with negligible probability.
Consider first the inputs (for P, P ′) available to D in aux, i.e., the encrypted set Ti (which encrypts

the elements of S0
i in the left components, and the elements of S1

i in the right components; this holds
even if i ∈ Dc since in that case S0

i = S1
i ), and the queries of querier j. For every such query q

there exists a pair (wL, wR) of keywords such that q is of the form q = (c = (cL, cR) , σ) where c? ←
Enc

(
Ku?,j ,m?

)
, ? ∈ {L,R}, σ ← Sign

(
skuj , c

)
, and wL ∈ S0

i ⇔ wR ∈ S1
i . (Here, (KeyGen,Enc,Dec)

is the encryption scheme used as a building block in the double encryption scheme.) In particular,
P (q, Ti) = P ′ (q, Ti) since the checks in Steps (1)-(2) succeed in both cases, and Steps (4)-(5) return
the same outcome (P searches for wL in S0

i , since it decrypts using Dec2, whereas P ′ searches for wR in
S1
i , since it decrypts with DecR and the right component of Ti encrypts S1

i ; and wL ∈ S0
i ⇔ wR ∈ S1

i ).
In particular, both programs have the same running time in this case.

Next, we claim that for every other possible input (T ′, c′, σ′) that D chooses (and does not appear
in aux), P (T ′, c′, σ′) = P ′ (T ′, c′, σ′) = 0 except with negligible probability. Indeed, if c′ is not

an encryption of a pair
(
w0
j,l, w

1
j,l

)
of keywords for some 1 ≤ l ≤ kj (i.e., for some pair of keyword

queries of querier j) then by the existential unforgeability of the signature scheme, with overwhelming
probability σ′ is not a valid signature for c′, so the check in Step (1) fails in both P, P ′ (in particular,
both programs have the same running time in this case). Moreover, if T ′ 6= Ti then by the collision
resistance of h, with overwhelming probability h (T ′) 6= h (Ti), so the check in Step (2) fails (and
again, P, P ′ have the same running time). Therefore, P, P ′ are differing inputs with relation to the
auxiliary information aux.

We now define the final set of hybrids.

H4 : In hybrid H4, the queries
(
w1
j,1, · · · , w1

j,kj

)
of every querier j ∈ Q are generated using Enc2

with message
(
w1
j,l, w

1
j,l

)
, 1 ≤ l ≤ kj , instead of EncL with message

(
w0
j,l, w

1
j,l

)
, 1 ≤ l ≤ kj .

H3 ≈ H4 by a similar argument to the one used to prove H1 ≈ H2.

H5 : In hybrid H5, the encrypted set Ti of every honest data owner i /∈ Dc is generated as the
encryption of

(
S1
i , S

1
i

)
with Enc2 instead of with EncL.

H4 ≈ H5 by a similar argument to the one used to prove H0 ≈ H1.

H6 : In hybrid H6, the obfuscated program for every edge (j, i) ∈ E is generated as follows: (1)

the hard-wired keys are K = (KL,i,KR,i) ,K =
(
KuL,j ,K

u
R,j

)
, instead of K′ =

(
~0,KR,i

)
,Ku′ =(

~0,KuR,j

)
; and (2) Dec2 is used for decryption (instead of DecR).

H6 ≈ H5 by the diO security of O, using a standard hybrid argument in which the obfuscated
programs are replaced one at a time. When replacing the program for edge (j, i) from P ′ (in H5) to P
(in H6), the PPT D (which should find a differing input) is given (as part of the auxiliary information
aux) the sets S1

i′ , i
′ ∈ D; the keywords inW1 and the corresponding queries; the encryption keys of all

data owners i′, i′ 6= i and querier j′, j′ 6= j; the signing and verification keys of all queriers j′, j′ 6= j;
and all encrypted sets Ti′ , i

′ ∈ D. Also, from P, P ′ the distinguisher learns the encryption keys
Ki,K

u
j , and the verification key vkuj . We show that except with negligible probability, D fails to find

a differing input (the argument is similar to that used to prove H3 ≈ H2).
The inputs (for P, P ′) available to D in aux, i.e., the encrypted set Ti, and queries q = (c, σ)

of querier j (where c ← Enc2
(
Kuj ,m

)
for some m, and σ ← Sign

(
skuj , c

)
), are not differing-inputs

(even though P ′ decrypts the right component of c, whereas P decrypts the left component) because
both components of c encrypt m according to Enc (so both P, P ′ search for m in S1

i ). For every

18



other possible input (T ′, c′, σ′) that D chooses, P (T ′, c′, σ′) = P ′ (T ′, c′, σ′) = 0 except with negligible

probability: if c′ is not an encryption of
(
w1
j,l, w

1
j,l

)
for some 1 ≤ l ≤ kj then with overwhelming

probability σ′ is not a valid signature on c′ (by the existential unforgeability of the signature scheme);
whereas if T ′ 6= Ti then with overwhelming probability h (T ′) 6= h (Ti) (by the collision resistance of
h). Consequently, H5 ≈ H6. Since H6 is the view of A in the security game with b = 1, we conclude
that A has only negligible advantage in the security game.

Finally, we analyze the complexity of the scheme. Data and query keys, which are simply encryp-
tion and signing keys, have size poly (λ). Queries are ciphertext for length-O (λ) keywords (since the
universe is at most of size 2λ), together with signatures on these ciphertexts. Similarly, a processed set
consists of encryptions of each of its keywords, so its size is |S|·poly (λ). Regarding share keys, the TM
has size H` (|S| · poly (λ)) · poly (λ) (since |h (TS)| ≤ H` (|S| · poly (λ))), and so by the assumption on
the blowup caused by obfuscation, share keys have size s (H` (|S| · poly (λ)) · poly (λ)). Finally, Search
consists of running the obfuscated TM, which requires computing the hash (HT (|S| · poly (λ)) time),
and performing O (|S|) operations, each taking poly (λ) time, so TIME (M, |S|) = HT (|S| · poly (λ))+
|S| · poly (λ), and consequently the running time is TO (HT (|S| · poly (λ)) + |S| · poly (λ)).

The following encryption scheme was used to prove Claim 5.4:

Definition 5.7. Given a symmetric encryption scheme (KeyGen,Enc,Dec), and ? ∈ {L,R}, we define
an encryption scheme E? = (KeyGen?,Enc?,Dec?) as follows:

• KeyGen? operates as KeyGen2 from Definition 5.3. That is, on input 1λ it generates KL ←
KeyGen

(
1λ
)

and KR ← KeyGen
(
1λ
)
, and outputs K = (KL,KR).

• Enc?, on input a key K = (KL,KR) and a message m = (mL,mR), computes cL ← Enc (KL,mL)
and cR ← Enc (KR,mR), and outputs c = (cL, cR).

• Dec?, on input a key K = (KL,KR) and a ciphertext c = (cL, cR), outputs Dec (K?, c?).

The proof of Theorem 5.1 now follows as a corollary from Claim 5.4.

Proof of Theorem 5.1. We instantiate Construction 2 with the double encryption scheme of Defini-
tion 5.3, based on the encryption scheme whose existence follows from the existence of a CRHF; the
hash function with a Merkle Hash Tree (MHT) hash based on the CRHF; and instantiate O with
the diO obfuscator. Then the security of the scheme, as well as the length of data and query keys,
queries, and processed sets, follow directly from Claim 5.4. Regarding share keys, the MHT has
poly (λ)-length outputs, and O causes only a polynomial blowup, so by Claim 5.4, share keys have
length poly (λ). Finally, generating the MHT for a set of size s takes time s · poly (λ), and so the
runtime of Search is poly (λ, |S|).

