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Abstract. This work introduces XMSS-T, a new stateful hash-based
signature scheme with tight security. Previous hash-based signatures are
facing a loss of security, linear in performance parameters such as the
total tree height. Our new scheme can achieve the same security level
but using hash functions with a smaller output length, which immedi-
ately leads to a smaller signature size. The same techniques also apply
directly to the recent stateless hash-based signature scheme SPHINCS
(Eurocrypt 2015), and the signature size is reduced as well.
Being a little more specific and technical, the tight security stems from
new multi-target notions of hash-function properties which we define and
analyze. We show precise complexity for breaking these security proper-
ties under both classical and quantum generic attacks, thus establishing
a reliable estimate for the quantum security of XMSS-T. In particular,
we prove quantum query complexity tailored for cryptographic applica-
tions, which overcomes some limitations of standard techniques in quan-
tum query complexity such as only considering worst-case complexity.
Our proof techniques may be useful elsewhere.
We also implement XMSS-T and compare its performance to that of
XMSS (PQCrypto 2011), the most recent stateful hash-based signature
scheme before our work.

Keywords: post-quantum cryptography, hash-based signatures, hash
function security, multi-target attacks, quantum query complexity

An extended abstract of this work appeared in the proceedings of Public-Key Cryp-
tography – PKC 2016. This is the full version. This work was supported by European
Commission through the ICT program under contract ICT-645622 (PQCRYPTO).
Part of this work was done while the first author was visiting IQC. F.S. would like
to thank Sharat Ibrahimpur and Dhinakaran Vinayagamurthy for helpful discussion.
F.S. is supported in part by Cryptoworks21, Canada’s NSERC and ORF.



1 Introduction

Hash-based signatures are considered to be the most promising post-quantum
alternative to existing schemes such as RSA and ECDSA, which are vulnerable
to quantum attacks. This is especially so because the security of cryptographic
hash functions is well understood under intensive scrutinization. In addition,
there are exact reductionist proofs relating the hardness of breaking the schemes
to the hardness of breaking security properties of the hash functions used in the
schemes. This allows precise estimation of the security of specific parameter sets.

Traditionally, the security of hash-based signature schemes was related to
collision-resistance of the used hash function. In recent years several works
focused on basing security on milder assumptions [16,12,13,23,25,6], such as
second-preimage resistance and one-wayness. There are two fundamental reasons
driving this trend. On the one hand, the attacks against the collision-resistance
of SHA1 and MD5 motivated researchers to develop collision-resilient signature
schemes [20,29]. On the other hand, collision resistance is subject to birthday
attacks while (second-)preimage resistance is not. Hence, to reach a security level
of λ bits, a hash function with n = 2λ bit digests is needed if collision resistance
is required whereas for (second-)preimage resistance only n = λ bit digests are
needed. Halving the output size of the used hash function immediately halves
the signature and key sizes of hash-based signatures.

Multi-target attacks. The above statement is only half the truth because
it bears on the implicit assumption that a hash function is used only once.
Clearly, for many cryptographic constructions this is not the case. Consider
for example preimage resistance (aka. one-wayness). For many cryptographic
constructions, an adversary will be able to learn a magnitude of function values
and security breach may occur once he finds a preimage for just one of them.
More specifically, suppose that a hash function with n bit outputs is used d
times in a cryptographic construction. If it suffices to invert the hash function
on any one out of the d outputs to break the security of the scheme, then the
attack complexity is downgraded to O(2n/d) instead of O(2n). Intuitively this is
because every input value that an adversary tries has probability d/2n of being a
solution instead of 1/2n, if we treat the hash function as a random function. For
theoretical (asymptotic) security this worries nobody as d is normally at most
polynomial in n. However, when choosing parameters in practice this can easily
cause serious consequences.

This issue is indeed very pertinent to hash-based signatures. Consider for
example the hash-based signature scheme XMSS [13] and its multi-tree version
XMSSMT [25] (see Section 4) with parameters that allow to use a keypair for a
virtually unlimited amount of signatures (e.g. a total tree height of h = 60). In
this case, an attacker can learn about 266 images under the same hash function
and will succeed in forging a signature if he finds a single preimage for any one
of the 266 values. Consequently, to achieve for example security of 256 bits one
cannot use a 256 bit hash function but has to use one with output length 322.
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This does not only imply the use of a hash function with a bigger output length
(and hence a slowdown), it also increases the signature size by roughly 25%.

This work. In this work we introduce a new hash-based signature scheme
XMSS-T that is not vulnerable to multi-target attacks. Towards this end, we
propose new multi-target notions for preimage, second-preimage, and target-
collision resistance. We then analyze the generic security of hash functions with
regard to these new properties against classical and quantum adversaries, prov-
ing upper and lower bounds on the query complexity of generic attacks.

More specifically, the first type of notions (single-function multi-target) mod-
els a notion that is implicitly used by recent collision-resilient hash-based sig-
nature schemes like XMSS, XMSSMT and SPHINCS [13,25,6]. In these notions,
an adversary A receives p target values and a random function from the hash
function family. Then, A is asked to find a preimage (or second-preimage, re-
spectively) for one of the target values under the given function. We prove that
compared to standard (second-)preimage resistance, the query complexity of
generic attacks drops by a factor p for classical and √p for quantum adversaries.
Then we introduce multi-function multi-target notions of preimage and second-
preimage resistance. For these notions, A is given multiple pairs of function and
target value, drawn independently at random. It is now A’s goal to find a preim-
age (or second-preimage, respectively) for one of the target values under the
associated function. We prove that in this case the query complexity of generic
attacks is exactly the same as for the standard (single-function, single-target)
notions.

Given that multi-function multi-target notions are as hard as the standard
notions of preimage and second-preimage resistance we construct a new hash-
based signature scheme with security based on these new notions. As the basic
construction follows that of XMSS, we call the new scheme XMSS-T, indicating
XMSS with tightened security. While XMSS loses in the bit security an amount
linear in several parameters including the total tree height, XMSS-T loses only
two bits, independent of any parameters. The differences between XMSSMT and
XMSS-T are a different hash tree and one-time signature scheme construction
such that the security can be based on the multi-target multi-function properties.
The basic change is that for every hash function call within a hash tree or a hash
chain, a different hash function key and different bitmasks are used. Note that
XMSS-T is stateful and it may be not suitable in some practical use cases.
The good news is that we can make similar changes to the stateless hash-based
signature scheme SPHINCS easily. Roughly speaking, it amounts to replacing
the used hash trees and one-time signatures by the ones described in this work.

Finally, we present an implementation of XMSS-T and compare it to XMSS
and XMSSMT . We show that the applied changes only have marginal perfor-
mance implications (a factor 3 loss in speed for all algorithms). Our code is
available at https://joostrijneveld.nl/papers/multitarget_xmss.

Remarks on proving quantum generic security. At first sight the tasks of
breaking the various security properties for hash functions seem similar to some
standard problems studied in quantum query complexity. However due to some
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limitations, existing results such as techniques for proving quantum query lower
bounds [4,2] cannot be applied directly. For example, tight bounds on finding col-
lisions in r-to-1 functions are known [10,1]. Nonetheless, random functions, whose
properties our work studies, are very unlikely to be r-to-1. More generally, quan-
tum query complexity usually considers worst-case complexity only, whereas in
cryptographic settings we care about average-case complexity. Another issue is
that, as observed by Zhandry [33], quantum query lower bounds usually apply
to quantum algorithms with high success probability only. For cryptographic
applications, however, an attacker with small but noticeable chance of breaking
a scheme is still relevant. Therefore, a complete lower bound would be bounding
the success probability of any algorithm making a specified number of queries.
We expect that techniques in this work, which are natural extensions of existing
tools, can find useful in other cryptographic settings as well.

Organization.We introduce and discuss the new security notions for hash func-
tion families in Section 2, where detailed analysis for quantum generic security is
presented in Secton 3. In Section 4 we present XMSS-T and discuss its security
in Section 5. Finally, we present our implementation results in Section 6.

Notation. We write x $←− X if x is randomly chosen from the set X using
the uniform distribution. We further write log for log2. We denote the uniform
distribution over bit strings of length n by Un. We write m = poly(n) to denote
that m is a function, polynomial in n. We call a function ε(n) : N → [0, 1]
negligible and write ε(n) = negl(n) if for any c ∈ N, c > 0 there exists a nc ∈ N
s.th. ε(n) < n−c for all n > nc.

2 New security notions for hash function families

In this section, we recall some known and define several new security notions
for (hash) function families and discuss their security against both classical and
quantum generic attacks. In the following we restrict ourselves to function fami-
lies that operate on bit strings and have a fixed input size, as this is the case in our
constructions. However, the definitions are the same for the more general case.
In the following let n ∈ N be the security parameter, m = poly(n) , k = poly(n),
and Hn = {HK : {0, 1}m → {0, 1}n}K∈{0,1}k be a family of functions. We say
a function family Hn is efficient if there exists a probabilistic polynomial time
(PPT) algorithm that evaluates HK(M) for any M ∈ {0, 1}m and K ∈ {0, 1}k.
We require all used functions to be efficient, unless we state otherwise. For hash-
based signatures we are mainly interested in functions with m, k ≥ n. However,
we try to keep our results as general as possible and make it explicit whenever
we are relying on m, k ≥ n.

2.1 Defining the security notions

Preimage-resistance (ow). Let’s revisit the standard notion of preimage re-
sistance (a.k.a. one-wayness). We define the success probability of an adversary
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A against the preimage resistance of a hash function family Hn as

SuccowHn (A) = Pr [ K
$←− {0, 1}k;M

$←− {0, 1}m, Y ←− HK(M);

M ′
$←− A(K,Y ) : Y = HK(M ′)] . (1)

Single-function, multi-target preimage resistance (sm-ow). We now de-
fine the success probability of an adversary against sm-ow. This is the basic
multi-target notion of preimage resistance implicitly used by previous collision
resilient hash-based signature schemes like XMSS. We show in Section 3 that
this notion is significantly easier to attack than standard preimage resistance.
The definition takes another parameter p defining the number of targets.

Succsm-ow
Hn,p (A) = Pr [ K

$←− {0, 1}k;Mi
$←− {0, 1}m, Yi ←− HK(Mi), 0 < i ≤ p;

M ′
$←− A(K, (Y1, . . . , Yp)) : ∃0 < i ≤ p, Yi = HK(M ′)] . (2)

Multi-function, multi-target preimage resistance (mm-ow). Next we
define the success probability of an adversary A against mm-ow. This is the
notion we are aiming for with XMSS-T as it is as hard to break as standard
preimage resistance, as we will show below. Again the definition is parameterized
by the number of targets:

Succmm-ow
Hn,p (A) = Pr [ Ki

$←− {0, 1}k,Mi
$←− {0, 1}m, Yi ←− HKi(Mi), 0 < i ≤ p;

(j,M ′)
$←− A((K1, Y1), . . . , (Kp, Yp)) : Yj = HKj (M

′)
]
. (3)

The difference between these two new definitions is that for sm-ow all targets
are for the same function while for mm-ow each target has an associated random
function from the family. We decided that A has to output the associated index
i in case of mm-ow as otherwise any reduction would have to search for i and A
knows i for any attack that does better than guessing.

Second-preimage resistance (spr). After presenting the multi-target notions
for one-wayness, we now turn to second-preimage resistance. We start revisiting
the standard notion of second-preimage resistance. We define the success proba-
bility of an adversary A against the second-preimage resistance (spr) of a hash
function family Hn as

SuccsprHn (A) = Pr [ K
$←− {0, 1}k;M

$←− {0, 1}m;

M ′
$←− A(K,M) : M ′ 6= M ∧HK(M) = HK(M ′)] . (4)

Note that in this definition the adversary is not promised to receive anM that
actually has a second-preimage. Hence, especially for families Hn with m = n,
i.e. same size of domain and co-domain, the adversaries success probability is
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largely influenced by the probability that a random M actually has a second-
preimage.

