
Generic Transformation of a CCA2-Secure Public-Key

Encryption Scheme to an eCK-Secure Key Exchange Protocol in

the Standard Model

Janaka Alawatugoda

Department of Computer Engineering

University of Peradeniya, Peradeniya 20400

Sri Lanka

janaka@ce.pdn.ac.lk

Abstract

LaMacchia, Lauter and Mityagin presented a strong security model for authenticated key agreement,
namely the eCK model. They also constructed a protocol, namely the NAXOS protocol, that enjoys
a simple security proof in the eCK model. However, the NAXOS protocol uses a random-oracle-based
technique to combine the long-term secret key and the per-session-randomness; so-called NAXOS-
trick, in order to achieve the eCK security definition. For NAXOS-trick-based protocols, the leakage
of per-session-randomness modelled in the eCK model is somewhat unnatural, because the eCK
model leaks per-session-randomness, while the output of the NAXOS-trick computation remains
safe. In this work, we present a standard model eCK-secure protocol construction, eliminating the
NAXOS-trick. Moreover, our protocol is a generic constructions, which can be instantiated with
arbitrary suitable cryptographic primitives. Thus, we present a generic eCK-secure, NAXOS-free,
standard model key exchange protocol. To the best of our knowledge this is the first paper on
generic transformation of a CCA2-secure public key encryption scheme to an eCK-secure key exchange
protocol in the standard model.

Keywords: Public Key Cryptography, Key Exchange Protocols, eCK Model, Standard Model

This is an older version of the paper titled Generic construction of an eCK-secure key exchange protocol in the
standard model which is published in the International Journal of Information Security. The final publication is available at
http://link.springer.com/article/10.1007/s10207-016-0346-9

The author is supported by the National Research Council (NRC), Sri Lanka Postdoctoral Fellowship grant NRC 16-020.

1

mailto:janaka@ce.pdn.ac.lk

Contents

1 Introduction 3
1.1 Key Exchange Security Models . 3
1.2 eCK-Secure Key Exchange Protocols . 4
1.3 Our Contribution . 5

2 Preliminaries 5
2.1 Pseudo Random Functions . 5
2.2 Indistinguishability against Adaptive Chosen Ciphertext Attacks (CCA2) 6
2.3 Diffie-Hellman Assumptions . 6

3 Extended Canetti-Krawczyk Model (eCK) 7

4 Generic eCK-Secure Key Exchange in the Standard Model 8
4.1 Construction of the Generic Protocol P1 . 8
4.2 Security Analysis of the Protocol P1 . 9
4.3 Efficiency of the protocol P1 . 23

5 Conclusion and Future Works 23

2

1 Introduction

In 1976, Diffie and Hellman introduced a key exchange primitive [11], which enables two parties to
exchange a secret key (session key) by communicating over a public channel. Users Alice and Bob agree
on a group G of prime order q and on a generator g of this group. This is done before executing the rest

of the protocol, and g and q are assumed to be public. Alice picks a random integer a
$←− Zq and computes

A← ga and sends it to Bob. Then Bob picks a random integer b
$←− Zq and computes B ← gb and sends

it to Alice. After that, Alice computes Ba = (gb)a = s ∈ G and Bob computes Ab = (ga)b = s ∈ G. Thus,
both Alice and Bob end up with the same value s ∈ G. An eavesdropper who watches this communication
can see A and B values, but should be unable to determine the values of s (assuming CDH holds).

Many key exchange protocols have been created based on the Diffie-Hellman key exchange primitive
[8, 12, 16]. In these key exchange protocols, different types of keys may be used to compute session keys:
long-term secret keys are the static secrets belong to the protocol participants which are often used to
add authentication to the session key, ephemeral keys are the session specific secrets belong to protocol
participants which are used to add freshness to the session key. There are number of known security
features for key exchange protocols:

Implicit Key Authentication. If a protocol provides a guarantee that no party apart from the
protocol participants can compute the session key, that key exchange protocol is said to provide implicit
key authentication. If a key exchange protocol provides implicit key authentication that protocol is said
to be an authenticated key exchange protocol.

Key Confirmation. If a key exchange protocol provides a guarantee that each party is assured that all
other participants possess the session key, that key exchange protocol is said to provide key confirmation.

Known Key Security. The knowledge of a session key should not enable the adversary to learn the
session keys in other sessions; all session keys should not be depended on the session keys of other sessions.

Unknown Key Share (UKS) Security. It should not happen that a party A shares a session key
with some party B, but believing that it is sharing the session key with some one else C. That means
public keys and identities of the parties should be certified and confirmed or incorporated into protocol
execution.

Key Compromise Impersonation (KCI) Resistance. Knowing the long-term secret key of a party
A should not enable the adversary to impersonate other honest parties to A.

Forward Secrecy. An adversary who knows the long-term secret keys of parties should not be able to
compute the session keys of past sessions between those two particular parties.

1.1 Key Exchange Security Models

In order to analyze the security of key exchange protocols, a formal methodology is needed. Therefore, key
exchange security models have been created. A security model is a formal security statement of certain
security features. Generally, security models are designed to reflect real world adversarial capabilities,
addressing the known security features (mentioned earlier). It is natural to design security models with
theoretical adversaries which have more capabilities than real world adversaries, because that way it
is possible to address more powerful attacks which may exist in the future. Following is the general
structure of a security model.

• Definition of the algorithm: Inputs, outputs and abstract description of the algorithm.

• Adversary capabilities: How the adversary can interact with the system and which information
the adversary is allowed to learn, usually in the form of queries. As a usual practice the adversary
is made as strong as possible by giving more capabilities to the adversary.

• Security game: The way in which the adversary perform queries.

• Security goal: The requirement for the adversary to win the security game.

3

In a security model, there is a predefined list of queries that an adversary can perform (adversary
capabilities). Those queries reveal information such as session keys, ephemeral keys, long-term secret
keys etc. Even after performing the queries, within the constraints defined in the security model, if the
adversary’s advantage of distinguishing the real session key from a random key chosen from the same
distribution is negligible, the protocol is said to be secure in the particular security model. The session in
which the adversary tries to distinguish the real session key from a random key, is known as the target
session.

The Bellare-Rogaway models (BR93 [4], BR95 [6]), the Canetti-Krawczyk (CK) model [9], and the
extended Canetti-Krawczyk (eCK) model [20] are a few such security models, and protocol designers use
them to analyze the security of key exchange protocols. Security features like implicit key authentication,
key confirmation, known key security and UKS security are addressed in the models such as BR models,
CK model and the eCK model.

Security Feature BR 93 BR 95 CK eCK

Implicit Key Authentication Yes Yes Yes Yes
Known Key Security Yes Yes Yes Yes
Key Confirmation Yes Yes Yes Yes
UKS Yes Yes Yes Yes
KCI No No No Yes
Forward Secrecy No No Yes weak-Forward Secrecy

Table 1: Security Features of Different Security Models

In the BR models and the CK model, the adversary is not allowed to learn the long-term secret key of
the owner of the target session, before it expires. Therefore, those models are not capable of addressing
the key compromise impersonation attacks, whereas the eCK model allows the adversary to learn the
long-term secret key of the owner of the target session. Therefore the eCK model addresses the KCI
attacks. Moreover, the BR models and the CK model do not allow the adversary to reveal the session
states or ephemeral keys of the target session or its partner session. Therefore, those models are not
capable of addressing the ephemeral key leakage attacks, whereas the eCK model allows the adversary to
reveal both of the ephemeral keys of the target session, as long as the owner and the partner principals
to the target session are not corrupted. Therefore the eCK model addresses the ephemeral key reveal
attacks. In the CK model, after the target session has expired, the adversary is allowed to learn the
long-term secret keys of the protocol participants of the target session, regardless of whether the adversary
actively interfered with the target session, whereas the eCK model only allows the adversary to learn
the long-term secret keys of both protocol participants of the target session when the adversary has not
actively interfered with the target session. Therefore, the CK model addresses the perfect forward secrecy,
while the eCK model only addresses the weak perfect forward secrecy. Table 1 summarizes the security
features of above discussed security models.

Likewise, the eCK model is clearly defined to capture most of the demanding security features of
key exchange protocols, and thus widely used as a strong security model to analyze the security of key
exchange protocols. We explain the eCK model in detail in Section 3.

1.2 eCK-Secure Key Exchange Protocols

The initial effort of constructing the eCK-secure key exchange protocols is combining the long-term secret
key and the ephemeral secret key using a random oracle function [5] to obtain a pseudo ephemeral value.
This trick is first introduced by LaMacchia et al. [20] in their protocol named NAXOS, and now it is

widely known as the NAXOS trick. A “psuedo” ephemeral key ẽsk is computed as the random oracle

function of the long-term key lsk and the actual ephemeral key esk: ẽsk ← H(esk, lsk). The value ẽsk is
never stored, and thus in the eCK model the adversary must learn both esk and lsk in order to be able to

compute ẽsk. Note however, that in the NAXOS protocol, the initiator must compute ẽsk = H(esk, lsk)

twice: once when sending its Diffie–Hellman ephemeral public key gẽsk, and once when computing the
Diffie–Hellman shared secrets from the received values. This is to avoid storing a single value that, when
compromised, can be used to compute the session key. There are some key exchange protocols created
using the NAXOS trick [20, 25].

4

Recently, some researchers worked on constructing eCK-secure key exchange protocols without NAXOS
trick [21, 26, 19, 2]. The motivation for such research can be explained as follows: The eCK model
addresses the leakage of the ephemeral secret key. It is unnatural to assume that the ephemeral secret
key is leaked, while the exponent of the ephemeral public key (eg:- the pseudo ephemeral value in the
NAXOS protocol) remains safe, without leaking. Therefore, it seems that there is an unnatural and
indirect assumption of a leakage-free exponentiation computation or leakage-free random source, in the
eCK-security proof of the NAXOS-style key exchange protocols. Therefore, eliminating the NAXOS
trick and still preserving the eCK security would be more realistic. Moreover, the NAXOS trick is a
random oracle based technique. Good things on random oracle based constructions is that, the schemes
are efficient, proofs are clean and the random oracles can be replaced with suitable hash functions in
the real world implementations. On the other hand, random oracle proofs are considered as ideal world
proofs, rather than real world proofs. Therefore, perhaps cryptographers tend to construct cryptographic
schemes which are proven secure in the standard model.