5.2 MKSE from Public-Coin Differing-Inputs Obfuscation

In this section we show that a slight modification of Construction 2 is secure assuming the underlying
obfuscator is a pc-diO obfuscator for TMs. More specifically, we only need to use a signature
scheme with some “special” properties. Concretely, we prove the following for a universe U of
size |U| ≤ poly

(
2λ
)
:

Theorem 5.8 (MKSE from pc-diO (short share keys)). Assume that OWPs, CRHFs, and pc-diO
for TMs with polynomial blowup, exist. Then there exists a secure MKSE in which share keys have
size poly (λ), where λ is a security parameter. Moreover, data and query keys, as well as queries,
have length poly (λ), and given a set S, its processed version has size |S| · poly (λ), and searching in
it takes poly (λ, |S|) time.
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The reason we need to change the MKSE scheme outlined in Section 5.1 is that it cannot use
a pc-diO obfuscator. (Roughly speaking, pc-diO guarantees indistinguishability of the obfuscated
programs only as long as it is infeasible for a PPT adversary to find an input on which they differ,
even given the randomness used to sample the programs; see Definition A.4 in Appendix A.) Indeed,
for every querier j and data owner i, the randomness used to sample the program Pj,i (i.e., the
program obfuscated in the share key ∆j,i) includes the signing key of querier j. This allows one
to sign arbitrary messages, meaning the obfuscated programs in the security game when b = 0 and
b = 1 are not differing-inputs. (The program Pj,i for querier j and data owner i contains h

(
S0
i

)
when b = 0, and h

(
S1
i

)
when b = 1, so a differing input would be a query on any keyword contained

in one and not the other. The query can be efficiently generated since the encryption and signing
keys appear in the randomness used to sample Pj,i.)

To overcome this issue, we introduce (Section 5.2.1) a new signature primitive which we call dual-
mode signatures. Roughly, a dual-mode signature scheme is an existentially-unforgeable signature
scheme associated with an additional SpecialGen algorithm that given a list of messages, generates
“fake” signatures on these messages, and a “fake” verification key under which they can be verified.
These “fake” signatures and key are computationally indistinguishable from honestly generated sig-
natures and verification key, and the “fake” verification key cannot be used to successfully sign other
messages, even given the randomness used to generate the “special mode” verification key and sig-
natures. (This rules out the trivial construction in which SpecialGen simply runs the key generation
and signing algorithms.)

One can think of the SpecialGen algorithm as a way of “puncturing” the signing key from the
procedure that generates the verification key and signatures. We use this viewpoint to prove (Sec-
tion 5.2.2) security based on pc-diO security and dual-mode signatures: we first replace the actual
verification key used in Pj,i, and the signatures in the queries of j, with ones generated by SpecialGen;
and then use pc-diO security to replace the obfuscated program from one containing h

(
S0
i

)
to one

containing h
(
S1
i

)
. (Notice that now the randomness used to sample Pj,i does not contain the signing

key, so one cannot sign queries that j did not issue.)

5.2.1 Dual-Mode Signatures

We now formally define the notion of dual-mode signatures, and construct such signatures based on
OWPs and CRHFs.

Definition 5.9 (Dual-mode signature scheme). We say that an existentially-unforgeable signature
scheme (KeyGen,Sign,Ver) is a dual-mode signature scheme if there exists a PPT algorithm SpecialGen
such that the following holds.

• Special mode generation. SpecialGen, on input a security parameter 1λ, an input length 1n,
and a non-empty multi-set

{
m1, · · · ,mk(λ)

}
of length-n messages (for some k (λ) = poly (λ)),

outputs a verification key vk, and a set of signatures
{
σ1, · · · , σk(λ)

}
.

• Standard and special modes are indistinguishable. For every k (λ) = poly (λ), every
input length n ∈ N, and every non-empty multi-set

{
m1, · · · ,mk(λ)

}
of length-n messages, the

following distributions are computationally indistinguishable:

– Dstandard

(
1λ
)
: generate (sk, vk) ← KeyGen

(
1λ, 1n

)
; for every 1 ≤ i ≤ k (λ), compute

σi ← Sign (sk,mi); output
(
vk,
{
σ1, · · · , σk(λ)

})
.

– Dspecial

(
1λ
)
: run

(
vk,
{
σ1, · · · , σk(λ)

})
← SpecialGen

(
1λ, 1n,

{
m1, · · · ,mk(λ)

})
; output(

vk,
{
σ1, · · · , σk(λ)

})
.
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• Special mode cannot sign additional messages. For every input length n = poly (λ), and
polynomial-time forger A = (A1,A2), the following probability is negligible in λ:

Pr

m /∈M ∧ Ver (vk, σ,m) = 1 :

(
M =

{
m1, · · · ,m|M |

}
,St
)
← A1

(
1λ
)(

vk,
{
σ1, · · · , σ|M |

})
← SpecialGen

(
1λ, 1n,M ; r

)
(σ,m)← A2

(
St,
(
vk,
{
σ1, · · · , σ|M |

})
, r
)


where M is a multi-set.

Notice that A2 cannot forge signatures, even given the randomness used to generate the “special
mode” verification key and signatures. This rules out the trivial construction in which SpecialGen
simply emulates Dstandard.

Remark 5.10. The indistinguishability of standard and special modes property guarantees that
special-mode verification keys are indistinguishable from standard-mode verification keys (regardless
of the messages for which the special-mode verification key was generated).

We construct dual-mode signatures from OWPs and CRHFs in two steps. We first construct
a one-time dual-mode signature scheme, in which SpecialGen works only for a single message, and
security holds only for A1 that chooses a singleton M . These one-time signatures are based on
Lamport’s one-time signatures [Lam79]. Then, we show a general transformation from one-time to
multi-time dual-mode signatures.

Construction 3 (One-time dual-mode signatures). The scheme uses a family P ={
Pλ : {0, 1}λ → {0, 1}λ

}
of OWPs, and a hash function h : {0, 1}∗ → {0, 1}κ (for some κ ∈ N),

and consists of the following algorithms:

• KeyGen on input a security parameter 1λ, and an input length 1n, picks xbi ∈R {0, 1}λ for every
b ∈ {0, 1}, 1 ≤ i ≤ κ, computes ybi = Pλ

(
xbi
)
, and outputs(

sk =
{
xbi

}
b∈{0,1},1≤i≤κ

, vk =
{
ybi

}
b∈{0,1},1≤i≤κ

)
.

• Sign on input a signing key sk =
{
xbi
}
b∈{0,1},1≤i≤κ, and a message m = m1 · · ·mn ∈ {0, 1}n,

computes z = h (m), and outputs σ = (xzii )1≤i≤κ.

• Ver on input a verification key vk =
{
ybi
}
b∈{0,1},1≤i≤κ, a signature σ = (x′i)1≤i≤κ, and a message

m = m1 · · ·mn ∈ {0, 1}n, computes z = h (m), and outputs 1 if and only if Pλ (x′i) = yzii for
every 1 ≤ i ≤ κ.