Single-function, multi-target second-preimage resistance (sm-spr). As
for one-wayness, we define two multi-target notions: single-function multi-target
second-preimage resistance (sm-spr) and multi-function multi-target second-
preimage resistance (mm-spr). The first one (sm-spr) is the notion implicitly
used in XMSS. The latter is the notion we aim for with XMSS-T that is as
hard to break as standard second-preimage resistance, as we will prove below.
We start defining the success probability of an adversary against sm-spr. The
definition again takes another parameter p defining the number of targets:

Succsm-spr
Hn,p (A) = Pr [K

$←− {0, 1}k;Mi
$←− {0, 1}m, 0 < i ≤ p;

M ′
$←− A(K, (M1, . . . ,Mp)) :

∃0 < i ≤ p : M ′ 6= Mi ∧HK(Mi) = HK(M ′)] . (5)

Multi-function, multi-target second-preimage resistance (mm-spr).
Next we define the success probability of an adversary A against mm-spr. Again
the definition is parameterized by the number of targets:

Succmm-spr
Hn,p (A) = Pr [Ki

$←− {0, 1}k,Mi
$←− {0, 1}m, 0 < i ≤ p;

(j,M ′)
$←− A((K1,M1), . . . , (Kp,Mp)) :

M ′ 6= Mj ∧HKj (Mj) = HKj (M
′)
]
. (6)

Extended target collision resistance (eTCR). In [21] Halevi and Krawczyk
introduced extended target collision resistance (eTCR) as a hash function prop-
erty that is close to target collision resistance. In the classical target-collision
resistance game, the adversary is allowed to choose a target message M . After-
wards he learns a function (by learning a key K) and has to find a collision for
theM under this function HK . While the setup of the eTCR game is exactly the
same, the adversary wins if he can present a new message M ′ and a (possibly
new) key K ′ such that HK(M) = HK′(M

′). Formally, the success probability
of an adversary A = (A1,A2), where A1 and A2 have shared memory, against
eTCR is defined as follows:

SucceTCR
Hn (A) = Pr [M

$←− A1(1n);K
$←− {0, 1}k; (M ′,K ′)

$←− A2(K,M) :

M ′ 6= M ∧HK(M) = HK′(M
′)] . (7)

Multi-target extended target collision resistance (m-eTCR). We can
also define a multi target version (eTCR is inherently multi function anyway).
To keep the definition readable we use a challenge oracle Box(·) that on input of a
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message outputs a uniformly random function key. This oracle models the ability
of A to adaptively obtain p eTCR challenges for the same function family. We
denote by (Mi,Ki) the ith query-answer pair of Box(·). The success probability
of an adversary A against m-eTCR that makes no more than p queries to Box(·)
is defined as:

Succm-eTCR
Hn,p (A) = Pr [ (M ′,K ′, i)

$←− ABox(·)(1n) :

M ′ 6= Mi ∧HKi(Mi) = HK′(M
′)] . (8)

2.2 Generic security

To determine secure parameters for hash function families or constructions based
on them, their security against generic attacks is analyzed. Generic attacks show
which security level is achievable at all for a given property as they do not take
any possibly existing function specific weaknesses into account. A hash function
family is considered broken if the security level for one property is (significantly)
lower than the generic security.

Classical generic security. The standard way to analyze the complexity of
generic attacks against a security property of hash function families is analyzing
the success probability of an adversary A against a random function family to
which it is given black box access. The classical security is well understood in the
literature. The security of the new notions we defined can be easily established
as well. For completeness, we give brief justifications in Appendix A. Table 1
summarizes the classical and quantum generic security.

Quantum generic security.When we analyze the properties of hash functions
under generic quantum attacks, we treat any hash function as a random func-
tion and the adversary can issue quantum superposition queries to the function.
Namely, we are essentially working under the quantum random-oracle model [7].
When there are multiple functions, we assume they are independent random
functions and the adversary can query them jointly in superposition. Namely,
queries in the form of∑

K,M,z

αK,M,z|K,M, z〉 7→
∑
K,M,z

αK,M,z|K,M, z +HK(M)〉 ,

are permitted4. This choice is meant to capture the fact that in reality all hash
functions are public, and a quantum adversary can certainly evaluate them
jointly in superposition. This is in contrast to the classical setting, where each
query must specify an index, and hence the adversary only gets one value of
one function per query. One can define a similar model in the quantum setting
(i.e., each query must specify one and only one function index K) and study all
the security properties therein. We stress that this model seems weaker than the
4 Alternatively, one can think of it as a global random function (K,M) 7→ O(K,M).
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one we choose, and in particular our lower bounds results are hence stronger.
Namely, they hold against stronger quantum attacks. It is an interesting theo-
retical question as to determining whether the two models are indeed different.

We prove our results regarding quantum generic security in Sect. 3. Our
findings are summarized in Table 1. Please note that the constant hidden in the
Θ is small, i.e. 16 for the lower bounds.

ow,mm-ow,
spr,mm-spr

sm-ow,
sm-spr

eTCR m-eTCR

Classical q+1
2n

(q+1)p
2n

(q+1)
2n

+ q

2k
(q+1)p

2n
+ qp

2k

Quantum Θ( (q+1)2

2n
) Θ( (q+1)2p

2n
) Θ( (q+1)2

2n
+ q2

2k
) Θ( (q+1)2p

2n
+ q2p

2k
)

Table 1. Security against generic classical and quantum attacks. Entries represent the
success probability of a q-query adversary (upper and lower bound).

3 Analyzing Quantum Generic Security

In the following we establish the generic security of hash function families against
quantum attacks on the defined properties. For each security property, we give
attacks and analyze their success probabilities. All attacks are based on Grover’s
quantum search algorithm, but we will need to analyze the complexity for ran-
dom problem instances. More importantly, we establish matching lower bounds
for all cases. The proofs of lower bounds follow a unified structure. Specifically,
we first define a family of distributional search problems and bound the success
probability of quantum algorithms against these problems. Then, we reduce var-
ious instances of the search problem to the task of breaking each of the security
properties we care about. The hardness of the distributional search problems
hence implies the generic security of hash functions for these security properties.

3.1 Toolbox

(Generalized) Grover’s quantum search algorithm.One of the most useful
algorithmic tools in quantum computing is Grover’s quantum search algorithm
and its many generalizations (e.g., [19,8,11,9] to name a few). Here we just need
a simple version for searching a universe with multiple marked items. We state
it in the following Lemma.

Lemma 1. Let f : X → {0, 1} be an oracle function and let Xf = {x ∈ X :
f(x) = 1}. Then there is a quantum algorithm QSearch with q queries that
finds an x ∈ Xf with success probability Ω(q2

|Xf |
|X | ).

Most of the attacks we describe later will apply QSearch in a straightfor-
ward way. However, since our problem instances are generated randomly, we will
need to give a new analysis of the average-case performance.
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A hard average-case search problem. It is well known that Grover’s search
algorithm is also optimal [5]. Namely, adopting notations from Lemma 1, any
q-query algorithm can find a marked item with probability at most O(q2

|Xf |
|X | ).

However since the security notions we defined all refer to average-case prob-
lems, the worst-case lower bound of Grover’s search is not very useful. Here we
introduce a distributional search problem, and prove a stringent hardness result.

Definition 1. Let F := {f : {0, 1}m → {0, 1}} be the collection of all boolean
functions on {0, 1}m. Let λ ∈ [0, 1] and ε > 0. Define a family of distributions
Dλ on F such that f ←R Dλ satisfies

f : x 7→
{

1 with prob. λ,
0 with prob. 1− λ

for any x ∈ {0, 1}m.

We define Avg-Searchλ to be the problem that given oracle access to f ← Dλ,
finds an x such that f(x) = 1. For any quantum algorithm A that makes q
queries, we define

Succqλ(A) := Pr
f←Dλ

[f(x) = 1 : x← Af (·)] .

Theorem 1. Succqλ(A) ≤ 8λ(q+ 1)2 holds for any quantum algorithm A with q
queries.

Note that this theorem matches the intuitive argument that for f ← Dλ,
there are 2mλ marked items on average and hence any quantum algorithm needs
Θ(
√

2m/(2mλ)) = Θ(1/
√
λ) queries. A (comparatively tedious) proof for a sim-

ilar claim exists in [3, Lemma 37]. For completeness, we give a clean proof using
a tool developed by Zhandry [32]. We describe below a simplified version of the
tool, taken from [31].

Lemma 2. [31, Theorem 7.2] Fix q, and let Dλ be a family of distributions
on {f : X → Y} indexed by λ ∈ [0, 1]. Suppose there is an integer d such
that for every 2q pairs (xi, yi) ∈ X × Y, the function pλ := Prf←Dλ [f(xi) =
yi∀i ∈ {1, . . . , 2q}] is a polynomial of degree at most d in λ. Then any quantum
algorithm A making q queries can only distinguish Dλ from D0 with probability
at most 2λd2.

Apply this lemma to the Dλ we defined earlier, we get

Lemma 3. Let Dλ be defined as in Definition 1, and A be any quantum algo-
rithm making at most q quantum queries. Then

ADVqA(D0, Dλ)
def
=

∣∣∣∣ Pr
f←D0

[Af (·) = 1]− Pr
f←Dλ

[Af (·) = 1]

∣∣∣∣ ≤ 8λq2 .
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Proof. Let {(xi, yi) ∈ {0, 1}m×{0, 1}}2qi=1 be an arbitrary collection of 2q pairs.
Let k be the number of i with yi = 1. By the definition of Dλ, we have that

pλ = Pr
f←Dλ

[f(xi) = yi,∀i ∈ {1, . . . , 2q}] = λk(1− λ)2q−k .

It is easy to see that pλ is a polynomial in λ with degree at most 2q. Therefore
we can apply Lemma 2 with d = 2q. We obtain that ADVqA(D0, Dλ) ≤ 8λq2.

Proof (Proof of Theorem 1). Observe that D0 is the trivial function that maps
every input to 0. Clearly if one can find a marked item (i.e. x ∈ {0, 1}m with
f(x) = 1) in f ← Dλ it immediately distinguishes Dλ from D0. Specifically
assume there is an algorithm A that queries f and outputs x after q queries.
With one extra query, one can check if f(x) = 1 and tell apart Dλ from D0.
Thus we obtain that SuccqA(λ) ≤ ADVq+1

A (D0, Dλ) ≤ 8λ(q + 1)2.

Simulating random functions. In our reductions to show lower bounds, we
usually assume we have access to some random function f : X → Y. Ultimately,
we will need to simulate f efficiently so that any algorithm with q queries cannot
notice a difference. Fortunately, the following claim allows us to do so by sampling
uniformly from a 2q-wise independent hash function family H.

Lemma 4. [32, Theorem 6.1] For any quantum adversary that makes no more
than q queries to either a truly random function or a function drawn uniformly
from H, the final states are identical.

There exists a vast literature on efficient constructions of t-wise independent
hash functions. Interested readers are referred to, e.g., [26,15,27]. There is
a technical subtlety though. Most constructions of H consider output space Y
with size being a prime or a prime power. We need one with Y = [N ], N =
2n − 1. A natural approach is to pick a prime M >> N and construct a 2q-
wise independent family H0 : X → [M ]. Then we would expect that H : x 7→
H0(x) mod N will suffice for our purpose, modulo a tiny error. However we were
unable to identify a rigorous proof in the literature for the correctness of this
“mod” construction, especially with respect to quantum attacks. We show such
a proof formally in Appendix C.