1.3 Our Contribution

In this paper our aim is to present a generic eCK-secure, NAXOS-free, standard model key
exchange protocol, namely the protocol P1. Thus, our generic protocol is a strongly-secure and realistic
framework for real world instantiations. Our protocol is a Diffie-Hellman-style key exchange protocol,
and we assume on the hardness of the decisional Diffie-Hellman (DDH) problem. Moreover, our protocol
uses an arbitrary CCA2-secure public-key encryption scheme to encrypt Diffie-Hellman public ephemeral
values and exchange them between the protocol principals. An arbitrary pseudo-random function is used
to derive the secret session key using the ephemeral Diffie-Hellman shared key, long-term Diffie-Hellman
shared key and the message flow. Since our protocol is a generic protocol, this can be instantiated with
an arbitrary CCA2 public-key encryption scheme and an arbitrary pseudo-random function. Therefore, it
is possible to instantiate our protocol with more efficient CCA2-secure public-key encryption schemes
and pseudo-random functions in future and achieve better performance. In Table 2, we look at the
basic characteristics of few eCK-secure key exchange protocols in the literature, comparing with our new
protocol. Table 2 shows that our protocol captures all of the desired features that we discussed here.

Protocol NAXOS trick Proof Model DH Assumption Generic/Concrete

NAXOS [20] Yes Random Oracle GDH Concrete
CMQV [25] Yes Random Oracle GDH Concrete
MO [21] No Standard DDH Concrete
KFU P1 [19] No Random Oracle GDH Concrete
KFU P2 [19] No Random Oracle CDH Concrete
Yang P1[26] No Standard Bilinear DDH Concrete
Yang GC-KKN[26] No Standard DDH Generic
ASB [2] No Random Oracle GDH Concrete
Protocol P1 (this paper) No Standard DDH Generic

Table 2: Basic characteristics of few eCK-secure key exchange protocols

To the best of our knowledge, this is the first paper on generic transformation of a CCA2-
secure public key encryption scheme to an eCK-secure key exchange protocol in the standard
model.

2 Preliminaries

In this section we review the preliminaries that we use in this paper.

2.1 Pseudo Random Functions

We now describe the security definition of pseudo random functions according to Katz and Lindell [17].

Definition 2.1 (Pseudo Random Functions). Let F : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ be an efficient, length
preserving, keyed function. F is a pseudo random function if for all PPT adversaries B, there is a
negligible function AdvPRF(B) in k such that:∣∣∣Pr[BF (key,·)(1k) = 1]− Pr[Bfrnd(·)(1k) = 1] ≤ AdvPRF(B)

∣∣∣,
5

where the first probability is taken over uniform choice of key ∈ {0, 1}k and the randomness of B, and
the second probability is taken over uniform choice of frnd and randomness of B, and B is not given a
key key.

2.2 Indistinguishability against Adaptive Chosen Ciphertext Attacks (CCA2)

A public-key encryption scheme consists of three algorithms as follows:

• KG: This is a PPT algorithm that takes as input the security parameter and outputs a public/secret
key pair (pk, sk). This also specifies the message (plaintext) space M and the ciphertext space C.

• Enc: This is a PPT algorithm that takes as input m ∈ M and a public-key pk, and outputs a
ciphertext c ∈ C.

• Dec: This is a deterministic algorithm that takes as input a ciphertext c ∈ C and a secret key sk,
and outputs either a message m ∈M or the error symbol ⊥.

A public-key encryption scheme must satisfy the correctness property: for all valid key pairs (pk, sk), if
c = Encpk(m) for any m ∈M, then Decsk(c) = m.

We now review a strong security notion for public-key encryption schemes: indistinguishability against
adaptive chosen ciphertext attacks (CCA2), referring Bellare et al. [3].

Definition 2.2 (Indistinguishability against Adaptive Chosen Ciphertext Attacks (CCA2)). Let A =
(A1,A2) be any PPT adversary in the security parameter k, against a public-key encryption scheme
PKE = (KG,Enc,Dec). The CCA2 security experiment for the public-key encryption scheme PKE,
ExpCCA2

PKE,A(1k), is defined as follows:

1. (pk, sk)
$←− KG(1k)

2. (m0,m1, state)← ADec(sk,c)
1 (pk) such that |m0| = |m1|

3. b
$←− {0, 1}

4. c∗ ← Enc(pk,mb)

5. b′ ← ADec(sk,c)c∗6=c

2 (pk, c∗, state)

6. A wins if b′ = b

Decryption Oracle

• Dec(sk, c)→ m where m is the corresponding plaintext c.

• returns m to A
The public-key encryption scheme PKE is CCA2-secure, if for every PPT adversary A the advantage of

winning the security experiment ExpCCA2
PKE (A): AdvCCA2

PKE (A), is negligible in the security parameter k.

2.3 Diffie-Hellman Assumptions

We now describe two Diffie-Hellman assumptions which form the basis of security for many cryptographic
primitives. Let k be the security parameter, G be a group generation algorithm and (G, q, g)← G(1k),
where G is a cyclic group of prime order q and g is an arbitrary generator of G.

Definition 2.3 (Computational Diffie-Hellman (CDH) Assumption). We say that computational Diffie-
Hellman assumption holds in G if for all PPT algorithms A, the probability of solving the CDH problem
in G given as:

PrCDH
g,q (A) = Pr

(
A(G, g, q, ga, gb) = gab

)
is negligible for a given security parameter k.

Definition 2.4 (Decisional Diffie-Hellman (DDH) Assumption). Consider the following two distributions:

DHG = {(g, ga, gb, gab); a, b $←− Zq} and RG = {(g, ga, gb, gc); a, b, c $←− Zq} . It is said that DDH
assumption holds in G if for all PPT algorithms A, the advantage in distinguishing the two distributions
DH and R given as:

AdvDDH
g,q (A) =

∣∣∣Pr[A(DHG) = 1]− Pr[A(RG) = 1]
∣∣∣

is negligible for a given security parameter k.

6

3 Extended Canetti-Krawczyk Model (eCK)

The motivation of LaMacchia et al. [20] in designing the eCK model was that an adversary should have to
compromise both the long-term and ephemeral secret keys of a party in order to recover the session key.

Parties and Long-term Keys. Let U = {U1, . . . , UNP
} be a set of NP parties. Each party Ui where

i ∈ [1, NP] has a pair of long-term public and secret keys, (pkUi
, skUi

). Each party Ui owns at most NS
number of protocol sessions.

Sessions. Each party may run multiple instances of the protocol concurrently or sequentially; we use
the term principal to refer a party involved in a protocol instance, and the term session to identify a
protocol instance at a principal. The notation Πs

U,V represents the sth session at the owner principal U ,
with intended partner principal V . The principal which sends the first protocol message of a session is the
initiator of the session, and the principal which responds to the first protocol message is the responder of
the session. A session Πs

U,V enters an accepted state when it computes a session key. Note that a session
may terminate without ever entering into the accepted state. The information of whether a session has
terminated with or without acceptance is public.

Partnering. Legitimate execution of a key exchange protocol between two principals U and V makes
two partnering sessions owned by U and V respectively. Two sessions Πs

U,V and Πs′

U ′,V ′ are said to be
partners if all of the following hold:

1. both Πs
U,V and Πs′

U ′,V ′ have computed session keys;

2. messages sent from Πs
U,V and messages received by Πs′

U ′,V ′ are identical;

3. messages sent from Πs′

U ′,V ′ and messages received by Πs
U,V are identical;

4. U ′ = V and V ′ = U ;

5. Exactly one of U and V is the initiator and the other is the responder.

The protocol is said to be correct if two partner sessions compute identical session keys.

Adversarial Powers. The adversary A is a probabilistic polynomial time algorithm in the security
parameter k, that has the control over the whole network. A interacts with set of sessions which represent
protocol instances. A can adaptively ask following queries.

• Send (U, V, s,m) query- This query allows A to run the protocol. It sends the message m to the

session
∏s
U,V as coming from the session

∏s′

V,U .
∏s
U,V will return to A the next message according

to the protocol conversation so far or decision on whether to accept or reject the session. A can also
use this query to initiate a new protocol instance with blank m. This query captures capabilities of
active adversary, who can initiate sessions and modify or delay protocol messages.

• SessionKeyReveal (U, V, s) query- If a session
∏s
U,V has accepted and holds a session key, A gets

the session key of
∏s
U,V . A session can only accept a session key once. This query captures the

known key attacks.

• EphemeralKeyReveal (U, V, s) query- Gives all the ephemeral keys (per session randomness) of the
session

∏s
U,V to A.

• Corrupt (U) query- A gets all the long-term secrets of the principal U . But this query does not
reveal any session keys to A. This query captures the key compromise impersonation (KCI) attacks,
unknown key share (UKS) attacks and forward secrecy.

• Test (U, s) query- Once a session
∏s
U,V has accepted and holds a session key, A can attempt to

distinguish it from a random key. When A asks the Test query, the session
∏s
U,V first chooses a

random bit b ∈ {0, 1} and if b = 1, the actual session key is returned to A, otherwise a random
session key is chosen uniformly at random from the same session key distribution, and is returned
to A. This query is only allowed to be asked once.

7

Freshness. A session
∏s
U,V is said to be fresh if and only if all of the following hold:

1. The session
∏s
U,V and its partner (if it exists),

∏s′

V,U have not been asked the Session- Key reveal

query.

2. If partner
∏s′

V,U exists none of the following combinations have been asked:

(a) Corrupt(U) and EphemeralKeyReveal(U, V, s)

(b) Corrupt(V) and EphemeralKeyReveal(V,U, s′)

3. If partner
∏s′

V,U does not exist none of the following combinations have been asked

(a) Corrupt(V)

(b) Corrupt(U) and EphemeralKeyReveal(U, V, s)

Security Game.

• Stage 0: The challenger generates the keys by using the security parameter k.

• Stage 1: A is executed and may ask any of Send, SessionKeyReveal, EphemeralKeyReveal and
Corrupt queries to any session at will.

• Stage 2: At some point A chooses a fresh session and asks the Test query.

• Stage 3: A may continue asking Send, SessionKeyReveal, EphemeralKeyReveal and Corrupt

queries. The only condition is that A cannot violate the freshness of the test session.

