
A Provably Secure PKCS#11 Configuration
Without Authenticated Attributes

Ryan Stanley-Oakes?

University of Bristol
ryan.stanley@bristol.ac.uk

Abstract. Cryptographic APIs like PKCS#11 are interfaces to trusted
hardware where keys are stored; the secret keys should never leave the
trusted hardware in plaintext. In PKCS#11 it is possible to give keys
conflicting roles, leading to a number of key-recovery attacks. To prevent
these attacks, one can authenticate the attributes of keys when wrapping,
but this is not standard in PKCS#11. Alternatively, one can configure
PKCS#11 to place additional restrictions on the commands permitted
by the API.
Bortolozzo et al. proposed a configuration of PKCS#11, called the Se-
cure Templates Patch (STP), supporting symmetric encryption and key
wrapping. However, the security guarantees for STP given by Bortolozzo
et al. are with respect to a weak attacker model. STP has been imple-
mented as a set of filtering rules in Caml Crush, a software filter for
PKCS#11 that rejects certain API calls. The filtering rules in Caml
Crush extend STP by allowing users to compute and verify MACs and
so the previous analysis of STP does not apply to this configuration.
We give a rigorous analysis of STP, including the extension used in Caml
Crush. Our contribution is as follows:

(i) We show that the extension of STP used in Caml Crush is insecure.
(ii) We propose a strong, computational security model for configura-

tions of PKCS#11 where the adversary can adaptively corrupt keys
and prove that STP is secure in this model.

(iii) We prove the security of an extension of STP that adds support for
public-key encryption and digital signatures.

1 Introduction

In high-risk environments, particularly where financial transactions take place,
secret and private keys are often stored inside trusted, tamper-proof hardware
such as HSMs and cryptographic tokens. Then ordinary host machines, which
could be compromised by malware or malicious users, can issue commands to the
trusted hardware via an interface called a cryptographic API. The operations
that can be carried out using the API often include key wrapping, which is the
encryption of one key under another to enable the secure exchange and storage of
keys. The API can also be used to add new keys to the trusted hardware, either
by issuing a key generation command or unwrapping a wrapped key. The API
refers to each key by a handle, which has attributes used to specify the intended

? The author is supported by an EPSRC Industrial CASE studentship.

use of the key. By wrapping and unwrapping, it is possible for different handles,
each with different attributes, to point to the same key. This could cause a key
to have conflicting roles within the API.

The study of cryptographic APIs was initiated by Bond and Anderson in
2001, when they described attacks against ATMs and prepayment utility meters,
exploiting weaknesses in the interfaces to the trusted hardware, rather than in
the cryptographic algorithms performed by the hardware: “The basic idea is that
by presenting valid commands to the security processor, but in an unexpected
sequence, it is possible to obtain results that break the security policy envisioned
by its designer.” [4].

While Bond and Anderson identified vulnerabilities in particular devices with
bespoke APIs, Clulow then used their approach to find devastating key recovery
attacks against a widely-used, generic API [8]. This API, called PKCS#111 is
independent of the hardware with which it communicates and was designed to
enable interoperability between the trusted hardware from different manufactur-
ers [17].

In 2008, Delaune et al. presented a formal, Dolev–Yao style model of PKCS#11
and used model-checking tools to find new attacks [12, 13]. Bortolozzo et al.
then developed an automated tool called Tookan, built on the model by De-
laune et al., that found and executed attacks against real hardware devices us-
ing PKCS#11 [5]. As a result of these attacks, an important research question
has been to find a configuration of PKCS#11, i.e. a set of restrictions on the
commands that can be issued to the API, such that the API is secure with these
restrictions.

Bortolozzo et al. suggested a configuration of PKCS#11, supporting just
symmetric encryption and symmetric key wrapping, called the Secure Tem-
plates Patch (STP) [5]. In STP, newly-generated keys are separated into en-
cryption/decryption keys and wrapping/unwrapping keys, while keys imported
by unwrapping can be used for encryption and unwrapping, but not decryption
or wrapping. STP has been implemented as a set of filtering rules in Caml Crush,
a software filter that rejects certain PKCS#11 calls [2]. However, the filtering
rules in Caml Crush allow users to compute and verify MACs, which is not cap-
tured by the model from Delaune et al. [12,13]. Therefore the previous analysis
of STP does not apply to what is implemented in Caml Crush. Furthermore,
while STP is resistant to attack by Tookan, there has not yet been a formal
proof of security for this configuration, which is the problem we address here.

1.1 Our Contribution

As a first result, we show that the filtering rules in Caml Crush are not sufficient
to secure PKCS#11. The attacker is assumed to have knowledge of how the filter
operates, but can only interact with the API via the filter. Two sets of filtering

1 PKCS#11 is actually the name of the cryptographic standards document that de-
scribes the API, which is called Cryptoki. However, it is conventional to refer to the
API itself as PKCS#11.

rules are offered; the first set is trivially broken if the attacker can read the source
code of the filter. The second set of rules is designed to emulate STP, but offers
MAC functionality that was not modelled by Delaune et al. and hence is not
exploited by Tookan. We show that the filtering does not enforce a separation
between encryption and MAC keys. We also show that there exist encryption
and MAC schemes that are individually secure, but completely insecure when
the same keys are used for both primitives. Therefore STP, as implemented in
Caml Crush, is only safe to use if one is certain that the encryption and MAC
schemes are jointly secure.

Our second contribution is a computational security model for configurations
of PKCS#11, where certain API calls are rejected according to the policy in the
configuration. The policy may determine, for example, what attributes newly-
generated or newly-imported keys can have. Our model captures the use of both
symmetric and asymmetric variants of encryption and signing primitives within
the API. We say that an API is secure if, for any cryptographic primitives used
by the API, encrypting and signing data using the API is as secure as using the
primitives themselves in isolation. This is strictly stronger than the model from
Delaune et al., where an API is considered secure if the attacker cannot learn
the values of honestly-generated secret keys [12,13]. Moreover, the adversary in
our model is allowed to adaptively corrupt certain keys.

Our main result is a PKCS#11 configuration that is provably secure in our
model. We first show that STP as proposed by Bortolozzo et al. is not secure;
STP allows the same keys to be used for encryption and unwrapping, so an
attacker can encrypt (rather than wrap) their own key, import this key by un-
wrapping and use this key to encrypt or sign data. Since keys used by the API
could have been generated by the adversary, there can be no guarantees for data
protected by the API, even if the cryptographic primitives are secure. However,
we prove that if the policy prevents the encryption (rather than wrapping) of
keys, then the configuration is secure. Moreover, our main result holds for an
extension of STP that supports public-key encryption and digital signatures.

The proof of our main result is highly non-trivial since we allow the adver-
sary to adaptively corrupt keys. Adaptive corruption captures the realistic threat
scenario that certain keys are leaked through side-channel attacks, which, due
to the key wrapping operation, can have devastating consequences for the API.
Nevertheless, most existing analyses of cryptographic APIs avoid this strong
attacker model because traditional proof techniques cannot be used; for a stan-
dard cryptographic reduction, one has to know in advance which keys will be
corrupted to correctly simulate the environment of the adversary. Instead, our
security proof uses techniques from Panjwani’s proof that the IND-CPA security
of encryption implies its Generalised Selective Decryption (GSD) security [18].
This is a complex hybrid argument where one first guesses a path, in the wrap-
ping graph that will be adaptively created by the adversary, from a source node
(corresponding to a key that does not appear in a wrap) to a challenge node
(corresponding to a key used for encryption of data, or signing, etc.). Then the
way in which one responds to wrap queries depends on the positions of the cor-

responding nodes relative to the guessed path. To our knowledge, we are the
first to adapt Panjwani’s result to the API setting.

1.2 Comparison to Existing Work

Much of the syntax of our formal model is adapted from the model by Shrimpton
et al., but while they abstracted away the details of how an API carries out
operations, we use the PKCS#11 specification to derive a more explicit, readable
model.

Shrimpton et al. prove that an API with just key management functionality
may be safely combined with a single, symmetric primitive. To analyse multiple
(symmetric) primitives in the Shrimpton et al. model, one would need to combine
them into a single primitive with a single security game, thereby assuming their
joint security and resulting in syntax that differs greatly from PKCS#11. We
prove the security of an API supporting multiple distinct primitives, including
both symmetric and public-key primitives, with a syntax that closely matches
PKCS#11, without assuming the primitives are jointly secure. Furthermore,
while the model from Shrimpton et al. explicitly supports multiple tokens, the
attacker is assumed to have control of all tokens at once and each handle has
an associated token (i.e. the token name can be inferred from the value of the
handle). Therefore, any attack in this multi-token model can be viewed as an
attack in our ‘single-token’ model.

Our definition of a secure configuration of PKCS#11 is inspired by the se-
curity definition used by Cachin and Chandran, who presented a design for an
API that closely resembles PKCS#11, supporting multiple cryptographic mech-
anisms simultaneously [6]. Their paper is the closest existing work to our own
as they also gave a computational security proof for their API. However, their
work does not fully address the security of PKCS#11. The Cachin–Chandran
API is designed for a single token that maintains a central log of all operations
on the token, whereas PKCS#11 is designed for interoperability between mul-
tiple tokens. It is unrealistic to assume that the central log can be immediately
updated after any operation on any token.

An alternative configuration of PKCS#11, also avoiding the use of authenti-
cated attributes, was described by Künnemann in 2015 [16]. Instead of limiting
the roles of unwrapped keys to encryption and unwrapping, Künnemann’s config-
uration allows unwrapped keys to encrypt and decrypt data, but does not allow
any wrapping keys to be wrapped themselves, as we do (following STP). Com-
pared to STP, Künnemann’s configuration has the added benefit that wrapped
keys do not lose functionality, allowing for lossless key-backup, but does not al-
low wrapping keys to be exchanged between different tokens. Therefore for two
different tokens to securely exchange keys, they must always use the same long-
term wrapping key, which must have been pre-installed at initialisation time. We
also remark that this configuration is analysed with respect to a weaker security
model than our own (see below).

Other existing works do not adequately address the security of PKCS#11
due to the following limitations:

Authenticated Attributes: Most API designs in the literature assume that
the attributes of keys are authenticated when wrapping, so that a symmetric
key can either be used to encrypt and decrypt data, or to wrap and unwrap
keys, but not both [6,9,10,15,20,21]. This prevents attacks where one decrypts,
rather than unwraps, a wrapped key and hence one obtains the value of the
key in plaintext. However, the assumption that attributes are authenticated is
unrealistic for PKCS#11.

One method that has been suggested for authenticating attributes is the use
of an Authenticated Encryption with Associated Data (AEAD) scheme, such
as AES-GCM, for key wrapping. The wrapping mechanism must be configured
so that the correct attributes are always supplied as the associated data. While
Version 2.40 of the PKCS#11 standard, published in 2015, enabled key wrapping
with AES-GCM [17], we cannot assume this practice is widely-adopted.

An alternative suggestion for authenticating attributes is the Wrapping For-
mats Patch suggested by Bortolozzo et al., which was also implemented in Caml
Crush [2,5]. In this patch, the wrapping mechanism is altered so that a wrap con-
sists of a ciphertext, the attributes of the wrapped key, and a MAC tag that has
been computed on the ciphertext and the attributes. The MAC is then checked
when unwrapping. Modifying the format of a wrap in this way is a violation
of the PKCS#11 standard and so tokens that are patched in this way are not
interoperable with PKCS#11-compliant devices.

Weak Security Models: Many existing analyses of APIs use a Dolev–Yao
style symbolic model to express the security of the API and only prove that the
adversary cannot recover keys in full with certainty [1,5,7,11–13,16]. While this
notion of security rules out many of the attacks that have been described in the
literature, it does not guarantee that any cryptographic primitives using these
keys are secure, which is the security goal in our model. Moreover, it is not clear
that these abstract symbolic models fully capture the computational capabilities
of a real attacker.

Furthermore, many computational security proofs for APIs do not capture
the adversary’s ability to adaptively corrupt keys. This is unsatisfactory: adap-
tive corruption models the realistic threat that certain keys, unknown to the
API, may be leaked through side-channel attacks or faulty hardware, and such
compromised keys can be used to devastating effect as a result of the key wrap-
ping operation. The Cachin–Chandran model does not consider the corruption of
keys at all [6], while Scerri and Stanley-Oakes prove the security of a generalised
API in a model where the number of corrupted keys is constant as the resources
of the adversary increase, so they are able to construct a reduction that simply
guesses in advance the keys that the adversary will corrupt [20].

A recent work by Daubignard et al. proves the security of an API with
even greater functionality than ours; their API uses a combined encryption and
signing mechanism to enable asymmetric wrapping of keys [11]. However, their
result is in the symbolic model and, furthermore, their asymmetric wrapping
mechanism is not currently compatible with PKCS#11.

Limited Functionality: PKCS#11 supports signature schemes, MAC schemes
and symmetric and asymmetric variants of key wrapping and encryption. How-
ever, many existing analyses of APIs only consider symmetric encryption and
symmetric wrapping [9, 15,16,20].

Shrimpton et al. recently gave a generic composition result, showing that if
the key management component of the API is secure, then this component can
be safely combined with an arbitrary symmetric cryptographic primitive [21].
However, in order to apply their result to an API with multiple primitives, for
example an encryption scheme and a MAC scheme, one has to assume that
these different primitives are jointly secure, i.e. that the behaviour of one prim-
itive does not affect the security of the other. Unfortunately, there exist secure
primitives which are not jointly secure [14,19].

To summarise, we give a realistic, flexible and provably secure PKCS#11 con-
figuration, improving on existing works in a number of ways:

1. We do not assume that the attributes of keys are authenticated when wrap-
ping in PKCS#11.

2. Our configuration of PKCS#11 meets a strong, computational security def-
inition where the adversary can adaptively corrupt keys.

3. Our security model includes all the cryptographic primitives supported by
PKCS#11. However, we show that MAC functionality must be disabled for
security with respect to our strong definition, since it is possible for the MAC
and encryption schemes to interact badly when using the same keys.

2 Preliminaries

We use the term token to refer to any trusted hardware carrying out crypto-
graphic operations. All keys are stored inside the token and the user has an API
used to issue commands to the token.

We assume the API used by the token is compliant with at least v2.20 of the
PKCS#11 standard.2 While the PKCS#11 specification distinguishes between
normal users and security officers, we conflate these roles and assume the adver-
sary can perform any operations permitted by the API. Security in this sense
automatically implies security against adversaries who can only interact with
the API as normal users or security officers.

We assume that tokens store no keys in their initial state. Then keys can
be added to the device using one of the following commands: C GenerateKey

or C GenerateKeyPair, which cause the token to generate a new key or key
pair using its own internal randomness; C UnwrapKey, which causes the token to
decrypt the supplied ciphertext and store the plaintext as a new key (without
revealing it); C CreateObject, which we used to model importing public keys

2 Version 2.20 of the standard was published in 2004, and was the first to introduce
the attributes CKA TRUSTED and CKA WRAP WITH TRUSTED, which we use to prevent
key cycles.

from other tokens; or C TransferKey, which we use to model an out-of-band
method for securely transferring long-term secret keys between tokens (this could
happen during the manufacturing process, for example).