Sometimes we need a random function f that excludes some output y ∈ Y.
This is easy to realize as follows. We take a random function g : X → [k] where
k = |Y| − 1. Then f(x) will be obtained by applying g on x and then mapping
the outcome to Y\y according to some canonical isomorphism (e.g., any thing
smaller than y remains unchanged, and anything else is incremented by 1.).

3.2 Hardness of breaking the security

We analyze in this section the hardness of generic quantum attacks on the var-
ious notions of hash functions. We give upper bounds on the success probabil-
ities of any quantum adversary making at most q queries. Basically, we reduce
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Avg-Searchλ with various λ to the task of breaking the security notion generically.
The hardness of Avg-Search then implies the security against generic quantum
attacks. The bounds for ow, spr and their variants are given in Propositions 1
and 2. While the proofs are quite similar we have to deal with a restriction for
the ow notions that we did not figure out how to circumvent. Namely, we require
that 2m � 2n (e.g.m = 2n) and p� 2n, which is the case for most relevant hash
function families. The complexity for eTCR and m-eTCR involves additional
technical difficulty concerning programming a random oracle, and we analyze
them in Proposition 3.

Proposition 1. Let m = cn for any constant c > 1 and p = o(2n). For any
quantum adversary with q queries, it holds that

SuccowHn (A) = O((q + 1)2/2n),Succsm-ow
Hn (A) = O((q + 1)2p/2n),

Succmm-ow
Hn (A) = O((q + 1)2/2n) .

The proof is given in Appendix D.

Proposition 2. For any quantum adversary with q queries, it holds that

SuccsprH (A) = O((q + 1)2/2n),Succsm-spr
Hn (A) = O((q + 1)2p/2n),

Succmm-spr
Hn (A) = O((q + 1)2/2n) .

We give the proof for mm-spr. The others can be proven analogously and we
describe the reductions from Avg-Search to spr and sm-spr in Appendix E.

Proof (Hardness of mm-spr). Given an Avg-Search instance, we construct an
instance of mm-ow in Figure 1:

Given: f ← Dλ : {0, 1}m → {0, 1}n, λ = p/2n.

1. For i = 1, . . . , p, sample Mi ← {0, 1}m and yi ← {0, 1}n independently
and uniformly at random. Denote S = {Mi} and T = {yi}.

2. For i = 1, . . . , p, let gi : {0, 1}m → {0, 1}n\T be random function. We
construct H̃i : {0, 1}m → {0, 1}n as follows: for any x ∈ {0, 1}m

x 7→


yi if x =Mi

yi if x 6=Mi ∧ f(i‖x) = 1
gi(x) otherwise.

Output: mm-spr instance (S, {H̃i}pi=1). Namely an adversary is givenMi and
oracle access to H̃i, and the goal is to find (i∗, x∗) such that x∗ 6= Mi∗ and
H̃i∗(x

∗) = yi∗ .

Fig. 1. Reducing Avg-Search to mm-spr.
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Note that the way that f is generated ensures that each constructed H̃i is
distributed identically to a uniformly random function H : {0, 1}m → {0, 1}n.
Therefore the output instance in the reduction is valid according to the definition
Eq. 6. This implies that any q-query attacker solving mm-spr will give rise to a
2q-query algorithm for Avg-Searchλ. As a consequence

Succmm-spr
Hn (A) ≤ ADV2q

A (λ) ≤ 16(q + 1)2/2n ,

follows by Theorem 1. We remark that, as mentioned in Sect. 3.1, H̃i can be
implemented efficiently.

Proposition 3. Let ε = 8(q+ 1)2/2n and δ = 4q2/2k. For any quantum adver-
sary with q queries, it holds that

SucceTCR
Hn (A) ≤ ε+ 2δ, Succm-eTCR

Hn (A) ≤ p(ε+ 2δ) .

To prove the proposition, we need a lemma that allows us to adaptively
program a quantum random oracle. The proof follows standard techniques (see
similar analyses for different scenarios in [30,17]). Let A be an arbitrary quantum
algorithm and letH : {0, 1}m×{0, 1}k → {0, 1}n be a random function. Consider
two games as follows:

– Game G0: A gets access to H. In phase 1, after making at most q1 queries
to H, A outputs a message M ∈ {0, 1}m. Then a random K̂ ∈R {0, 1}k is
sampled and (K̂,HK̂(M)) is handed to A. A continues to the second phase
and makes at most q2 queries. A outputs b ∈ {0, 1} at the end.

– Game G1: A gets access to H. After making at most q1 queries to H, A
outputs a message M ∈ {0, 1}m. Then a random K̂ ∈R {0, 1}k is sampled as
well as a random range element y ∈R {0, 1}n. Program HK̂(M) = y and call
the new oracle H ′. A receives (K̂, y = H ′

K̂
(M)) and proceeds to the second

phase. After making at most q2 queries, A outputs b ∈ {0, 1} at the end.

Lemma 5. |Pr[A(G0) = 1]− Pr[A(G1) = 1]| ≤ 2δ, with δ = 4q2/2k.

Proof. We use a hybrid argument. Consider the following (hybrid) games:

– Hyb0: it is identical to G0 except that K̂ ← {0, 1}k is sampled at the very be-
ginning. It does not make any difference and Pr[A(Hyb0) = 1] = Pr[A(G0) =
1]. (In short: H/H)

– Hyb1: During phase 1 we define H̄K(x) = HK̂(x) if K 6= K̂ and H̄K̂(x) = 0
for any x. The remaining of the game follows exactly as Hyb0. In particular,
the unchanged H is used in Phase 2. (In short: H̄/H)

– Hyb2: At the end of Phase 1, we program H to H ′ so that (K̂,M) 7→ y and
proceeds to Phase 2 using H ′. (In short: H̄/H ′)

– Hyb3: the only difference from Hyb2 is that in Phase 1, we useH instead of H̄.
Note that Hyb3 is exactly G1, and hence Pr[A(Hyb3) = 1] = Pr[A(G1) = 1].
(In short: H/H ′)
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It is easy to observe that Pr[A(Hyb1) = 1] = Pr[A(Hyb2) = 1]. Because both
games can be seen as first partially sampling a random function only on inputs
(K, ∗) with K 6= K̂ in Phase 1, and then randomly sampling the output for the
remaining inputs (K̂, ∗) in Phase 2. Next we show that

(∗) |Pr[A(Hyb0) = 1]− Pr[A(Hyb1) = 1]| ≤ δ .

The same argument will show that |Pr[A(Hyb2) = 1]− Pr[A(Hyb3) = 1]| ≤ δ.
Therefore we can prove Lemma 5.

The proof of (∗) is a generalization of [5, Theorem 3.3] to an average-case,
a computational version of which was given in [17, Lemma 6]. Intuitively, since
K̂ ∈R K is sampled uniformly at random, the overall amplitudes of A’s queries
of the form |K̂, ∗〉 in Phase 1 will be tiny. Therefore, one can change the values of
H on these inputs without causing any noticeable effect. To make it formal, we
first claim that two oracles fK̂ : {0, 1}k → {0, 1} where fK̂(K) = 1 iff. K = K̂
and the all-zero function f0(K) = 0,∀K ∈ {0, 1}k are hard to distinguish for
a randomly chosen K̂ even if K̂ is released after the adversary makes the last
query. Namely we have:

(∗∗)
∣∣∣Pr[b = 1 : K̂ ← {0, 1}k,AfK̂1 (·), b← A2(K̂)]

− Pr[b = 1 : K̂ ← {0, 1}k,Af01 (·), b← A2(K̂)]
∣∣∣

≤4q2/2k =: δ

holds where A1 is any q-query algorithm and A2 receives the final state of A1

and K̂. This follows by a simple adaption of the standard proof of the lower
bound for Grover’s search problem.

Now assume for contradiction that there is A such that

|Pr[A(Hyb0) = 1]− Pr[A(Hyb1) = 1]| ≥ δ .

We construct (A1,A2) that violates (**). Given f , which is either fK̂ with
uniformly random K̂ or f0, we construct H : {0, 1}k × {0, 1}m → {0, 1}n such
that: H(K,M) = g(K,M) if f(K) = 0 and H(K,M) = 0 otherwise. Here g is
a random function from {0, 1}k × {0, 1}m → {0, 1}n. A1 then plays the games
(Hyb0 or Hyb1) we defined above by simulating A and using H in Phase 1. At the
end of Phase 1, A1 outputs a messageM as A would be by hypothesis, and K̂ is
released. We hand K̂ as well as g(K̂,M) to A2, who continues simulating A in
Phase 2 and the oracle queries are answered by g. Finally A2 outputs whatever
A outputs. Observe that we get Hyb0 if f = f0 since in both Phase 1 and 2, the
hash function H is the same random function g. On the other hand we get Hyb1
if f = fK̂ , since fK̂(K̂) = 1 and hence queries of the form (K̂, ∗) are answered
by 0 in Phase 1. Therefore

13



∣∣∣Pr[b = 1 : K̂ ← {0, 1}k,AfK̂1 (·), b← A2(K̂)]

− Pr[b = 1 : K̂ ← {0, 1}k,Af01 (·), b← A2(K̂)]
∣∣∣

= |Pr[A(Hyb0) = 1]− Pr[A(Hyb1) = 1]| ≥ δ ,

which gives a contradiction.

Proof (Proof of Proposition 3). We give a reduction from Avg-Search to break-
ing eTCR. Assume that there is A that breaks eTCR with probability η. We
construct an adversary A′ that solves Avg-Search with probability η − 2δ. Note
that as long as A does not notice that we reprogrammed H, its view would
be identical to that of the standard eTCR game, and by assumption A wins
with probability at least η. By Lemma 5, reprogramming only incurs an additive
error 2δ = 4q2/2k. We claim that Pr[f(K∗,M∗) = 1] ≥ η − 2δ. But we know
that the success probability of Avg-Search is at most ε := 8(q + 1)2/2n by The-
orem 1. Therefore η ≤ ε + 2δ and this proves Proposition 3. We can generalize
the arguments above to the multi-target case easily.

Given: f ← Dλ : X := {0, 1}k × {0, 1}m → {0, 1}n, λ = 1/2n.

1. Sample y ← {0, 1}n uniformly at random.
2. Let g : X → {0, 1}n \ {y} be a random function. Construct H : X →
{0, 1}n as follows: for any x ∈ X

x 7→
{
y if f(x) = 1,
g(x) otherwise.

3. A accesses H and issues q1 queries. A outputs M at end of Phase 1.
4. Sample K ← {0, 1}k. Program HK(M) = y. Denote the new oracle H ′.

Send (K, y) to A.
5. A makes q2 queries to H ′. Outputs (K∗,M∗).

Output: (K∗,M∗).

Fig. 2. Reducing Avg-Search to eTCR

3.3 Quantum attacks

In this section, we apply quantum search algorithm QSearch to attack the
various notions generically. In most cases, we get bounds on success probabilities
matching the hardness results we have shown in Sect. 3.2.
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Proposition 4. There exist quantum adversaries A1, . . . ,A8 all of which mak-
ing Θ(q) queries, such that

SuccowHn (A1) = Ω(q2/2n) ,Succsm-ow
Hn (A2) = Ω(q2p/2n) ,

Succmm-ow
Hn (A3) = Ω(q2/2n) ; SuccsprHn (A4) = Ω(q2/2n) ,

Succsm-spr
Hn (A5) = Ω(q2p/2n) ,Succmm-spr

Hn (A6) = Ω(q2/2n) ;

SucceTCR
Hn (A7) = Ω(q2/2n) ,Succm-eTCR

Hn (A8) = Ω(q2p/2n) .

For ease of presentation, we give proofs for preimage-resistance and single-
function, multi-target preimage-resistence. This should demonstrate the main
idea, and the rest can be proved similarly.