• Stage 4: At some point A outputs the bit b′ ∈ {0, 1} which is its guess of the value b on the test
session. A wins if b′ = b.

Definition of Security. Let SuccA be the event that the adversary A wins the eCK game.

Definition 3.1. A protocol (π) is said to be secure in the eCK model if there is no PPT adversary A
who can win the eCK game with non-negligible advantage in the security parameter k. The advantage of
an adversary A is defined as:

AdveCK
π (A) = |2Pr(SuccA)− 1| .

4 Generic eCK-Secure Key Exchange in the Standard Model

In this work we construct a generic eCK-secure key exchange protocol, in the standard model, using
an arbitrary CCA2-secure public key encryption scheme and an arbitrary pseudo-random function. We
prove the security of our protocol in the standard model, assuming the hardness of the DDH problem.

Bergsma et al. [14] introduced a PRF-based key derivation to achieve eCK-security which seems very
similar in spirit to the PRF-based key derivation in this construction. Nevertheless, this construction is
based on CCA2-secure encryption while their construction is based on NIKE; that is an advantage of this
construction (Since NIKE implies CCA2-secure encryption, but it is unclear whether the opposite holds.
So it seems that CCA2-secure encryption is a weaker assumption). Another difference between Bergsma
et al. and this construction is that this (like other previous works) additionally requires Diffie-Hellman
groups, whereas Bergsma et al. is based solely on NIKE without additional assumptions.

4.1 Construction of the Generic Protocol P1

The protocol P1 shown in Table 3 is a Diffie-Hellman-style [11] key agreement protocol. Let k be the
security parameter and group G be generated using a group generation algorithm which takes k as an
input, where G be a group of prime order q with generator g. We use an arbitrary CCA2-secure public-key
encryption scheme PKE = (KG,Enc,Dec) to encrypt protocol messages. Given the security parameter
k, KG computes a pair of secret/public keys. Let skAlice, pkAlice be the secret/public encryption keys
of Alice and skBob, pkBob be the secret/public encryption keys of Bob. Let a, A and b, B are the
Diffie-Hellman long-term secret and public keys of Alice and Bob respectively, while x, X and y, Y are

8

the Diffie-Hellman ephemeral secret and public keys of Alice and Bob respectively. After exchanging the

protocol messages (X̄
$←− EncpkBob

(X) and Ȳ
$←− EncpkAlice

(Y)), both principals decrypt the incoming
messages and compute a Diffie-Hellman-style shared secrets (Y x, Ba and Xy, Ab), and then compute the
session key using a pseudo-random function PRF.

Alice (Initiator) Bob (Responder)

Initial Setup

a
$←− Z∗q , A← ga b

$←− Z∗q , B ← gb

skAlice, pkAlice
$←− KG(1k) skBob, pkBob

$←− KG(1k)

Protocol Execution

x
$←− Z∗q , X ← gx y

$←− Z∗q , Y ← gy

X̄
$←− EncpkBob

(X)
Alice,X̄−−−−−→ Ȳ

$←− EncpkAlice
(Y)

Bob,Ȳ←−−−−

Y ← DecskAlice
(Ȳ) X ← DecskBob

(X̄)
Z1 ← Y x, Z2 ← Ba Z ′1 ← Xy, Z ′2 ← Ab

K ← PRF(Z1, Alice‖X̄‖Bob‖Ȳ)⊕ K ← PRF(Z ′1, Alice‖X̄‖Bob‖Ȳ)⊕
PRF(Z2, Alice‖X̄‖Bob‖Ȳ) PRF(Z ′2, Alice‖X̄‖Bob‖Ȳ)

K is the session key

Table 3: Protocol P1

4.2 Security Analysis of the Protocol P1

Theorem 4.1. If G is a group of a prime order q and a generator g, where the Diffie-Hellman (DDH)
assumption holds, the underlying public-key encryption scheme PKE is CCA2-secure and PRF is a
pseudo-random function, then the protocol P1 is secure in the eCK model.

Let U = {U1, . . . , UNP
} be a set of NP parties. Each party Ui owns at most Ns number of protocol

sessions. Let A be any adversary against the eck challenger of the protocol P1. Then, the advantage of A
against the eCK security challenge of the protocol P1, AdveCK

P1 is:

AdveCK
P1 (A) ≤ N2

PN
2
s max

((
AdvDDH

q,g (C) + AdvPRF(B)
)
,
(
AdvPRF(B) + AdvCCA2

PKE (D)
))

.

where C is the algorithm against a DDH challenger, B is the algorithm against the underlying pseudo-
random function PRF and D is the algorithm against the CCA2 challenger of the underlying public-key
encryption scheme PKE.

Proof. We split the proof of Theorem 4.1 into two main cases: when the partner to the test session exists,
and when it does not.

1. A partner to the test session exists.

(a) Adversary corrupts both the owner and the partner principals to the test session - Case 1a

(b) Adversary corrupts neither the owner nor the partner principal to the test session - Case 1b

(c) Adversary corrupts the owner to the test session, but does not corrupt the partner to the test
session - Case 1c

(d) Adversary corrupts the partner to the test session, but does not corrupt the owner to the test
session - Case 1d

2. A partner to the test session does not exist: the adversary is not allowed to corrupt the peer to the
target session.

(a) Adversary corrupts the owner to the test session - Case 2a

(b) Adversary does not corrupt the owner to the test session - Case 2b

9

In order to formally prove the eCK-security of the protocol P1 we use the game hopping technique
[7, 18, 24]; define a sequence of games and relate the adversary’s advantage of distinguishing each game
from the previous game to the advantage of breaking one of the underlying cryptographic primitive.

Case 1a: Adversary corrupts both the owner and partner principals to the
test session.

Game 1: This is the original game. When Test query is asked the Game 1 challenger will choose a

random bit b
$←− {0, 1}. If b = 1, the real session key is given to A, otherwise a random value chosen from

the same session-key space is given. Hence,

AdvGame 1(A) = AdveCK
P1,Case 1a(A). (1)

Game 2: Same as Game 1 with the following exception: before A begins, two distinct random principals

U∗, V ∗
$←− {U1, ..., UNP

} are chosen and two random numbers s∗, t∗
$←− {1, ...Ns} are chosen, where NP is

the number of protocol principals and Ns is the number of sessions on a principal. The session Πs∗

U∗,V ∗

is chosen as the target session and the session Πt∗

V ∗,U∗ is chosen as the partner to the target session. If

the test session is not the session Πs∗

U∗,V ∗ or partner to the session is not Πt∗

V ∗,U∗ , the Game 2 challenger
aborts the game. Unless the incorrect choice happens, the Game 2 is identical to the Game 1. Hence,

AdvGame 2(A) =
1

NP
2N2

s

AdvGame 1(A). (2)

Game 3: Same as Game 2 with the following exception: the Game 3 challenger randomly chooses

z
$←− Z∗q and computes K ← PRF(gz, ·‖X̄‖ · ‖Ȳ) ⊕ PRF(CDH(U, V), ·‖X̄‖ · ‖Ȳ). When the adversary

asks the Test(U∗, V ∗, s∗) query, Game 3 challenger will answer with K (· is used as a placeholder since
either U∗ or V ∗ can be put there depending on the initiator and responder roles).

Note. Let U, V be the two long-term Diffie-Hellman public keys of the protocol principals U∗, V ∗

respectively, such that U = gu, V = gv and CDH(U, V) = guv.

We construct an algorithm C against a DDH challenger, using the adversary A as a sub routine. C
sets all the long-term secret/public key pairs (Diffie-Hellman and encryption key pairs) to all protocol
principals. The algorithm C runs a copy of A and interacts with A such that A is interacting with either

Game 2 or Game 3. The DDH challenger sends values (gx, gy, gz) such that either z = xy or z
$←− Z∗q , as

the inputs to the algorithm C. Algorithm C simulates answers to the adversarial queries as follows:

• Send(U, V, s,m) query:

– If U∗ is the initiator, C sends the ciphertext X̄
$←− (pkV ∗ , X) to A as the first message of the

test session. Upon receiving the second protocol message (Ȳ
$←− (pkU∗ , Y)) from V ∗ to U∗, C

computes the session key K ← PRF(gz, U∗‖X̄‖V ∗‖Ȳ)⊕ PRF(CDH(U, V), U∗‖X̄‖V ∗‖Ȳ).

– If U∗ is the responder, upon receiving the first protocol message (X̄
$←− (pkU∗ , X)) from V ∗

to U∗, C sends Ȳ
$←− (pkV ∗ , Y) to A as the second protocol message of the test session, and

computes the session key K ← PRF(gz, V ∗‖X̄‖U∗‖Ȳ)⊕ PRF(CDH(U, V), V ∗‖X̄‖U∗‖Ȳ).

Note. For clarity we consider X̄
$←− (pk·, X) as the first protocol message and Ȳ

$←− (pk·, Y) as
the second protocol message, in the target session.

– For all the other cases of Send queries, C can decrypt incoming protocol messages and execute
the protocol normally.

• SessionKeyReveal(U, V, s) query: SessionKeyReveal query is not allowed to the target session or
the partner of the target session. C can compute all the other session keys by executing the protocol
normally.

• EphemeralKeyReveal(U, V, s) query: U = U∗, V = V ∗, s = s∗ and U = V ∗, V = U∗, s = t∗ are
prohibited since the adversary is allowed to corrupt both the owner and the partner to the target
session. For all other EphemeralKeyReveal queries C can answer correctly, because C has the
ephemeral keys.

10

• Corrupt(U) query: Algorithm C can answer all the Corrupt queries, since C has all the long-term
keys.

• Test(U, V, s) query: When U = U∗, V = V ∗, s = s∗, answers with the K which is computed as
explained in the Send query. Otherwise aborts the game.

If C’s input is a Diffie-Hellman triple, simulation constructed by C is identical to Game 2, otherwise it
is identical to Game 3. If A can distinguish the difference between games, then C can answer the DDH
challenge. Hence,

|AdvGame 2(A)−AdvGame 3(A)| ≤ AdvDDH
q,g (C). (3)

Game 4: Same as Game 3 with the following exception: the Game 4 challenger randomly chooses

K
$←− {0, 1}k and sends it to the adversary A as the answer to the Test(U∗, V ∗, s∗) query.
If A can distinguish the difference between Game 3 and Game 4, then A can be used as a subroutine

of an algorithm B, which is used to distinguish whether the session key value K is computed using the
real PRF with a hidden key, or using a random function. The adversary A is given a K, such that it is
computed using the PRF or randomly chosen from the session key space. The following describes Bs
procedure of answering queries.