The API refers to keys using handles; these are public identifiers. So, for
example, if the user issues the command C Encrypt(h,m), they expect to receive
the encryption of the message m under the key pointed to by the handle h. The
class of a key is whether it is public, private or secret. For each handle, the token
stores the corresponding key, the class of this key and its template, which is a set
of attributes that determine how the key can be used. Attributes are either set
or unset. For example, PKCS#11 mandates that the command C Encrypt(h,m)
must fail if the attribute CKA ENCRYPT is not set in the template associated to h.

In the language of PKCS#11, the value of a key is also an attribute of its
handle, and the API has to prevent the reading of this attribute if the attribute
CKA SENSITIVE is set, i.e. the API should not reveal the values of keys that are
supposed to be secret. For simplicity we say that templates do not contain the
value of keys. This way all attributes are binary and can be disclosed to the
user. Accordingly we have no need for the attribute CKA SENSITIVE; all public
keys will be returned to the user at generation time and other keys can only be
revealed by corruption.

PKCS#11 allows an incomplete template to be supplied when a new handle
is created, forcing the API to choose whether to set or unset the unspecified at-
tributes; we simply assume that the operation fails if the template is incomplete.
For convenience, we also assume that the template of a handle contains the class
of the corresponding key.

In PKCS#11, some attributes can be changed by the user (or by the API).
For example, perhaps the attribute CKA ENCRYPT is not initially set in the tem-
plate of some handle h pointing to the key k, but later the user wishes to use
k to encrypt data. We exclude this from our model, preferring to assume that
the intended use of all keys is known at generation time. In the language of
PKCS#11, all our attributes are sticky.

There are nine attributes relevant to our analysis, as follows: CKA EXTRACTABLE,
which we abbreviate by CKA EXTR, is used to identify those keys that can be
wrapped (in the case of private or secret keys), or given out (in the case of
public keys). CKA WRAP WITH TRUSTED, which we abbreviate by CKA WWT, is used
to identify those keys that can only be wrapped by keys with CKA TRUSTED set.
CKA TRUSTED is used to identify those keys that are considered trusted wrap-
ping keys. CKA WRAP, CKA UNWRAP, CKA ENCRYPT, CKA DECRYPT, CKA SIGN and
CKA VERIFY are used to identify those keys that can wrap keys, unwrap keys,
encrypt data, decrypt data, sign (or MAC) data and verify signatures (or MAC
tags), respectively.

PKCS#11 specifies some rules, which we call the policy, about how attributes
must be used (like how the template of h must have CKA ENCRYPT set in order
for C Encrypt(h,m) to succeed). But the standard also allows manufacturers,
in their own configurations of PKCS#11, to impose additional restrictions on
how the API operates. For example, the PKCS#11 policy allows a symmetric

key to be generated with both CKA WRAP and CKA DECRYPT set, leading to the
famous wrap/decrypt attack [8]. Manufacturers should therefore disable this
command in their configuration. We assume that the policy in the manufacturer’s
configuration allows a subset of commands allowed by the PKCS#11 policy (so
that the configuration is actually compliant with the specification) and therefore
we use a single policy algorithm to capture both the standard PKCS#11 policy
and any additional restrictions, i.e. any command not rejected by our policy
algorithm is automatically allowed within PKCS#11.

3 Vulnerabilities in Caml Crush

In Caml Crush, the idea is that the interface to some trusted hardware is a
PKCS#11-compliant, but insecure, API [2]. The software is then used to filter
out API calls that could lead to attacks. This is rather like having a more restric-
tive policy within the API and so the authors adapt the PKCS#11 configurations
suggested by Bortolozzo et al. to filtering rules. Bortolozzo et al. suggested two
configurations of PKCS#11 that are resistant to attack by Tookan [5], both of
which are implemented in Caml Crush as sets of filtering rules [2]:

1. In the Wrapping Formats Patch (WFP), the attributes of a key are trans-
mitted as part of a wrap of the key and authenticated using a MAC.

2. In the Secure Templates Patch (STP), wrapping and encryption keys are
separated at generation time and imported symmetric keys can be used for
unwrapping and encryption, but not wrapping or decryption.

We remark that the first patch is actually a violation of the PKCS#11 stan-
dard: the standard mandates that a wrap of a key is solely the encryption of the
value of the key, i.e. the attributes of the key are not included in the output and
no MAC tag is added. Tokens whose APIs use WFP are not interoperable with
tokens using PKCS#11-compliant APIs.

Moreover, the way WFP is implemented in Caml Crush is trivially insecure.
Examining the source code, the MAC used to authenticate the attributes of the
wrapped key is computed using a key that is stored in plaintext in the con-
figuration file of the filter [3]. This is a clear violation of Kerckhoffs’ principle:
the attacker who knows how the filter is constructed (i.e. can read the source
code of the filter) can immediately circumvent the additional protection pro-
vided by the MAC and use the wrap/decrypt attack to learn the value of any
extractable secret key. The authors of Caml Crush acknowledge this vulnerabil-
ity in a comment: “We use the key configured in the filter configuration file ...
You might preferably want to use a key secured in a token”. We feel this is an
understatement of the insecurity of their solution.

We focus our attention on STP, as this is compliant with the PKCS#11
specification. Note that STP, as presented by Bortolozzo et al., only enables the
symmetric encryption, decryption, wrapping and unwrapping functions of the
API and not, for example, the MAC and verify functions [5]. The implementation
in Caml Crush adds MAC functionality to STP, but does so in a potentially

insecure way. Their filtering rules allow freshly generated symmetric keys to be
used for wrapping and unwrapping, encryption and decryption, or signing and
verifying (using a MAC scheme). Then keys imported via the unwrap command
can either unwrap and encrypt, or unwrap, sign and verify. At first glance, these
restrictions appear to maintain a separation between encryption and MAC keys,
but this is not the case. One can generate an encryption key, wrap it, and unwrap
it as a MAC key. This configuration is only secure if the encryption and MAC
schemes are jointly secure, i.e. it is safe to use the same key for both primitives.
In Sec. 5, we show that this assumption does not always hold.

4 Security Model and Assumptions

PKCS#11 supports both symmetric and asymmetric primitives for encrypting
and signing data and for wrapping keys. For simplicity we will assume that
all keys and key pairs are generated using the same two algorithms KG and
KPG. Moreover, we assume that the key wrap mechanisms use the same en-
cryption schemes as for encrypting data. Therefore our model of a configuration
of PKCS#11 is parameterised by four cryptographic primitives: a probabilistic
symmetric encryption scheme E = (KG,Enc,Dec), a probabilistic public-key en-
cryption scheme PKE = (KPG,AEnc,ADec), a MAC scheme
M = (KG,Mac,MVrfy) and a digital signature scheme S = (KPG,Sign,SVrfy).
The syntax of these primitives and the formal definitions of correctness and
security are all given in Appendix A.

The API also has an algorithm NewHandle for generating fresh handles. This
will be called when keys are imported via unwrapping or the C CreateObject

command or new keys are generated. This algorithm is assumed to be stateful so
that it never returns the same value. For each handle h returned by NewHandle,
the API stores a template h.temp and a pointer p to the token memory where the
value of the key is stored. By abuse of notation, the contents of the token memory
at p will be written h.key (even though this value is not directly accessible to
the API). The class of the key, i.e. secret, public or private, is stored in h.class.

The configuration of the API is defined by the policy. We model the policy
by the algorithm P that takes the name of the API command and the inputs to
that command as inputs, then returns 1 if this combination is permitted and 0
otherwise.

Before giving the formal security definition, we introduce a restriction which
is necessary for security and considerably simplifies the model:

Remark 1. Asymmetric key wrapping must be disabled.

Even before a formal security definition is given, it should be clear that
any mechanism for key wrapping must provide integrity as well as secrecy. If it
were not the case, then an adversary could generate their own keys, forge wraps
of these keys, unwrap them and use them to wrap honestly-generated keys or
encrypt and sign data. If this attack is possible, there can be no guarantees for
data and keys protected by the API, since any keys used by the API could be

adversarially generated. Of course, the notion of integrity of ciphertexts makes no
sense in the public key encryption setting without the sender needing a private
key as well as a public key to encrypt. Rather than assuming the existence
of a non-standard authenticated asymmetric encryption scheme (which is not
currently supported by PKCS#11), we make the standard assumptions from the
literature that all key wrapping is symmetric and, for bootstrapping, there is an
out-of-band method for securely exchanging long-term secret keys [5, 15,20,21].

4.1 Security Definition

Following [15, 20, 21], we give a computational, rather than symbolic, security
definition for a configuration of PKCS#11, where the adversary has access to
a number of oracles and plays a game. Winning the game means violating the
security of one of the cryptographic primitives used by the token. We say, infor-
mally, that a configuration of PKCS#11 is secure if using the API to encrypt
and sign data is as secure as encrypting and signing with the separate, individ-
ual primitives. This notion of security is similar to the one used by Cachin and
Chandran [6].

Formally, for each adversary A and each b ∈ {0, 1}, we define an experiment
APIb(A) := APIbE,M,PKE,S,P(A) where the adversary has access to a number of
oracles capturing the commands one can issue to the API, and some challenge
oracles whose responses depend on b. The oracles all first check, using the policy
P, that the command from the adversary is allowed. If this succeeds, then the
oracles perform the cryptographic operations that would be carried out by the
token. Note that our formal model conflates the roles of the API and the token,
which simplifies notation considerably, but is without loss of generality since we
know how PKCS#11-compliant APIs interact with tokens. The only thing we do
not know is how the token implements the cryptographic operations, and these
details are abstracted away in our model.

After interacting with the API oracles, the adversary returns a guess b′.
Provided that certain conditions are met whereby the adversary cannot trivially
learn b, the experiment returns b′. Otherwise, the experiment returns 0. The
advantage of A against the API is defined to be the following quantity:

AdvAPI(A) :=
∣∣P[API1(A) = 1]− P[API0(A) = 1]

∣∣ .
The experiment APIb is shown in Fig. 1, with the oracles available to A shown
in Figs. 2 and 3.

Now we explain some of the rationale behind the security game. We have
two challenge oracles OEnc-Challenge

b and OSign-Challenge
b , corresponding to confi-

dentiality (of public key and symmetric encryption) and authenticity (of signa-
tures and MACs), respectively. These oracles closely resemble the IND-CCA and
EUF-CMA games. For encryption, the bit b determines which of the messages
m0 and m1 is encrypted under the challenge key. As usual, to avoid trivial wins
we have to record the ciphertexts output by OEnc-Challenge

b and the queries made
to the decryption oracle OC Decrypt, and check that the two sets corresponding to

Experiment APIbE,M,PKE,S,P(A):

i← 0
Chal← ∅,Cor = {0}
W ← ∅, E ← ∅, V ← {0}
P ← ∅,K ← ∅
for all j ∈ [n],

C1[j], C∗1 [j], C2[j], C∗2 [j], T [j], T ∗[j], S[j], S∗[j]← ∅
b′ ← AO
if Chal ∩ Comp 6= ∅ then return 0
if ∃j ∈ [n] such that:

C1[j] ∩ C∗1 [j] 6= ∅
or C2[j] ∩ C∗2 [j] 6= ∅
or T [j] ∩ T ∗[j] 6= ∅
or S[j] ∩ S∗[j] 6= ∅:

then return 0
else return b′

Fig. 1. The Security Experiment APIb(A) for a cryptographic API supporting symmet-
ric and asymmetric encryption, a MAC scheme and a signature scheme. The oracles O
are defined in Figs. 2 and 3.

the same key are disjoint. For signing and MACs, the bit b determines whether
the adversary sees the genuine result of the verification algorithm, or always sees
the bit 0 (indicating that the verification has failed). To avoid trivial wins here,
we record the signatures and tags output by OC Sign and the candidate signatures
and tags submitted to OSign-Challenge

b and check that the two sets corresponding
to the same key are disjoint.

In our model, we include an oracle OCorrupt that allows the adversary to
adaptively corrupt certain keys. This captures the situation where some keys
may be leaked, for example through side-channel attacks. Obviously, if such
keys are used by the challenge oracles, then A can trivially recover the bit b.
Moreover, if the adversary were to wrap a key under a corrupt key, then the
wrapped key must be assumed compromised, since it can be trivially recovered
by the adversary. Like corrupt keys, compromised keys are not safe for use by
the challenge oracles. Therefore we keep track of a set Comp of corrupt and
compromised keys and a set Chal of keys used by the challenge oracles, and the
experiment only returns the guess b′ from A if Comp and Chal are disjoint.

The situation is complicated by the fact that the adversary queries OCorrupt

with handles, not keys, and learns the value of the key pointed to by the handle.
But by wrapping and unwrapping a key, the adversary obtains a new handle for
the same key and clearly all handles pointing to the same key are compromised
by the corruption of just one of them. Therefore we keep track of which handles
point to the same key by giving them the same index idx(h) and store which in-
dices are compromised, rather than which handles. This is based on the security
model by Shrimpton et al. [21].