Proof (Quantum attack on ow). We describe a O(q)-query attacker A1 as fol-
lows. Given y and oracle access to H, A1 will apply QSearch to search for
x such that H(x) = y. More specifically, A1 constructs gH : {0, 1}m → {0, 1}
such that gH(x) = 1 iff. H(x) = y. Each evaluation on gH can be realized effi-
ciently by two queries to H. For any h ∈ H, let ph := PrH←H[H = h] and let
XH = |H−1(y)| be the random variable representing the preimage size of y.

Then by Lemma 1 we can see that

SuccowHn (A1) =
∑
h

ph ·Ω(q2
Xh

2m
) = Ω(

q2

2m

∑
h

phXh)

= Ω(
q2

2m
· E(XH)) = Ω(

q2

2n
)

where E(XH) = 2m/2n can be obtained by basic probability theory in the
last step.

Proof (Quantum attack on sm-ow). We describe a O(q)-query attacker A2 as
follows. Given y1, . . . , yp and oracle access to H, A2 will apply QSearch to
search for x such that H(x) ∈ {yi}pi=1. Let XH = |

⋃p
i=1{H−1(yi)}| be the

random variable representing the preimage size of all yi. Similar calculation as
above tells us that

Succsm-ow
Hn (A2) = Ω(

q2

2m
) · E(XH) .

Finding E(XH) is again standard, though a bit more complicated than above.
Consider the probabilistic space induced by uniformly random and independent
choices of xi ← {0, 1}m and H ← Hn. Define the following random variables

– Z: the number of distinct xi, i = 1, . . . , p.
– For each y ∈ {0, 1}n, let Ty = 1 if H−1(y) contains at least one of xi and set
Ty = 0 otherwise. Define By = |H−1(y)|.
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We will show below that E(XH |Z = k) ≈ k 2m

2n assuming k << 2n. Moreover, it
is easy to show that E(Z) ≈ p assuming p << 2m. Therefore

E(XH) = E(E(XH |Z)) ≈ 2m

2n
·
p∑
k=1

kPr[Z = k] =
2m

2n
E(Z) ≈ p2m

2n
.

As a result,

Succsm-ow
Hn (A2) = Ω(

q2

2m
) · E(XH) = Ω(

pq2

2n
) .

We are only left to show that E(XH |Z = k) ≈ k2m

2n assuming k << 2n.
Observe that XH =

∑
y∈{0,1}m By · Ty and since By and Ty are independent we

have
E(XH |Z = k) =

∑
y

E(By|Z = k) · E(Ty|Z = k) .

Clearly E(By|Z = k) = E(By) = 2m

2n . On the other hand

E(Ty|Z = k) =
∑
y

Pr[∃xis.t.H(xi) = y|k distinct xi] = 1− (1− 1/2n)k ,

where (1− 1/2n)k represents the probability that none of xi gets mapped to y.
For k << 2n, we have a very good approximation that E(Ty|Z = k) ≈ 2n · (1−
(1− k/2n) = k. Therefore we obtain that E(XH |Z = k) ≈ k2m

2n .

Proof (Quantum attacks on eTCR and m-eTCR). Consider an adversary A7

who simply picks an arbitrary message M in Phase 1, and after receiving K
applies QSearch to find (K ′,M ′) such that H(K ′,M ′) = H(K,M) with M 6=
M ′. Following a similar calculation as the proof of Proposition 4, the success
probability of A will be

SucceTCR
Hn (A7) = Ω((1− 1/2m)

q2

2n
) .

This will match the bound in Proposition 3 except with error O(1/N) whenever
M,K & N are not significantly smaller than N . As to the multi-round version
(m-eTCR), consider a similar attacker A8 who picks M1, . . . ,Mp arbitrarily
(assuming they are distinct) and receiving random Ki, i = 1, . . . , p. At the end
A8 invokes QSearch to find (K ′,M ′) such that ∃i ∈ [p] with M 6= Mi and
H(K ′,M ′) = H(Ki,Mi). By a similar derivation, we get that

Succm-eTCR
Hn (A8) = Ω(p(1− p/2m)

q2

2n
) .

Again, this matches the lower bound in the regime where m, k & n and p� 2n.
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4 XMSS-T

The eXtended Merkle Signature Scheme (XMSS) was proposed by Buchmann,
Dahmen, and Hülsing in [13]. The original proposal for XMSS essentially com-
bines a collision-resilient version of the Winternitz one-time signature scheme
(WOTS) from [12] with the collision-resilient hash tree construction from [16]
and adds two different kinds of pseudorandom key generation, one leading an
EU-CMA-secure and one a forward-secure signature scheme. Under the name
XMSSMT Hülsing, Rausch, and Buchmann [25] later proposed a multi-tree ver-
sion of XMSS.

In this work we introduce XMSS-T, XMSS with tightened security. In con-
trast to XMSS, XMSS-T avoids multi-target attacks. To this end, XMSS-T uses
a new hash tree construction and a new WOTS variant WOTS-T. XMSS-T is
based on XMSSMT . The main difference in the construction of XMSSMT and
XMSS-T is the use of independent function keys and bitmasks for every call to
a hash function inside of the hash trees or WOTS-T. XMSSMT used a single
fixed key per function family and the same bitmask per internal tree level or
chain position. The function keys and bitmasks used by XMSS-T are needed for
verification. To keep the public key small these values are generated pseudoran-
domly, using a hash-based pseudorandom function family and a seed value that
becomes part of the public key. In the following we describe XMSS-T.

Parameters. XMSS-T uses several parameters and several functions. The main
security parameter is n ∈ N, the message digest length m ∈ poly(n), and
the address length a ∈ poly(n) (see below for an explanation of addresses).
The functions include two keyed, short-input cryptographic hash functions F :
{0, 1}n × {0, 1}n → {0, 1}n and H : {0, 1}n × {0, 1}2n → {0, 1}n; one arbitrary-
input randomized hash function H : {0, 1}m × {0, 1}∗ → {0, 1}m; and two en-
sembles of pseudorandom function families Fn : {0, 1}n × {0, 1}a → {0, 1}n,
Fm : {0, 1}n × {0, 1}∗ → {0, 1}m, where we denote by {0, 1}∗ the ability to
handle arbitrary input lengths up to some practical limit (e.g. 264 bits as in the
case of the SHA family). Of course, these functions can all be built from a single
cryptographic hash function, but the security analysis gets easier separating the
functions according to the required properties.

XMSS-T uses a hyper-tree (a tree of trees) of total height h ∈ N, where h is a
multiple of d and the hyper-tree consists of d layers of trees, each having height
h/d. WOTS allows for a space-time trade-off using the Winternitz parameter
w ∈ N, w > 1. The Winternitz parameter w and the length of the bit string that
is signed λ determine ` the number of function chains for WOTS:

`1,λ =

⌈
λ

log(w)

⌉
, `2,λ =

⌊
log(`1(w − 1))

log(w)

⌋
+ 1, `λ = `1 + `2.

The bit strings signed using WOTS are the m-bit message digests on the lowest
layer and the n-bit root nodes of the layer below on all other layers.

As a running example we present concrete numbers for XMSS-T-256; the
choices are explained in Section 6. For XMSS-T-256 we use n = 256,m =
316, a = 128, h = 60, d = 3, w = 16 which leads to `n = 67 and `m = 82.
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Addressing scheme. XMSS-T requires an addressing scheme for hash function
calls. Every addressing scheme that assigns to every call to either F or H within
the virtual structure of a XMSS-T hyper-tree a unique address can be used (e.g.
numbering all the calls in some order). We suggest to use a recursive addressing
scheme that numbers sub-structures (e.g. a OTS key pair) inside a structure (e.g.
a tree). The addressing scheme generates an address for a substructure, taking
the address of the structure and appending the index of the substructure. For
trees, which contain three different kinds of substructures (OTS key pairs, L-
trees, and nodes), an additional identifier for the type of substructure is added.
Below we assume that a function GenAddr(as, index) exists that takes the
address of the structure and the index of the substructure and outputs a unique
address for this substructure within an XMSS-T key pair. The advantage of this
addressing scheme is that it only uses information that is available when the
hash call is executed.

The addressing scheme is publicly known and the same addresses can be used
for all XMSS-T key pairs. Addresses are a bit strings and are used as inputs to
PRF Fn to pseudorandomly generate function keys and bitmasks.

WOTS-T. We now describe the new WOTS version. The construction differs
from [23] in that it uses fresh keys and bitmasks for each hash function call.
We denote the message length by λ ∈ {n,m} and to improve readability we
write `, `1, and `2 instead of `λ, `1,λ, and `2,λ. We include pseudorandom key
generation, meaning that a seed value takes the place of a secret key in our
description. We describe the algorithms as used by XMSS-T, hence, they take
global secret and public information. For a standalone version, this information
would have to be generated during key generation.

The difference between all WOTS variants is in the way the so called chaining
function is constructed. WOTS-T uses the function F to construct the following
chaining function:

Chaining function ci,j(x,aC ,Seed): On input of value x ∈ {0, 1}n, iteration
counter i ∈ N, start index j ∈ N, chain address aC , and (public) seed Seed,
the chaining function works the following way. In case i = 0, c returns x, i.e.,
c0,j(x,aC ,Seed) = x. For i > 0 we define c recursively as

ci,j(x,aC ,Seed) = F(ki,j , c
i−1,j(x,aC ,Seed)⊕ ri,j),

where key ki,j = Fn(Seed,GenAddr(aC , 2·(j+i))) and bitmask ri,j = Fn(Seed,
GenAddr(aC , 2 ·(j+ i)+1)). I.e. in every round, the function first takes the bit-
wise xor of the previous value ci−1,j(x,aC ,Seed) and bitmask ri,j and evaluates
F with key ki,j on the result.

Now we describe the three algorithms of WOTS-T.

Key Generation Algorithm ((sk, pk) ←− WOTS.kg(S,aOTS,Seed)): On input
of a global secret key seed S ∈ {0, 1}n (used for every WOTS-T keypair within a
XMSS-T keypair), the address of the WOTS-T keypair within a tree aOTS, and
public seed Seed, the key generation algorithm computes the internal secret key
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sk = (sk1, . . . , sk`) as ski ←− Fn(S,GenAddr(aOTS, i)), i.e., the ` n bit secret
key elements are derived form the secret key seed using the address of the chain
they are contained in. The public key pk is computed as

pk = (pk1, . . . , pk`) = (cw−1,0(sk1,aC1 ,Seed), . . . , cw−1,0(sk`,aC` ,Seed)),

where aCi = GenAddr(aOTS, i). Note that S requires less storage than sk; thus
we generate sk and pk on the fly when necessary.

Signature Algorithm (σ ←− WOTS.sign(M,S,aOTS,Seed)): On input of a λ-
bit message M , the global secret key seed S ∈ {0, 1}n, the address of the
WOTS-T keypair within a tree aOTS, and public seed Seed, the signature
algorithm first computes a base-w representation of M : M = (M1 . . .M`1),
Mi ∈ {0, . . . , w − 1}. That is, M is treated as the binary representation of a
natural number x and then the w-ary representation of x is computed. Next it
computes the checksum C =

∑`1
i=1(w − 1 −Mi) and its base w representation

C = (C1, . . . , C`2). The length of the base w representation of C is at most `2
since C ≤ `1(w− 1). We set B = (b1, . . . , b`) = M ‖ C, the concatenation of the
base w representations of M and C. Then the internal secret key is generated
using ski ←− Fn(S,GenAddr(aOTS, i)) the same way as during key generation.
The signature is computed as

σ = (σ1, . . . , σ`) = (cb1,0(sk1,aC1 ,Seed), . . . , cb`,0(sk`,aC` ,Seed)),

where aCi = GenAddr(aOTS, i) as above.