• SpecialGen on input a security parameter 1λ, an input length 1n, and a message m =
m1 · · ·mn ∈ {0, 1}n, operates as follows: computes z = h (m), then for every 1 ≤ i ≤ κ,
picks xzii ∈R {0, 1}λ, computes yzii = Pλ

(
xbi
)
, and picks yz̄ii ∈R {0, 1}λ; and outputs(

vk =
{
ybi
}
b∈{0,1},1≤i≤κ , σ = (xzii )1≤i≤κ

)
.

We note that our construction uses a OWP, whereas standard Lamport signatures can use any
OWF. A permutation is needed to guarantee that the special and standard modes are indistinguish-
able. Next, we prove that Construction 3 is a one-time dual-mode signature scheme.

Lemma 5.11. Assume OWPs and CRHFs exist. Then there exists a one-time dual-mode signature
scheme. Moreover, there exists a polynomial p (λ) such that signatures have length p (λ), and signing
and verification keys have length 2p (λ) (for any input length n = poly (λ)).
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Proof. We show that Construction 3 has the appropriate properties. To obtain poly (λ)-length keys,
we can instantiate the construction with any family of polynomially-secure CRHFs, and obtain keys
of length poly (λ) using a MHT (if hash functions in the family are not sufficiently compressing). We
now discuss the properties of the scheme.

Existential unforgeability. (KeyGen,Sign,Ver) is Lamport’s one-time signature
scheme [Lam79] and so it is existentially unforgeable.

Standard and special modes are indistinguishable. The only difference between Dstandard

and Dspecial for a message m ∈ {0, 1}n is in the values yz̄ii , for z = h (m), that appear in the
verification key (all other values are identically distributed in both distributions): in Dstandard these
are the images (under Pλ) of random values, whereas in Dspecial these are random values. But since
Pλ is a permutation, the images of random values are themselves random, so Dstandard ≈ Dspecial.

Special mode cannot sign additional messages. This follows from the security of the OWP.
Let A = (A1,A2) be a polynomial-time forger in Definition 5.9 such that

Pr

m′ 6= m ∧ Ver
(
vk, σ′,m′

)
= 1 :

(m,St)← A1

(
1λ
)

(vk, σ)← SpecialGen
(
1λ, 1n, {m} ; r

)
(σ′,m′)← A2 (St, (vk, σ) , r)

 = ε (λ) .

We construct an adversary A′ that succeeds in inverting Pλ with probability ε(λ)
κ · (1− negl (λ)), and

conclude from the one-wayness of Pλ that ε (λ) = negl (λ) (since κ = poly (λ)). A′ operates as follows:
it runs A1 to obtain a message m ∈ {0, 1}n to sign, and a state St. A then chooses i∗ ∈R [κ]. Given
a challenge y (the image under Pλ of a random x), A generates the verification key vk, and signature
σ on m, by emulating SpecialGen with the following modification: it sets y

z̄i∗
i∗ = y (instead of picking

it at random), where z = h (m). Let r denote the random bits which A′ used to emulate SpecialGen
(i.e., the bits used to sample the xzii ’s and the yz̄ii ’s), together with the value y (which are the random

bits that would give y
z̄i∗
i∗ the value y). Then A′ runs A2 with input

(
St,
(
vk, {xzii }1≤i≤κ

)
, r
)

, and

obtains a message m′, and a purported signature σ′ = {x′i}1≤i≤κ. A′ outputs x′i∗ as the pre-image

of y. We claim that Pr [Pλ (x′i∗) = y] ≥ ε(λ)
κ · (1− negl (λ)). Notice first that the input to A2 is

identically distributed to its view in the forging game. Indeed, the only difference is in the choice of
y
z̄i∗
i∗ : in the forging game it is chosen uniformly at random, whereas A′ sets it to be the image of a

random value, but since Pλ is a permutation, it is also randomly distributed. Moreover, if m 6= m′

then except with negligible probability, h (m) 6= h (m′), from the collision-resistance of h. Therefore,

Pr
[
Pλ
(
x′i∗
)

= y
]

= Pr
[
Ver

(
vk, σ′,m′

)
= 1 ∧m′ 6= m

]
· Pr

[
h (m)i∗ 6= h

(
m′
)
i∗
|m 6= m′

]
≥ ε (λ) · 1

κ
(1− negl (λ))

(where the rightmost inequality holds because i∗ is random and unknown to A2).

We now describe a transformation from one-time dual-mode signature schemes to (multi-time)
dual-mode signature schemes which, combined with Construction 3, gives a construction of a (multi-
use) dual-mode signature scheme. The high-level idea of the transformation is to use the hash-tree
construction of Naor and Yung [NY89], extending it to also support special-mode generation.

Construction 4 (Dual-mode signature scheme). The dual-mode signature
scheme (KeyGen,Sign,Ver,SpecialGen) uses a one-time dual-mode signature scheme(
KeyGen1,Sign1,Ver1, SpecialGen1

)
where for every n = poly (λ), KeyGen1

(
1λ, 1n

)
outputs ver-

ification keys of length κ = κ (λ); and a PRF F . The scheme consists of the following algorithms.
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• KeyGen on input a security parameter 1λ, and an input length 1n, generates a pair of one-time
signing and verification keys

(
sk1, vk1

)
← KeyGen1

(
1λ, 12κ

)
, and a random key K ∈R {0, 1}λ

for F , and outputs
(
sk =

(
sk1,K

)
, vk = vk1

)
.

• Sign on input a signing key sk =
(
sk1,K

)
, and a message m = m1 · · ·mn ∈ {0, 1}n, operates as

follows:

– Interprets m as a leaf in a depth-n full binary tree in which level−i nodes are associated
with strings in {0, 1}i, where the left (right) child of a node associated with string s, is
associated with the string s0 (s1). (In particular, the root, which is at level 0, is associated
with the empty string ε.)

– Assigns signing and verification key pairs for internal nodes on the path from the root
to m (excluding the root, and the leaf m), and their siblings, as follows: for every such
level-i node associated with string s, assigns to the node the keys (sks, vks) generated as:
(sks, vks) := KeyGen1

(
1λ, 12κ;FK

(
i ◦ s0n−i

))
(recall that ◦ denotes string concatenation;

i here denotes the log n-bit binary representation of i).

– Assigns signing and verification key pairs for the leaf m, and its sibling m′ =
m1 · · ·mn−1m̄n, as (skm, vkm) := KeyGen1

(
1λ, 1n;FK (n ◦m)

)
, and (skm′ , vkm′) :=

KeyGen1
(
1λ, 1n;FK (n ◦m′)

)
, respectively. (Again, n ◦ m denotes the log n-bit binary

representation of n, concatenated with m.)

– Computes σn ← Sign1 (skm,m). For every 0 ≤ i < n, let mi = m1 · · ·mi, then Sign
computes σi ← Sign1 (skmi , (vkmi0, vkmi1)) (where skm0 = skε = sk1).

– Outputs σ =
(

(σ0, · · · , σn) ,
(
vkm1···mi−10, vkm1···mi−11

)
1≤i≤n

)
.

• Ver on input a verification key vk, a signature σ =
(

(σ0, · · · , σn) ,
(
vk0
i , vk

1
i

)
1≤i≤n

)
, and a

message m = m1 · · ·mn ∈ {0, 1}n, outputs 1 if and only if all the following checks pass:

– Ver1 (vkmn
n , σn,m) = 1.