• Send(U, V, s,m) query:

– If U∗ is the initiator, upon receiving the second protocol message (Ȳ), computes the session
key K ← OraclePRF(U∗||X̄||V ∗||Ȳ)⊕ PRF(CDH(U, V), U∗||X̄||V ∗||Ȳ).

– If U∗ is the responder, upon receiving the first protocol message (X̄), computes the session
key K ← OraclePRF(V ∗||X̄||U∗||Ȳ)⊕ PRF(CDH(U, V), V ∗||X̄||U∗||Ȳ).

– For all the other cases of Send queries, B can execute the protocol normally.

• SessionKeyReveal(U, V, s) query: SessionKeyReveal query is not allowed to the target session or
its partner. B can compute all the session keys by executing the protocol normally.

• EphemeralKeyReveal(U, V, s) query: U = U∗, V = V ∗, s = s∗) and U = V ∗, V = U∗, s = t∗ are
prohibited since the adversary is allowed to corrupt both the owner and the partner to the target
session. For all other EphemeralKeyReveal queries B can answer correctly, because B has the
ephemeral keys.

• Corrupt(U) query: B can answer all other Corrupt queries, since B has all the long-term secret
keys.

• Test(U, V, s) query: When U = U∗, V = V ∗, s = s∗, answers with the K which is computed as
explained in the Send query. Otherwise aborts the game.

If the oracle is using the real PRF with a hidden key, the simulation is identical to Game 3, whereas
if the oracle is using a random function, the simulation constructed is identical to Game 4. If A can
distinguish the difference between Game 3 and Game 4, then A can be used as a subroutine of an
algorithm B, which is used to distinguish whether the PRF challenger is real or random. Hence,

|AdvGame 3(A)−AdvGame 4(A)| ≤ AdvPRF(B). (4)

Semantic security of the session key in Game 4: Since the session key K of Πs∗

U∗,V ∗ is chosen
randomly and independently from all other values, A does not have any advantage in Game 4. Hence,

AdvGame 4(A) = 0. (5)

Using equations (1)–(5) we find,

AdveCK
P1,Case 1a(A) ≤ N2

PNs
2
(

AdvDDH
q,g (C) + AdvPRF(B)

)
.

11

Case 1b: Adversary corrupts neither the owner nor the partner principals to
the test session.

Game 1: This is the original game. When Test query is asked the Game 1 challenger will choose a

random bit b
$←− {0, 1}. If b = 1, the real session key is given to A, otherwise a random value chosen from

the same session-key space is given. Hence,

AdvGame 1(A) = AdveCK
P1,Case 1b(A). (6)

Game 2: Same as Game 1 with the following exception: before A begins, two distinct random principals

U∗, V ∗
$←− {U1, ..., UNP

} are chosen and two random numbers s∗, t∗
$←− {1, ...Ns} are chosen, where NP is

the number of protocol principals and Ns is the number of sessions on a principal. The session Πs∗

U∗,V ∗

is chosen as the target session and the session Πt∗

V ∗,U∗ is chosen as the partner to the target session. If

the test session is not the session Πs∗

U∗,V ∗ or partner to the session is not Πt∗

V ∗,U∗ , the Game 2 challenger
aborts the game. Unless the incorrect choice happens, the Game 2 is identical to the Game 1. Hence,

AdvGame 2(A) =
1

NP
2N2

s

AdvGame 1(A). (7)

Game 3: Same as Game 2 with the following exception: the Game 3 challenger randomly chooses

c
$←− Z∗q and computes K ← PRF(CDH(X,Y), ·‖X̄‖ · ‖Ȳ) ⊕ PRF(gc, ·‖X̄‖ · ‖Ȳ). When the adversary

asks the Test(U∗, V ∗, s∗) query, Game 3 challenger will answer with K.

Note. Let X,Y be the two ephemeral Diffie-Hellman public keys (unencrypted) of the protocol principals
in a session, such that X = gx, Y = gy and CDH(X,Y) = gxy.

We construct an algorithm C against a DDH challenger, using the adversary A as a sub routine.

The DDH challenger sends values (ga, gb, gc) such that either c = ab or c
$←− Z∗q , as the inputs to the

algorithm C. C sets U ← ga as the long term Diffie-Hellman public key of U∗ and V ← gb as the long-term
Diffie-Hellman public key of V ∗. Moreover, C sets all the other long-term Diffie-Hellman secret/public
key pairs and all the encryption key pairs of protocol principals. The algorithm C runs a copy of A and
interacts with A such that A is interacting with either Game 2 or Game 3. Algorithm C simulates answers
to the adversarial queries as follows:

• Send(U, V, s,m) query:

– If U∗ is the initiator, C can start the protocol normally. Upon receiving the second protocol
message from V ∗ to U∗, C computes the session key K ← PRF(CDH(X,Y), U∗‖X̄‖V ∗‖Ȳ)⊕
PRF(gc, U∗‖X̄‖V ∗‖Ȳ) (Consider X is from the initiator and Y is from the responder, and X̄
and Ȳ are the encrypted X and Y respectively, which are computed in normal protocol run).

– If U∗ is the responder, upon receiving the first protocol message from V ∗ to U∗, C executes
the protocol normally, sends the second protocol message of the test session, and computes the
session key K ← PRF(CDH(X,Y), V ∗‖X̄‖U∗‖Ȳ)⊕ PRF(gc, V ∗‖X̄‖U∗‖Ȳ).

– For all the cases of Send queries, C can decrypt incoming protocol messages and execute the
protocol normally. In the places where both U∗ and V ∗ is involved, C uses gc in key derivation.

• SessionKeyReveal(U, V, s) query: SessionKeyReveal query is not allowed to the target session or
the partner of the target session. C can compute all the other session keys by executing the protocol
normally. In the places where both U∗ and V ∗ is involved, C uses gc in key derivation.

• EphemeralKeyReveal(U, V, s) query: Algorithm C can answer all the other EphemeralKeyReveal

queries, since C has all the ephemeral keys.

• Corrupt(U) query: Corrupt(U∗) and Corrupt(V ∗) are prohibitted since the adversary is allowed
to reveal the ephemeral keys of the test session and its partner. Algorithm C can answer all the
other Corrupt queries, since C has all the long-term keys.

• Test(U, V, s) query: When U = U∗, V = V ∗, s = s∗, answers with the K which is computed as
explained in the Send query. Otherwise aborts the game.

12

If C’s input is a Diffie-Hellman triple, simulation constructed by C is identical to Game 2, otherwise it
is identical to Game 3. If A can distinguish the difference between games, then C can answer the DDH
challenge. Hence,

|AdvGame 2(A)−AdvGame 3(A)| ≤ AdvDDH
q,g (C). (8)

Game 4: Same as Game 3 with the following exception: the Game 4 challenger randomly chooses

K
$←− {0, 1}k and sends it to the adversary A as the answer to the Test(U∗, V ∗, s∗) query.
If A can distinguish the difference between Game 3 and Game 4, then A can be used as a subroutine

of an algorithm B, which is used to distinguish whether the session key value K is computed using the
real PRF with a hidden key, or using a random function. The adversary A is given a K, such that it is
computed using the PRF or randomly chosen from the session key space. The following describes Bs
procedure of answering queries.

• Send(U, V, s,m) query:

– If U∗ is the initiator, upon receiving the second protocol message, computes the session key
K ← PRF(CDH(X,Y), U∗||X̄||V ∗||Ȳ)⊕OraclePRF(U∗||X̄||V ∗||Ȳ).

– If U∗ is the responder, upon receiving the first protocol message, computes the session key
K ← PRF(CDH(X,Y), V ∗||X̄||U∗||Ȳ)⊕OraclePRF(V ∗||X̄||U∗||Ȳ).

– When both U∗ and V ∗ involves in a session query the OraclePRF to compute the session key
upon receiving protocol messages.

– For all the other cases of Send queries, B can execute the protocol normally.

• SessionKeyReveal(U, V, s) query: SessionKeyReveal query is not allowed to the target session or
its partner. B can compute all the session keys as explained under the Send query description.

• EphemeralKeyReveal(U, V, s) query: B can answer all EphemeralKeyReveal queries correctly,
because C has the ephemeral keys.

• Corrupt(U) query: Corrupt(U∗) and Corrupt(V ∗) are prohibitted since the adversary is allowed
to reveal the ephemeral keys of the test session and its partner. Algorithm C can answer all the
other Corrupt queries, since C has all the long-term keys.

• Test(U, V, s) query: When U = U∗, V = V ∗, s = s∗, answers with the K which is computed as
explained in the Send query. Otherwise aborts the game.

If the oracle is using the real PRF with a hidden key, the simulation is identical to Game 3, whereas
if the oracle is using a random function, the simulation constructed is identical to Game 4. If A can
distinguish the difference between Game 3 and Game 4, then A can be used as a subroutine of an
algorithm B, which is used to distinguish whether the PRF challenger is real or random. Hence,

|AdvGame 3(A)−AdvGame 4(A)| ≤ AdvPRF(B). (9)

Semantic security of the session key in Game 4: Since the session key K of Πs∗

U∗,V ∗ is chosen
randomly and independently from all other values, A does not have any advantage in Game 4. Hence,

AdvGame 4(A) = 0. (10)

Using equations (6)–(10) we find,

AdveCK
P1,Case 1b(A) ≤ N2

PNs
2
(

AdvDDH
q,g (C) + AdvPRF(B)

)
.

Case 1c: Adversary corrupts the owner to the test session, but does not
corrupt the partner.