Verification Algorithm (pk′ ←− WOTS.vf(M,σ,aOTS,Seed)): On input of a
λ-bit message M , a signature σ, the address of the WOTS-T keypair within a
tree aOTS, and public seed Seed, the verification algorithm first computes the
bi, 1 ≤ i ≤ ` as described above. Then it returns:

pk′ = (pk′1, . . . , pk
′
`) = (cw−1−b1,b1(σ1,aC` ,Seed), . . . , cw−1−b`,b`(σ`,aC` ,Seed)).

A formally correct verification algorithm would compare pk′ to a given public
key and output true on equality and false otherwise. In XMSS-T this comparison
is delegated to the overall verification algorithm.

Binary Hash Trees. The central elements of a Merkle tree signature scheme are
full binary hash trees. We use a new construction that allows multi-target-attack
resilience. In XMSS-T, a binary hash tree of height h always has 2h leaves which
are n bit strings Li, i ∈ [2h− 1]. Each node Ni,j , for 0 < j ≤ h, 0 ≤ i < 2h−j , of
the tree stores an n-bit string. For the leaf nodes define Ni,0 = Li. The values
of the internal nodes Ni,j are computed as

Ni,j = Hki,j ((N2i,j−1‖N2i+1,j−1)⊕ (ri,j)),

where key ki,j = Fn(Seed,GenAddr(aTree, 4 · (j + i))) and bitmask ri,j =
(Fn(Seed,GenAddr(aC , 4·(j+i)+1))‖Fn(Seed,GenAddr(aC , 4·(j+i)+2))).
We also denote the root as Root = N0,h.
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Fig. 3. The authentication path for leaf i.

An important notion is the authentication path Authi = (A0, . . . ,Ah−1) of a
leaf Li shown in Figure 3. Authi consists of all the sibling nodes of the nodes
contained in the path from Li to the root. For a discussion on how to compute
authentication paths, see Section 6. Given a leaf Li together with its authen-
tication path Authi, the root of the tree can be computed using Algorithm 1.

Input: Leaf index i, leaf Li, authentication path Authi = (A0, . . . ,Ah−1) for
Li.

Output: Root node Root of the tree that contains Li.

Set P0 ← Li;
for j ← 1 up to h do

Set i′ =
⌊
i/2j

⌋
;

Pj =

{
Hki′,j ((Pj−1||Aj−1)⊕ ri′,j), if

⌊
i/2j−1

⌋
≡ 0 mod 2;

Hki′,j ((Aj−1||Pj−1)⊕ ri′,j), if
⌊
i/2j−1

⌋
≡ 1 mod 2;

end
return Ph

Algorithm 1: Root Computation

L-Tree. In addition to the full binary trees above, we also use unbalanced binary
trees called L-Trees as in [16]. These are exclusively used to hash WOTS-T public
keys. The `λ leaves of an L-Tree are the elements of a WOTS-T public key and
the tree is constructed as described above but with one difference: A left node
that has no right sibling is lifted to a higher level of the L-Tree until it becomes
the right sibling of another node. Apart from this the computations work the
same as for binary trees. The L-Trees have height dlog `λe.
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4.1 XMSS-T

Given all of the above we can finally describe the algorithms of the XMSS-T
construction. An XMSS-T keypair completely defines a hyper-tree of height h
that consists of d layers of trees of height h/d. Each of these trees looks as follows.
The leaves of a tree are 2h/d L-Tree root nodes that each compress the public
key of a WOTS-T key pair. Hence, a tree can be viewed as a key pair that can
be used to sign 2h/d messages. The hyper-tree is structured into d layers. On
layer d − 1 it has a single tree. On layer d − 2 it has 2h/d trees. The roots of
these trees are signed using the WOTS-T key pairs of the tree on layer d − 1.
In general, layer i consists of 2(d−1−i)(h/d) trees and the roots of these trees are
signed using the WOTS-T key pairs of the trees on layer i+ 1. Finally, on layer
0 the WOTS-T key pairs are used to sign the message digests.

To improve readability, we only give a functional description of the algorithms
of XMSS-T. To obtain a practical scheme, this has to be combined with the
distributed signature generation method from [25] which in turn makes use of
the BDS algorithm [14] for efficient tree traversal.

Key Generation Algorithm ((SK,PK)←− kg(1n)): The key generation algorithm
first samples two secret values (SK1,SK2) ∈ {0, 1}n×{0, 1}n. The value SK1 = S
is the seed used for pseudorandom key generation in WOTS-T. The value SK2

is used to generate pseudorandom values to randomize the message hash in sign.
Also, the public seed Seed $←− {0, 1}n is sampled as a uniform random value.

The remaining part of kg consists of generating the root node of the tree
on layer d − 1. Towards this end the WOTS-T key pairs for the single tree on
layer d− 1 are generated using SK1 as S. The ith leaf Li of the tree is the root
of an L-Tree that compresses pki. Finally, a binary hash tree is built using the
constructed leaves and its root node becomes PK1.

Besides the secret values and Seed, the secret key also contains the index
i of the next WOTS-T key pair to use for message signing. The index takes
h bits and is initialized with the all 0 bit string. The XMSS-T secret key is
SK = (i = 0h,SK1,SK2,Seed), the public key is PK = (PK1,Seed). kg returns
the key pair ((SK1,SK2,Seed), (PK1,Seed)).

Signature Algorithm ((Σ,SK) ←− sign(M, SK)): On input of a message M ∈
{0, 1}∗ and secret key SK = (i,SK1,SK2,Seed), sign computes a randomized
message digest D ∈ {0, 1}m: First, a pseudorandom R ∈ {0, 1}m is computed as
R←− Fm(SK2,M). Then, D ←− H(R,M) is computed as the randomized hash
of M using R as randomness. Note that signing is deterministic, i.e., we need
no real randomness as all required ‘randomness’ is pseudorandomly generated
using PRF Fm.

Given index i, the ithWOTS-T key pair on layer d = 0 is used to signD. More
specifically, this is the i0th WOTS-T keypair in the i′0th tree on layer 0, where i0
is given by the last h/d bits of i and i′0 by the remaining (d−1)h/d bits of i. Next,
the authentication path Authi0 for the i0th leaf of the i′0th tree is computed as
well as the root of that tree. Now, for every layer 1 ≤ δ ≤ d−1 the same procedure
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is repeated with the difference that i = i′δ−1 and the root computed on layer
δ−1 is signed. So, to sign the root from layer δ−1, the iδth WOTS-T keypair in
the i′δth tree on layer δ is used, where iδ is given by the last h/d bits of i′δ−1 and
i′δ by the remaining (d−1)h/d bits of i′δ−1. Then the authentication path Authiδ
for the iδth leaf of the i′δth tree is computed as well as the root of that tree.
The XMSS-T signature Σ = (i, R, σW,0,Authi0 , . . . , σW,d−1,Authid−1

) contains
the used index i, randomness R and one WOTS-T signature – authentication
path pair σW,j ,Authij , j ∈ [d− 1] per layer.

Finally, sign updates the secret key SK setting i = i + 1 and outputs the
pair(Σ,SK).

Verification Algorithm (b ←− vf(M,Σ,PK)): On input of a message M ∈
{0, 1}∗, a signature Σ, and a public key PK, the algorithm computes the mes-
sage digest D ←− H(R,M) using the randomness R contained in the signature.
Using i, the indices iδ, i′δ are computed for 0 ≤ δ ≤ d − 1. The message digest
D and the Seed from PK are used to compute the first WOTS-T public key
pkW,0 ←− WOTS.vf(D,σW,0,aOTS0

,Seed), where aOTS0
is the address of the

i0th WOTS-T keypair in the i′0th tree on layer 0. An L-Tree is used to compute
Li0 , the leaf corresponding to pkW,0. Then, the root Root0 of the respective
tree is computed using Algorithm 1 with index i0, leaf Li0 and authentication
path Authi0 .

Then, this procedure gets repeated for layers 1 to d−1 with the following two
differences. First, on layer 1 ≤ δ ≤ d−1 the root of the previously processed tree
Rootδ−1 is used to compute the WOTS-T public key pkW,δ. Second, the leaf
computed from pkW,δ using an L-Tree is Liδ . The result of the final repetition
on layer d − 1 is a value Rootd−1 for the root node of the single tree on the
top layer. This value is compared to the first element of the public key, i.e.,
PK1

?
= Rootd−1. If the comparison holds, vf returns true, otherwise false.

5 Security

In the following we give a security reduction for XMSS-T. First, we review the
required security definitions. We first give the classical definitions and comment
on the post-quantum versions afterwards. Then we give a security reduction for
XMSS-T.

Existential Unforgeability under Adaptive Chosen Message Attacks.
The standard security notion for digital signature schemes is existential unforge-
ability under adaptive chosen message attacks (EU-CMA) [18] which is defined
using the following experiment. By Dss(1n) we denote a signature scheme with
security parameter n.

Experiment ExpEU-CMA
Dss(1n) (A)

(sk, pk)←− kg(1n)
(Msg?, σ?)←− ASign(sk,·)(pk)
Let {(Msgi, σi)}

q
1 be the query-answer pairs of sign(sk, ·).

Return 1 iff vf(pk,Msg?, σ?) = 1 and Msg? 6∈ {Msgi}
q
1.
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For the success probability of an adversary A in the above experiment we write

Succeu-cma
Dss(1n) (A) = Pr

[
ExpEU-CMA

Dss(1n) (A) = 1
]
.

A signature scheme is called EU-CMA-secure if any PPT adversary has only
negligible success probability:

Definition 2 (EU-CMA). Let n ∈ N, Dss a digital signature scheme as de-
fined above. We call Dss EU-CMA-secure if for all q, t = poly(n) the maximum
success probability InSeceu-cma (Dss(1n); t, q) of all possibly probabilistic classical
adversaries A running in time ≤ t, making at most q queries to Sign in the above
experiment, is negligible in n:

InSeceu-cma (Dss(1n); t, q)
def
= max

A
{Succeu-cma

Dss(1n) (A)} = negl(n) ,

where the maximum is taken over all probabilistic classical adversaries A.

To be precise, XMSS-T is a so-called key-evolving signature scheme which auto-
matically updates the secret key after each signature. We capture this, assuming
that the oracle sign(sk, ·) in the above experiment replaces the secret key sk after
each signature with the one returned by XMSS-T.sign and that it returns the
empty string when i ≥ 2h, i.e. when the maximum number of signatures has
been reached.

Pseudorandom Function Families. In the following we give the missing def-
inition for the properties of (hash) function families that we use, namely pseu-
dorandomness. In our definition we use the definition of (hash) function families
from Section 2. In the definition of the success probability of an adversary against
pseudorandomness (prf) the adversary gets black-box access to an oracle Box.
Box is either initialized with a function from Hn or a function from the set
G(m,n) of all functions with domain {0, 1}m and range {0, 1}n. The goal of the
adversary is to distinguish both cases:

SuccprfHn (A) =
∣∣∣Pr[Box $←− Hn : ABox(·) = 1]

−Pr[Box $←− G(m,n) : ABox(·) = 1]
∣∣∣ . (9)

Using this success probability, we define a pseudorandom function family the
following way.