Oracle OC CreateObject(pk, t):

if P(C CreateObject, pk, t):
h← NewHandle
h.key← pk
h.temp← t
h.class← public
X ← {h′ ∈ P : h′.key = pk}
if X 6= ∅:

idx(h)← minh′∈X idx(h′)
else idx(h)← 0
return h

Oracle OC TransferKey(k, t):

if P(C TransferKey, k, t):
h← NewHandle
h.key← k
h.temp← t
h.class← secret

X ←
{
h′ ∈ K :
h′.key = k ∧ h′.temp = t

}
if X 6= ∅:

idx(h)← minh′∈X idx(h′)
else idx(h)← 0
return h

Oracle OC GenerateKey(t):

if P(C GenerateKey, t):
i+ +
h← NewHandle
K = K ∪ {h}
idx(h)← i
V ← V ∪ {i}
h.key← KG
h.temp← t
h.class← secret
return h

Oracle OC GenerateKeyPair(t, t′):

if P(C GenerateKeyPair, t, t′):
i+ +
h← NewHandle
h′ ← NewHandle
P = P ∪ {h}
idx(h)← i
idx(h′)← i
V ← V ∪ {i}
(h.key, h′.key)← KPG
h.temp← t
h′.temp← t′

h.class← public
h′.class← private
return h, h′, h.key

Oracle OC WrapKey(h, h′):

if P(C WrapKey, h, h′):
if h.class = secret:

if h′.class = private
or h′.class = secret:
w ← Enc(h.key, h′.key)
W ←W ∪ {(h, h′, w)}
E ← E ∪ {(idx(h), idx(h′))}
return w

Oracle OC UnwrapKey(h,w, t):

if P(C UnwrapKey, h, w, t):
if h.class = secret:
k′ ← Dec(h.key, w)
if k′ ∈ SecretKeys
or k′ ∈ PrivateKeys:
h′ ← NewHandle
h′.temp← t
h′.key← k′

unwrapbookkeeping
return h′

Macro unwrapbookkeeping:

X ←
{
h2 : (h1, h2, w) ∈W
∧ idx(h1) = idx(h)

}
if X 6= ∅:

idx(h′)← minh2∈X idx(h2)
else if idx(h) ∈ Comp:

idx(h′)← 0
else:

i+ +
idx(h′)← i
V ← V ∪ {i}

Oracle OCorrupt(h):

if h.class = private
or h.class = secret:

Cor← Cor ∪ {idx(h)}
return h.key

Fig. 2. Oracles Representing PKCS#11 Key Management Commands and Key Cor-
ruption

Oracle OC Encrypt(h,m):

if P(C Encrypt, h,m):
if h.class = secret:

return Enc(h.key,m)
if h.class = public:

return AEnc(h.key,m)

Oracle OC Decrypt(h, c):

if P(C Decrypt, h, c):
if h.class = secret:
c← Dec(h.key, c)
C1[idx(h)]← C1[idx(h)] ∪ {c}
return c

if h.class = private:
c← ADec(h.key, c)
C2[idx(h)]← C2[idx(h)] ∪ {c}
return c

Oracle OC Sign(h,m):

if P(C Sign, h,m):
if h.class = secret:
τ ← Mac(h.key,m)
T [idx(h)]← T [idx(h)] ∪ {τ}
return τ

if h.class = private:
σ ← Sign(h.key,m)
S[idx(h)]← S[idx(h)] ∪ {σ}
return σ

Oracle OC Verify(h,m, s):

if P(C Verify, h,m, s):
if h.class = secret:

return MVrfy(h.key,m, s)
if h.class = public:

return SVrfy(h.key,m, s)

Oracle OEnc-Challenge

b (h,m0,m1):

if P(C Encrypt, h,m0):
if P(C Encrypt, h,m1):

if |m0| = |m1|:
if h.class = secret:

Chal← Chal ∪ {idx(h)}
c← Enc(h.key,mb)
C∗1 [idx(h)]← C∗1 [idx(h)] ∪ {c}
return c

if h.class = public:
Chal← Chal ∪ {idx(h)}
c← AEnc(h.key,mb)
C∗2 [idx(h)]← C∗2 [idx(h)] ∪ {c}
return c

Oracle OSign-Challenge

b (h,m, s):

if P(C Verify, h,m, s):
if h.class = secret:
T ∗[idx(h)]← T ∗[idx(h)] ∪ {s}
Chal← Chal ∪ {idx(h)}
if b = 0 return MVrfy(h.key,m, s)
else return 0

if h.class = public:
S∗[idx(h)]← S∗[idx(h)] ∪ {s}
Chal← Chal ∪ {idx(h)}
if b = 0 return SVrfy(h.key,m, s)
else return 0

Fig. 3. Oracles Representing PKCS#11 Cryptographic Operations and the IND-CCA
and EUF-CMA Games

We assume that there is an authenticated channel for transmitting public
keys using the C CreateObject command. Therefore we check that any public
keys imported via OC CreateObject had at some point been honestly generated by
a token. If so, the new handle is given the same index as the handle that was
given out when the key was first generated. If not, the new handle is given index
0, which is used to represent automatically compromised keys (and therefore if
this new public key is used in the challenge oracles, the guess output by A will be
ignored). Note that we do not check that the template of the imported public key
matches the template of the key when it was first generated. This is because we
are not assuming that the attributes of keys are always authenticated. Therefore
the policy of our configuration will have to restrict the roles of imported public
keys.

Similarly, we assume there is a secure out-of-band method for transferring
long-term wrapping keys, modelled by the C TransferKey command, so we check
that keys imported via OC TransferKey were previously generated on the token. If
this check fails, the new handle is given index 0. Unlike with OC CreateObject, we
check that the template of the key matches the template it had when it was first
generated. This is because the transfer mechanism is designed for keys of the
highest privilege, so we must ensure that keys imported this way were always
intended to have this role. As a result, the transfer mechanism cannot really
benefit the adversary, since they can only import a key with the same value and
role as it had previously. We only include this oracle to model a system with
multiple tokens.

Finally, when a key is imported viaOC UnwrapKey, we check if the wrap had been
previously generated by the token. To carry out this check, we maintain a list
W of triples (h, h′, w) such that the query OC WrapKey(h, h′) received the response
w.3 If the wrap submitted to OC UnwrapKey was indeed generated by the token, we
know the contents of the wrap, so the new handle is given the same index of
the originally wrapped handle.4 If the wrap submitted to OC UnwrapKey was not
generated by the token, then it was forged by the adversary. If the unwrapping
key is compromised, then the new handle is assumed compromised and given
index 0. This is because it is trivial to forge a wrap under a compromised key
and so we do not allow the adversary to win the security game this way. However,
if the unwrapping key is not already compromised, then the new handle is given
a fresh (non-zero) index, even though there can be no security guarantees for the
imported key. This allows the adversary to benefit from creating forged wraps
without compromising the wrapping key, which is a realistic attack. It will be
necessary for security to prove that this can never happen, using the integrity
of the wrapping mechanism.

3 A real API does not need to maintain such a list; it is purely for preventing trivial
attacks in our model.

4 Actually it is given the minimal index of all wrapped handles satisfying these con-
ditions, but if the API is secure then all these indices will agree, or they will all be
in Comp.

Now we give the formal definition of the security of a PKCS#11 configura-
tion. Suppose AdvAPI(A) ≤ ε for all adversaries A running in time at most t,
making at most q oracle queries and such that the number of non-zero handle
indices used in APIb, i.e. the number of keys generated by the token or imported
into the token by forgeing a wrap under an uncompromised key, is at most n.
Then we say the API is (t, q, n, ε)-secure.

4.2 Security Assumptions

In order for an API to securely support both symmetric and asymmetric crypto-
graphic primitives, we have to assume that the encoding of keys is such that the
three key classes cannot be confused.5 More precisely, algorithms that are sup-
posed to use secret keys will automatically fail if one tries to use a public key or a
private key instead, and so on. This is necessary to avoid otherwise secure primi-
tives exhibiting insecure behaviour (such as returning the value of the key) when
used with a key of the wrong class. Moreover, when one imports a new key using
the C CreateObject command or the C UnwrapKey command, the class of the
new key will be automatically determined by the input to the command. We cap-
ture these assumptions in our formal syntax by having the keyspaces SecretKeys,
PublicKeys and PrivateKeys be disjoint sets. These assumptions mean that, for
example, a secure symmetric encryption scheme and a secure digital signature
scheme are automatically jointly secure, but different primitives using the same
class of keys, e.g. a symmetric encryption scheme and a MAC scheme, could still
interfere with each other.

Furthermore, as explained above, the wrapping mechanism must provide in-
tegrity (in addition to secrecy) to prevent the adversary from importing their
own keys. While we assume the wrapping mechanism authenticates the values of
keys, we do not assume that the attributes of keys are authenticated. We remark
that some wrapping mechanisms supported by early versions of PKCS#11, e.g.
LYNKS from v2.20, attempted to authenticate the values of keys by adding an
encrypted checksum to the ciphertext, which was then checked when unwrap-
ping. On the other hand, even the latest version of PKCS#11 does not explic-
itly support including and authenticating the attributes of keys when wrapping.
While we assume the use of a strong wrapping mechanism, we show how security
can be achieved without any changes to the PKCS#11 standard.

5 Secure Templates

Since we do not assume that the PKCS#11 wrapping mechanism authenticates
the attributes of keys, we have no way of knowing what the attributes of imported
keys were when the keys were first generated. This means the API must impose
attributes on imported keys regardless of user input.

Furthermore, it is very difficult to separate the roles of imported keys of
the same class without authenticated attributes. This is because forcing the

5 In practice, the length of the bitstring could determine the class of the key.

adversary to choose between templates of imported keys (such as unwrap and
encrypt or unwrap and sign/verify) does not limit the adversary at all, since
the adversary can just unwrap the same wrapped key twice with different roles.
Moreover, if one tries to prevent this attack by rejecting unwraps of a ciphertext
that has previously been unwrapped on the same token, the adversary can just
unwrap the same key on multiple tokens and use them together. The only way
to avoid this entirely is with a central log of all the operations performed on
any token, as suggested by Cachin and Chandran, which is impractical for more
than one token [6]. Since we do not assume that attributes are authenticated or
that there is a central log of all operations, our configuration must have exactly
one template for all imported keys of the same class. Under our assumption that
the three classes of keys cannot be confused, we can have a different template
for each class.

Recall that, in STP, imported secret keys can be used for encryption, but not
decryption [5]. This is because these keys may be stored under a different handle
with the ability to wrap other keys and so we must prevent the wrap/decrypt
attack. Similarly, such keys can be used for unwrapping, but not wrapping,
since they may be stored under a different handle with the ability to decrypt
ciphertexts. However, this does not prevent all the attacks that we consider:

Remark 2. STP is not secure in our model.

There are two reasons why we will not be able to reduce the security of
STP to the confidentiality and integrity of the underlying symmetric encryption
scheme. The first is technical: STP allows the creation of key cycles, since any key
with CKA WRAP set can wrap any key with CKA EXTR set, and key cycles cannot
be modelled by standard, computational security notions for encryption. How-
ever, one can prevent key cycles using the attributes CKA TRUSTED and CKA WWT:
we allow the creation of trusted wrapping keys that are not extractable and
untrusted wrapping keys that are extractable but can only be wrapped under
trusted wrapping keys. Moreover, all imported secret keys must have CKA WWT

set, since they may be stored under a different handle as an untrusted wrapping
key.

The second security flaw is more serious. While Tookan found no attacks
against STP, this was with respect to a weak security notion that honestly-
generated keys cannot be recovered by the adversary. Our stronger security no-
tion requires that all keys on the token that are not trivially compromised are
safe to use for encryption and signing. This means the attacker should not be
able to import their own keys, which is why we need INT-CTXT security for the
wrapping mechanism. However, since STP allows the same keys to be used for
encryption and wrapping, the adversary could encrypt their own key and then
unwrap the ciphertext, without violating the integrity property of the wrapping
mechanism. The newly-imported key, known to the adversary, can then be used
by the encryption challenge oracle, trivially leaking the hidden bit b. To prevent
this attack, our policy must not allow the encryption (as opposed to wrapping)
of any element of SecretKeys.

Let STP+ be the PKCS#11 configuration obtained by restricting STP as
described above, thereby preventing the creation of key cycles and the encryp-
tion, rather than wrapping, of secret keys. We will extend STP+ by enabling
public-key encryption and signatures and our main result (Theorem 1) is a secu-
rity reduction for this configuration to the security of the underlying primitives.
As an immediate corollary, we see that the security of STP+ is implied by the
confidentiality and integrity of the underlying symmetric encryption scheme.

In describing STP, Bortolozzo et al. did not consider MAC functionality [5].
As mentioned in Sec. 3, the extension of STP used in Caml Crush is such that
secret keys can have both MAC and encrypt functionality. In Appendix B, we
show why a secure MAC scheme and a secure encryption scheme are not always
jointly secure, by adapting the argument from Patterson et al. that using the
same key pairs for a public-key encryption scheme and a signature scheme can
be dangerous [19]. Therefore, if we do not assume the joint security of the en-
cryption and MAC schemes, we cannot prove the security of our configuration of
PKCS#11 if it allows unwrapped secret keys to compute or verify MACs. Thus
there is no generically secure way to exchange MAC keys between tokens and so
we must only use (asymmetric) signatures to provide data authenticity.

Then, since unwrapped private keys need to be used to create signatures,
such keys cannot be allowed to decrypt messages (without assuming the joint
security of public key encryption and signing). So private decryption keys must
be unextractable, meaning there is no way to safely transmit such keys between
tokens. However we do not need to disable public-key encryption altogether, since
tokens can exchange public encryption keys over an authenticated channel and
decrypt ciphertexts using their unextractable, locally-generated private keys.

Since tokens are required to transmit public keys for encryption and verifying
signatures, it is quite possible for the adversary to use an encryption key to
verify signatures, by generating the key in one role and then re-importing it
with a different role. However, this does not affect the joint security of the
encryption scheme and the signature scheme. The verification algorithm has
no way of knowing that the key it uses was ‘intended’ as an encryption key
and will function as normal. Moreover, as the key is public there is no risk from
leaking parts of the key not needed for verification. Similarly there is no risk from
encrypting data using keys intended for signature verification. In summary, it is
not necessary to authenticate the attributes of public keys, only the values of
these keys. As a result our configuration of PKCS#11 allows all imported public
keys to have both encryption and verification capabilities.

Bringing together this analysis, we obtain a set of attribute templates that,
without assuming the joint security of different primitives, is maximal among
those with which the API is secure:

1. Generated secret keys must have one of the following templates:

(a) TRUSTED: trusted wrapping keys that are unextractable and cannot be
used for encryption or decryption,

(b) UNTRUSTED: untrusted wrapping keys that can themselves be wrapped
under trusted wrapping keys, but cannot be used for encryption or de-
cryption,

(c) ENC: keys that can be wrapped and used for encryption and decryption,
but cannot wrap other keys.

2. Imported secret keys have the template IMPORTSECRET: they can encrypt
data and unwrap keys, but cannot decrypt data or wrap keys. To prevent key
cycles, imported secret keys must only be wrapped under trusted wrapping
keys.

3. Only trusted wrapping keys, i.e. keys with template TRUSTED, can be trans-
ferred using the secure out-of-band mechanism C TransferKey (for boot-
strapping).

4. The templates of generated public and private key pairs must be one of the
following:

(a) AENC, ADEC: the public key can encrypt data and the private key can
decrypt data; neither can wrap or unwrap and the private key is not
extractable.

(b) VERIFY, SIGN: the public key can verify signatures and the private key
can create signatures; neither can wrap or unwrap and both are ex-
tractable.

5. Finally, imported public keys must have the template IMPORTPUBLIC: such
keys can encrypt data and verify signatures, but cannot wrap or unwrap
keys.

In Tables 1 and 2, we define our set of secure templates with respect to the
PKCS#11 attributes CKA EXTR, CKA WWT, CKA TRUSTED, CKA WRAP, CKA UNWRAP,
CKA ENCRYPT, CKA DECRYPT, CKA SIGN, and CKA VERIFY. Any attributes from this
set that are not shown in the tables, or not marked with!, are unset. The only
exception to this rule is CKA TRUSTED, which is not shown in any of the tables
due to limitations on space, but is set in the template TRUSTED and unset in all
other templates.

The policy P used in our configuration is given in Table 3. We remark that
P(C UnwrapKey, h, w, t) sometimes depends on the value of Dec(h.key, w). Since
h.key is not accessible to the API, what this means is that the API makes the
relevant decryption call to the token, receives a response, and then determines
whether or not to release the response to the user based on its value. Note that
this policy could not be achieved by simply using a filter (like Caml Crush). For
comparison, we also give the default PKCS#11 policy in Table 4 and the STP+
policy in Table 5. One can see that our configuration is indeed PKCS#11 compli-
ant, i.e. if P(x) = 1 in our configuration then P(x) = 1 in the default PKCS#11
configuration. Furthermore, STP+ is a special case of our configuration, i.e. if
P(x) = 1 in STP+ then P(x) = 1 in our configuration, so the security of STP+
is implied by the security of our configuration.

Let tmax be the maximum run time of any of the following operations: Enc,
AEnc, ADec, Sign, SVrfy, one call to NewHandle and one call to Dec; one call to
NewHandle and two calls to KG; and two calls to NewHandle and two calls to

Template Name CKA EXTR CKA WWT CKA WRAP CKA UNWRAP CKA ENCRYPT CKA DECRYPT

TRUSTED ! !