Game 1: This is the original game. When Test query is asked the Game 1 challenger will choose a

random bit b
$←− {0, 1}. If b = 1, the real session key is given to A, otherwise a random value chosen from

the same session-key space is given. Hence,

AdvGame 1(A) = AdveCK
P1,Case 1c(A). (11)

13

Game 2: Same as Game 1 with the following exception: before A begins, two distinct random principals

U∗, V ∗
$←− {U1, ..., UNP

} are chosen and two random numbers s∗, t∗
$←− {1, ...Ns} are chosen, where NP is

the number of protocol principals and Ns is the number of sessions on a principal. The session Πs∗

U∗,V ∗

is chosen as the target session and the session Πt∗

V ∗,U∗ is chosen as the partner to the target session. If

the test session is not the session Πs∗

U∗,V ∗ or partner to the session is not Πt∗

V ∗,U∗ , the Game 2 challenger
aborts the game. Unless the incorrect choice happens, Game 2 is identical to Game 1. Hence,

AdvGame 2(A) =
1

NP
2N2

s

AdvGame 1(A). (12)

Game 3: Same as Game 2 with the following exception: the Game 3 challenger randomly chooses C
from the ciphertext space as encryption of the public ephemeral value X of the session Πs∗

U∗,V ∗ , and sends

it to the session Πt∗

V ∗,U∗ as having come from the session Πs∗

U∗,V ∗ .
We introduce an algorithm D which is constructed using the adversary A. If A can distinguish the

difference between Game 2 and Game 3, then D can be used against the CCA2 challenger of underlying
public-key cryptosystem, PKE. The algorithm D uses the public key of the CCA2 challenger as the
public key of the protocol principal V ∗ and generates all other public/secret key pairs (Diffie-Hellman
and encryption keys) for protocol principals. D runs a copy of A and interacts with A, such that it

is interacting with either Game 2 or Game 3. D picks two random strings, X0, X1
$←− Z∗q and passes

them to the CCA2 challenger. From the CCA2 challenger, D receives a challenge ciphertext C such that

C
$←− (pkV ∗ , Xθ) where Xθ = X0 or Xθ = X1. D uses X1 as the decryption of C when answering queries.

The following describes the procedure of answering queries:

• Send(U, V, s,m) query:

– U = U∗, V = V ∗, s = s∗:

∗ If U∗ is the initiator, D sends the ciphertext C to A as the first message of the test
session. Upon receiving the second protocol message computes the session key K ←
PRF(CDH(X1, Y), U∗‖C‖V ∗‖Ȳ)⊕ PRF(CDH(U, V), U∗‖C‖V ∗‖Ȳ) (Consider Y is from
the responder, and Ȳ is the encrypted Y).

∗ If U∗ is the responder, upon receiving the first protocol message sends C toA, and computes
the session key K ← PRF(CDH(X1, Y), V ∗‖Ȳ ‖U∗‖C)⊕ PRF(CDH(U, V), V ∗‖Ȳ ‖U∗‖C)
(Consider Y is from the initiator, and Ȳ is the encrypted Y).

– U = U∗, V = V ∗, s 6= s∗: Executes the protocol normally.

– U = U∗, V 6= V ∗: Executes the protocol normally.

– U = V ∗:

∗ If this is the initiator and it is the first message, then executes the protocol normally.

∗ If this is the initiator and the second protocol message, or the responder:

· If C has come as the incoming message uses X1 as the decryption of the incoming
message.

· Else uses the decryption oracle to decrypt incoming messages.

– U, V 6= U∗ or V ∗: Executes the protocol normally.

• SessionKeyReveal(U, V, s) query: SessionKeyReveal query is not allowed to the target session or
the partner of the target session. D can compute all the session keys by executing the protocol.

– For sessions involving the principal V ∗, and the incoming message to V ∗ is the same message
which has come to V ∗ in the target session, uses X1 as the decryption.

– For other sessions involving the principal V ∗, D can decrypt the incoming messages to V ∗ by
using the decryption oracle.

– Otherwise, D can decrypt all the other incoming messages to protocol principals by its own.

Then compute the session key using the PRF.

• EphemeralKeyReveal(U, V, s) query: D can answer all EphemeralKeyReveal queries allowed in the
freshness condition correctly, because D has the ephemeral keys.

14

• Corrupt(U) query: Except for Corrupt(V ∗), algorithm D can answer all other Corrupt queries. In
this case we consider the situation in which the adversary is not allowed to corrupt the partner
principal of the target session, so in fact, D can answer all legitimate Corrupt queries.

• Test(U, V, s) query: When U = U∗, V = V ∗, s = s∗, answers with the K which is computed as
explained in the Send query. Otherwise aborts the game.

If the value C is the encryption of the value X1, the simulation constructed by D is identical to the
Game 2, otherwise it is identical to Game 3. If A can distinguish the difference between games, then D
can answer the CCA2 challenge successfully. Hence,

|AdvGame 2(A)−AdvGame 3(A)| ≤ AdvCCA2
PKE (D). (13)

Game 4: Same as Game 3 with the following exception: the Game 4 challenger randomly chooses

K
$←− {0, 1}k and sends it to the adversary A as the answer to the Test(U∗, V ∗, s∗) query.
If A can distinguish the difference between Game 3 and Game 4, then A can be used as a subroutine

of an algorithm B, which is used to distinguish whether the session key value K is computed using the
real PRF with a hidden key, or using a random function. The adversary A is given a K, such that it is
computed using the PRF or randomly chosen from the session key space. The following describes B’s
procedure of answering queries.

• Send(U, V, s,m) query:

– U = U∗, V = V ∗, s = s∗:

∗ If U∗ is the initiator, upon receiving the second protocol message computes the session key
K ← OraclePRF(U∗||X̄||V ∗||Ȳ) ⊕ PRF(CDH(U, V), U∗||X̄||V ∗||Ȳ) (Consider X is from
the initiator and Y is from the responder, and X̄ and Ȳ are the encrypted X and Y
respectively, which are computed in normal protocol run).

∗ If U∗ is the responder, upon receiving the first protocol message computes the session key
K ← OraclePRF(V ∗||X̄||U∗||Ȳ)⊕ PRF(CDH(U, V), V ∗||X̄||U∗||Ȳ).

– U = U∗, V = V ∗, s 6= s∗: Executes the protocol normally.

– U = U∗, V 6= V ∗: Executes the protocol normally.

– U = V ∗:

∗ If this is the initiator and it is the first message, then executes the protocol normally.

∗ If this is the initiator and the second protocol message, or the responder:

· If the same message that came to V ∗ in the test session has come as the incoming
message, computes the session key using the OraclePRF.

· Otherwise, executes the protocol normally.

– U, V 6= U∗ or V ∗: Executes the protocol normally.

• SessionKeyReveal(U, V, s) query: SessionKeyReveal query is not allowed to the target session or
its partner. B can compute all the session keys by executing the protocol.

– For sessions involving the principal V ∗, and the incoming message to V ∗ is the same message
which has come to V ∗ in the target session, B uses OraclePRF to compute the session key.

– For all other sessions, B computes the session key by using the PRF.

• EphemeralKeyReveal(U, V, s) query: B can answer all EphemeralKeyReveal queries, which are
allowed by the freshness condition, because B has the ephemeral keys.

• Corrupt(U) query: Except for V ∗, algorithm B can answer all other Corrupt queries. In this case
we consider the situation in which the adversary is not allowed to corrupt the partner principal of
the target session, so in fact, B can answer all legitimate Corrupt queries.

• Test(U, V, s) query: When U = U∗, V = V ∗, s = s∗, answers with the K which is computed as
explained in the Send query. Otherwise aborts the game.

15

If the oracle is using the real PRF with a hidden key, the simulation is identical to Game 3, whereas
if the oracle is using a random function, the simulation constructed is identical to Game 4. If A can
distinguish the difference between Game 3 and Game 4, then A can be used as a subroutine of an
algorithm B, which is used to distinguish whether the PRF challenger is real or random. Hence,

|AdvGame 3(A)−AdvGame 4(A)| ≤ AdvPRF(B). (14)

Semantic security of the session key in Game 4: Since the session key K of Πs∗

U∗,V ∗ is chosen
randomly and independently from all other values, A does not have any advantage in Game 4. Hence,

AdvGame 4(A) = 0. (15)

Using equations (11)–(15) we find,

AdveCK
P1,Case 1c(A) ≤ N2

PNs
2
(

AdvPRF(B) + AdvCCA2
PKE (D)

)
.

Case 1d: Adversary corrupts the partner to the test session, but does not
corrupt the owner.

Game 1: This is the original game. When Test query is asked the Game 1 challenger will choose a

random bit b
$←− {0, 1}. If b = 1, the real session key is given to A, otherwise a random value chosen from

the same session-key space is given. Hence,

AdvGame 1(A) = AdveCK
P1,Case 1d(A). (16)

Game 2: Same as Game 1 with the following exception: before A begins, two distinct random principals

U∗, V ∗
$←− {U1, ..., UNP

} are chosen and two random numbers s∗, t∗
$←− {1, ...Ns} are chosen, where NP is

the number of protocol principals and Ns is the number of sessions on a principal. The session Πs∗

U∗,V ∗

is chosen as the target session and the session Πt∗

V ∗,U∗ is chosen as the partner to the target session. If

the test session is not the session Πs∗

U∗,V ∗ or partner to the session is not Πt∗

V ∗,U∗ , the Game 2 challenger
aborts the game. Unless the incorrect choice happens, Game 2 is identical to Game 1. Hence,

AdvGame 2(A) =
1

NP
2N2

s

AdvGame 1(A). (17)

Game 3: Same as Game 2 with the following exception: the Game 3 challenger randomly chooses C
from the ciphertext space as encryption of the public ephemeral value X of the session Πs∗

U∗,V ∗ , and sends

it to the session Πs∗

U∗,V ∗ as having come from the session Πt∗

V ∗,U∗ .
We introduce an algorithm D which is constructed using the adversary A. If A can distinguish the

difference between Game 2 and Game 3, then D can be used against the CCA2 challenger of underlying
public-key cryptosystem, PKE. The algorithm D uses the public key of the CCA2 challenger as the
public key of the protocol principal U∗ and generates all other public/secret key pairs (Diffie-Hellman
and encryption keys) for protocol principals. D runs a copy of A and interacts with A, such that it

is interacting with either Game 2 or Game 3. D picks two random strings, X0, X1
$←− Z∗q and passes

them to the CCA2 challenger. From the CCA2 challenger, D receives a challenge ciphertext C such that

C
$←− (pkV ∗ , Xθ) where Xθ = X0 or Xθ = X1. D uses X1 as the decryption of C when answering queries.