Definition 3 (prf). Let Hn be defined as above. We call Hn a pseudorandom
function family, if it is efficient and for all t = poly(n) the maximum success
probability InSecprf (Hn; t) of all possibly probabilistic adversaries A, running in
time ≤ t, is negligible in n:

InSecprf (Hn; t)
def
= max

A
{SuccprfHn (A)} = negl(n) .
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Post-quantum security. All the definitions given so far are explicitly classical
as the maximum in the definition of the insecurity function is over all classi-
cal probabilistic adversaries A. We obtain the respective post-quantum security
notions which are marked with a PQ, taking the maximum over all quantum
adversaries A. Note that this only means that the adversary is capable of per-
forming quantum computations. All communication between A and the user /
the game are still classical. As an example we give a definition of post-quantum
existential unforgeability under chosen message attacks:

Definition 4 (EU-CMA). Let n ∈ N, Dss a digital signature scheme as de-
fined above. We call Dss PQ-EU-CMA-secure if for all q, t = poly(n) the maxi-
mum success probability InSecpq-eu-cma (Dss(1n); t, q) of all quantum adversaries
A running in time ≤ t, making at most q classical queries to Sign in the above
experiment, is negligible in n:

InSecpq-eu-cma (Dss(1n); t, q)
def
= max

A
{Succeu-cma

Dss(1n) (A)} = negl(n) ,

where the maximum is taken over all quantum adversaries A.

5.1 Security reduction

We now prove the security of XMSS-T. We will base the security of the core
scheme on the multi-function multi-target second-preimage resistance of F,H,
the pseudorandomness of Fn, the multi-target extended target collision resis-
tance of H and a functional requirement on F defined below in the quantum
random oracle model. Please note that the quantum random oracle model is
only required to show that we can hand out the seed Seed used to generate the
public function keys and bitmasks. Towards this end, we have to split the use of
Fn into two parts. Assume two functions F1

n and F2
n. We assume F1

n is used in
place of Fn for pseudorandom (secret) key generation and generation of the mes-
sage hash randomness. For F1

n we require standard model pseudorandomness.
On the other hand, F2

n is used to replace Fn when generating the hash keys ki,j
and bitmasks ri,j . In the proof, only F2

n is modeled as quantum random oracle
(using the concatenation of key and input as input to the QRO).

As mentioned above we need an additional requirement on F. Informally we
require that every element in the image of F has at least two preimages, i.e.,

(∀k ∈ {0, 1}n)(∀y ∈ IMG(Fk))(∃x, x′ ∈ {0, 1}n) : x 6= x′∧Fk(x) = fk(x′). (10)

Please note that this requirement meets the expectation for a random function.
This additional requirement is needed to not having to use the one-wayness of F.
If we had to use the one-wayness of F, we still would have to guess the messages
an adversary sends to the oracle. The reason is that plugging a challenge image
into a chain means not knowing any previous value of the chain. Hence, we could
not answer a query where the signature contains such a previous value of a chain.
This would imply a security loss of roughly h bits. Given the above property we
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can instead extract a second preimage if A inverts F with probability 1/2, losing
only 1 bit in the security level.

Now we got everything needed for the security reduction. We proof the fol-
lowing theorem:

Theorem 2. XMSS-T is post-quantum existentially unforgeable under adaptive
chosen message attacks with respect to the quantum random oracle model if

– F and H are post-quantum multi-function multi-target second-preimage re-
sistant function families,

– F fulfills the requirement of Eqn. 10,
– F1

n,Fm are post-quantum pseudorandom function families,
– F2

n is modeled as a quantum random oracle, and
– H is an post-quantum multi-target extend target collision resistant hash func-

tion family.

More specifically, the insecurity function InSecPQ-EU-CMA (XMSS-T; ξ, 2h
)
de-

scribing the maximum success probability over all adversaries running in time
≤ ξ against the PQ-EU-CMA security of XMSS-T is bounded by

InSecpq-eu-cma (XMSS-T; ξ)

≤ InSecpq-prf (F1
n; ξ
)

+ InSecpq-prf (Fm; ξ)

+ max{InSecpq-m-eTCR (H; ξ) , 2InSecpq-mm-spr (F; ξ) , InSecpq-mm-spr (H; ξ)}

The general idea of the proof follows that of previous hash-based schemes.
In contrast to previous works, we give a non-modular proof. This means, we do
not proof security of WOTS-T and then reduce it’s security to that of XMSS-T.
Instead we directly reduce several properties of function families to the security
of XMSS-T. While we could do the proof in a modular way, we would lose in
tightness as such a modular reduction requires the use of complexity leveraging.
This can be circumvented by the direct proof.

In the reduction, there are a few mutually exclusive cases what could have
happened when an adversary succeeded. First, the adversary could have broken
the m-eTCR property of H. This case is easily detected and can be handled in a
straight-forward manner. Otherwise, the message digests have to differ. In this
case, either the adversary forged a WOTS-T signature, or managed to replace
a WOTS-T public key. In the former case the adversary has found a second
preimage for F with high probability, in the latter for H. To extract the second
preimage, the reduction takes one mm-spr target (M,K) per hash function call
(H and F). Then, for this call the function is keyed with K and the bitmask is
selected such that the input to the hash function is M . This means, if the input
before the XOR with the bitmask is X, we use X ⊕M as bitmask. Then the
QRO is programmed such that it generates this bitmask and key for this hash
function call. This programming can be done before the adversarial algorithm
starts. Hence, we can circumvent all issues with adaptive programmability in
the QROM. Now, any second preimage in the scheme will be a valid solution for
mm-spr of either H or F. The full proof can be found in Appendix B.
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Remark 1 (Classical version). RestrictingA to classical probabilistic algorithms,
the proof works as a proof for classical EU-CMA security. Accordingly, we ob-
tain a similar theorem. The differences are that for all required properties the
classical notions are used instead of the post-quantum ones, and the proof is in
the classical random oracle model instead of in the QROM, as the adversary is
now classical. Accordingly, even the exact result carries over.

6 Implementation

In Section 4, we described XMSS-T, which builds on XMSSMT , altering the func-
tions that are used to construct WOTS chains and hash trees. We now examine
the cost of this change in terms of computation time. In order to measure the
cost of the additional bitmasks and keys that are required for each application
of the functions F and H, we have implemented and benchmarked XMSS-T and
XMSSMT . We use the BDS tree traversal algorithm [14] to speed up the authen-
tication path computation, making the schemes practical. As addressing scheme
we use the addressing scheme from the current Internet Draft for XMSSMT [24].

Same parameters. First, we examine the scheme for two parameter config-
urations also taken from the Internet Draft [24], obtaining measurements for
both a single-tree and a multi-tree set-up. For both settings, we use w = 16 and
m = n = 256. For the first benchmark, we set h = 20, d = 1. We use the same
subtree height for the second configuration, setting h = 60, d = 3 to construct
three layers of subtrees with a height of twenty nodes each. We set k = 2 as
the BDS parameter for both parameter sets, we rely on the SHA256 function to
construct F and H, and use ChaCha20 as the pseudorandom generator. These
choices are also in accordance with [24]. For more parameter sets see [24].

For XMSS these parameters lead to a security level of 170 bits classical and
85 bits quantum for h = 60 (212 and 106 for h = 20) using the formulas for
bit security from [22]. Following the security analysis in the last section and
the lower bounds in Section 2, these parameters have a security level of more
than 256 bits classical, and 128 bits quantum for XMSS-T (assuming that each
hash query requires more than 4 bit operations), without accounting for the
message digest. With the message digest we get approximately 190 bits classical
and 95 bits quantum security, as is the case for XMSS, because m-eTCR is
still vulnerable to multi-target attacks. While these benchmarks do not demon-
strate the advantages of using XMSS-T, they provide some insight regarding the
increase of computation times. The results for these benchmarks are listed in
Table 2. To carry out these benchmarks, we have used a single core of an Intel
Core i7-4770K CPU, running at 3.5GHz, although the implementation was not
optimized specifically for this platform.

These first results show that the difference in running time between XMSS
and XMSS-T for the same parameters is quite significant. Of course, this was
to be expected as the running time of the schemes is largely dominated by ap-
plications of F and H – precisely the functions that are changed for XMSS-T.
For plain XMSS with the aforementioned parameters, these functions merely
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h d clock cycles

XMSS 20 1 11 322 614
60 3 12 547 967

XMSS-T 20 1 33 169 413
60 3 36 897 222

Table 2. Average signing time (in clock cycles) for m = n = 256.

consist of calls to SHA-256 with inputs of 256 and 512 bits, respectively. Each
of these inputs fits within the internal block size of SHA-256 (512 bits). When
considering the Merkle-Damgård construction [28] that defines the structure of
SHA-256, this implies a single application of the internal compression function.
When transforming F and H into keyed hash functions, the input length in-
creases. To ensure that the key and the input are in separate blocks, the key is
prefixed with 256 zero-bits. This results in inputs of 768 and 1024 bits, respec-
tively, implying the need for two blocks, and two applications of the compression
function. The straight-forward calls to SHA-256 for F and H run in 1 072 and
1 924 cycles, while the keyed variants take 1 932 and 2 812 cycles, respectively.
An even bigger factor weighing down F and H is the time needed to gener-
ate the keys and bitmasks pseudorandomly. Both these values require calls to
the pseudorandom generator. For F, we require two output blocks of 256 bits
each; H requires three. At an expense of 560 cycles per output block, generating
randomness for the masks and keys carries a significant cost.

Altogether, the experiments show that for the same parameters XMSS-T
comes with a factor less than 3 increase in the runtime.

Parameters for same security level. The comparison above does not shine
the best light on XMSS-T. This is the case as it is not a fair comparison: we
did not choose the parameters for XMSS-T in the optimal way. As we only get
190 bits of classical security (95 bits quantum) for XMSS-T anyway, we actually
could have chosen n = 190 without decreasing the security. Note that this does
not apply for XMSS. To demonstrate the impact of XMSS-T, we also did a fair
comparison. For this we selected optimal parameters for XMSS and XMSS-T
separately, targeting 256 bits of classical security (128 quantum).

For XMSS-T, this just means increasing the message digest size to m = 276
for h = 20 and m = 316 for h = 60 while keeping n = 256. With this change
we get 256 bits classical and 128 bits quantum security. For XMSS, in turn, we
not only have to increase the message digest size to m = 276 for h = 20 and
m = 316 for h = 60 as above, but, in addition, we have to increase n to n = 300
for h = 20 and n = 342 for h = 60 [22]. For n > 256 we used SHA512 and
chopped off the unused leading bits. See Table 3 for the benchmarks and Table 4
for the resulting signature and key sizes.

In this fair comparison it turns out that the real increase in runtime for
XMSS-T is only about a factor of 2. However, the signing times are not the
problem of hash-based signatures in practice: it is the signature size. For h = 20,
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m n h d clock cycles

XMSS 276 300 20 1 17 461 681
316 342 60 3 22 529 760

XMSS-T 276 256 20 1 35 499 651
316 256 60 3 44 882 383

Table 3. Average signing time for 256 bits classical and 128 bits quantum security.

m n h d signature secret key public key

XMSS 276 300 20 1 3.5 2.6 1.5
316 342 60 3 13.7 21.4 1.7

XMSS-T 276 256 20 1 2.9 2.2 0.064
316 256 60 3 8.8 14.6 0.064

Table 4. Signature and key sizes in kilobyte for 256 bits classical and 128 bits quantum
security. The secret key includes the BDS state but not the public key elements.

XMSS-T achieves a reduction in signature size of 18%, and for h = 60 as much
as 36%. The size reduction increases for greater values of d as on each layer of
XMSS, the WOTS scheme has to sign longer messages than for XMSS-T, largely
influencing the WOTS signature size.
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A Classical generic security

Preimage resistance. For preimage resistance, analysis shows that the success
probability of any classical A that makes q queries to its oracle is

SuccowHn (A) =

(
q + 1

2n

)
, (11)

where the probability is taken over the internal coins of the oracle and the
random choices of K and M . An attacker that makes no query but simply
outputs a random domain element has success probability 2−n of hitting the
target Y . An attacker that makes one query can verify the first guess. If that
one did not hit Y he can make another guess which he now can not verify
anymore. Together this gives a success probability of 2/2n. Iterating this gives
the above bound. Consequently, an attacker needs O(2n) queries to reach a
success probability of at least 0.5.
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Single-function multi-target preimage resistance. For sm-ow a similar
analysis shows a bound of

Succsm-ow
Hn,p (A) =

(
(q + 1)p

2n

)
, (12)

The reason is that the success probability of a single guess is now p/2n. Other-
wise, the argument follows along the lines of the above argument. Consequently,
the query complexity of a successful attack is O(2n/p). Please note, we also can
get this result using a reduction from ow. In this case, we replace a random Yi
by the given Y from the ow game. The reduction loses a factor 1/p.