UNTRUSTED ! ! ! !

ENC ! ! !

IMPORTSECRET ! ! ! !

Table 1. Templates for Secret Keys (note that CKA SIGN and CKA VERIFY are always
unset). The attribute CKA TRUSTED, not shown here, is set in the template TRUSTED and
unset in all other templates.

Template Name CKA EXTR CKA WWT CKA ENCRYPT CKA DECRYPT CKA SIGN CKA VERIFY

AENC ! !

ADEC !

SIGN ! !

VERIFY ! !

IMPORTPUBLIC ! ! !

Table 2. Templates for Public and Private Keys (note that CKA TRUSTED, CKA WRAP and
CKA UNWRAP are always unset).

Function Value

P(C CreateObject, pk, t)
1 if t = IMPORTPUBLIC,
0 otherwise

P(C TransferKey, k, t)
1 if t = TRUSTED,
0 otherwise

P(C GenerateKey, t)
1 if t ∈ {TRUSTED, UNTRUSTED, ENC},
0 otherwise

P(C GenerateKeyPair, t, t′)
1 if (t, t′) ∈ {(AENC, ADEC) , (VERIFY, SIGN)},
0 otherwise

P(C WrapKey, h, h′)
1 if CKA WRAP ∈ h.temp, CKA EXTR ∈ h′.temp

and if CKA WWT ∈ h′temp then CKA TRUSTED ∈ h.temp,
0 otherwise

P(C UnwrapKey, h, w, t)

1 if CKA UNWRAP ∈ h.temp and
Dec(h.key, w) ∈ SecretKeys and t = IMPORTSECRET

or Dec(h.key, w) ∈ PrivateKeys and t = SIGN,
0 otherwise

P(C Encrypt, h,m)
1 if CKA ENCRYPT ∈ h.temp and m /∈ SecretKeys,
0 otherwise

P(C Decrypt, h, c)
1 if CKA DECRYPT ∈ h.temp,
0 otherwise

P(C Sign, h,m)
1 if CKA SIGN ∈ h.temp,
0 otherwise

P(C Verify, h,m, s)
1 if CKA VERIFY ∈ h.temp,
0 otherwise

Table 3. The policy of our configuration (where a ∈ h.temp means that the attribute
a is set in h.temp)

Function Value

P(C CreateObject, pk, t) 1

P(C TransferKey, k, t) N/A since this command is an artefact of our model

P(C GenerateKey, t) 1

P(C GenerateKeyPair, t, t′) 1

P(C WrapKey, h, h′)
1 if CKA WRAP ∈ h.temp, CKA EXTR ∈ h′.temp

and if CKA WWT ∈ h′temp then CKA TRUSTED ∈ h.temp,
0 otherwise

P(C UnwrapKey, h, w, t)
1 if CKA UNWRAP ∈ h.temp
0 otherwise

P(C Encrypt, h,m)
1 if CKA ENCRYPT ∈ h.temp,
0 otherwise

P(C Decrypt, h, c)
1 if CKA DECRYPT ∈ h.temp,
0 otherwise

P(C Sign, h,m)
1 if CKA SIGN ∈ h.temp,
0 otherwise

P(C Verify, h,m, s)
1 if CKA VERIFY ∈ h.temp,
0 otherwise

Table 4. The default policy in PKCS#11 (where a ∈ h.temp means that the attribute
a is set in h.temp). Note that when importing new keys, the policy also sets the values of
attributes like CKA LOCAL and CKA ALWAYS SENSITIVE that are omitted from our model,
but the API never checks these when deciding whether to carry out operations.

Function Value

P(C CreateObject, pk, t) 0

P(C TransferKey, k, t) N/A since this command is an artefact of our model

P(C GenerateKey, t)
1 if t ∈ {TRUSTED, UNTRUSTED, ENC},
0 otherwise

P(C GenerateKeyPair, t, t′) 0

P(C WrapKey, h, h′)
1 if CKA WRAP ∈ h.temp, CKA EXTR ∈ h′.temp

and if CKA WWT ∈ h′temp then CKA TRUSTED ∈ h.temp,
0 otherwise

P(C UnwrapKey, h, w, t)
1 if CKA UNWRAP ∈ h.temp and

Dec(h.key, w) ∈ SecretKeys and t = IMPORTSECRET

0 otherwise

P(C Encrypt, h,m)
1 if CKA ENCRYPT ∈ h.temp and m /∈ SecretKeys,
0 otherwise

P(C Decrypt, h, c)
1 if CKA DECRYPT ∈ h.temp,
0 otherwise

P(C Sign, h,m) 0

P(C Verify, h,m, s) 0

Table 5. The policy in STP+ (where a ∈ h.temp means that the attribute a is set in
h.temp)

KPG. Then, with the configuration presented here, we obtain our main result,
which is proved in Appendix C:

Theorem 1. Suppose P is as defined in Table 3, E is (t, ε1)-IND-CCA-secure
and (t, ε2)-INT-CTXT secure, PKE is (t, ε3)-IND-CCA-secure and S is (t, ε4)-
EUF-CMA-secure. Then the API is (t′, q, n, ε′)-secure, where:

t′ = t− q · tmax,

ε′ = n
[(

8n2 + 4n+ 1
)
ε1 + 2ε2 + ε3 + ε4

]
.

6 Conclusion

We have given a security definition for configurations of PKCS#11, where the
adversary can adaptively corrupt keys. We proved the security, in this strong
attacker model, of a configuration of PKCS#11 that extends the Secure Tem-
plates Patch from Bortolozzo et al. [5]. Unlike most existing analyses of APIs in
the literature, we do not assume the attributes of keys are authenticated when
wrapping.

Our result holds under the assumption that private, public and secret keys
cannot be confused. This is so that the attributes of an unwrapped key can
be automatically assigned based on the class of the key. Moreover, since our
configuration does not support asymmetric key wrapping, we have to assume for
bootstrapping that there is a secure channel for transmitting long-term secret
keys and also an authenticated channel for transmitting public keys. We feel
that these assumptions are likely to hold in practice.

Our security proof is far from tight: the advantage of the adversary against
the API is potentially n3 times bigger than the advantage against the underlying
symmetric encryption scheme used for wrapping, where n is an upper-bound on
the number of distinct keys stored on the token. Whether such losses can ever
be avoided is the subject of ongoing research.

7 Acknowledgements

The author would like to thank Bogdan Warinschi, Martijn Stam and the anony-
mous reviewers for their useful feedback on the paper.

References

1. Adão, P., Focardi, R., Luccio, F.L.: Type-based analysis of generic key manage-
ment apis. In: 2013 IEEE 26th Computer Security Foundations Symposium, New
Orleans, LA, USA, June 26-28, 2013. pp. 97–111. IEEE (2013)

2. Benadjila, R., Calderon, T., Daubignard, M.: Caml Crush: a PKCS#11 filtering
proxy. In: Joye, M., Moradi, A. (eds.) Smart Card Research and Advanced Appli-
cations - 13th International Conference, CARDIS 2014, Paris, France, November
5-7, 2014. Revised Selected Papers. Lecture Notes in Computer Science, vol. 8968,
pp. 173–192. Springer (2014)

3. Benadjila, R., Calderon, T., Daubignard, M.: Source code for Caml Crush.
https://github.com/ANSSI-FR/caml-crush (2016), accessed: 2016-10-19

4. Bond, M., Anderson, R.J.: API-level attacks on embedded systems. IEEE Com-
puter 34(10), 67–75 (2001)

5. Bortolozzo, M., Centenaro, M., Focardi, R., Steel, G.: Attacking and fixing
PKCS#11 security tokens. In: Proceedings of the 17th ACM Conference on Com-
puter and Communications Security, CCS 2010, Chicago, Illinois, USA, October
4-8, 2010. pp. 260–269 (2010)

6. Cachin, C., Chandran, N.: A secure cryptographic token interface. In: Proceedings
of the 22nd IEEE Computer Security Foundations Symposium, CSF 2009, Port
Jefferson, New York, USA, July 8-10, 2009. pp. 141–153 (2009)

7. Centenaro, M., Focardi, R., Luccio, F.L.: Type-based analysis of key management
in pkcs#11 cryptographic devices. Journal of Computer Security 21(6), 971–1007
(2013)

8. Clulow, J.: On the security of PKCS#11. In: Cryptographic Hardware and Em-
bedded Systems - CHES 2003, 5th International Workshop, Cologne, Germany,
September 8-10, 2003, Proceedings. pp. 411–425 (2003)

9. Cortier, V., Steel, G.: A generic security API for symmetric key management on
cryptographic devices. In: Computer Security - ESORICS 2009, 14th European
Symposium on Research in Computer Security, Saint-Malo, France, September
21-23, 2009. Proceedings. pp. 605–620 (2009)

10. Cortier, V., Steel, G., Wiedling, C.: Revoke and let live: a secure key revocation
API for cryptographic devices. In: the ACM Conference on Computer and Commu-
nications Security, CCS’12, Raleigh, NC, USA, October 16-18, 2012. pp. 918–928
(2012)

11. Daubignard, M., Lubicz, D., Steel, G.: A secure key management interface with
asymmetric cryptography. In: Abadi, M., Kremer, S. (eds.) Principles of Security
and Trust - Third International Conference, POST 2014, Held as Part of the Euro-
pean Joint Conferences on Theory and Practice of Software, ETAPS 2014, Greno-
ble, France, April 5-13, 2014, Proceedings. Lecture Notes in Computer Science,
vol. 8414, pp. 63–82. Springer (2014)

12. Delaune, S., Kremer, S., Steel, G.: Formal analysis of PKCS#11. In: Proceedings of
the 21st IEEE Computer Security Foundations Symposium, CSF 2008, Pittsburgh,
Pennsylvania, 23-25 June 2008. pp. 331–344 (2008)

13. Delaune, S., Kremer, S., Steel, G.: Formal security analysis of PKCS#11 and pro-
prietary extensions. Journal of Computer Security 18(6), 1211–1245 (2010)

14. Haber, S., Pinkas, B.: Securely combining public-key cryptosystems. In:
Reiter, M.K., Samarati, P. (eds.) CCS 2001, Proceedings of the 8th
ACM Conference on Computer and Communications Security, Philadel-
phia, Pennsylvania, USA, November 6-8, 2001. pp. 215–224. ACM (2001),
http://doi.acm.org/10.1145/501983.502013

15. Kremer, S., Steel, G., Warinschi, B.: Security for key management interfaces. In:
Proceedings of the 24th IEEE Computer Security Foundations Symposium, CSF
2011, Cernay-la-Ville, France, 27-29 June, 2011. pp. 266–280 (2011)

16. Künnemann, R.: Automated backward analysis of pkcs#11 v2.20. In: Principles
of Security and Trust - 4th International Conference, POST 2015, Held as Part of
the European Joint Conferences on Theory and Practice of Software, ETAPS 2015,
London, UK, April 11-18, 2015, Proceedings. Lecture Notes in Computer Science,
vol. 9036, pp. 219–238. Springer (2015)

17. PKCS#11 cryptographic token interface base specification version 2.40
(April 2015), latest version: http://docs.oasis-open.org/pkcs11/pkcs11-
base/v2.40/pkcs11-base-v2.40.html

18. Panjwani, S.: Tackling adaptive corruptions in multicast encryption protocols. In:
Vadhan, S.P. (ed.) Theory of Cryptography, 4th Theory of Cryptography Confer-
ence, TCC 2007, Amsterdam, The Netherlands, February 21-24, 2007, Proceedings.
Lecture Notes in Computer Science, vol. 4392, pp. 21–40. Springer (2007)

19. Paterson, K.G., Schuldt, J.C.N., Stam, M., Thomson, S.: On the joint security
of encryption and signature, revisited. In: Lee, D.H., Wang, X. (eds.) Advances in
Cryptology - ASIACRYPT 2011 - 17th International Conference on the Theory and
Application of Cryptology and Information Security, Seoul, South Korea, December
4-8, 2011. Proceedings. Lecture Notes in Computer Science, vol. 7073, pp. 161–178.
Springer (2011)

20. Scerri, G., Stanley-Oakes, R.: Analysis of key wrapping APIs: Generic policies,
computational security. In: IEEE 29th Computer Security Foundations Sympo-
sium, CSF 2016, Lisbon, Portugal, June 27 - July 1, 2016. pp. 281–295. IEEE
(2016)

21. Shrimpton, T., Stam, M., Warinschi, B.: A modular treatment of cryptographic
APIs: The symmetric-key case. In: Robshaw, M., Katz, J. (eds.) Advances in Cryp-
tology - CRYPTO 2016 - 36th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 14-18, 2016, Proceedings, Part I. Lecture Notes in
Computer Science, vol. 9814, pp. 277–307. Springer (2016)

A Syntax and Security Definitions for Cryptographic
Primitives

We give here the syntax of the primitives E ,PKE ,M and S, define their correct-
ness and give formal definitions of the IND-CCA, INT-CTXT and EUF-CMA
notions used to specify their security properties.

There are keyspaces SecretKeys, PublicKeys and PrivateKeys; message spaces
Messages1,Messages2,Messages3,Messages4; ciphertext spaces Ciphertexts1,
Ciphertexts2; a tag space Tags and a signature space Signatures, such that the
keyspaces are pairwise disjoint and

KG :→ SecretKeys

KPG :→ PublicKeys× PrivateKeys

Enc : SecretKeys×Messages1 → Ciphertexts1
Dec : SecretKeys× Ciphertexts1 → Messages1

AEnc : PublicKeys×Messages2 → Ciphertexts2
ADec : PrivateKeys× Ciphertexts2 → Messages2
Mac : SecretKeys×Messages3 → Tags

MVrfy : SecretKeys×Messages3 × Tags→ {0, 1}
Sign : PrivateKeys×Messages4 → Signatures

SVrfy : PublicKeys×Messages4 × Signatures→ {0, 1}.

Note that there is no input to KG or KPG; we simply assume these algorithms
choose keys from SecretKeys, PublicKeys and PrivateKeys. The algorithms KG,
KPG, Enc, AEnc, Mac and Sign are assumed to be randomised, while Dec, ADec,
MVrfy and SVrfy are deterministic. If one tries to run these algorithms with
invalid inputs, for example supplying an invalid ciphertext to Dec or ADec, the
algorithms return the failure symbol ⊥.

Further, we assume that SecretKeys,PrivateKeys ⊆ Messages1 so that the
symmetric encryption scheme can be used to wrap keys. We also assume that
all messages m ∈ Messagesi, (1 ≤ i ≤ 4) have a well-defined length, written
|m|. For simplicity, we assume that all elements of SecretKeys have the same
length and all elements of PrivateKeys have the same length; this is because we
use the IND-CCA security notion to define the confidentiality property of our
wrapping mechanism, which guarantees that encryptions of any messages of the
same length are indistinguishable.

Note that using the same key generation algorithms for different primitives
is without loss of generality. For example, if E used KG′ and M used KG′′, then
one could define SecretKeys = SecretKeys1 × SecretKeys2, where KG′ returns
elements of SecretKeys1 and KG′′ returns elements of SecretKeys2, and modify
the encryption, decryption, MAC and verify algorithms to only use the relevant
component of the pair returned by KG.