– For every 1 ≤ i < n, Ver1
(
vkmi
i , σi,

(
vk0
i+1, vk

1
i+1

))
= 1.

– Ver1
(
vk, σ0,

(
vk0

1, vk
1
1

))
= 1.

• SpecialGen on input a security parameter 1λ, an input length 1n, and a non-empty multi-set of
length-n messages M =

{
m1, · · · ,mk

}
, operates as follows:

– Generates a (non-full) binary tree in the following way:

∗ For every m ∈ M , generates a level-n verification key, and signature for m, as
(vkm, σm) ← SpecialGen1

(
1λ, 1n, {m}

)
. (A (verification key, signature) pair is gener-

ated once for every unique message in M , i.e., if m appears multiple times in M then
the corresponding pair is only generated once.)

∗ We say that a node is non-empty if some verification key has already been associated
with it, otherwise we say the node is empty. For every level i from n− 1 to 0, and for
every level-i node s (from left to right) that has a non-empty child:

· Let vks0, vks1 be the verification keys associated with the children of s, where

if its left (right) child is empty then vks0 ← SpecialGen1
(

1λ, 12κ, {~0}
)

(vks1 ←

SpecialGen1
(

1λ, 12κ, {~0}
)

).

· Generate a verification key vks for s, and a signature for (vks0, vks1), as (vks, σs)←
SpecialGen1

(
1λ, 12κ, {(vks0, vks1)}

)
.
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– For every m ∈ M , sets its signature to be σm =
(

(σmi)0≤i≤n , (vkmi−10, vkmi−11)1≤i≤n

)
,

where mi = m1 · · ·mi for every 0 ≤ i ≤ n.

– Output (vkε, {σm : m ∈M}).

Lemma 5.12. If
(
KeyGen1,Sign1,Ver1, SpecialGen1

)
is a one-time dual-mode signature scheme, then

Construction 4 is a dual-mode signature scheme.
Moreover, assume that KeyGen1 on input 1λ, 1n outputs signing and verification keys of length

κ = κ (λ), and Sign1 on input 1λ, and a length-n message, outputs signatures of length ` = ` (λ).
Then KeyGen on input 1λ, 1n outputs a signing key of length κ + λ and a verification key of length
κ, and Sign on input 1λ, and a length-n message, outputs signatures of length (n+ 1) · (2κ+ `).

Proof. The claim regarding the complexity of the scheme follows directly from the construction, and
the assumption regarding the complexity of KeyGen1, Sign1. We now discuss the properties of the
construction.

Existential unforgeability. Let A be a polynomial time adversary that succeeds in forging a
signature with probability ε (λ). We use it to construct an adversary A′ that succeeds in forging

a signature in the underlying one-time signature scheme with probability ε(λ)
n·p(λ) − negl (λ), where

p (λ) = poly (λ) bounds the running time of A (and consequently, also the number of signatures it
requests to receive), and conclude (from the existential-unforgeability of the one-time scheme, and
since n = poly (λ)) that ε (λ) = negl (λ).
A′ operates as follows. It obtains a verification key vk from its challenger, and honestly generates

one-time signing and verification keys
(
sk1, vk1

)
for the root of the tree, and the key K for F . Then,

A′ picks i∗ ∈R [p (λ)] and j∗ ∈R {0, · · · , n− 1}. (Intuitively, A′ guesses that the following holds for
the message m′ on which A will try to forge a signature: its path in the tree, and the path of the i∗’th
message on which A will request a signature, have the longest intersection (i.e., agree on the longest
prefix of a path, out of all messages on whichA requests a signature; if there are several such messages,
then by choosing i∗, A′ guesses that i∗ is the first message for which this holds), and these paths
coincide up to level j∗.) Then, A′ emulates A, where any signing request that A makes on message
m is answered as follows. If m is not the i∗’th signing request of A, then A′ generates the signature
on m by honestly evaluating the Sign algorithm. If m is the i∗’th signing request, then A′ generates
a signature on m by honestly evaluating the Sign algorithm, except for the following modification:
it uses vk as the verification key of the node v which is the sibling of the level-(j∗ + 1) node on the
path to m (instead of choosing it as specified by the Sign algorithm). We note that if A′ was wrong
in its guess for i∗, j∗, then v might (have already, or will later) appear on the path to some message
on which A requests a signature (if v has already appeared, its verification key has already been
assigned; if it will appear in a later request, then A′ will not be able to generate a signature, since it
does not know the corresponding signing key). If this happens, A′ aborts the forging game. At some

point, A provides a message m′, and a purported signature σ′ =
(

(σ0, · · · , σn) ,
(
vk0
i , vk

1
i

)
1≤i≤n

)
on

m′. Finally, A′ sends σj∗+1 as the signature on
(
vk0
j∗+2, vk

1
j∗+2

)
(if j∗ < n−1) or on m′ (if j∗ = n−1).

To analyze the success probability of A′, we consider a hybrid distribution H which con-
sists of the level-(j∗ + 1) message on the path to m′, and the signature σj∗+1, in the above
interaction between A,A′, where the challenge verification key vk is generated by running
KeyGen1

(
1λ, 1t;FK

(
(j∗ + 1) ◦ m̃j∗0n−j

∗−1
))

, where t = 2κ if j∗ < n − 1, otherwise t = n, and
m̃j∗ = m̃1 · · · m̃j∗

¯̃mj∗+1 where m̃ is the i∗’th message on which A requests a signature. (That is,
instead of running KeyGen1 with uniformly random bits, as is the case in the forging game of A′, it
is run with the same random bits with which KeyGen would evaluate it. Notice that this requires
knowing m̃j∗ in advance, which is possible because A′ can choose i∗, j∗, and emulate the signatures
on the first i∗−1 messages, before obtaining vk. Therefore, by the time vk is needed, m̃j∗ has already
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been determined.) Notice first that in H, A′ perfectly emulates the challenger of A. Indeed, the only
difference was in how A′ chose the verification key for node m̃j∗ , which in H is chosen exactly as
the Sign algorithm chooses it. Therefore, if σ′ is a valid signature on m′ (which happens with prob-
ability ε (λ)), then in particular Ver1 (vk, σj∗+1,m

′′) = 1 (where m′′ =
(
vk0
j∗+2, vk

1
j∗+2

)
if j∗ < n− 1,

otherwise m′′ = m′), meaning that if A′ guessed i∗, j∗ correctly (which happens with probability
1

n·p(λ)), then A′ succeeds in forging a signature in H. Therefore, A′ succeeds in forging a signature

in H with probability ε(λ)
n·p(λ) . Second, we claim that H is computationally indistinguishable from the

actual interaction between A and A′ (and therefore, A successfully forges a signature on m with

probability at least ε(λ)
n·p(λ)−negl (λ)). Indeed, indistinguishability follows from the psuedorandomness

of F . (A distinguisher D can be used to build a distinguisher D′ between a single image of either
F or a random function, given poly (λ) images of F : it simply uses the images to emulate A′ in the
interaction with A, using the challenge image to generate the verification key vk.)

Standard and special modes are indistinguishable. By a standard hybrid argument, the
indistinguishability of the standard and special modes of the underlying one-time dual-mode signature
scheme (we denote these distributions by Dstandard,1,Dspecial,1, respectively) implies that Dkstandard,1 ≈
Dkspecial,1 for any k = poly (λ), where Dk denotes k independent samples from D.