The following describes the procedure of answering queries:

• Send(U, V, s,m) query:

– U = V ∗, V = U∗, s = t∗:

∗ If V ∗ is the initiator, D sends the ciphertext C to A as the first message of the test
session. Upon receiving the second protocol message computes the session key K ←
PRF(CDH(X1, Y), V ∗‖C‖U∗‖Ȳ)⊕ PRF(CDH(U, V), V ∗‖C‖U∗‖Ȳ) (Consider Y is from
the responder, and Ȳ is the encrypted Y).

∗ If V ∗ is the responder, upon receiving the first protocol message sends C toA, and computes
the session key K ← PRF(CDH(X1, Y), U∗‖Ȳ ‖V ∗‖C)⊕ PRF(CDH(U, V), U∗‖Ȳ ‖V ∗‖C)
(Consider Y is from the initiator, and Ȳ is the encrypted Y).

16

– U = V ∗, V = U∗, s 6= t∗: Executes the protocol normally.

– U = V ∗, V 6= U∗: Executes the protocol normally.

– U = U∗:

∗ If this is the initiator and it is the first message, then executes the protocol normally.

∗ If this is the initiator and the second protocol message, or the responder:

· If C has come as the incoming message uses X1 as the decryption of the incoming
message.

· Else uses the decryption oracle to decrypt incoming messages.

– U, V 6= U∗ or V ∗: Executes the protocol normally.

• SessionKeyReveal(U, V, s) query: SessionKeyReveal query is not allowed to the target session or
the partner of the target session. D can compute all the session keys by executing the protocol.

– For sessions involving the principal U∗, and the incoming message to U∗ is the same message
which has come to U∗ in the target session, uses X1 as the decryption.

– For other sessions involving the principal U∗, D can decrypt the incoming messages to U∗ by
using the decryption oracle.

– Otherwise, D can decrypt all the other incoming messages to protocol principals by its own.

Then compute the session key using the PRF.

• EphemeralKeyReveal(U, V, s) query: D can answer all EphemeralKeyReveal queries allowed in the
freshness condition correctly, because D has the ephemeral keys.

• Corrupt(U) query: Except for Corrupt(U∗), algorithm D can answer all other Corrupt queries. In
this case we consider the situation in which the adversary is not allowed to corrupt the partner
principal of the target session, so in fact, D can answer all legitimate Corrupt queries.

• Test(U, V, s) query: When U = U∗, V = V ∗, s = s∗, answers with the K which is computed as
explained in the Send query. Otherwise aborts the game.

If the value C is the encryption of the value X1, the simulation constructed by D is identical to the
Game 2, otherwise it is identical to Game 3. If A can distinguish the difference between games, then D
can answer the CCA2 challenge successfully. Hence,

|AdvGame 2(A)−AdvGame 3(A)| ≤ AdvCCA2
PKE (D). (18)

Game 4: Same as Game 3 with the following exception: the Game 4 challenger randomly chooses

K
$←− {0, 1}k and sends it to the adversary A as the answer to the Test(U∗, V ∗, s∗) query.
If A can distinguish the difference between Game 3 and Game 4, then A can be used as a subroutine

of an algorithm B, which is used to distinguish whether the session key value K is computed using the
real PRF with a hidden key, or using a random function. The adversary A is given a K, such that it is
computed using the PRF or randomly chosen from the session key space. The following describes B’s
procedure of answering queries.

• Send(U, V, s,m) query:

– U = V ∗, V = U∗, s = t∗:

∗ If V ∗ is the initiator, upon receiving the second protocol message computes the session key
K ← OraclePRF(V ∗||X̄||U∗||Ȳ) ⊕ PRF(CDH(U, V), V ∗||X̄||U∗||Ȳ) (Consider X is from
the initiator and Y is from the responder, and X̄ and Ȳ are the encrypted X and Y
respectively, which are computed in normal protocol run).

∗ If V ∗ is the responder, upon receiving the first protocol message computes the session key
K ← OraclePRF(U∗||X̄||V ∗||Ȳ)⊕ PRF(CDH(U, V), U∗||X̄||V ∗||Ȳ).

– U = V ∗, V = U∗, s 6= t∗: Executes the protocol normally.

– U = V ∗, V 6= U∗: Executes the protocol normally.

– U = U∗:

17

∗ If this is the initiator and it is the first message, then executes the protocol normally.

∗ If this is the initiator and the second protocol message, or the responder:

· If the same message that came to U∗ in the test session has come as the incoming
message, computes the session key using the OraclePRF.

· Otherwise, executes the protocol normally.

– U, V 6= U∗ or V ∗: Executes the protocol normally.

• SessionKeyReveal(U, V, s) query: SessionKeyReveal query is not allowed to the target session or
its partner. B can compute all the session keys by executing the protocol.

– For sessions involving the principal U∗, and the incoming message to U∗ is the same message
which has come to U∗ in the target session, B uses OraclePRF to compute the session key.

– For all other sessions, B computes the session key by using the PRF.

• EphemeralKeyReveal(U, V, s) query: B can answer all EphemeralKeyReveal queries, which are
allowed by the freshness condition, because B has the ephemeral keys.

• Corrupt(U) query: Except for U∗, algorithm B can answer all other Corrupt queries. In this case
we consider the situation in which the adversary is not allowed to corrupt the partner principal of
the target session, so in fact, B can answer all legitimate Corrupt queries.

• Test(U, V, s) query: When U = U∗, V = V ∗, s = s∗, answers with the K which is computed as
explained in the Send query. Otherwise aborts the game.

If the oracle is using the real PRF with a hidden key, the simulation is identical to Game 3, whereas
if the oracle is using a random function, the simulation constructed is identical to Game 4. If A can
distinguish the difference between Game 3 and Game 4, then A can be used as a subroutine of an
algorithm B, which is used to distinguish whether the PRF challenger is real or random. Hence,

|AdvGame 3(A)−AdvGame 4(A)| ≤ AdvPRF(B). (19)

Semantic security of the session key in Game 4: Since the session key K of Πs∗

U∗,V ∗ is chosen
randomly and independently from all other values, A does not have any advantage in Game 4. Hence,

AdvGame 4(A) = 0. (20)

Using equations (16)–(20) we find,

AdveCK
P1,Case 1d(A) ≤ N2

PNs
2
(

AdvPRF(B) + AdvCCA2
PKE (D)

)
.

Case 2a: Adversary corrupts the owner to the test session.

Game 1: This is the original game. When Test query is asked the Game 1 challenger will choose a

random bit b
$←− {0, 1}. If b = 1, the real session key is given to A, otherwise a random value chosen from

the same session-key space is given. Hence,

AdvGame 1(A) = AdveCK
P1,Case 2a(A). (21)

Game 2: Same as Game 1 with the following exception: before A begins, two distinct random principals

U∗, V ∗
$←− {U1, ..., UNP

} are chosen and two random number s∗, t∗
$←− {1, ...Ns} are chosen, where NP is

the number of protocol principals and Ns is the number of sessions on a principal. The session Πs∗

U∗,V ∗ is

chosen as the target session and the session Πt∗

V ∗,U∗ is chosen as the peer session. If the test session is not

the session Πs∗

U∗,V ∗ , the Game 2 challenger aborts the game. Unless the incorrect choice happens, Game 2
is identical to Game 1. Hence,

AdvGame 2(A) =
1

NP
2N2

s

AdvGame 1(A). (22)

18

Game 3: Same as Game 2 with the following exception: the Game 3 challenger randomly chooses C
from the ciphertext space as encryption of the public ephemeral value X of the session Πs∗

U∗,V ∗ , and sends

it to the session Πt∗

V ∗,U∗ as having come from the session Πs∗

U∗,V ∗ .
We introduce an algorithm D which is constructed using the adversary A. If A can distinguish the

difference between Game 2 and Game 3, then D can be used against the CCA2 challenger of underlying
public-key cryptosystem, PKE. The algorithm D uses the public key of the CCA2 challenger as the
public key of the protocol principal V ∗ and generates all other public/secret key pairs (Diffie-Hellman
and encryption keys) for protocol principals. D runs a copy of A and interacts with A, such that it

is interacting with either Game 2 or Game 3. D picks two random strings, X0, X1
$←− Z∗q and passes

them to the CCA2 challenger. From the CCA2 challenger, D receives a challenge ciphertext C such that

C
$←− (pkV ∗ , Xθ) where Xθ = X0 or Xθ = X1. D uses X1 as the decryption of C when answering queries.

The following describes the procedure of answering queries:

• Send(U, V, s,m) query:

– U = U∗, V = V ∗, s = s∗:

∗ If U∗ is the initiator, D sends the ciphertext C to A as the first message of the test
session. Upon receiving the second protocol message computes the session key K ←
PRF(CDH(X1, Y), U∗‖C‖V ∗‖Ȳ)⊕ PRF(CDH(U, V), U∗‖C‖V ∗‖Ȳ) (Consider Y is from
the responder, and Ȳ is the encrypted Y , which is coming to U∗).

∗ If U∗ is the responder, upon receiving the first protocol message sends C toA, and computes
the session key K ← PRF(CDH(X1, Y), V ∗‖Ȳ ‖U∗‖C)⊕ PRF(CDH(U, V), V ∗‖Ȳ ‖U∗‖C)
(Consider Y is from the initiator, and Ȳ is the encrypted Y , which is coming to U∗).

– U = U∗, V = V ∗, s 6= s∗: Executes the protocol normally.

– U = U∗, V 6= V ∗: Executes the protocol normally.

– U = V ∗:

∗ If this is the initiator and it is the first message, then executes the protocol normally.

∗ If this is the initiator and the second protocol message, or the responder:

· If C has come as the incoming message uses X1 as the decryption of the incoming
message.

· Else uses the decryption oracle to decrypt incoming messages.

– U, V 6= U∗ or V ∗: Executes the protocol normally.

• SessionKeyReveal(U, V, s) query: SessionKeyReveal query is not allowed to the target session.
D can compute all the session keys by executing the protocol.

– For sessions involving the principal V ∗, and the incoming message to V ∗ is the same message
which has come to V ∗ in the target session, uses X1 as the decryption.

– For other sessions involving the principal V ∗, D can decrypt the incoming messages to V ∗ by
using the decryption oracle.

– Otherwise, D can decrypt all the other incoming messages to protocol principals by its own.

Then compute the session key using the PRF.

• EphemeralKeyReveal(U, V, s) query: D can answer all EphemeralKeyReveal queries allowed in the
freshness condition correctly, because D has the ephemeral keys.