All the schemes are assumed correct. That is, for all k ← KG, (pk, sk) ←
KPG and for all m1 ∈ Messages1,m2 ∈ Messages2,m3 ∈ Messages3 and m4 ∈

Messages4,

Dec (k, (Enc(k,m1))) = m1,

ADec (sk, (AEnc(pk,m2))) = m2,

MVrfy (k,m3, (Mac(k,m3))) = 1

SVrfy (pk,m4, (Sign(sk,m4))) = 1.

To define the security of these primitives, we consider the output of any
adversary A in the games INDCCAbE , INTCTXT

b
E , INDCCA

b
PKE , EUFCMAbM and

EUFCMAbS for any b ∈ {0, 1}, as given in Fig. 4. Then we define the advantage
of A against the security properties of each primitive as:

AdvINDCCA
E (A) :=

∣∣P [INDCCA1
E(A) = 1

]
− P

[
INDCCA0

E(A) = 1
]∣∣ ,

AdvINTCTXTE (A) :=
∣∣P [INTCTXT1

E(A) = 1
]
− P

[
INTCTXT0

E(A) = 1
]∣∣ ,

AdvINDCCA
PKE (A) :=

∣∣P [INDCCA1
PKE(A) = 1

]
− P

[
INDCCA0

PKE(A) = 1
]∣∣ ,

AdvEUFCMA
M (A) :=

∣∣P [EUFCMA1
M(A) = 1

]
− P

[
EUFCMA0

M(A) = 1
]∣∣ ,

AdvEUFCMA
S (A) :=

∣∣P [EUFCMA1
S(A) = 1

]
− P

[
EUFCMA0

S(A) = 1
]∣∣ .

We say E is (t, ε)-IND-CCA-secure if, for all adversaries A running in time
at most t, AdvINDCCA

E (A) ≤ ε. In the same way, we define the (t, ε)-INT-CTXT
security of E , the (t, ε)-IND-CCA security of PKE , the (t, ε)-EUF-CMA security
of M and the (t, ε)-EUF-CMA security of S.

B Joint Security Does Not Always Hold

In this section show that it is dangerous to use the same keys for a symmetric
encryption scheme and a MAC scheme, by adapting the argument about public-
key encryption and signatures from Patterson et al. [19].

Firstly, for any encryption scheme E and MAC schemeM with the same key
generation algorithm KG, we define the experiments JOINT1

E,M and JOINT0
E,M,

such that, for any adversary A, the advantage

AdvJOINT
E,M (A) :=

∣∣P [JOINT1
E,M(A) = 1

]
− P

[
JOINT0

E,M(A) = 1
]∣∣

measures the joint IND-CCA and EUF-CMA security of the two primitives when
using the same key. This experiment, shown in Fig. 5, is the natural combination
of INDCCAbE and EUFCMAbM, where the adversary has access to all of the oracles
used in the two games (two of which depend on b), but we disallow trivial wins
of either of the two games.

With this formal definition of joint security, we can show that there are en-
cryption schemes and MAC schemes sharing the same key generation algorithm
that are individually secure, but jointly insecure. Since we are simply adapting
the argument from Patterson et al. [19], we make no claim of novelty.

Experiment INDCCAb
E(A):

k ← KG
C1, C

∗
1 ← ∅

C ← ∅
O ←

(
OEnc,ODec,OEncChallenge

b

)
b′ ← AO
if C1 ∩ C∗1 6= ∅ then return 0
else return b′

Experiment INTCTXTb
E(A):

k ← KG
C,C∗ ← ∅
C1 ← ∅
O ←

(
OEnc,ODec,ODecChallenge

b

)
b′ ← AO
if C ∩ C∗ 6= ∅ then return 0
else return b′

Experiment INDCCAb
PKE(A):

(pk, sk)← KPG
C2, C

∗
2 ← ∅

O ←
(
OADec,OAEncChallenge

b

)
b′ ← AO(pk)
if C2 ∩ C∗2 6= ∅ then return 0
else return b′

Experiment EUFCMAb
M(A):

k ← KG
T, T ∗ ← ∅
O ←

(
OMac,OMVrfy,OMVrfyChallenge

b

)
b′ ← AO
if T ∩ T ∗ 6= ∅ then return 0
else return b′

Experiment EUFCMAb
S(A):

(pk, sk)← KPG
S, S∗ ← ∅
O ←

(
OSign,OSVrfyChallenge

b

)
b′ ← AO(pk)
if S ∩ S∗ 6= ∅ then return 0
else return b′

Oracle OEnc(m):

C ← C ∪ {c}
return Enc(k,m)

Oracle ODec(c):

C1 ← C1 ∪ {c}
return Dec(k, c)

Oracle OEncChallenge
b (m1,m2):

if |m0| = |m1|:
c← Enc(k,mb)
C∗1 ← C∗1 ∪ {c}
return c

Oracle ODecChallenge
b (c):

C∗ ← C∗ ∪ {c}
if b = 0 return (Dec(k, c) 6= ⊥)
else return 0

Oracle OADec(c):

C2 ← C2 ∪ {c}
return ADec(sk, c)

Oracle OAEncChallenge
b (m1,m2):

if |m0| = |m1|:
c← AEnc(pk,mb)
C∗2 ← C∗2 ∪ {c}
return c

Oracle OMac(m):

τ ← Mac(k,m)
T ← T ∪ {τ}
return τ

Oracle OMVrfy(m, τ):

return MVrfy(k,m, τ)

Oracle OMVrfyChallenge
b (m, τ):

T ∗ ← T ∗ ∪ {τ}
if b = 0 return MVrfy(k,m, τ)
else return 0

Oracle OSign(m):

s← Sign(sk,m)
S ← S ∪ {s}
return s

Oracle OSVrfyChallenge
b (m,σ):

S∗ ← S∗ ∪ {σ}
if b = 0 return SVrfy(pk,m, σ)
else return 0

Fig. 4. Experiments used to quantify the secrecy, integrity and unforgeability proper-
ties of the primitives E ,PKE ,M and S.

Experiment JOINTb
E,M(A):

k ← KG
C1, C

∗
1 , T, T

∗ ← ∅
C ← ∅
O ←

(
OEnc,ODec,OEncChallenge

b ,OMac,OMVrfy,OMVrfyChallenge
b

)
b′ ← AO
if C1 ∩ C∗1 6= ∅ or T ∩ T ∗ 6= ∅ then return 0
else return b′

Fig. 5. Experiment JOINTb
E,M(A) used to define the joint IND-CCA and EUF-CMA

security of E and M. The oracles used are shown in Fig. 4.

Lemma 1. Let E = (KGE ,Enc,Dec) be an arbitrary encryption scheme and
M = (KGM,Mac,MVrfy) an arbitrary MAC scheme. Then there exists an en-
cryption scheme E ′ =

(
KG′,Enc′,Dec′

)
and a MAC scheme

M′ =
(
KG′,Mac′,MVrfy′

)
sharing the same key generation algorithm such that:

1. If E is (t, ε)-IND-CCA-secure, then E ′ is (t, ε)-IND-CCA-secure.
2. If M is (t, ε)-EUF-CMA-secure, then M′ is (t − tKG, ε)-EUF-CMA-secure,

where tKG is the time taken for one run of KGE .
3. There exists an adversary C running in time tDec, where tDec is the time

taken for one run of Dec, such that AdvJOINT
E′,M′(C) = 1.

Proof. Let KG′ be the algorithm that computes k1 ← KGE , k2 ← KGM and re-
turns K = (k1, k2). For any K = (k1, k2)← KG′, define Enc′(K,m) = Enc(k1,m)
and Dec′(K, c) = Dec(k1, c). Then for all adversaries A and any bit b, the view
of A in INDCCAbE is the same as in INDCCAbE′ , which proves the first part of the
Lemma.

Now we construct M′. For any K = (k1, k2) ← KG′, define Mac′(K,m) =
k1||Mac(k2,m) and MVrfy′(K,m, τ) = MVrfy(k2,m, τ). For the second part of
the Lemma, we let A be an arbitrary adversary in the EUFCMAbM′ experiment
running in time t′ and with advantage ε and construct an adversary B in the
EUFCMAbM experiment that runs in time t′ + tKG and has the same advantage.
B first computes k1 ← KGE then forwards any oracle queries from A to its own
oracles and returns the responses to A, prepending the responses from OMac

with k1. When A outputs a bit b′, B forwards this bit in its own experiment.
Next we construct an adversary C against the joint security of E ′ and M′.

The adversary simply chooses an arbitrary message m, submits m to OMac and
receives k1||τ . Then C chooses two equal length messages m0 and m1, submits

these to OEncChallenge
b and receives c = Enc′(K,mb) = Enc(k1,mb). If Dec(k1, c) =

m0, C outputs b′ = 0. Otherwise, C outputs b′ = 1. It is clear that b = b′ with
probability 1. Part 3 of the Lemma follows. ut

We remark that the Lemma also holds with the roles of E ′ andM′ reversed,
i.e. where the encryption algorithm leaks the MAC key. Moreover, the argument

would work if MVrfy′, instead of Mac′, revealed the encryption key or Dec′,
instead of Enc′, revealed the MAC key.

C Proof of the Main Theorem

For the proof, we suppose there is an adversary A in the API security game that
runs in time at most t′, makes at most q oracle queries and is such that the API
contains at most n non-zero key indices at the end of the game. Then we relate
the advantage of A to the advantages of various other adversaries in the security
games for the primitives E , PKE and S.

To do this, we consider the probability that A returns 1 in a sequence of
games, where any two adjacent games differ in exactly one aspect. The sequence
starts with the original API security game and ends with a game where:

1. All uncompromised keys are honestly generated by the token.
2. The bit b determines how the challenge oracles respond to exactly one key

or key pair (which has index i).
3. The secret or private key with index i does not appear in a wrap.

It is easy to show (Proposition 3) that there is a reduction from this final game
to the IND-CCA games for E and PKE and the EUF-CMA game for S. We
then relate the the differences in the advantage of A in adjacent games to the
integrity and secrecy properties of E (Propositions 1 and 2).

The sequence of games we use is as follows:

1. For b ∈ {0, 1}, G0,b := APIb.
2. For b ∈ {0, 1}, G1,b is the same as G0,b, except that the macro

unwrapbookkeeping used by OC UnwrapKey is modified so that if X = ∅ then
idx(h′)← 0. In other words, all new keys imported by the adversary by un-
wrapping are compromised, so the adversary no longer benefits from forgeing
a wrap under an uncompromised key.

3. For i ∈ [n], G2,i is the same as G1,0 or G1,1, except that the responses from

OEnc-Challenge
b and OSign-Challenge

b depend on the index of the handles used,
instead of depending on on b: if idx(h) ≤ i, then then these oracles answer as
if b = 0; otherwise they answer as if b = 1. In other words, since the indices of
handles only increase with each call to OC GenerateKey or OC GenerateKeyPair (due
to the modification to OC UnwrapKey), the first i keys or key pairs generated
are treated as if b = 0 and the rest are treated as if b = 1.

4. For i, j ∈ [n], G3,i,j is the same as G2,i, except that the game returns 0 (not
the guess b′ from A) if j /∈ Chal.

5. For i, j ∈ [n], G4,i,j is the same as G3,i,j , except that, for any call to
OC WrapKey(h, h′) such that idx(h′) = j, the wrap w returned is computed
as w ← Enc(h.key, r), where r is a fixed element of SecretKeys (hence with
the same length as h′.key), chosen uniformly at random at the start of the
game. Also OC UnwrapKey is modified to act as if w is a genuine wrap of h′.key,
i.e. the new handle points to h′.key, not r.

Now we introduce some notation. For any game Gx played by A (as defined
above), let BAD be the event that, at the end of the game:

1. Chal ∩ Comp 6= ∅,
2. or ∃i ∈ [n] such that

(a) C1[i] ∩ C∗1 [i] 6= ∅,
(b) C2[i] ∩ C∗2 [i] 6= ∅,
(c) T [i] ∩ T ∗[i] 6= ∅
(d) or S[i] ∩ S∗[i] 6= ∅.

Then define px := P [Gx(A) = 1|¬BAD]. Note that if BAD occurs then Gx returns
0. It follows that:

AdvAPI(A) =

∣∣∣∣∣∣∣∣
P[API1(A) = 1 ∩ BAD]

+P[API1(A) = 1 ∩ ¬BAD]

−P[API0(A) = 1 ∩ BAD]

−P[API0(A) = 1 ∩ ¬BAD]

∣∣∣∣∣∣∣∣
=

∣∣∣∣P[API1(A) = 1 ∩ ¬BAD]

−P[API0(A) = 1 ∩ ¬BAD]

∣∣∣∣
=P[¬BAD] ·

∣∣∣∣P[API1(A) = 1 | ¬BAD]

−P[API0(A) = 1 | ¬BAD]

∣∣∣∣
≤ |p0,1 − p0,0|
= |p0,1 − p1,1 + p1,1 − p1,0 + p1,0 − p0,0|
≤ |p0,1 − p1,1|+ |p1,1 − p1,0|+ |p1,0 − p0,0| .

Proposition 1. For b ∈ {0, 1}, there exist adversaries B and C, running in time
at most t′ + q · tmax, such that

|p0,b − p1,b| ≤ n · AdvINTCTXTE (B) + n2(2n+ 1) · AdvINDCCA
E (C).

Proposition 1 is proved in Appendix D.
In G2,0, if no handles of index 0 are used by the challenge oracles (which

would cause BAD to occur), then all challenge queries are answered as if b = 1.
It follows that p2,0 = p1,1. Similarly, p2,n = p1,0 since, if BAD does not occur,
then all challenge queries are answered as if b = 0 in both games. It follows that

|p1,1 − p1,0| = |p2,0 − p2,n| =

∣∣∣∣∣
n∑
i=1

p2,i−1 − p2,i

∣∣∣∣∣ ≤
n∑
i=1

|p2,i−1 − p2,i| .

Now, for any i ∈ [n], if i /∈ Chal, i.e. no handle of index i is submitted to
the challenge oracles, the view of A is the same in the games G2,i−1 and G2,i.
Therefore

P [G2,i−1(A) = 1 ∩ i /∈ Chal] = P [G2,i(A) = 1 ∩ i /∈ Chal] .

Moreover, by construction,

P [G3,i−1,i(A) = 1 ∩ i /∈ Chal] = 0,

P [G3,i,i(A) = 1 ∩ i /∈ Chal] = 0.