We prove indistinguishability by a sequence of hybrids in which the signatures are generated using
a signing key in which we iteratively replace the layers from “special” to “standard”. That is, for
0 ≤ i ≤ n + 1, we define Hi as follows. (1) For levels n up to i, generate the verification keys, and
signatures, on the paths leading from messages in M to the root as in the SpecialGen algorithm (i.e.,
these are generated iteratively using the SpecialGen1 algorithm). (2) For levels i−1 up to 0, generate
the signing and verification keys on these paths using KeyGen1, and honestly sign the verification
keys on the paths. Hi includes the verification key associated with the root, and the signatures on
all messages in M . Notice that H0 ≡ Dspecial and Hn+1 ≡ Dstandard, so it suffices to prove that for
every 1 ≤ i ≤ n+ 1, Hi ≈ Hi−1.

Fix some i. Notice that the verification keys in levels i, · · · , n, the signing and verification keys
in levels 0, · · · , i− 2, and the signatures in all levels except i− 1, i− 2, are identically distributed in
Hi,Hi−1. Therefore, we can fix these values, while preserving the computational distance between
the hybrids. Under this fixing, Hi,Hi−1 differ only in the verification key of level i − 1, and the
signatures in levels i−1, i−2: in Hi−1 the level-(i−1) verification keys and signatures are generated
by running SpecialGen1, whereas in Hi they are honestly generated using KeyGen1 and Sign1. In both
hybrids, the level-(i−2) signatures are honestly generated using Sign, but the signed messages contain
the level-(i− 1) verification keys (on which the hybrids differ). In particular, for some k = poly (λ),
Hi−1 is efficiently computable from Dkspecial,1 given the fixed values (one need only generate the level-
(i−2) signatures, for which the signing key has been fixed), whereas Hi is efficiently computable from
Dkstandard,1 (using the same function and fixed values), and so Hi ≈ Hi−1 by the indistinguishability
of standard and special modes of the underlying one-time scheme. (That is, given a distinguisher D
between Hi,Hi−1, we construct a distinguisher D1 between Dkstandard,1,Dkspecial,1, by hard-wiring all
the fixed values, as well as the level-(i − 2) signing keys, into D1. Given the verification keys and
signatures for level i−1, D1 uses the signing keys of level i−2 to generate the level-(i−2) signatures
which, together with the fixed values, constitutes the inputs to D.)

Special mode cannot sign additional messages. The argument is similar to the proof that
the scheme is existentially unforgeable. Given an adversary A = (A1,A2) that succeeds in forging
a signature in the special mode with probability ε (λ), we construct an adversary A′ that succeeds

(with probability ε(λ)
n·p(λ)−negl (λ)) in forging a signature in the underlying one-time signature scheme

(where p (λ) bounds the running time of A).
A′ operates as follows. First, it obtains from its challenger a verification key vk. Then, it runs
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A1 to obtain a list M of messages for which A requests special-mode signatures, and a state St.
Then, A′ picks i∗ ∈R [p (λ)] and j∗ ∈R {0, · · · , n− 1}. (Intuitively, A′ guesses that the following
holds for the message m′ on which A will try to forge a signature: its path in the tree, and the path
of the i∗’th message in M , have the longest intersection (i.e., agree on the longest prefix of a path,
out of all messages in M), and these paths coincide up to level j∗.) Next, A′ emulates SpecialGen
to generate the verification key vkε of the root, and the signatures on the messages in M , with the
following modification: it uses vk as the verification key of the level-(j∗+1) node v who is the sibling
of the level-(j∗ + 1) node on the path of the i∗’th message in M (instead of choosing it as specified
by the SpecialGen algorithm). Notice that if A′ was wrong in its guess for i∗, j∗, then v might appear
on the path to some message in M (in which case A′ cannot generate a signature, since it does
not know the corresponding signing key). If this happens, A′ aborts the forging game. Then, A′
runs A2 with St, vkε, and these signatures, and obtain a message m′, and a purported signature

σ′ =
(

(σ0, · · · , σn) ,
(
vk0
i , vk

1
i

)
1≤i≤n

)
on m′. Finally, A′ sends σj∗+1 as the signature on the message(

vk0
j∗+2, vk

1
j∗+2

)
(or, if j∗ = n− 1, on the message m′).

We claim that A′ successfully forges a signature (on
(
vk0
j∗+2, vk

1
j∗+2

)
if j∗ < n− 1, and on m′ if

j∗ = n− 1) with probability ε(λ)
n·p(λ) . Notice first that the game between A′ and A is computationally

indistinguishable from the actual special-mode forging game of A (of Definition 5.9). Indeed, the only
difference is in the verification key vk used in the level-(j∗+ 1) node which is the sibling of the level-
(j∗+ 1) node on the path to the leaf of the i∗’th message: in the special-mode forging game this is a
special-mode verification key, whereas in the game withA′ it is an actual (standard-mode) verification
key (generated by KeyGen1). However, these keys are indistinguishable by the indistinguishability of
special and standard modes of the underlying one-time scheme and Remark 5.10. (More specifically,
given a distinguisher D between the actual special-mode forging game, and the interaction between
A,A′, one can construct a distinguisher D′ between standard and special-mode verification keys: given
(a standard or special-mode) verification key vk, D′ emulates the interaction between A,A′, using vk
as the challenge verification key. It then runs D on the transcript obtained in this way, and outputs
whatever D outputs.) Therefore, if σ′ is a valid signature on m′ (which happens with probability
ε (λ)), then in particular Ver1 (vk, σj∗+1,m

′′) = 1 (where m′′ =
(
vk0
j∗+2, vk

1
j∗+2

)
if j∗ < n−1, otherwise

m′′ = m′), i.e., if A′ guessed i∗, j∗ correctly, then it successfully forges a signature.

By applying the transformation of Lemma 5.12 to the one-time dual-mode signatures of
Lemma 5.11, we obtain the following result:

Theorem 5.13. Assume that OWPs and CRHFs exist. Then there exists a dual-mode signature
scheme. Moreover, there exists a polynomial p (λ) such that signatures on length-n messages have
length 5p (λ) · (n+ 1), signing keys have length 2p (λ) + λ, and verification keys have length 2p (λ).

5.2.2 The MKSE Scheme

In this section we use dual-mode signatures to construct an MKSE scheme based on pc-diO. Con-
cretely, we instantiate Construction 2 with a pc-diO obfuscator and the dual-mode signatures of
Theorem 5.13. The properties of the resultant scheme are summarized in the following claim (whose
proof is similar to that of Claim 5.4).