• Corrupt(U) query: Except for Corrupt(V ∗), algorithm D can answer all other Corrupt queries.
In this case we consider the situation in which the adversary is not allowed to corrupt the peer
principal of the target session, so in fact, D can answer all legitimate Corrupt queries.

• Test(U, V, s) query: When U = U∗, V = V ∗, s = s∗, answers with the K which is computed as
explained in the Send query. Otherwise aborts the game.

If the value C is the encryption of the value X1, the simulation constructed by D is identical to the
Game 2, otherwise it is identical to Game 3. If A can distinguish the difference between games, then D
can answer the CCA2 challenge successfully. Hence,

|AdvGame 2(A)−AdvGame 3(A)| ≤ AdvCCA2
PKE (D). (23)

19

Game 4: Same as Game 3 with the following exception: the Game 4 challenger randomly chooses

K
$←− {0, 1}k and sends it to the adversary A as the answer to the Test(U∗, V ∗, s∗) query.
If A can distinguish the difference between Game 3 and Game 4, then A can be used as a subroutine

of an algorithm B, which is used to distinguish whether the session key value K is computed using the
real PRF with a hidden key, or using a random function. The adversary A is given a K, such that it is
computed using the PRF or randomly chosen from the session key space. The following describes B’s
procedure of answering queries.

• Send(U, V, s,m) query:

– U = U∗, V = V ∗, s = s∗:

∗ If U∗ is the initiator, upon receiving the second protocol message computes the session key
K ← OraclePRF(U∗||X̄||V ∗||Ȳ) ⊕ PRF(CDH(U, V), U∗||X̄||V ∗||Ȳ) (Consider X is from
the initiator and Y is from the responder, and X̄ and Ȳ are the encrypted X and Y
respectively, which are computed in normal protocol run).

∗ If U∗ is the responder, upon receiving the first protocol message computes the session key
K ← OraclePRF(V ∗||X̄||U∗||Ȳ)⊕ PRF(CDH(U, V), V ∗||X̄||U∗||Ȳ).

– U = U∗, V = V ∗, s 6= s∗: Executes the protocol normally.

– U = U∗, V 6= V ∗: Executes the protocol normally.

– U = V ∗:

∗ If this is the initiator and it is the first message, then executes the protocol normally.

∗ If this is the initiator and the second protocol message, or the responder:

· If the same message that came to V ∗ in the test session has come as the incoming
message, computes the session key using the OraclePRF.

· Otherwise, executes the protocol normally.

– U, V 6= U∗ or V ∗: Executes the protocol normally.

• SessionKeyReveal(U, V, s) query: SessionKeyReveal query is not allowed to the target session.
B can compute all the session keys by executing the protocol.

– For sessions involving the principal V ∗, and the incoming message to V ∗ is the same message
which has come to V ∗ in the target session, B uses OraclePRF to compute the session key.

– For all other sessions, B computes the session key by using the PRF.

• EphemeralKeyReveal(U, V, s) query: B can answer all EphemeralKeyReveal queries, which are
allowed by the freshness condition, because B has the ephemeral keys.

• Corrupt(U) query: Except for V ∗, algorithm B can answer all other Corrupt queries. In this case
we consider the situation in which the adversary is not allowed to corrupt the peer principal of the
target session, so in fact, B can answer all legitimate Corrupt queries.

• Test(U, V, s) query: When U = U∗, V = V ∗, s = s∗, answers with the K which is computed as
explained in the Send query. Otherwise aborts the game.

If the oracle is using the real PRF with a hidden key, the simulation is identical to Game 3, whereas
if the oracle is using a random function, the simulation constructed is identical to Game 4. If A can
distinguish the difference between Game 3 and Game 4, then A can be used as a subroutine of an
algorithm B, which is used to distinguish whether the PRF challenger is real or random. Hence,

|AdvGame 3(A)−AdvGame 4(A)| ≤ AdvPRF(B). (24)

Semantic security of the session key in Game 4: Since the session key K of Πs∗

U∗,V ∗ is chosen
randomly and independently from all other values, A does not have any advantage in Game 4. Hence,

AdvGame 4(A) = 0. (25)

Using equations (21)–(25) we find,

AdveCK
P1,Case 2a(A) ≤ N2

PNs
2
(

AdvPRF(B) + AdvCCA2
PKE (D)

)
.

20

Case 2b: Adversary does not corrupt the owner to the test session.

Game 1: This is the original game. When Test query is asked the Game 1 challenger will choose a

random bit b
$←− {0, 1}. If b = 1, the real session key is given to A, otherwise a random value chosen from

the same session-key space is given. Hence,

AdvGame 1(A) = AdveCK
P1,Case 2b(A). (26)

Game 2: Same as Game 1 with the following exception: before A begins, two distinct random principals

U∗, V ∗
$←− {U1, ..., UNP

} are chosen and two random numbers s∗, t∗
$←− {1, ...Ns} are chosen, where NP is

the number of protocol principals and Ns is the number of sessions on a principal. The session Πs∗

U∗,V ∗ is

chosen as the target session and the session Πt∗

V ∗,U∗ is chosen as the peer session. If the test session is not

the session Πs∗

U∗,V ∗ , the Game 2 challenger aborts the game. Unless the incorrect choice happens, the
Game 2 is identical to the Game 1. Hence,

AdvGame 2(A) =
1

NP
2N2

s

AdvGame 1(A). (27)

Game 3: Same as Game 2 with the following exception: the Game 3 challenger randomly chooses

c
$←− Z∗q and computes K ← PRF(CDH(X,Y), ·‖X̄‖ · ‖Ȳ) ⊕ PRF(gc, ·‖X̄‖ · ‖Ȳ). When the adversary

asks the Test(U∗, V ∗, s∗) query, Game 3 challenger will answer with K.

Note. Let X,Y be the two ephemeral Diffie-Hellman public keys (unencrypted) of the protocol principals
in a session, such that X = gx, Y = gy and CDH(X,Y) = gxy.

We construct an algorithm C against a DDH challenger, using the adversary A as a sub routine.

The DDH challenger sends values (ga, gb, gc) such that either c = ab or c
$←− Z∗q , as the inputs to the

algorithm C. C sets U ← ga as the long term Diffie-Hellman public key of U∗ and V ← gb as the long-term
Diffie-Hellman public key of V ∗. Moreover, C sets all the other long-term Diffie-Hellman secret/public
key pairs and all the encryption key pairs of protocol principals. The algorithm C runs a copy of A and
interacts with A such that A is interacting with either Game 2 or Game 3. Algorithm C simulates answers
to the adversarial queries as follows:

• Send(U, V, s,m) query:

– If U∗ is the initiator, C can start the protocol normally. Upon receiving the second protocol
message from V ∗ to U∗, C computes the session key K ← PRF(CDH(X,Y), U∗‖X̄‖V ∗‖Ȳ)⊕
PRF(gc, U∗‖X̄‖V ∗‖Ȳ) (Consider X is from the initiator and Y is from the responder, and X̄
and Ȳ are the encrypted X and Y respectively, which are computed in normal protocol run).

– If U∗ is the responder, upon receiving the first protocol message from V ∗ to U∗, C executes
the protocol normally, sends the second protocol message of the test session, and computes the
session key K ← PRF(CDH(X,Y), V ∗‖X̄‖U∗‖Ȳ)⊕ PRF(gc, V ∗‖X̄‖U∗‖Ȳ).

– For all the cases of Send queries, C can decrypt incoming protocol messages and execute the
protocol normally. In the places where both U∗ and V ∗ is involved, C uses gc in key derivation.

• SessionKeyReveal(U, V, s) query: SessionKeyReveal query is not allowed to the target session. C
can compute all the other session keys by executing the protocol normally. In the places where
both U∗ and V ∗ is involved, C uses gc in key derivation.

• EphemeralKeyReveal(U, V, s) query: Algorithm C can answer all the other EphemeralKeyReveal

queries, since C has all the ephemeral keys.

• Corrupt(U) query: Corrupt(V ∗) are prohibitted in this case, and further we consider that A will
not corrupt U∗ here. Algorithm C can answer all the other Corrupt queries, since C has all the
long-term keys.

• Test(U, V, s) query: When U = U∗, V = V ∗, s = s∗, answers with the K which is computed as
explained in the Send query. Otherwise aborts the game.

21

If C’s input is a Diffie-Hellman triple, simulation constructed by C is identical to Game 2, otherwise it
is identical to Game 3. If A can distinguish the difference between games, then C can answer the DDH
challenge. Hence,

|AdvGame 2(A)−AdvGame 3(A)| ≤ AdvDDH
q,g (C). (28)

Game 4: Same as Game 3 with the following exception: the Game 4 challenger randomly chooses

K
$←− {0, 1}k and sends it to the adversary A as the answer to the Test(U∗, V ∗, s∗) query.
If A can distinguish the difference between Game 3 and Game 4, then A can be used as a subroutine

of an algorithm B, which is used to distinguish whether the session key value K is computed using the
real PRF with a hidden key, or using a random function. The adversary A is given a K, such that it is
computed using the PRF or randomly chosen from the session key space. The following describes Bs
procedure of answering queries.

• Send(U, V, s,m) query:

– If U∗ is the initiator, upon receiving the second protocol message, computes the session key
K ← PRF(CDH(X,Y), U∗||X̄||V ∗||Ȳ)⊕OraclePRF(U∗||X̄||V ∗||Ȳ).

– If U∗ is the responder, upon receiving the first protocol message, computes the session key
K ← PRF(CDH(X,Y), V ∗||X̄||U∗||Ȳ)⊕OraclePRF(V ∗||X̄||U∗||Ȳ).

– When both U∗ and V ∗ involves in a session query the OraclePRF to compute the session key
upon receiving protocol messages.

– For all the other cases of Send queries, B can execute the protocol normally.

• SessionKeyReveal(U, V, s) query: SessionKeyReveal query is not allowed to the target session or
its partner. B can compute all the session keys as explained under the Send query description.

• EphemeralKeyReveal(U, V, s) query: B can answer all EphemeralKeyReveal queries correctly,
because C has the ephemeral keys.

• Corrupt(U) query: Corrupt(V ∗) are prohibitted in this case, and further we consider that A will
not corrupt U∗ here. Algorithm C can answer all the other Corrupt queries, since C has all the
long-term keys.