It follows that:

|p2,i−1 − p2,i| =

∣∣∣∣∣∣∣∣
P [G2,i−1(A) = 1 ∩ i ∈ Chal]

+P [G2,i−1(A) = 1 ∩ i 6∈ Chal]
−P [G2,i(A) = 1 ∩ i ∈ Chal]
−P [G2,i(A) = 1 ∩ i 6∈ Chal]

∣∣∣∣∣∣∣∣
=

∣∣∣∣P [G2,i−1(A) = 1 ∩ i ∈ Chal]
−P [G2,i(A) = 1 ∩ i ∈ Chal]

∣∣∣∣
=

∣∣∣∣P [G3,i−1,i(A) = 1 ∩ i ∈ Chal]
−P [G3,i,i(A) = 1 ∩ i ∈ Chal]

∣∣∣∣
=

∣∣∣∣∣∣∣∣
P [G3,i−1,i(A) = 1 ∩ i ∈ Chal]

+P [G3,i−1,i(A) = 1 ∩ i 6∈ Chal]
−P [G3,i,i(A) = 1 ∩ i ∈ Chal]
−P [G3,i,i(A) = 1 ∩ i 6∈ Chal]

∣∣∣∣∣∣∣∣
= |p3,i−1,i − p3,i,i|
= |p3,i−1,i − p4,i−1,i + p4,i−1,i − p4,i,i + p4,i,i − p3,i,i|
≤ |p3,i−1,i − p4,i−1,i|+ |p4,i−1,i − p4,i,i|+ |p4,i,i − p3,i,i| .

Proposition 2. For any i, j ∈ [n], there exists an adversary D, running in time
at most t′ + q · tmax, such that

|p3,i,j − p4,i,j | ≤ n(2n+ 1) · AdvINDCCA
E (D).

Proposition 3. For any i ∈ [n], there exists adversaries E, F and G, running
in time at most t′ + q · tmax, such that

|p4,i−1,i − p4,i,i| ≤ AdvINDCCA
E (E) + AdvINDCCA

PKE (F) + AdvEUFCMA
S (G).

Propositions 2 and 3 are proved in Appendix D.
Finally, let t = t′ + q · tmax so that

AdvINTCTXTE (B) ≤ ε2,
AdvINDCCA

E (C) ≤ ε1,
AdvINDCCA

E (D) ≤ ε1,
AdvINDCCA

E (E) ≤ ε1,
AdvINDCCA

PKE (F) ≤ ε3,
AdvINDCCA

S (G) ≤ ε4

and we obtain:

AdvAPI(A) ≤ 2
[
nε2 + n2(2n+ 1)ε1

]
+

n∑
i=1

[2n(2n+ 1)ε1 + ε1 + ε3 + ε4]

= 2nε2 + 2n2(2n+ 1)ε1 +

n∑
i=1

[
(4n2 + 2n+ 1)ε1 + ε3 + ε4

]
= n

[
2ε2 + (4n2 + 2n)ε1 + (4n2 + 2n+ 1)ε1 + ε3 + ε4

]
= n

[(
8n2 + 4n+ 1

)
ε1 + 2ε2 + ε3 + ε4

]
,

as required.

D Proof of the Propositions

D.1 Proof of Proposition 1

In the games G0,b and G1,b, let U0 be the event that A submits the query (h,w, t)
to OC UnwrapKey such that, at call time, the following statements are all true:

1. P(C UnwrapKey, h, w, t) = 1,
2. h.class = secret,
3. Dec(h.key, w) ∈ SecretKeys ∪ PrivateKeys,
4. {h2 : (h1, h2, w) ∈W ∧ idx(h1) = idx(h)} = ∅,
5. idx(h) /∈ Comp.

In other words, U0 is the event that A presents a wrap that was not created
by a call to OC WrapKey and the wrap is a valid encryption of a key under an
uncompromised wrapping key. Since the policy in our configuration does not
allow the encryption (rather than wrapping) of secret keys, the ciphertext cannot
have been created by the token at all. Therefore A has successfully forged an
encryption under an uncompromised key.

Clearly the games G0,b and G1,b are identical until U0 first occurs, so

|p0,b − p1,b| ≤ P[U0].

Let U0,i∗ be the event that idx(h) = i∗ when U0 first occurs. Then U0 =⋃n
i∗=1 U0,i∗ , so P[U0] =

∑n
i∗=1 P[U0,i∗].

Now modify the game G0,b. Let hi∗ be the first handle given index i∗ and let
ki∗ := hi∗ .key. Then let r be a random element of SecretKeys, which is therefore of
the same length as ki∗ . If A queries OC WrapKey with (h, h′) such that idx(h′) = i∗,
i.e. A tries to wrap the key that will be used to create the wrap forgery, then the
oracle returns w = Enc(h.key, r) (if all the relevant conditions are met for the
oracle to return a response at all). Then if A tries to unwrap w under a handle
h′′ with idx(h′′) = idx(h), the new handle points to ki∗ , not r.

Let U1,i∗ be the event that U0,i∗ happens in this modified game, where the
wraps of the i∗th key are replaced by wraps of a random key r. Then we have:

P[U0,i∗] = (P[U0,i∗]− P[U1,i∗]) + P[U1,i∗].

Lemma 2. There exists an adversary B, running in time at most t′ + q · tmax,
such that

P[U1,i∗] = AdvINTCTXTE (B).

Proof. This is a fairly obvious reduction. The adversary B simply simulates
the environment of A, aborting the simulation if i∗ does not correspond to a
symmetric key. As soon as U1,i∗ occurs, B ends the simultation and queries

its oracle ODecChallenge
b with the forged wrap w, returning the bit b′ given by the

oracle. If w is a valid ciphertext, then b′ = b. Moreover, since w was not produced
by either the wrapping oracle or the encryption oracle in the API game played
by A, w will not have been output by the oracle OEnc in the INT-CTXT game
played by B, so the advantage of B in the INT-CTXT game is exactly P[U1,i∗].

The crucial observation is that the forgery key ki∗ does not appear outside
the token (even in encrypted form), since wraps of this key are replaced by wraps
of r. Since the policy ensures that the key ki∗ is only used to encrypt and decrypt
data supplied by A and wrap and unwrap keys generated by B, B can simulate
these functions with its own oracles in the INT-CTXT game.

We discuss the runtime of B in Appendix D.4. ut

Now we will bound the difference in probabilities between U0,i∗ and U1,i∗ . We
do this by constructing a reduction to the IND-CCA security of E that simulates
A’s environment in either G0,b or the modified game, depending on the hidden
bit in the IND-CCA game, and outputs 1 if the wrap forgery under i∗ happens
in either game.

Proposition 4. There exists an adversary C, running in time at most t′ + q ·
tmax, such that

|P[U0,i∗]− P[U1,i∗]| ≤ n(2n+ 1) · AdvINDCCA
E (C).

Proposition 1 clearly follows from Lemma 2 and Proposition 4.

The proof of Proposition 4 is an adaptation of Panjwani’s result on the
Generalised Selective Decryption (GSD) game [18].

In GSD, the adversary adaptively tries to learn a hidden bit b by wrapping
keys under other keys, corrupting keys, and challenging keys, which is where
they are given the real key if b = 0, or a random key (but the same every time)
if b = 1. One can think of the adversary A as constructing a graph G(A): the
nodes are the keys and the edge i → j exists in the graph if the adversary
receives the encryption Enc(ki, kj). A valid adversary A is one such that G(A)
has the following properties:

1. G(A) is acyclic.

2. The challenged keys are all sinks in G(A).

3. For all nodes i that are corrupted and all nodes j that are challenged, there
is no path from i to j in G(A).

Panjwani gives a reduction from valid adversaries in this game to the IND-CPA
game6 for the encryption scheme, where the loss in the reduction is exponential
in the depth of the graph created by the adversary.

To prove that IND-CPA-security implies GSD-security (for graphs of small
depth), Panjwani first uses a standard hybrid argument to reduce to the case
where the adversary has to distinguish between the real value and the fake
value for a single key ki∗ , and then observes that the view of the adversary in
the case b = 1 is the same as if the adversary received the real key ki∗ when
challenging, but wraps of the fake key. Then Panjwani constructs a reduction
that guesses a path us → ...→ i∗ in the graph, answers wrap queries under kus

with its IND-CPA oracles (using the challenge oracle for the edge us → us+1)
and returns whatever bit the adversary returns. Finally Panjwani argues that
this is a correct simulation of the two games played by the adversary, i.e. that the
reduction guesses the IND-CPA bit b∗ correctly whenever the adversary guesses
the GSD bit b correctly.

One can start to see that Panjwani’s reduction could be adapted to our
setting, except that our reduction will be to IND-CCA, not IND-CPA, since we
allow unwrapping and decryption queries. Our policy ensures that the wrapping
graph G(A) constructed by the API adversary A is acyclic with depth at most
2, since trusted wrapping keys are unextractable, untrusted wrapping keys may
only be wrapped under trusted wrapping keys (even after being reimported
with template IMPORTSECRET) and all other keys cannot wrap anything. Our
‘challenge key’ (the one used to create the unwrap forgery) will not necessarily
be a sink in G(A), but this was only necessary in Panjwani’s reduction because
once a key has been used it is not likely to be indistinguishable from random;
our ‘challenge queries’ will just be the normal uses of the key (like unwrapping).

Of course, in the API setting, the adversary has many more capabilities than
in GSD. However, for all but the key kus , the reduction can simulate all the
oracles available to the adversary without making any queries to its own IND-
CCA oracles. Moreover, the policy ensures that any key used to wrap keys (like
kus

) must have template TRUSTED or UNTRUSTED and therefore can only be used
to wrap and unwrap keys or encrypt data.7 All these functions can be simultated
using the IND-CCA oracles.

Our reduction C works as follows. First C guesses a path us → ... → u2,
where u2 = i∗, in the graph that will be constructed by A. This path has length
at least 1 and at most 2. Since i∗ is fixed in advance, C only has to choose
u0 ∈ {N/A} ∪ [n] and u1 ∈ [n], where u0 = N/A means the path has length 1.
Let s = 1 if u0 = N/A and s = 0 otherwise.

For i 6= us, when A makes the ith valid key generation or key pair generation
query, C runs KG or KPG and stores the secret or private key as ki. The key kus

is the one used in the IND-CCA game played by C. At the time of the ith valid

6 This is the same as our IND-CCA game, but where the adversary has no access to
ODec.

7 A key with template UNTRUSTED can be used to encrypt data by wrapping it and
then unwrapping it with template IMPORTSECRET.

key generation or key pair generation query for i ∈ {u0, u1, u2 = i∗}, C runs KG
or KPG again to obtain a key ri of the same length and class as ki; this will be
called the ‘fake key’ corresponding to i.

When A makes the query OC WrapKey(h, h′) such that idx(h) = i, idx(h′) = j,
and this query meets all the conditions checked by the oracle, C will answer
with either a real ciphertext: the encryption of kj under ki, or a fake ciphertext:
the encryption of rj under ki. In the case that i = us, such ciphertexts can
only be created using the IND-CCA oracles OEnc and OEncChallenge. The oracle
OEncChallenge will be used for the edge us → us+1, while other encryptions under
kus

will be created using OEnc. For ease of notation, we group together real and
fake ciphertexts as follows:

For all i, j ∈ [n], we let

R(i, j) =

{
OEnc(kj) if i = us,

Enc(ki, kj) otherwise

and

F(i, j) =

{
OEnc(rj) if i = us,

Enc(ki, rj) otherwise .

Which edges in G(A) are real and which are fake depends on the hidden bit
b∗ in the IND-CCA game, the bits b1 and b2 = 0 chosen by C and the order in
which edges are created by C, according to the following rules:

1. All wraps of kus
are fake.8

2. The edge us → us+1 is real if and only if b∗ = bs+1.
3. If us+2 is well-defined (i.e. s = 0), the edge us+1 → us+2 is real if and only

if bs+1 = 0.
4. For j > s, an edge x → uj where x 6= uj−1 (so an edge that is incident to

the path us → ...→ u2 but not in the path, and not an encryption of us) is
real if and only if this edge was created after the edge uj−1 → uj .

All other oracle queries made by A are answered honestly, exactly as in the
API game, with the exception of where A tries to unwrap a fake key ry; here C
responds as if it received an encryption of the real key ky. A formal description
of C is given in Fig. 6. We discuss the runtime of C in Appendix D.4.

Clearly the view of A in its interaction with C depends on the values of
u0, u1, b

∗, b1 and the order of wrap queries made by A. Therefore in our analysis
of C, we will partition the possible outputs of C according to the values of these
variables.

Consider the IND-CCA advantage AdvINDCCA
E (C) of C. Note that C never

submits the same ciphertexts to ODec as it received from OEncChallenge
b∗ , since the

challenge oracle is only used for creating the edge us → us+1 and if A tries to
unwrap the corresponding ciphertext, C acts as if it received a valid wrap of kus+1

,

8 This is because we cannot simulate a real wrap of kus , since kus is the unknown
secret key in the IND-CCA game.

i← 0
Chal← ∅,Cor = {0}
W,W ∗ ← ∅, E ← ∅, V ← {0}
P ← ∅,K ← ∅
for all j ∈ [n],

C1[j], C∗1 [j], C2[j], C∗2 [j], T [j], T ∗[j], S[j], S∗[j]← ∅
sample u0 ∈ [n] ∪ {N/A} such that

P[u0 = N/A] = 1
2n+1

and, for all j ∈ [n], P[u0 = j] = 2
2n+1

sample u1 independently and uniformly from [n]
u2 ← i∗

if u0 = 0, s← 1; otherwise s← 0
if s = 0, sample b1 uniformly from {0, 1}
(b2 is implicitly set to 0)
seen[0], seen[1]← 0

run A, according to the rules in Figs.7, 8 and 9
if, at any point running A, (u0, u1, u2) does not represent a path in G(A):

halt and return 0
when A returns a bit b′, return 0

Fig. 6. An adversary C in the IND-CCA game for E , simultating the environment of
an adversary A in the API security game. Note that C only returns 1 if A forges a wrap
under the uncompromised key ki∗ and (u0, u1, u2) represents a path in G(A), which
requires kus to be a trusted or untrusted wrapping key.

without querying the decryption oracle. Therefore the game played by C returns

whatever bit C outputs. In other words, if O =
(
OEnc,ODec,OEncChallenge

b∗

)
, then

AdvINDCCA
E (C) =

∣∣P [1← CO | b∗ = 0
]
− P

[
1← CO | b∗ = 1

]∣∣ .
Let P (for ‘path’) be the event that (u0, u1, i

∗) represents a path in G(A).
And let F (for ‘forgery’) be the event that i∗ is the first index such that A, in
its interaction with C, submits (h,w, t) to OC UnwrapKey with

1. idx(h) = i∗, CKA UNWRAP ∈ h.temp and i∗ /∈ Comp,
2. Dec(ki∗ , w) ∈ SecretKeys and t = IMPORTSECRET or Dec(ki∗ , w) ∈ PrivateKeys

and t = SIGN,
3. {h2 : (h1, h2, w) ∈W ∧ idx(h1) = i∗} = ∅.