Claim 5.14 (MKSE (Short Share Keys) from pc-diO). Assume that Construction 2 is instantiated
with:

• a secure pc-diO obfuscator O for TMs,

• a family of collision-resistent hash functions h,
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• a double symmetric encryption scheme
(
KeyGen2,Enc2,Dec2

)
, and

• a secure dual-mode signature scheme,

then Construction 2 is a secure MKSE.
Moreover, if on messages of length n the dual-mode signature scheme outputs signing and verifica-

tion keys of length poly (λ), and signatures of length n·poly (λ), then the following holds for the MKSE
scheme for universe U . Data and query keys have length poly (λ), queries have length log |U|·poly (λ),
and for a set S, its corresponding processed set has size |S| · poly (λ). Furthermore, if: (1) evaluating
h on length-n inputs takes HT (n) time, and outputs a hash of length H` (n); and (2) there exist
functions s, TO : N→ N such that for every TM M , |O (M)| ≤ s (|M |), and running O (M) on inputs
of length n takes TO (TIME (M,n)) time, where TIME (M,n) is the running time of M on length-n
inputs; then: running Search on a set S takes TO (HT (|S| · poly (λ)) + |S| · poly (λ) + poly (λ, log |U|))
time, and share keys have size s (H` (|S| · poly (λ)) · poly (λ)).

Proof. The correctness and complexity of the scheme is proven similarly to Claim 5.4. (The only
difference is in the length of queries, which contain a signature on a keyword w ∈ U , and the running
time of Search, which needs to verify the signature. In both cases, the increase in complexity is
caused because signatures on w ∈ U have length log |U| · poly (λ).)

The security proof proceeds in a sequence of hybrids similar to the proof of Claim 5.4, but
introduces additional complications due to using a weaker obfuscator primitive. More specifically,
let A be a PPT adversary in the security game of Definition 3.1, and let viewb, b ∈ {0, 1} denote
its view in the security game with bit b. We define hybrids H0,H1, and H2 as in the proof of
Claim 5.4, and view0 ≈ H0 by the same arguments. Indeed, as discussed there, the obfuscated
programs in view0,H0 are differing inputs in relation to every auxiliary input, and in particular when
this auxiliary input is the randomness used by the sampler to sample the programs. H0 ≈ H2 because
the indistinguiushability argument did not use diO security.

Next, we define a new hybrid H′2 in which the signatures on the queries W0
j of every querier j,

and his verification key vkj , are generated using the SpecialGen algorithm (instead of the KeyGen and
Sign algorithms). We show that H′2 ≈ H2 by the indistinguishability of standard and special modes
of the dual-mode signature scheme. We condition both hybrids on the values of the sets S0

i , S
1
i of

data owners, their data keys, the processed sets, the encryption keys of the queriers, the keywords
they search for, and their encryptions. (This is possible by an averaging argument, since these values
are identically distributed in both hybrids.) Let m denote the number of queriers, then we define
a sequence of hybrids H0, · · · ,Hm, where in Hj , the signatures and verification key of the first j
queriers are generated using SpecialGen, and the signatures and verification keys of all other queriers
are honestly generated (using KeyGen and Sign). We prove that Hj ≈ Hj−1 for every 1 ≤ j ≤ m,
and conclude that H2 = H0 ≈ Hm = H′2.

Fix some j. Given a distinguisher D between Hj ,Hj−1, we construct a distinguisher D′ (with
the same distinguishing advantage) between Dstandard and Dspecial (of Definition 5.9), when these
are generated for the ciphertexts encrypting the keywords in W0

j , and conclude that Hj ≈ Hj−1 by
the indistinguishability of standard and special modes property. We hard-wire into D′ the signing,,
verification keys, and queries of every j′ 6= j, as well as all share keys ∆j′,i for i ∈ D (this is possible
because these values are identically distributed inHj ,Hj−1 and so we can fix them into both hybrids).
Given a verification key vk, and a list L of signatures on the ciphertexts of querier j, D′ generates
for every edge (j, i) ∈ E the program PK,(Ku,vk),h(T ) (where K,Ku, and h (T ) are taken from the
hard-wired values), and uses O to generate the obfuscated program ∆j,i. Then, D′ generates the
queries of querier j by concatenating the corresponding signature to each ciphertext of j. Together
with the hard-wired values, this gives the entire hybrid, and D′ runs D on the hybrid, and outputs
whatever D outputs. Notice that if vk and the signatures were honestly generated, then the input to
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D is distributed according to Hj−1, otherwise it is distributed according to Hj , so D′ and D have the
same distinguishing advantage.

Next, we define H3 as in the proof of Claim 5.4 (but notice that the verification keys in every ∆j,i

were generated using SpecialGen), and claim that H′2 ≈ H3 by the pc-diO security of O. We define
the hybrids H0, · · · ,Hd as in the argument that H2 ≈ H3 in the proof of Claim 5.4 (except that we
use H′2 instead of H2), and show that Hl ≈ Hl−1 for every 1 ≤ l ≤ d.

Fix some 1 ≤ l∗ ≤ d, and let (j, i) be the edge for which ∆l∗ was generated. We hard-wire the
sets S0

i′ , S
1
i′ , i
′ ∈ D, and all the keywords that queriers ask about (in both the 0-experiment and the

1-experiment), into Hl∗ ,Hl∗−1 (this is possible because these values are identical in both hybrids).
We additionally hard-wire the keys of every querier j′, j′ 6= j and data owner i′, i′ 6= i, the encrypted
sets Ti′ , i

′ 6= i, the queries of querier j′, and the share keys ∆j′,i′ ,∆
′
j′,i′ (∆j′,i′ denotes a key in

H′2, ∆′j′,i′ denotes a key in H3). (This is possible because these values are identically distributed

in both hybrids.) We show that ∆j,i,∆
′
j,i sampled in Hl∗−1,Hl∗ (respectively) form a public-coin

differing-inputs family of TMs (and conclude that Hl∗−1 ≈ Hl∗ by the pc-diO security of O).
Let P,P ′ denote the distributions over programs obfuscated in ∆j,i,∆

′
j,i, and let D be a PPT

algorithm that obtains (P, P ′)← P ×P ′ and r, where r is the randomness used to sample P, P ′. We
assume the “worst-case” scenario in which all the values we have fixed into Hl∗ ,Hl∗−1 are known to
D. Notice that from the randomness r of the sampler, D learns the encryption keys Ki,K

u
j (the left

component of these keys is needed to generate P , whereas the right component is needed to generate
P ′), as well as the encrypted set Ti, the verification key vkuj for signatures of querier j, and the queries
of j (which consist of encryptions of keywords, and signatures on these encryptions; the signatures
were generated together with the verification key by SpecialGen). (We note that from these values D
can compute on its own the share keys ∆j′,i,∆

′
j′,i for (j′, i) ∈ E, and ∆j,i′ ,∆

′
j,i′ for (j, i′) ∈ E.) We

show that D succeeds in finding a differing input only with negligible probability.
Consider first the inputs (for P, P ′) which D knows (from the hard-wired values, or what it can

deduce from r), i.e., the encrypted set Ti (which encrypts the elements of S0
i in the left components,

and the elements of S1
i in the right components; for i ∈ Dc this holds since S0

i = S1
i ), and the

queries of querier j. For every such query q there exists a pair (wL, wR) of keywords such that q is
of the form q = (c = (cL, cR) , σ) where c? ← Enc

(
Ku?,j ,m?