Multi-function multi-target preimage resistance.While the previous cases
are more or less known results, for mm-ow we are not aware of any such results.
The difference to sm-ow is that the adversary now basically plays p independent
ow games at once. In contrast to the ow game A can not use a query he made
to attack Yi for any other Yj for j 6= i. The reason is that different functions are
associated to the different Yi. So, in the classical case we get a query bound of

Succmm-ow
Hn,p (A) =

(
q + 1

2n

)
, (13)

The reason is that a guess has success probability 1/2n. As one also has to guess
(Ki, Yi), every verification query can only check if a givenM fulfills Yi = HKi(M)
for a single i. Viewed differently, each query has to fix Ki in advance and outputs
the associated Yi only with probability 2−n. Consequently, we get the same query
bound O(2n) as for ow.

Second-preimage resistance. In the case of second-preimage resistance, the
success probability of any A that makes q queries to its oracle is

SuccsprHn (A) =

(
q + 1

2n

)
, (14)

where the probability is taken over the internal coins of the oracle and the
random choices of K and M . The bound can easily be derived following the
analysis for one-wayness. Consequently, an attacker needs O(2n) queries to reach
a success probability of at least 0.5.

Single-function multi-target second-preimage resistance. For sm-spr a
similar analysis shows a bound of

Succsm-spr
Hn,p (A) =

(
(q + 1)p

2n

)
. (15)

Again, the analysis follows along the lines of the respective analysis for sm-ow.
Consequently, the query complexity of a successful attack is O(2n/p).

Multi-function multi-target preimage resistance.While the previous cases
are more or less known results, for mm-spr we are not aware of any such results.
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The difference to sm-spr is that the adversary now basically plays p independent
spr games at once. As for mm-ow, in the classical case, we get a query bound
of

Succmm-spr
Hn,p (A) =

(
q + 1

2n

)
. (16)

Again, the analysis follows along the lines of the respective analysis for mm-ow.
Consequently, the query complexity of a successful attack is O(2n).

Extended target collision resistance. For eTCR, analysis shows that the
success probability of any adversary A that makes no more than q queries to its
oracle is

SucceTCR
Hn (A) ≤

(
q + 1

2n
+

q

2k

)
, (17)

where the probability is taken over the internal coins of the oracle and the
random choice of K.

Consider an arbitrary adversary A = (A1,A2) attacking eTCR. A1 makes
q1 queries and outputs a message M . Afterwards A2 obtains K and makes q2
queries, with q1+q2 = q. Without loss of generality, we assume that A1 stores all
his query results in the shared memory. When A2 receives K, we can distinguish
two mutually exclusive cases:
Case 1: A1 already queried the oracle for HK(M). To simplify analysis, we

consider this a success for A. As K is a random key and A1 made queries
for no more than q1 different keys, this case occurs with probability

ε1 ≤
q1
2k
.

Case 2: A1 did not query HK(M) before. In this case, every query made by A1

and every query made by A2 has probability 2−n to hit HK(M) and hence
to be a solution. If A2 does not find a solution using all query results, he
can make another guess that has the same success probability as the queries
before. Hence, the success probability in this case is exactly

ε2 =
q1 + q2

2n
.

The sum of the two bounds ε1 + ε2 takes its maximum for q1 = q. This gives the
claimed bound. Note that the analysis for case 1 above is very rough and could
be tightened (This is only a success if A1 already found a pseudo-collision for
(K,M)). However, in all relevant cases we know k & n and hence tightening is
of little use.

Multi-target-eTCR. Now, switching to m-eTCR the complexities for the two
cases change as follows: In both cases a factor of q is lost. In Case 1 this is caused
by the fact that there are now q keys returned (over the game) that might hit
a previously queried one. In Case 2 this is caused by the fact that each query
works for all q targets (as in the case of mm-spr). This leads to the bound

Succm-eTCR
Hn,p (A) =

(q + 1)p

2n
+
qp

2k
.
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B Proof of Theorem 2

In the following we omit indices for the mm-spr challenge pairs to preserve
readability. Assume that there exists a quantum adversary A running in time
ξ that breaks the PQ-EU-CMA security of XMSS with probability εA. In the
following we will prove that εA ≤ InSecPQ-EU-CMA (XMSS-T; ξ, 2h

)
.

Removing pseudorandomness. First, consider the following two games:

Game 1. This is the original game.
Game 2. This is the same as Game 1 but instead of using random elements from
F1
n and Fm (by sampling S and SK2 from the key space), two truly random

functions Gn : {0, 1}n × {0, 1}∗ → {0, 1}n and Gm : {0, 1}n × {0, 1}∗ →
{0, 1}m are used.

The difference in the success probability of A playing one of these games
must be bound by InSecpq-prf (F1

n; ξ
)

+ InSecpq-prf (Fm; ξ), otherwise we could
use A to distinguish F1

n or Fm from a truly random function, breaking the post-
quantum pseudorandomness which would contradict the assumption. Hence, it
suffices to analyze the success probability of A in Game 2. Towards this end, we
construct an oracle machine MA that breaks either the post-quantum multi-
function multi-target second-preimage resistance of F or of H, or the post-
quantum multi-target extended target collision resistance of H. MA takes q1
challenge pairs {(Ki,Mi)}q11 for F and q2 challenge pairs {(K ′i,M ′i)}

q2
1 for H

where q1 (q2) is the number of calls to F (H) for the XMSS-T key pair. Each of
these challenge pairs gets associated with one specific call to F (H, resp.) within
the XMSS-T key pair.

Programming the quantum RO. In the classical world we could program
the RO adaptively. In the (post-)quantum setting this is not possible without
further complications as an adversary might query the RO with the superposition
of all messages. Luckily, this is not an issue in the given setting asMA has all
information required to program the RO before it actually runs A.
MA first samples a random seed Seed $←− {0, 1}n and a OTS secret key

seed SK1
$←− {0, 1}n. The RO is then programmed such that it outputs the

right bitmasks and keys which only depend on Seed and the challenge pairs.
W.l.o.g, assume A makes no more than qRO queries to the RO. MA uses a
2qRO-wise independent function GRO : {0, 1}n+a \ L → {0, 1}n where L is the
set of all values (X1, X2) ∈ {0, 1}n × {0, 1}a such that X1 = Seed and X2 is
a valid address for a bitmask or a key for a hash function call. Note that such
a function can be efficiently constructed as we show in Appendix C. Now the
random oracle for input (X1‖X2) ∈ {0, 1}n × {0, 1}a is defined as follows.

– If X1 6= Seed or X2 is no valid address of a bitmask or a key for a hash
function call, the RO outputs GRO(X1‖X2).

– If X1 = Seed and X2 is a valid address for the key of a hash function call,
the RO returns the key K from the challenge (K,M) associated with the
respective hash function call.
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– If X1 = Seed and X2 is a valid address for the bitmask of a first hash
call in a WOTS+ function chain, the start value of that chain is generated
as X = G(SK1,a) where a is the address of that function chain. The RO
returns bitmask r = X ⊕M where (K,M) is the challenge pair associated
with the hash function call.

– If X1 = Seed and X2 is a valid address for the bitmask of a hash call in a
WOTS+ function chain that is not the first in that chain, let (K ′,M ′) be
the challenge template associated with the previous hash call in that chain.
Then the RO returns bitmask r = FK′(M ′) ⊕M where M is the message
part of the challenge pair (K,M) associated with the hash function call.

– Finally, if X1 = Seed and X2 is a valid address for the bitmask of a hash
call to H, let (K1,M1), (K2,M2) be the challenge templates associated with
the hash calls computing its two child nodes. Then the RO returns bitmask
r = (HK1(M1)‖HK2(M2))⊕M whereM is the message part of the challenge
pair (K,M) associated with the hash function call. (Note that the challenge
templates for the child nodes might be associated with calls to F if the
address is associate with the computation of a node on level 1 in an L-tree.
In this case H is replaced by F in the computation of r).

Note that in all but the first case, the output of RO is uniformly random over
{0, 1}n as the challenge pairs are uniformly random per definition. The outputs
following from first case are also indistinguishable from the outputs of a random
function according to Lemma 4.

Running A. The XMSS-T public key PK becomes (PK1 = HK′j
(M ′j),Seed) for

(K ′j ,M
′
j) – the pair associated with the call to H that computes the root. Now

A is run on this PK. When A makes his ith query using some message Msgi,
MA first sends Msgi to the m-eTCR challenger, receiving back a function key
Ri. Then it computes the message digest as Di = H(Ri,Msgi) and sets the
signature index to i. The next steps are the same for each tree involved in the
signature. First, MA computes the chain indexes b. The WOTS+ signature is
collected by selecting the challenge (K,M) for the bjth call to F in the jth chain
and computing the jth signature element as FK(M). Similarly, the authentica-
tion path for the WOTS+ key pair is generated by figuring out the nodes that
are required. Then, these nodes are calculated as HK(M) where (K,M) is the
challenge pair associated with the call to H that computes this authentication
path node. The same is done for the root node. Afterwards, the whole procedure
is repeated for the parent tree, until the top tree is done. Then the XMSS-T
signature Σi is sent back to A.

Extraction. When A outputs a forgery (Msg, Σ) with Σ = (i, R, σW,0,Authi0 ,
. . . , σW,d−1,Authid−1

), MA runs the verification algorithm on (Msg, Σ) and
(Σi,Msgi). If the forgery is invalid, MA returns ⊥. Otherwise, three mutually
exclusive cases can occur. MA compares the values computed during the two
verification runs in order of computation.

Case 1: If D = H(R,Msg) = H(Ri,Msgi) = Di, i.e., if the digests of the ith
query is the same as that of the forgery,MA broke pq-m-eTCR and returns
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(i, R,Msg). Hence, the probability that A outputs a case 1 forgery must be
upper bounded by InSecpq-m-eTCR (H; ξ) per assumption.

If the digests are different, the corresponding bi are also different and hence,
parts of the data computed by the two verification runs must also differ. Now,
MA only compares the computed WOTS+ public keys and the computed root
values. By the pigeonhole principle, the signatures have to agree on one of these
for the first time as they lead to the same root of the top tree.

Case 2: If the data generated verifying the two signatures first agrees on a
WOTS+ public key, the message digests or the root nodes signed with this
WOTS+ keypair where different. Hence, we got a WOTS+ forgery. In this
case, by the construction of the checksum there must be one chain j in this
WOTS+ keypair such that bj < (bj)i, i.e. the jth signature value of the
forgery belongs to an earlier hash call than the one of the answer to the ith
query. As both chains end in the same public key value, they must collide at
the output of some call to F. If this point is not the (bj)ith call it has to be
a later one. In this case, the input to the colliding call to F computed from
the forgery is a second preimage for the challenge template associated with
that call to F and MA outputs it, breaking pq-mm-spr of F. Otherwise,
the two chains collide on the output of the (bj)ith call to F, i.e., on (σj)i,
the jth value of the original signature. Let (K,M) be the challenge pair
associated with the call to F that produced (σj)i. According to Eqn. 10,
(σj)i has at least two preimages under Fk. As A has no information about
the preimage, the value X that can be computed from the forgery and that
leads fK(X) = (σj)i is unequal to M with at least probability 1/2. In that
case,MA found a second preimage ofM under FK and outputs it. Otherwise
it returns ⊥. Consequently, the probability that A outputs a case 2 forgery
must be upper bounded by 2InSecpq-mm-spr (F; ξ) per assumption.