In the definition of F, we have replaced h.key with ki∗ . We are able to do this
since, until a forgery has occured, h.key = kidx(h) for all handles h with idx(h) /∈
Comp. By construction, the simulation of A stops as soon as a forgery occurs
(even if (u0, u1, i

∗) does not represent a path in G(A)).
Note that the event 1 ← CO is exactly the event F ∩ P. Furthermore, if we

ignore the fact that some edges in G(A) may be faked, we see that in all runs
of C such that F∩P happens, the simulation of A’s environment is perfect until
the forgery takes place. This is because the only ways for the simulation to fail

if A queries OC GenerateKey(t):

if P(C GenerateKey, t):
i+ +
h← NewHandle
K = K ∪ {h}
idx(h)← i
V ← V ∪ {i}
if i 6= us:
ki ← KG
h.key← ki

if i = us and t = ENC:
halt and return 0

if i ∈ {u0, u1, u2}, ri ← KG
h.temp← t
h.class← secret
reply with h

if A queries OC GenerateKeyPair(t, t′):

if P(C GenerateKeyPair, t, t′):
i+ +
if i = us, halt and return 0
h← NewHandle
h′ ← NewHandle
P = P ∪ {h}
idx(h)← i
idx(h′)← i
V ← V ∪ {i}
(h.key, ki)← KPG
if i ∈ {u0, u1, u2}, (pk, ri)← KPG
h′.key← ki
h.temp← t
h′.temp← t′

h.class← public
h′.class← private
reply with h, h′, h.key

if A queries OCorrupt(h):

if h.class = private
or h.class = secret:

i← idx(h)
if i = us, halt and return 0
else:

Cor← Cor ∪ {i}
reply with ki

if A queries OC WrapKey(h, h′):

if P(C WrapKey, h, h′):
if h.class = secret:

if h′.class = private
or h′.class = secret:
i← idx(h), j ← idx(h′)
w ← realorfake(i, j)
W ←W ∪ {(h, h′, w)}
E ← E ∪ {(idx(h), idx(h′))}
reply with w

if A queries OC UnwrapKey(h,w, t):

if idx(h) = us:
if w ∈W ∗, k′ ← kus+1

else k′ ← ODec(w)
if k′ ∈ SecretKeys, t = IMPORTSECRET

or k′ ∈ PrivateKeys, t = SIGN:
unwrapbookkeeping2
reply with h′

else if P(C UnwrapKey, h, w, t):
k′ ← Dec(h.key, w)
unwrapbookkeeping2
reply with h′

Macro unwrapbookkeeping2:

h′ ← NewHandle
h′.temp← t
h′.key← k′

X ←
{
h2 : (h1, h2, w) ∈W

∧ idx(h1) = idx(h)

}
if X 6= ∅:

i← minh2∈X idx(h2)
idx(h′)← i
if i /∈ {0, us}, h′.key← ki

else if idx(h) ∈ Comp:
idx(h′)← 0

else:
if idx(h) = i∗ and (u0, u1, u2)
represents a path in G(A):

halt and return 1
else halt and return 0

Fig. 7. How C answers key management queries made by A; note the generation of fake
keys ri and how C ensures that these fake keys are not imported when unwrapping. We
have removed some conditions from the simultation of the unwrap oracle, since these
are already checked by P. The macro realorfake is shown in Fig. 8.

Macro realorfake(x, y):

s = 0 s = 1
The guessed path is u0 → u1 → u2 The guessed path is u1 → u2

if x = u0, y = u1 :
seen[0]← 1

if b1 = 0, w ← OEncChallenge
b∗ (ky, ry)

else w ← OEncChallenge
b∗ (ry, ky)

W ∗ ←W ∗ ∪ {w}
return w

if x = u1, y = u2: if x = u1, y = u2 :
seen[1]← 1 seen[1]← 1

if b1 = 0 return R(x, y) w ← OEncChallenge
b∗ (ky, ry)

else return F(x, y) W ∗ ←W ∗ ∪ {w}
return w

if y = u0: if y = u1:
return F(x, y) return F(x, y)

if y = u1, x 6= u0, seen[0] = 0
or y = u2, x 6= u1, seen[1] = 0 : if y = u2, x 6= u1, seen[1] = 0:

return F(x, y) return F(x, y)
if y = u1, x 6= u0, seen[0] = 1
or y = u2, x 6= u1, seen[1] = 1: if y = u2, x 6= u1, seen[1] = 1:

return R(x, y) return R(x, y)
else return R(x, y) else return R(x, y)

Fig. 8. How C determines which edges in G(A) are real and which are fake. Note that
all edges not on the path us → · · · → u2 and not incident to this path are real.

if A queries OC CreateObject(pk, t):

if P(C CreateObject, pk, t):
h← NewHandle
h.key← pk
h.temp← t
h.class← public
X ← {h′ ∈ P : h′.key = pk}
if X 6= ∅:

idx(h)← minh′∈X idx(h′)
else idx(h)← 0
reply with h

if A queries OC TransferKey(k, t):

if P(C TransferKey, k, t):
h← NewHandle
h.key← k
h.temp← t
h.class← secret

X ←
{
h′ ∈ K :
h′.key = k ∧ h′.temp = t

}
if X 6= ∅:

idx(h)← minh′∈X idx(h′)
else idx(h)← 0
reply with h

if A queries OC Encrypt(h,m):

if P(C Encrypt, h,m):
if h.class = secret:

if idx(h) = us, reply with OEnc(m)
else reply with Enc(h.key,m)

if h.class = public:
reply with AEnc(h.key,m)

if A queries OC Decrypt(h, c):

if P(C Decrypt, h, c):
if h.class = secret:
c← Dec(h.key, c)
C1[idx(h)]← C1[idx(h)] ∪ {c}
reply with c

if h.class = private:
c← ADec(h.key, c)
C2[idx(h)]← C2[idx(h)] ∪ {c}
reply with c

if A queries OC Sign(h,m):

if P(C Sign, h,m):
if h.class = private:
σ ← Sign(h.key,m)
S[idx(h)]← S[idx(h)] ∪ {σ}
reply with σ

if A queries OC Verify(h,m, s):

if P(C Verify, h,m, s):
if h.class = public:

reply with SVrfy(h.key,m, s)

if A queries OEnc-Challenge

b (h,m0,m1):

if P(C Encrypt, h,m0):
if P(C Encrypt, h,m1):

if |m0| = |m1|:
if h.class = secret:

Chal← Chal ∪ {idx(h)}
if idx(h) = us, c← OEnc(mb)
else c← Enc(h.key,mb)
C∗1 [idx(h)]← C∗1 [idx(h)] ∪ {c}
reply with c

if h.class = public:
Chal← Chal ∪ {idx(h)}
c← AEnc(h.key,mb)
C∗2 [idx(h)]← C∗2 [idx(h)] ∪ {c}
reply with c

if A queries OSign-Challenge

b (h,m, s):

if P(C Verify, h,m, s):
if h.class = public:
S∗[idx(h)]← S∗[idx(h)] ∪ {s}
Chal← Chal ∪ {idx(h)}
if b = 0 reply with SVrfy(h.key,m, s)
else reply with 0

Fig. 9. How C answers other queries made by A; these are almost exactly the same as
in the game played by A, but using the IND-CCA oracles for encryptions under kus .
Note that decryptions under kus never happen, due to the policy P. Furthermore, since
P prevents the generation of MAC keys, we have omitted Mac and MVrfy queries from
the description of C.

cannot happen if F∩P happens: us must be the index of a TRUSTED or UNTRUSTED
symmetric wrapping key, or P would not happen, and A cannot try to corrupt
kus , since this would compromise i∗, causing F to not happen. Therefore it will
be possible to relate F ∩ P to the events U0,i∗ and U1,i∗ ; these events only differ
in which edges in G(A) are real and which are fake.

Define ∆ := P[F ∩ P ∩ (b∗ = 0)] − P[F ∩ P ∩ (b∗ = 1)]. We will assume that
C’s IND-CCA game is played in an environment where b∗ is chosen uniformly
at random from {0, 1}. Then it is easy to show that AdvINDCCA

E (C) = 2|∆|. As
a consequence, Proposition 4 follows immediately from the following Lemma,
which is proved in Appendix E:

Lemma 3.

|∆| = |P[U0,i∗]− P[U1,i∗]|
2n(2n+ 1)

.

D.2 Proof of Proposition 2

The proof of Proposition 2 is very similar to the proof of Proposition 4, and there-
fore we omit many of the details. To obtain D, we simply modify the adversary
C we used before so that D correctly simulates the environment of A in the game
G3,i,j or G4,i,j . In particular, the macro unwrapbookkeeping2 is modified so that

if X = ∅ then idx(h′)← 0, and if A queries OEnc-Challenge
b or OSign-Challenge

b then
the response from D depends on the index of the handles used: if idx(h) ≤ i,
then D responds as if b = 0, otherwise D responds as if b = 1. Also, D returns 0
if j /∈ Chal.

As before, D guesses a path (u0, u1, u2) in G(A), except now u2 = j instead of
u2 = i∗. While C only returned 1 in the event of a forgery from A, D returns the
bit that A returns. The simulation is aborted if: (u0, u1, u2) does not represent a
path in G(A); the event BAD occurs; us is not the index of a symmetric wrapping
key; A tries to corrupt us or j /∈ Chal. In all of these cases, D returns 0.

As with C, D never queries its decryption oracle on ciphertexts received from

its challenge oracle, so if O =
(
OEnc,ODec,OEncChallenge

b∗

)
, then

AdvINDCPA
E (D) =

∣∣P [1← DO | b∗ = 0
]
− P

[
1← DO | b∗ = 1

]∣∣ .
As before, let P be the event that (u0, u1, u2) represents a path in G(A).

However, we modify F: now F is the event that A returns 1 in its interaction
with D, ¬BAD occurs and j ∈ Chal. Then, whenever P and F both happen, us
must be the index of a symmetric wrapping key and A does not corrupt us. This
shows that 1← DO is exactly F ∩ P.

Then, with SRCd2i2 (ν1) defined as in the proof of Lemma 3, we have

P

F | ∨
d2∈[n]

SRCd21 (0)

 = p3,i,j ,

P

F | ∨
d2∈[n]

SRCd2d2(1)

 = p4,i,j ,

since the simulation of the two games is perfect in these cases.
The rest of the proof is identical to the proof of Proposition 1, replacing

P[U0,i∗] and P[U1,i∗] with p3,i,j and p4,i,j . We discuss the runtime of D in Ap-
pendix D.4.

D.3 Proof of Proposition 3

Like the proof of Lemma 2, this is a fairly straightforward reduction. The adver-
saries E ,F and G simply simulate the environment of A, using their own oracles
to answer queries involving the key or key pair with index i (which does not
appear in a wrap) and return whatever bit A returns. If the hidden bit in their
game is 1, then they simulate the game G4,i−1,i. If the hidden bit in their game
is 0, then they simulate the game G4,i,i. If the key or key pair with index i is
not generated with the right template, or A tries to corrupt this key, the sim-
ulation is aborted. Given ¬BAD occurs, E ,F and G are guaranteed to be valid
adversaries in their games against the primitives.

Note that the games G4,i−1,i and G4,i,i only return 1 if A returns 1, i ∈ Chal
and, given ¬BAD occurs, i /∈ Comp. Moreover, the policy ensures that the key
or key pair with index i must be generated as a symmetric wrapping/encryption
key, a signing key pair or a public-key encryption key pair and can therefore
be simulated by one of the adversaries E , F or G. The result follows by writing
p4,i−1,i and p4,i,i as a sum of the probabilities for each key template. We discuss
the runtimes of E , F and G in Appendix D.4.

D.4 Runtimes of B, C, D, E, F and G

All six adversaries simulate the environment of A in (some variant of) the API
security game. If we assume that the bookkeeping and random sampling done
by any of the adversaries is free (for example C and D’s sampling of u1 ∈ [n] ∪
{N/A}), then the runtimes of all the adversaries is at most the runtime of A plus
q times the maximum cost of simulating a single API query. By construction,
this maximum cost is tmax.

Note in particular that P is always trivial to compute apart from in an un-
wrapping query. But for an unwrapping query, both the decryption and the
policy check can be performed using a single call to Dec. So the cost of simulat-
ing the whole unwrapping query is at most the time taken for one call to Dec
and one call to NewHandle.

We remark that we could obtain slightly tighter bounds on the runtimes of
B, E ,F and G. This is because these adversaries only need to generate a single
‘fake’ key rather than three (as in the case of C and D). However we prefer to
use the same bound for all the adversaries as it leads to a cleaner statement of
the main theorem.

E Proof of Lemma 3

We remark that the proof of Lemma 3 is taken essentially verbatim from Pan-
jwani [18]; we simply rewrite Panjwani’s proof in the case that G(A) has length at
most 2, there are no challenge queries and u2 is always taken to be i∗. Therefore
we omit many of the technical details.

From now on, for any events E and E′ we will write E;E′ for the event E∩E.
Then we partition P according to whether s, the first integer such that us 6= 0,
is 0 or 1. Let P0 := (P; s = 0) and P1 := (P; s = 1). These events determine the
length of the path in G(A) guessed by C.

For s ∈ {0, 1}, write

∆s := P[F;Ps; b
∗ = 0]− P[F;Ps; b

∗ = 1].

Since P0 and P1 partition the event P, it follows that ∆ = ∆0 +∆1.
As mentioned previously, the view of A in its interaction with C depends on

the order of wrap queries made by A. If a node y in G(A) has in-degree d, then,
by ignoring repeated wrap queries, we obtain a sequence x1, . . . , xd of distinct
nodes, ordered by the sequence of wrap queries made by A, such that that the
edge xi → y is the ith wrap of y.

Accordingly, we define the events SEQd2,d1i2,i1
(for s = 0) and SEQd2i2 (for s = 1),

which describe the sequence of queries made by A, as follows:

Definition 1. For any d2 ∈ [n], i2 ∈ [d2], let SEQd2i2 be the event that:

1. P1 occurs.
2. The in-degree of node u2 is d2, and the edge u1 → u2 is the i2th wrap of u2.

Similarly, for any d2 ∈ [n], i2 ∈ [d2], d1 ∈ [n], i1 ∈ [d2], let SEQd2,d1i2,i1
be the event

that:

1. P0 occurs.
2. The in-degree of node u2 is d2, and the edge u1 → u2 is the i2th wrap of u2.
3. The in-degree of node u1 is d1, and the edge u0 → u1 is the i1th wrap of u1.

For the different possible values of d2, i2, d1 and i1, the events SEQd2i2 and

SEQd2,d1i2,i1
partition the events P1 and P0, respectively. Therefore,

∆1 =
∑

d2∈[n],
i2∈[d2]

[
P[F;SEQd2i2 ; b∗ = 0]

−P[F;SEQd2i2 ; b∗ = 1]

]

and

∆0 =
∑

d2∈[n],
i2∈[d2]

∑
d1∈[n],
i1∈[d1]

[
P[F;SEQd2,d1i2,i1

; b∗ = 0]

−P[F;SEQd2,d1i2,i1
; b∗ = 1]

]
.

In order to evaluate ∆0 and ∆1, we will relate the events SEQd2i2 and SEQd2,d1i2,i1
to more involved events that describe not only the sequence of wrap queries made
by A, but also whether C responds to the wrap queries with real or fake cipher-
texts. What these new events have in common is that the start node us is a
source node (but the value of s might not be determined by the event). There-
fore we use the notation SRC−−(−) to refer to these events, which are described
formally below:

Definition 2. For any d2 ∈ [n], i2 ∈ [d2] and any bit ν1 ∈ {0, 1}, let SRCd2i2 (ν1)
be the event that:

1. P1 or P0 occurs and the in-degree of us is 0.
2. If s = 0, then u0 → u1 is the first wrap of u1 and the edge u0 → u1 is a real

ciphertext.
3. The in-degree of node u2 is d2, the edge u1 → u2 is the i2th wrap of u2 and

this edge is a real ciphertext if and only if ν1 = 0.