)
, ? ∈ {L,R}, σ is a valid signature on c

(generated by SpecialGen), and wL ∈ S0
i ⇔ wR ∈ S1

i . In particular, P (q, Ti) = P ′ (q, Ti) except with
negligible probability since except with negligible probability, the checks in Steps (1)-(2) succeed in
both cases (by indistinguishability of the standard and special modes of the signature scheme, σ
is indistinguishable from a valid signature on c, which by the correctness of the signature scheme,
would pass verification), and Steps (4)-(5) return the same outcome (P searches for wL in S0

i , since
it decrypts using Dec2, whereas P ′ searches for wR in S1

i , since it decrypts with DecR and the right
component of Ti encrypts S1

i ; and wL ∈ S0
i ⇔ wR ∈ S1

i ).
Next, we claim that for every other possible input (T ′, c′, σ′) that D chooses, P (T ′, c′, σ′) =

P ′ (T ′, c′, σ′) = 0 except with negligible probability. Indeed, if c′ is not the encryption of a pair(
w0
j,l, w

1
j,l

)
of keywords for some 1 ≤ l ≤ kj (i.e., for some pair of keyword queries of querier j)

then by the property that special-mode keys cannot sign additional messages, with overwhelming
probability σ′ is not a valid signature for c′, so the check in Step (1) fails in both P, P ′. Moreover,
if T ′ 6= Ti then by the collision resistance of h, with overwhelming probability h (T ′) 6= h (Ti), so the
check in Step (2) fails. Therefore, P, P ′ are public-coin differing-inputs.

We now define the last set of hybrids. (These hybrids differ from the corresponding hybrids in
the proof of Claim 5.4 only in that the verification keys and signatures are generated in the special
mode.)

H4 : In hybrid H4, the queries
(
w1
j,1, · · · , w1

j,kj

)
of every querier j ∈ Q are generated using Enc2
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with message
(
w1
j,l, w

1
j,l

)
, 1 ≤ l ≤ kj , instead of EncL with message

(
w0
j,l, w

1
j,l

)
, 1 ≤ l ≤ kj .

H3 ≈ H4 by a similar argument to the one used to prove H1 ≈ H2 (except that SpecialGen is
used to generate verification keys and signatures, instead of KeyGen and Sign).

H5 : In hybrid H5, the encrypted set Ti of every honest data owner i /∈ Dc is generated as the
encryption of

(
S1
i , S

1
i

)
with Enc2 instead of with EncL.

H4 ≈ H5 by a similar argument to the one used to prove H0 ≈ H1.

H6 : In hybrid H6, the obfuscated program for every edge (j, i) ∈ E is generated as follows: (1)

the hard-wired keys are K = (KL,i,KR,i) ,K =
(
KuL,j ,K

u
R,j

)
, instead of K′ =

(
~0,KR,i

)
,Ku′ =(

~0,KuR,j

)
; and (2) Dec2 is used for decryption (instead of DecR).

We show that H6 ≈ H5 follows from the pc-diO security of O by a standard hybrid argument
in which the obfuscated programs are replaced one at a time. When replacing the program for edge
(j, i) from P ′ (in H5) to P (in H6), we hard-wire into the PPT D (which should find a differing
input) the sets S1

i′ for every i′ ∈ D, the keywords searched for (in the 1-experiment) by all queriers,
the encryption keys of all data owners i′, i′ 6= i and queriers j′, j′ 6= j, the signing, verification keys,
and queries of all queriers j′, j′ 6= j, and all encrypted sets Ti′ , i

′ 6= i. Also, from the randomness r of
the sampler (of P, P ′), D learns the encryption keys Ki,K

u
j , the (special-mode) verification key vkus,j ,

the encryptions of the keywords which querier j searches for, together with the signatures on these
ciphertexts, and the encrypted set Ti.

We claim that D finds a differing input only with negligible probability. The argument is similar
to that used to prove H3 ≈ H′2. The inputs (for P, P ′) available to D (from the hard-wired values,
and the randomness of the sampler), i.e., the encrypted set Ti, and queries q = (c, σ) of querier j,
where c ← Enc2

(
Kuj ,m

)
for some m, and σ is a signature for c (generated using SpecialGen), are

not differing-inputs (even though P ′ decrypts the right component of c, whereas P decrypts the left
component) because both components of c encrypt m according to Enc (so both P, P ′ search for m
in S1

i ), where Enc is the encryption scheme underlying Enc2,EncL,EncR. For every other possible
input (T ′, c′, σ′) that D chooses, P (T ′, c′, σ′) = P ′ (T ′, c′, σ′) = 0 except with negligible probability:

if c′ does not encrypt
(
w1
j,l, w

1
j,l

)
for some 1 ≤ l ≤ kj then with overwhelming probability σ′ is not a

valid signature on c′ (by the property that special-mode signatures cannot sign additional messages);
whereas if T ′ 6= Ti then with overwhelming probability h (T ′) 6= h (Ti) (by the collision resistance of
h).

In our final new hybridH′6, the signatures on the queriesW1
j of every querier j, and his verification

key vkj , are honestly generated (using the KeyGen and Sign algorithms). Then view1 = H′6 ≈ H6 by
the same arguments used to show H′2 ≈ H2.

Theorem 5.8 now follows as a corollary from Claim 5.14 and Theorem 5.13, and since the existence
of a symmetric encryption scheme follows from the existence of a CRHF.

6 Extensions and Open Problems

In this section we discuss possible extensions of our MKSE definition and constructions, and point
out a few open problems in the field.

We have focused on a selective, indistinguishability-based MKSE notion (Definition 3.1). One
could also consider several other formulations, as we now discuss.
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Simulation-based security. First, one can consider a selective simulation-based notion, in
which the real-world view of any PPT adversary can be efficiently simulated given only “minimal”
information. More specifically, at the onset of the execution the adversary chooses (as in Defini-
tion 3.1) sets of queriers, data owners, and corrupted data owners; a share graph; keyword sets for all
data owners; data keys for corrupted data owners; and a (possibly empty) set of keyword queries for
each querier. The simulator is then given the sets and data keys of corrupted data owners; the sizes
of the sets of honest data owners; the share graph; for each keyword query w of querier j, and every
edge (j, i) in the graph, whether w ∈ Si or not (where Si is the set of data owner i); and for each
querier j, which of his queries are on the same keywords. The simulator then generates a complete
simulated adversarial view, namely processed sets for all data owners, share keys for all edges in the
share graph, and queries for every keyword query. Intuitively, we say that an MKSE is simulation-
secure if for every PPT adversary there exists a PPT simulator as above, such that the real and
simulated views are computationally indistinguishable. The PRF-based MKSE (Construction 1) is
simulation-secure (see Remark 4.5), and we leave it as an open problem to determine whether the
MKSE with short share keys (Construction 2, based on diO or pc-diO) is simulation-secure.

A natural question that arises in this context is whether indistinguishability-based security (as in
Definition 3.1) implies simulation-based security (as outlined above). One approach towards tackling
this question is to describe an algorithm that, given the input of the simulator (as specified above),
generates an assignment for the sets of the honest data owners, and for all keyword queries, in a
way that is consistent with the outcome of searching for these keywords. Concretely, this approach
reduces the task of constructing a simulator to the following graph problem: given a bipartite graph
G = (L,R,E); a set {nv : v ∈ R} of natural numbers; and for every u ∈ L, a set of coloring of the
edges touching u in two colors (blue and red), assign a set Sv ⊆ U to every v ∈ R (recall that U is a
universe of possible keywords), and a value wcu ∈ U to every u ∈ L and every coloring c of the edges
that touch u, such that the following holds:

1. for every v ∈ R, |Sv| = nv,

2. for every u ∈ L, every coloring c of the edges that touch u, and every edge (u, v) ∈ E,
c (u, v) = blue if and only if wcu ∈ Sv, where c (u, v) is the color of the edge (u, v) in the coloring
c, and

3. for every u ∈ L, and two colorings c1, c2 of the edges touching u, wc1u 6= wc2u .