Case 3: If the data generated verifying the two signatures first agrees on a root
node, the WOTS+ public keys that are used to compute this root node have
to differ. A third time by the pigeonhole principle, there must be one call
to H between the WOTS+ public key and the root node where the output
for the forgery and the correct signature agree for the first time. As the
input data depends on previously computed outputs of H (or F), it must
differ. Hence, for challenge pair (K,M), the input to this call to HK is a
second preimage forM , thatMA returns breaking pq-mm-spr of H. Hence,
the probability that A outputs a case 3 forgery must be upper bounded by
InSecpq-mm-spr (H; ξ).

Combining the upper bounds from the three cases shows that the success prob-
ability εA of A winning in Game 2 must be upper bounded by

εA ≤ max{InSecpq-m-eTCR (H; ξ) , 2InSecpq-mm-spr (F; ξ) , InSecpq-mm-spr (H; ξ)}.

Combining this with the result that the difference in A’s success probability
between playing in Game 1 and playing in Game 2 must be upper bounded
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by InSecpq-prf (F1
n; ξ
)

+ InSecpq-prf (Fm; ξ), we get the claimed bound on the
success probability of any adversary A running in time ξ:

Succeu-cma
XMSS-T (A) ≤ InSecpq-prf (F1

n; ξ
)

+ InSecpq-prf (Fm; ξ)

+ max{InSecpq-m-eTCR (H; ξ) , 2InSecpq-mm-spr (F; ξ) , InSecpq-mm-spr (H; ξ)}

ut

C t-wise independence with arbitrary range

As noted earlier, most constructions of t-wise independent hash functions con-
sider output space Y of size a prime or a prime power. We need one with
Y = [N ], N = 2n − 1. A natural approach is to pick a prime M >> N and con-
struct a t-wise independent family HM : X → [M ]. Then H : x 7→ H0(x) mod N
will be good for our purpose, modulo a tiny error.

We show below that the “mod” construction above works. First of all, let Fk
be the collection of all functions from X to [k]. We know that for any q-query
quantum adversary A

Pr
H←HM

[AH(·) = 1] = Pr
f←FM

[Af (·) = 1] .

Note that this still holds with the extra mod operation. Namely,

Pr
h←HM

[AHN (·) = 1] = Pr
f←FM

[AfN (·) = 1] ,

where gN = modN ◦ g denote the composition of an arbitrary function g and
modN , i.e., gN (x) = g(x) mod N .

Therefore if we can show that∣∣∣∣ Pr
f←FM

[AfN (·) = 1]− Pr
f←FN

[Af (·) = 1]

∣∣∣∣ = negl(n) (∗) ,

then HN = modN ◦ H with H ← HM will behave as a random function from
X to [N ], except with negligible error.

We are left to prove (*). We need a tool by Zhandry [31].

Lemma 6. [31, Theorem 7.3] There is a universal constant C such that the
following holds. Let Dr be a family of distributions on functions from X to Y
indexed by r ∈ Z ∪ ∞. Suppose that, for every integer k and every k pairs
(xi, yi) ∈ X × Y, the function p(r) = Prf←Dr [f(xi) = yi∀i ∈ {1, . . . , k}] is a
polynomial of degree at most k in 1/r. Then any quantum algorithm making q
quantum queries can only distinguish the distribution Dr from D∞ with proba-
bility at most Cq3/r.

We define a family of distributions Dr on functions from X to [N ]. f ← Dr is
generated as follows: first sample fr ← Fr a random function from X to [r] and
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then set f = modN ◦ fr. Observe that f ← D∞ is identical to f ← FN , a truly
random function from X to [N ]. Now consider arbitrary k pairs (x, y) ∈ X × [N ],
it is easy to verify that

Pr
f←Dr

[∀i ∈ [k], f(xi) = yi]

is a polynomial in 1/r with degree at most k.
Therefore, by Lemma 6, we can pick M = Ω(q3N) and obtain that DM and

D∞ are indistinguishable by any q-query adversaries. Namely (*) holds.

D Proof for Proposition 1: hardness of breaking ow,
sm-ow, mm-ow

We give the proof for ow. The others can be proven analogously and we only
describe the reductions from Avg-Search.

Proof (Hardness of ow). Given an Avg-Search instance, we construct an instance
of ow in Figure 4:

Given: f ← Dλ : {0, 1}m → {0, 1}n, λ = 1/2n.

1. Sample y ← {0, 1}n uniformly at random.
2. Let g : {0, 1}m → {0, 1}n \ {y} be a random function. Construct H̃ :
{0, 1}m → {0, 1}n as follows: for any x ∈ {0, 1}m

x 7→
{
y if f(x) = 1,
g(x) otherwise.

Output: ow instance (y, H̃). Namely an adversary is given y and oracle access
to H̃, and the goal is to find x∗ such that H̃(x∗) = y.

Fig. 4. Reducing Avg-Search to ow.

Note that the way that f is generated ensures that the constructed H̃ is
distributed identically to a uniformly random function H : {0, 1}m → {0, 1}n.
However the joint distribution (y, H̃) has a slight discrepancy from that in the
definition Eq. 1. This is because y may have no preimages, but in the definition
existence of preimages is guaranteed. Nonetheless, as we show below, the regime
we are interested in, i.e. 2m � 2n (e.g. m = 2n) and p� 2n, this only incurs a
negligible error. This implies that any q-query attacker solving mm-ow will give
rise to a 2q-query algorithm for Avg-Searchλ. As a consequence

Succmm-ow
Hn (A) ≤ ADV2q

A (λ) ≤ 16(q + 1)2/2n ,

according to Theorem 1.
Consider the reduction from Avg-Search to ow. Clearly the output (y, H̃) is

distributed identically as we sample a random hash function H and a random
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element from the codomain Y = {0, 1}n. We denote this distribution as D1 =
(H, y) : H ← H, y ← Y. Then we show that D1 is close to another distribution
D0 = (H,H(x)) : H ← H, x ← X which is the one in the definition for Succow

in Eqn. 1.

SD(D0, D1) =
∑
H,y

1

2

∣∣∣∣PrH,x(H,H(x) = y)− Pr
H,y

(H, y)

∣∣∣∣
=

1

2

∑
H,y

∣∣∣∣(Pr
x

(H(x) = y|H)− Pr
y

(y|H)) · PrH(H)

∣∣∣∣
=

1

2

∑
H,y

1

|H|

∣∣∣∣Pr
x

(H(x) = y|H)− 1

|Y|

∣∣∣∣
=

1

2

∑
y

∑
H

1

|H|

∣∣∣∣ |H−1(y)|
|X |

− 1

|Y|

∣∣∣∣
=

1

2|X |
∑
y

EH(|Zy,H − |X |/|Y||)

where Zy,H := |{x ∈ X : H(x) = y}|. Observe that EH(Zy,H) = |X |/|Y|, so by
Jensen’s inequality we have that EH(|Zy,H−|X |/|Y||) ≤

√
EH((Zy,H − |X |/|Y|)2) =√

V ar(Zy,H). By a simple calculation we can see that V ar(Zy,H) = |X |(|Y|−1)
|Y|2 .

Therefore

SD(D0, D1) ≤ 1

2|X |
|Y|

√
|X |
|Y|

=
1

2

√
|Y|
|X |

.

This is negligibly small whenever |X | >> |Y| (e.g., m ≥ 2n).

Next we describe the reductions from Avg-Search to sm-ow and mm-ow.

Given: f ← Dλ : {0, 1}m → {0, 1}n, λ = p/2n.

1. For i = 1, . . . , p, sample yi ← {0, 1}n independently and uniformly at
random. Denote S = {yi}pi=1.

2. Let I : {0, 1}m → [p] be a random function and g : {0, 1}m → {0, 1}n\S
be another random function. Construct H̃ : {0, 1}m → {0, 1}n as follows:
for any x ∈ {0, 1}m

x 7→
{
yi, i = I(x) if f(x) = 1,
g(x) otherwise.

Output: sm-ow instance (S, H̃). Namely an adversary is given {yi} and oracle
access to H̃, and the goal is to find x∗ such that there exists i ∈ [p] with
H̃(x∗) = yi.

Fig. 5. Reducing Avg-Search to sm-ow
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More specifically, the quantum oracle
∑
x,z αx,z|x〉|z〉

H̃7→
∑
x,z αx,z|x, z +

H̃(x)〉 is implemented as follows:∑
αx,z|x, z〉

7→
∑

αx,z|x, z〉|f(x)〉 evaluate f

7→
∑

αx,z|x〉|z + (f(x) · yI(x) + f(x) · g(x))〉|f(x)〉 set H̃(x) conditioned on f

7→
∑

αx,z|x〉|z + (f(x) · yI(x) + f(x) · g(x))〉 uncompute f

=:
∑

αx,z|x〉|z + H̃(x)〉

Given: f ← Dλ : [p]× {0, 1}m → {0, 1}n, λ = 1/2n.

1. For i = 1, . . . , p, sample yi ← {0, 1}n independently and uniformly at
random. Denote S = {yi}pi=1.

2. For i = 1, . . . , p, let gi : {0, 1}m → {0, 1}n\yi be independent random
functions. ConstructHi : {0, 1}m → {0, 1}n as follows: for any x ∈ {0, 1}m

x 7→
{
yi, if f(i‖x) = 1,
gi(x) otherwise.

Output: mm-ow instance (S, {Hi}). Namely an adversary is given {yi} and
oracle access to {Hi}, and the goal is to find (i∗, x∗) such that Hi∗(x∗) = yi∗ .

Fig. 6. Reducing Avg-Search to mm-ow

E Reducing Avg-Search to sm-spr, mm-spr

Here we describe the reductions from Avg-Search to sm-spr and mm-spr. They
can be analyzed similarly to the case of mm-spr, as we discussed in Sect. 3.2,
by which we prove the remaining of Proposition 2.
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Given: f ← Dλ : {0, 1}m → {0, 1}n, λ = 1/2n.

1. Sample x̂← {0, 1}m and y ← {0, 1}n uniformly at random.
2. Let g : {0, 1}m → {0, 1}n \ {y} be a random function. Construct H̃ :
{0, 1}m → {0, 1}n as follows: for any x ∈ {0, 1}m such that

x 7→


y if x = x̂
y if x 6= x̂&f(x) = 1,
g(x) otherwise.

Output: spr instance (x̂, H̃). Namely an adversary is given y and oracle access
to H̃, and the goal is to find x∗ such that x∗ 6= x̂ and H̃(x∗) = y.

Fig. 7. Reducing Avg-Search to spr.

Given: f ← Dλ : {0, 1}m → {0, 1}n, λ = p/2n.

1. For i = 1, . . . , p, sample mi ← {0, 1}m and yi ← {0, 1}n independently
and uniformly at random. Denote S = {mi} and T = {yi}.

2. Let I : {0, 1}m → [p] and g : {0, 1}m → {0, 1}n\T be random functions.
Construct H̃ : {0, 1}m → {0, 1}n as follows: for any x ∈ {0, 1}m

x 7→


yi if x = mi

yi, i = I(x) if x /∈ S ∧ f(x) = 1,
g(x) otherwise.

Output: spr instance (x̂, H̃). Namely an adversary is given y and oracle access
to H̃, and the goal is to find x∗ such that x∗ 6= x̂ and H̃(x∗) = y.

Fig. 8. Reducing Avg-Search to sm-spr.
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