• Test(U, V, s) query: When U = U∗, V = V ∗, s = s∗, answers with the K which is computed as
explained in the Send query. Otherwise aborts the game.

If the oracle is using the real PRF with a hidden key, the simulation is identical to Game 3, whereas
if the oracle is using a random function, the simulation constructed is identical to Game 4. If A can
distinguish the difference between Game 3 and Game 4, then A can be used as a subroutine of an
algorithm B, which is used to distinguish whether the PRF challenger is real or random. Hence,

|AdvGame 3(A)−AdvGame 4(A)| ≤ AdvPRF(B). (29)

Semantic security of the session key in Game 4: Since the session key K of Πs∗

U∗,V ∗ is chosen
randomly and independently from all other values, A does not have any advantage in Game 4. Hence,

AdvGame 4(A) = 0. (30)

Using equations (26)–(30) we find,

AdveCK
P1,Case 2b(A) ≤ N2

PNs
2
(

AdvDDH
q,g (C) + AdvPRF(B)

)
.

Combining all the above cases.

According to the analysis we can see the adversary A’s advantage of winning against the eCK challenger
of the protocol P1 is:

AdveCK
P1 (A) ≤ N2

PN
2
s max

((
AdvDDH

q,g (C) + AdvPRF(B)
)
,
(
AdvPRF(B) + AdvCCA2

PKE (D)
))

.

22

4.3 Efficiency of the protocol P1

The protocol execution cost of our protocol is one encryption, one decryption, three exponentiations
and two pseudo-random operations. Table 4 shows the protocol execution costs of the standard model
protocols that mentioned in Table 2. The generic GC-KKN protocol is instantiated with a factoring-
based key encapsulation mechanism as mentioned by Yang [26] and our protocol is instantiated with
Cramer-Shoup public-key encryption scheme [10]. In Table 4, CR denotes collision resistant hash
functions, TCR denotes target collision resistant hash functions, Exp denotes exponentiations, Multi-exp
denotes multi-exponentiations, Pair denotes pairings, PRF denotes pseudo-random functions, π-PRF
denotes pseudo-random function with pairwise independent random source. Compared to other protocols
mentioned in Table 4, Cramer-Shoup-based instantiation of our protocol needs relatively simple multi-
exponentiations, and additionally two pseudo-random functions.

Protocol Overall Cost Instantiation Details

MO [21] 3Exp, 1Multi-exp, 1CR, 1πPRF Concrete
Yang P1[26] 2Exp, 4Multi-exp, 4Pair, 1PRF, 2TCR Concrete
Yang GC-KKN[26] 7Exp, 2Multi-exp, 3PRF, 2TCR Factoring-based KEM
Protocol P1 (this paper) 6Exp, 4Multi-exp, 2PRF Cramer-Shoup PKE

Table 4: Cost analysis of few standard model eCK-secure key exchange protocols

5 Conclusion and Future Works

In this paper we presented a generic eCK-secure, NAXOS-free, standard model key exchange
protocol, namely the protocol P1. Thus, our generic protocol is a strongly-secure and realistic framework
for real world instantiations. The protocol execution cost of our protocol is one encryption, one decryption,
three exponentiations and two pseudo-random operations. Cramer-Shoup-based instantiation of our
protocol needs relatively simple multi-exponentiations, and additionally two pseudo-random functions.
To the best of our knowledge, we believe that this is the first paper on generic transformation of a
CCA2-secure public key encryption scheme to an eCK-secure key exchange protocol in the
standard model.

As a future work authors would like to focus on leakage-resilient improvements on the protocol P1.
The essential modification would be replacing the CCA2 public key encryption scheme with a suitable
leakage-resilient CCA2-secure public key encryption scheme, and using a leakage-resilient mechanism to
compute the exponentiation operations, in places where the long term Diffie-Hellman secret keys are
used as exponents. Several strong eCK-style leakage-resilient security models have been introduced in
the literature [22, 1], which would be useful to analyze the leakage-resilient security of the improved
protocol. There are several standard model leakage-resilient CCA2-secure public key encryption schemes
in the literature [23, 15], which can be used to replace the CCA2 public key encryption scheme. In
order to compute the Diffie-Hellman exponentiations in leakage-resilient manner, the mechanism used by
Alawatugoda et al. [2] would be appropriate, which is influenced by the leakage-resilient storage scheme
of Dziembowski and Faust [13]. Thus, it is possible to improve this generic protocol to achieve leakage
resiliency.

Acknowledgement

I would like to acknowledge Dr. Douglas Stebila of the Queensland University of Technology–Australia,
Professor Colin Boyd of the Norwegian University of Science and Technology–Norway and Professor
Tatsuaki Okamoto of NTT Secure Platform Laboratories–Japan, for the valuable discussions on key
exchange protocols.

References

[1] J. Alawatugoda, D. Stebila, and C. Boyd. Modelling after-the-fact leakage for key exchange. In 9th
ACM Symposium on Information, Computer and Communications Security, ASIA CCS ’14, Kyoto,
Japan - June 03 - 06, 2014, pages 207–216, 2014.

23

[2] J. Alawatugoda, D. Stebila, and C. Boyd. Continuous after-the-fact leakage-resilient eck-secure key
exchange. In Cryptography and Coding - 15th IMA International Conference, IMACC 2015, Oxford,
UK, December 15-17, 2015. Proceedings, pages 277–294, 2015.

[3] M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations among notions of security for
public-key encryption schemes. In CRYPTO, pages 26–45, 1998.

[4] M. Bellare and P. Rogaway. Entity authentication and key distribution. In CRYPTO, pages 232–249,
1993.

[5] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing efficient
protocols. In V. Ashby, editor, ACM CCS 93, pages 62–73. ACM Press, Nov. 1993.

[6] M. Bellare and P. Rogaway. Provably secure session key distribution - the three party case. pages
57–66. ACM Press, 1995.

[7] M. Bellare and P. Rogaway. The security of triple encryption and a framework for code-based
game-playing proofs. In Advances in Cryptology - EUROCRYPT 2006, 25th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, St. Petersburg, Russia,
May 28 - June 1, 2006, Proceedings, pages 409–426, 2006.

[8] V. Boyko, P. MacKenzie, and S. Patel. Provably secure password-authenticated key exchange using
Diffie-Hellman. In Proceedings of the 19th international conference on Theory and application of
cryptographic techniques, EUROCRYPT’00, pages 156–171, Berlin, Heidelberg, 2000. Springer-Verlag.

[9] R. Canetti and H. Krawczyk. Analysis of key-exchange protocols and their use for building secure
channels. In EUROCRYPT, pages 453–474, 2001.

[10] R. Cramer and V. Shoup. A practical public key cryptosystem provably secure against adaptive
chosen ciphertext attack. In H. Krawczyk, editor, CRYPTO’98, volume 1462 of LNCS, pages 13–25.
Springer, Aug. 1998.

[11] W. Diffie and M. Hellman. New directions in cryptography. IEEE Transactions on Information
Theory, pages 644 – 654, 1976.

[12] W. Diffie, P. C. van Oorschot, and M. J. Wiener. Authentication and authenticated key exchanges.
Des. Codes Cryptography, 2(2):107–125, 1992.

[13] S. Dziembowski and S. Faust. Leakage-resilient cryptography from the inner-product extractor. In
ASIACRYPT, pages 702–721, 2011.

[14] J. S. Florian Bergsma, Tibor Jager. One-round key exchange with strong security: An efficient and
generic construction in the standard model. Cryptology ePrint Archive, Report 2015/015, 2015.
http://eprint.iacr.org/2015/015.

[15] S. Halevi and H. Lin. After-the-fact leakage in public-key encryption. In Theory of Cryptology
Conference, pages 107–124, 2011.

[16] D. P. Jablon. Strong password-only authenticated key exchange. SIGCOMM Comput. Commun.
Rev., 26(5):5–26, Oct. 1996.

[17] J. Katz and Y. Lindell. Introduction to Modern Cryptography. Chapman and Hall/CRC Press, 2007.

[18] J. Kilian and P. Rogaway. How to protect DES against exhaustive key search (an analysis of DESX).
J. Cryptology, 14(1):17–35, 2001.

[19] M. Kim, A. Fujioka, and B. Ustaoglu. Strongly secure authenticated key exchange without naxos’
approach. In Advances in Information and Computer Security, 4th International Workshop on
Security, IWSEC 2009, Toyama, Japan, October 28-30, 2009, Proceedings, pages 174–191, 2009.

[20] B. LaMacchia, K. Lauter, and A. Mityagin. Stronger security of authenticated key exchange. In
ProvSec, pages 1–16, 2007.

[21] D. Moriyama and T. Okamoto. An eck-secure authenticated key exchange protocol without random
oracles. In Provable Security, Third International Conference, ProvSec 2009, Guangzhou, China,
November 11-13, 2009. Proceedings, pages 154–167, 2009.

24

http://eprint.iacr.org/2015/015

[22] D. Moriyama and T. Okamoto. Leakage resilient eCK-secure key exchange protocol without random
oracles. In ASIACCS, pages 441–447, 2011.

[23] M. Naor and G. Segev. Public-key cryptosystems resilient to key leakage. In CRYPTO, pages 18–35.
2009.

[24] V. Shoup. Sequences of games: a tool for taming complexity in security proofs. IACR Cryptology
ePrint Archive, Report 2004/332, 2004.

[25] B. Ustaoglu. Obtaining a secure and efficient key agreement protocol from (H)MQV and NAXOS.
Des. Codes Cryptography, 46(3):329–342, 2008.

[26] Z. Yang. Efficient eck-secure authenticated key exchange protocols in the standard model. In
Information and Communications Security - 15th International Conference, ICICS 2013, Beijing,
China, November 20-22, 2013. Proceedings, pages 185–193, 2013.

25

	Introduction
	Key Exchange Security Models
	eCK-Secure Key Exchange Protocols
	Our Contribution

	Preliminaries
	Pseudo Random Functions
	Indistinguishability against Adaptive Chosen Ciphertext Attacks (CCA2)
	Diffie-Hellman Assumptions

	Extended Canetti-Krawczyk Model (eCK)
	Generic eCK-Secure Key Exchange in the Standard Model
	Construction of the Generic Protocol P1
	Security Analysis of the Protocol P1
	Efficiency of the protocol P1

	Conclusion and Future Works