Furthermore, for any d2 ∈ [n], i2 ∈ [d2], d1 ∈ [n], i1 ∈ [d2] and any bits ν1, ν0 ∈
{0, 1}, let SRCd2,d1i2,i1

(ν1, ν0) be the event that:

1. P0 occurs and the in-degree of us = u0 is 0.
2. The in-degree of node u2 is d2, the edge u1 → u2 is the i2th wrap of u2 and

this edge is a real ciphertext if and only if ν1 = 0.
3. The in-degree of node u1 is d1, the edge u0 → u1 is the i1th wrap of u1 and

this edge is a real ciphertext if and only if ν0 = 0.

Finally, let SRCd2,0i2,0
(ν1, 1) be the event that SRCd2i2 (ν1) occurs with s = 1.

Notice that if the event
∨
d2∈[n] SRC

d2
1 (0) occurs, then all wraps are real,

and so C perfectly simulates the environment of A in the game G0,b until a wrap

forgery occurs. Moreover, if the event
∨
d2∈[n] SRC

d2
d1

(1) occurs, then all wraps are
real apart from the wraps of u2 = i∗, which are all fake, so C perfectly simulates
the environment of A in the modified game until a wrap forgery occurs. It follows
that:

P

F | ∨
d2∈[n]

SRCd21 (0)

 = P [U0,i∗]

P

F | ∨
d2∈[n]

SRCd2d2(1)

 = P [U1,i∗] .

Now we show how to relate the SEQ−− events to the SRC−−(−) events. For two
events E and E′, let E ≡ E′ denote that:

1. E and E′ are equally likely.
2. The view of A in its interaction with C given that E occurs, is identically

distributed to the view of A given that E′ occurs.

It follows that if E ≡ E′ then P[F;E] = P[F;E′].

Lemma 4. For any d2, d1 ∈ [n], i2 ∈ [d2], i1 ∈ [d1] and any ν ∈ {0, 1},(
SEQd2,d1i2,i1

; b∗ = ν
)

=
∨

ν1∈{0,1}

SRCd2,d1i2,i1
(ν1, ν ⊕ ν1)

and for any d2 ∈ [n], i2 ∈ [d2] and any ν ∈ {0, 1},(
SEQd2i2 ; b∗ = ν

)
≡

∨
d1∈[n]∪{0}

SRCd2,d1i2,d1
(ν, 1)

Lemma 4 is proved in Appendix E.1.
In Lemma 5, we essentially show that changing or the order of wraps of the

nodes u1 and u2, does not change the behaviour of A. Then, in Lemma 6, we
use the results of Lemma 5 to cancel adjacent terms, in order to relate the IND-
CCA advantage of C to the difference in probabilities of U0,i∗ and U1,i∗ . These
Lemmas are proved in Appendix E.2 and Appendix E.3, respectively.

Lemma 5. For all d2 ∈ [n], i2 ∈ [d2], d1 ∈ [n], i1 ∈ [d2] and any ν1 ∈ {0, 1},

SRCd2i2 (1) ≡ SRCd2i2+1(0),

SRCd2,d1i2,i1
(ν1, 1) ≡ SRCd2,d1i2,i1+1(ν1, 0).

Lemma 6.
∆ =

∑
d2∈[n]

[
P[F;SRCd21 (0)]− P[F;SRCd2d2(1)]

]
.

Then, by Lemma 6, we have:

∆ =
∑
d2∈[n]

[
P[F;SRCd21 (0)]− P[F;SRCd2d2(1)]

]

= P

F;
∨

d2∈[n]

SRCd21 (0)

− P

F;
∨

d2∈[n]

SRCd2d2(1)

=

P
[
F |
∨
d2∈[n] SRC

d2
1 (0)

]
P
[∨

d2∈[n] SRC
d2
1 (0)

]
−P
[
F |
∨
d2∈[n] SRC

d2
d2

(1)
]
P
[∨

d2∈[n] SRC
d2
d2

(1)
]

=
P [U0,i∗]P

[∨
d2∈[n] SRC

d2
1 (0)

]
−P [U1,i∗]P

[∨
d2∈[n] SRC

d2
d2

(1)
]

Finally, Lemma 3 follows from the next result, which is proved in Appendix E.4:

Lemma 7.

P

 ∨
d2∈[n]

SRCd21 (0)

 = P

 ∨
d2∈[n]

SRCd2d2(1)

 =
1

2n(2n+ 1)
.

E.1 Proof of Lemma 4

The first part is almost immediate from the definitions of the events: the left
hand side tells us that P0 occurs, so u0 → u1 → u2 is a path in G(A), which
means u0 must be a source node as all paths in G(A) have length at most 2.
Then we simply recall that the edge u1 → u2 is real if and only if b1 = 0 and
the edge u0 → u1 is real if and only if the bit b1 chosen by C coincides with the
IND-CCA bit b∗.

Now we prove the second part. The event on the right hand side tells us
that either: P0 occurs, the edge u0 → u1 is the last wrap of u0 and this wrap
is fake (d1 6= 0); or P1 occurs and u1 is a source node (d1 = 0). In either case,
the construction of C means that all wraps of u1 are fake, which is also what
happens if SEQd2i2 ; b∗ = ν occurs. Then we observe that, in the event on the left
and the event on the right, the edge u1 → u2 is real if and only if ν = 0. So
the view of A has the same distribution in both events. We omit the proof that
these events are equally likely.

E.2 Proof of Lemma 5

Recall that the responses to the encryption queries made by A depends on the
order of queries relative to the edges u0 → u1 and u1 → u2, but these edges are
chosen in advance by C and are not known by A; if A were to make queries in
a different order, then C could have chosen a different path in G(A) to yield the
same distribution of real and fake encryptions.

Formally, consider modifying C so that the first i2 encryptions of u2 are fake,
the rest real (regardless of when the edge u1 → u2 is created). Then, given either
SRCd2i2 (1) or SRCd2i2+1(0) occurs, the view of A in its interaction with the modified
C is exactly the same as in its interaction with the original C. Similarly, if we
modify C so that the first i1 encryptions of u1 are fake, the rest real, then, given
either SRCd2,d1i2,i1

(ν1, 1) or SRCd2,d1i2,i1+1(ν1, 0) occurs, the view of A in its interaction
with the modified C is exactly the same as in its interaction with the original C.

We omit the proof that the events SRCd2i2 (1) and SRCd2i2+1(0) are equally likely

and the proof that the events SRCd2,d1i2,i1
(ν1, 1) and SRCd2,d1i2,i1+1(ν1, 0) are equally

likely.

E.3 Proof of Lemma 6

First, we use Lemma 4 to express∆0 and∆1 in terms of the events SRCd2,d1i2,i1
(ν1, ν0)

and use Lemma 5 to cancel terms as i1 varies.

∆0 =
∑

d2∈[n],
i2∈[d2]

∑
d1∈[n],
i1∈[d1]

[
P[F;SEQd2,d1i2,i1

; b∗ = 0]

−P[F;SEQd2,d1i2,i1
; b∗ = 1]

]

=
∑

d2∈[n],
i2∈[d2]

∑
d1∈[n],
i1∈[d1]

∑
ν1∈{0,1}

[
P[F;SRCd2,d1i2,i1

(ν1, ν1)]

−P[F;SRCd2,d1i2,i1
(ν1, 1⊕ ν1)]

]
by Lemma 4,

=
∑

d2∈[n],
i2∈[d2]

∑
d1∈[n],
i1∈[d1]

P[F;SRCd2,d1i2,i1

(0, 0)]

+P[F;SRCd2,d1i2,i1
(1, 1)]

−P[F;SRCd2,d1i2,i1
(0, 1)]

−P[F;SRCd2,d1i2,i1
(1, 0)]

=
∑

d2∈[n],
i2∈[d2]

∑
d1∈[n]

∑
i1∈[d1]

(
P[F;SRCd2,d1i2,i1

(0, 0)]

−P[F;SRCd2,d1i2,i1
(0, 1)]

)

+
∑
i1∈[d1]

(
P[F;SRCd2,d1i2,i1

(1, 1)]

−P[F;SRCd2,d1i2,i1
(1, 0)]

)

=
∑

d2∈[n],
i2∈[d2]

∑
d1∈[n]

(
P[F;SRCd2,d1i2,1

(0, 0)]

−P[F;SRCd2,d1i2,d1
(0, 1)]

)

+

(
P[F;SRCd2,d1i2,d1

(1, 1)]

−P[F;SRCd2,d1i2,1
(1, 0)]

)
 by Lemma 5.

Similarly,

∆1 =
∑

d2∈[n],
i2∈[d2]

[
P[F;SEQd2i2 ; b∗ = 0]

−P[F;SEQd2i2 ; b∗ = 1]

]

=
∑

d2∈[n],
i2∈[d2]

∑
d1∈[n]∪{0}

[
P[F;SRCd2,d1i2,d1

(0, 1)]

−P[F;SRCd2,d1i2,d1
(1, 1)]

]
by Lemma 4,

=
∑

d2∈[n],
i2∈[d2]

∑
d1∈[n]

[
P[F;SRCd2,d1i2,d1

(0, 1)]

−P[F;SRCd2,d1i2,d1
(1, 1)]

]
+
∑

d2∈[n],
i2∈[d2]

[
P[F;SRCd2,0i2,0

(0, 1)]

−P[F;SRCd2,0i2,0
(1, 1)]

]
.

Notice that some terms in ∆ = ∆0 +∆1 cancel, leaving:

∆ =
∑

d2∈[n],
i2∈[d2]

∑
d1∈[n]

[
P[F;SRCd2,d1i2,1

(0, 0)]

−P[F;SRCd2,d1i2,1
(1, 0)]

]
+
∑

d2∈[n],
i2∈[d2]

[
P[F;SRCd2,0i2,0

(0, 1)]

−P[F;SRCd2,0i2,0
(1, 1)]

]

=
∑

d2∈[n],
i2∈[d2]

[
P[F;SRCd2,0i2,0

(0, 1)] +
∑
d1∈[n] P[F;SRCd2,d1i2,1

(0, 0)]

−
(
P[F;SRCd2,0i2,0

(1, 1)] +
∑
d1∈[n] P[F;SRCd2,d1i2,1

(1, 0)]
)]

=
∑

d2∈[n],
i2∈[d2]

[
P[F;SRCd2i2 (0)]− P[F;SRCd2i2 (1)]

]
.

To justify the last step, we show that for any d2 ∈ [n], i2 ∈ [d2] and any
ν1 ∈ {0, 1}, the event SRCd2i2 (ν1) is equal to the event

SRCd2,0i2,0
(ν1, 1) ∨

∨
d1∈[n]

SRCd2,d1i2,1
(ν1, 0).

This is essentially immediate from the definition of SRCd2i2 (ν1). If SRCd2i2 (ν1) oc-
curs, then either the in-degree of u1 is 0 or the in-degree of u1 is some d1 ∈ [n]. By

definition, the first case is exactly the event SRCd2,0i2,0
(ν1, 1). Moreover, if the sec-

ond case occurs, then u0 → u1 is the first wrap of u1 and this edge is real by the
definition of SRCd2i2 (ν1). So the second case is the event

∨
d1∈[n] SRC

d2,d1
i2,1

(ν1, 0).
Finally, invoking Lemma 5 again, we have

∆ =
∑
d2∈[n]

[
P[F;SRCd21 (0)]− P[F;SRCd2d2(1)]

]
,

as required.

E.4 Proof of Lemma 7

We will show that

P

 ∨
d2∈[n]

SRCd21 (0)

 =
1

2n(2n+ 1)
.

The proof for
∨
d2∈[n] SRC

d2
d2

(1) is very similar and hence omitted.

Recall that, for any d2 ∈ [n], SRCd21 (0) is the event that:

1. P1 or P0 occurs and the in-degree of us is 0.
2. If s = 0, then u0 → u1 is the first wrap of u1 and the edge u0 → u1 is a real

ciphertext.
3. The in-degree of node u2 is d2, the edge u1 → u2 is the first wrap of u2 and

this edge is a real ciphertext.

For any w ∈ [n], define fnode(w) to be the node x in G(A) such that the edge
x→ w is the first wrap of w. Then define fpath(w) to be the path in G(A) that
starts in a source node and, for every edge x → y in the path, x = fnode(y).
Since G(A) is acyclic, fpath(w) is always well-defined (but it may be empty). If
fpath(w) is empty, i.e. w is a source node, we write fpath(w) = (w). Finally,
let flen(w) be the number of edges of fpath(w).

Then, looking at how C chooses which edges are real and which are fake (and
recalling that b2 = 0), we have

P

 ∨
d2∈[n]

SRCd21 (0)

 = P
[

fnode(u2) = u1; flen(u1) = 1;
fpath(u1) = (u0, u1); b∗ = 0; b1 = 0

]

+ P
[

fnode(u2) = u1; flen(u1) = 0;
fpath(u1) = (u1);u0 = N/A; b∗ = 0

]

=

1∑
l=0

P

fnode(u2) = u1; flen(u1) = l;
fpath(u1) = (u1−l, . . . , u1);
u−l = N/A; b∗ = 0; b2−l = 0

 .
Now we separate the choices made in the game played by A and the choices

made in the game played by C. Recall that u2 = i∗ by construction. Then, for
l ∈ {0, 1} and w = (wl, . . . , w1) ∈ [n]2−l, define

E
(l,w)
1 =

(
fnode(i∗) = w1; flen(w1) = l;
fpath(w1) = (w1−l, . . . , w1)

)
,

E
(l,w)
2 =

(
u1 = w1;u1−l = w1−l;u−l = N/A;

b∗ = 0; b2−l = 0

)
.

It follows that:

P

 ∨
d2∈[n]

SRCd21 (0)

 =

1∑
l=0

∑
w∈[n]2−l

P
[
E

(l,w)
1 ;E

(l,w)
2

]

=

1∑
l=0

∑
w∈[n]2−l

(
P
[
E

(l,w)
1 | E(l,w)

2

]
· P
[
E

(l,w)
2

])
.

We will show that P
[
E

(l,w)
2

]
= 1

2n(2n+1) for any l,w. We omit the proof that

1∑
l=0

∑
w∈[n]2−l

P
[
E

(l,w)
1 | E(l,w)

2

]
= 1;

it is fairly obvious when one observes that E
(l,w)
1 | E(l,w)

2 is exactly the event

that E
(l,w)
1 occurs for A in the game G0,b (i.e. doesn’t depend on C) and so

summing the probability of this event for all choices of l and w must give 1.

Computing P
[
E

(l,w)
2

]
is straightforward since u0, u1, b1 and b∗ are all chosen

independently. Recall that u1 is chosen uniformly from [n] and u0 is chosen
according to the following distribution: P[u0 = N/A] = 1

2n+1 and, for all j ∈ [n],

P[u0 = j] = 2
2n+1 . It follows that

P
[
E

(l,w)
2

]
=

1

n
·
(

2

2n+ 1

)l
·
(

1

2n+ 1

)1−l

· 1

2
·
(

1

2

)l
=

1

2n(2n+ 1)
,

as required.