(We note that Item 1 guarantees that sets have the “right” size; Item 2 guarantees that the assign-
ments to the sets and keywords searched for are consistent; and Item 3 guarantees consistency with
the pattern of repeated qeuries of each querier.3) At a high level, the main challenge is in finding an
assignment for the set that would be consistent over the queries of multiple queriers, while simulta-
neously satisfying the restriction on the size of the set. Intuitively, this issue does not arise in the
PRF-based construction since each share key ∆j,i encodes the entire set, and the Search algorithm
does not use the processed set at all (so issues of consistency across different queriers do not arise).

Adaptive security. Another possible dimension of generalizing Definition 3.1 is to consider an
(either indistinguishability-based or simulation-based) adaptive definition. At a high level, in this
setting the adversary may adaptively generate queriers, data owners (with their sets and data keys),
edges in the share graph, and keyword queries, and immediately receives the resultant values. (For
example, when an adversary specifies a new data owner and his data key and set, he receives the
corresponding processed set; when he adds an edge to the share graph, he receives the corresponding

3Though repeated queries are allowed, when reducing the problem of constructing a simulator to the problem of
designing an algorithm that solves the graph problem, we provide only one coloring for every keyword searched for by
every querier j. Therefore, the label assignments (which correspond to assigning keywords to queries) must be distinct.
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share key, etc.) The security requirement should hold as long as at the end of the execution, the data
sets, share graph, and queries satisfy the restrictions imposed by the (selective) security definition.

Natural approaches towards proving adaptive security, even for the PRF-based construction (Con-
struction 1), seem to run into “selective opening type” issues: in the security proof, we would nat-
urally want to replace the pseudorandom images of the PRF F in share keys with random values,
however we do not a-priori know which values the adversary will ask to be “opened” (by making
a keyword query for a keyword in the set corresponding to the share key; recall that these queries
constitute a key for F ). Consequently, we cannot a-priori determine which values should remain
pseudorandom (so that they can later be opened). However, we can show that Construction 1 is
adaptively simulation-secure in the Random Oracle model, namely when all evaluations of F are
replaced with calls to the random oracle (replacing FK (x) with a call to RO (K,x)). The random
oracle circumvents such “selective opening type” issues since any (randomly assigned) output of the
random oracle can later be “explained” by consistently assigning the random oracle outputs at other
(related) points.

Efficiency and security tradeoffs. Finally, an interesting avenue for future research is ex-
ploring the tradeoffs between efficiency of the MKSE scheme, and the underlying assumptions. Our
MKSE with short share keys (Construction 2) indicates the hardness of proving an unconditional
lower bound on the size of share keys, since it would require ruling out the existence of diO for a
specific class of samplers. However, it does not rule out the possibility of constructing an MKSE
scheme with short share keys based on weaker assumptions (such as the existence of iO for TMs, or
ideally, on the existence of OWFs). More generally, one could ask how the search time, and size of
share keys, relate to each other; and if there is a lower bound on “search time plus share key size”.
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A Obfuscation Definitions

In this section we formally define the notions of program obfuscation which we use: differing-inputs
obfuscation (diO) [BGI+01], and public-coin differing-inputs obfuscation (pc-diO) [IPS15]. Through-
out the section, we use steps (M,x) to denote the number of steps the Turing Machine M takes when
running on input x. We first define differing-inputs Turing Machine (TM) families.

Definition A.1 (Differing-inputs TM family [BGI+01, ABG+13]). A familyM of Turing Machines,
associated with an efficient sampler SamplerM, is a Differing-Inputs Turing Machine Family if the
output of SamplerM is a pair of Turing machines (M0,M1) ∈M×M such that |M0| = |M1|, and for
every (possibly non-uniform) polynomial adversary A, there exists a negligible function ε such that
for any λ:

Pr

[
M0(x) 6= M1(x) ∧

steps(M0, x) = steps(M1, x) = t
:

(M0,M1, aux)← SamplerM
(
1λ
)

(x, 1t)← A
(
1λ,M0,M1, aux

) ]
≤ ε (λ)

Definition A.2 (Differing-inputs Obfuscator for TMs [BGI+01, ABG+13]). A uniform PPT ma-
chine O is a differing-inputs Obfuscator (diO) for a differing-inputs Turing Machine familyM if the
following holds:

• Correctness: for all security parameters λ ∈ N , M ∈M, and inputs x,

Pr
[
M ′(x) = M(x) : M ′ ← O(1λ,M)

]
= 1.
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• Security: for any (possibly non-uniform) PPT distinguisher D there exists a negligible function
ε such that for any λ

|Pr
[
D
(
M ′, aux

)
= 1 : (M0,M1, aux)← SamplerM

(
1λ
)
,M ′ ← O

(
1λ,M0

)]
−Pr

[
D
(
M ′, aux

)
= 1 : (M0,M1, aux)← SamplerM

(
1λ
)
,M ′ ← O

(
1λ,M1

)]
|

is at most ε(λ).

• Polynomial blowup: there exists a (global) polynomial p : N × N → N such that for all
security parameters λ ∈ N , and all M ∈M, |M ′| ≤ p (λ, |M |), where M ′ ← O

(
1λ,M

)
.

Next, we define the notion of public-coin diO. We first define public-coin differing-inputs samplers
for Turing Machines.

Definition A.3 (Public-coin differing-inputs sampler for TMs [IPS15]). An efficient non-uniform
sampler SamplerM is a Public-Coin Differing-Inputs sampler for a family M of Turing Machines if
the output of SamplerM is a pair of Turing machines (M0,M1) ∈ M ×M such that |M0| = |M1|,
and for every (posssibly non-uniform) polynomial adversary A, there exists a negligible function ε
such that for any λ:

Pr
r

[
M0(x) 6= M1(x) ∧

steps(M0, x) = steps(M1, x) = t
:

(M0,M1)← SamplerM
(
1λ, r

)
(x, 1t)← A

(
1λ, r

) ]
≤ ε (λ)

Definition A.4 (Public-Coin Differing-inputs Obfuscator for TMs [IPS15]). A uniform PPT machine
O is a public-coin Turing machine differing-inputs obfuscator for the family M of Turing Machines,
if the following conditions are satisfied:

• Correctness: for all security parameters λ ∈ N , M ∈M, and inputs x,

Pr
[
M ′(x) = M(x) : M ′ ← O(λ,M)

]
= 1.

• Security: for any (possibly non-uniform) PPT distinguisher D there exists a negligible function
ε such that for any λ

|Pr
[
D
(
M ′, r

)
= 1 : (M0,M1)← SamplerM

(
1λ, r

)
,M ′ ← O

(
1λ,M0

)]
−Pr

[
D
(
M ′, r

)
= 1 : (M0,M1)← SamplerM

(
1λ, r

)
,M ′ ← O

(
1λ,M1

)]
|

is at most ε(λ), where the probability is taken over r and the coins of O.

• Polynomial blowup: there exists a (global) polynomial p : N × N → N such that for all
security parameters λ ∈ N , and all M ∈M, |M ′| ≤ p (λ, |M |), where M ′ ← O

(
1λ,M

)
.
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