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Abstract

Quantum cryptography is the art and science of exploiting quantum mechanical effects in
order to perform cryptographic tasks. While the most well-known example of this discipline is
quantum key distribution (QKD), there exist many other applications such as quantum money,
randomness generation, secure two- and multi-party computation and delegated quantum com-
putation. Quantum cryptography also studies the limitations and challenges resulting from
quantum adversaries—including the impossibility of quantum bit commitment, the difficulty of
quantum rewinding and the definition of quantum security models for classical primitives.

In this review article, aimed primarily at cryptographers unfamiliar with the quantum world,
we survey the area of theoretical quantum cryptography, with an emphasis on the constructions
and limitations beyond the realm of QKD.
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1 Introduction

The relationship between quantum information and cryptography is almost half-a-century old: a
1968 manuscript of Wiesner (published more than a decade later [Wie83]), proposed quantum
money as the first ever application of quantum physics to cryptography, and is also credited for
the invention of oblivious transfer—a key concept in modern cryptography that was re-discovered
years later by Rabin [Rab81]. Still today, the two areas are closely intertwined: for instance, two of
the most well-known results in quantum information stand out as being related to cryptography:
quantum key distribution (QKD) [BB84] and Shor’s factoring algorithm [Sho94].

There is no doubt that QKD has taken the spotlight in terms of the use of quantum information
for cryptography (in fact, so much that the term “quantum cryptography” is often equated with
QKD—a misconception that we aim to rectify here!); yet there exist many other uses of quantum
information in cryptography. What is more, quantum information opens up the cryptographic
landscape to allow functionalities that do not exist using classical1 information alone, for example
uncloneable quantum money. We note, however, that the use of quantum information in cryptog-
raphy has its limitations and challenges. For instance, we know that quantum information alone is
insufficient to implement information-theoretically secure bit commitment; and that a proof tech-
nique called rewinding (which is commonly used in establishing a zero-knowledge property for a
protocol) does not directly carry over to the quantum world and must re-visited in light of quantum
information.

In this paper, prepared on the occasion of the 25th anniversary edition of Designs, Codes
and Cryptography, we offer a survey of some of the most remarkable theoretical uses of quantum
information for cryptography, as well as a number of limitations and challenges that cryptographers
face in light of quantum information. We assume that the reader is familiar with cryptography,
but we do not assume any prior knowledge of quantum information. Quantum cryptography is
a flourishing area of research, and we have chosen to give an overview of only a limited number
of topics. The reader is, of course, encouraged to follow up by consulting the references. To
the best of our knowledge, prior survey work on the topic of “quantum cryptography beyond key
exchange” is limited to a 2006 survey by Müller-Quade [Mül06] and a 1996 survey by Brassard
and Crépeau [BC96]; see also an interesting personal account by Brassard [Bra05]. A number of
surveys that focus on QKD exist and are listed in Section 3.2.

1.1 Overview

The predictions of quantum mechanics defy our everyday intuition: concepts such as superposition
(a particle can be in multiple places or states at the same time), entanglement (particles are
correlated beyond what is possible classically) and quantum uncertainty (observing one property
of a particle intrinsically degrades the possibility of observing another) are partly responsible for
the bewildering possibilities in the quantum world. Section 2 of this survey contains a brief
introduction to the mathematical formalism of quantum information as it pertains to quantum
cryptography (no prior knowledge of quantum mechanics is assumed). Topics covered in this
section include the mathematical formalism for the representation and manipulation of qubits (the
fundamental unit of quantum information). We also include a brief survey of concepts such as the
quantum no-cloning theorem, entanglement and nonlocality — all of which play an important role
in quantum cryptography.

Section 3 of this survey is devoted to quantum cryptographic constructions. The principal
appeal in using quantum information for cryptography is in establishing a qualitative advantage.

1We use the word “classical” here and throughout to mean “non-quantum”.
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More precisely, the goal is to develop quantum cryptographic protocols that achieve some function-
ality in a way that is fundamentally advantageous compared to using classical information alone.
This quantum advantage can be of the following types:

• a quantum protocol achieves information-theoretic (statistical) security; any classical protocol
achieves this task with computational security at best;

• a quantum protocol achieves computational security; no classical protocol can achieve this
task, even with computational security.

Many of the quantum constructions that we cover in this survey (whether they are of the
first or second type) are inspired by the original proposal of Wiesner called conjugate coding.
This construction embodies many unique features of quantum information, as we explain in Sec-
tion 3.1. In particular, conjugate coding is used in constructions for physically unforgeable quantum
money (Section 3.1), as well as in quantum key distribution—a method that allows the information-
theoretically secure expansion of shared keys (Section 3.2). Another application of conjugate coding
in quantum cryptography is in showing that two basic cryptographic primitives, bit commitment and
oblivious transfer are (information-theoretically) equivalent in the quantum world (Section 3.3)—an
equivalence that is provably false in the classical world. Technologically speaking, perfect quan-
tum communication and storage is a challenge; in building protocols in the bounded- and limited-
storage quantum models (collectively known as limited-storage models), ingenious cryptographers
have turned this challenge to their advantage (Section 3.4)—once again, the key ingredient in the
construction being conjugate coding. Motivated by the perspective that quantum computations
will, in the future, be outsourced to remote locations (again, because of technological challenges
involved in building quantum computers), cryptographers have studied protocols for the delegation
of quantum computations, which we cover in Section 3.5. In Section 3.6, we review the possibility of
quantum primitives that accomplish a security against malicious participants that is typically too
weak for cryptographic applications (since it does not provide exponential security), yet is still of
interest due to the advantage that quantum information provides: this is embodied in quantum pro-
tocols for weak coin flipping and imperfect bit commitment. Finally, we survey device-independent
cryptography (Section 3.7) which can be seen as a culmination of many of the constructions already
mentioned: thanks to this sophisticated technique, it is possible to achieve cryptographic tasks
such as quantum key distribution and randomness expansion/amplification, with untrusted devices,
which are quantum devices that are assumed to have originated from an adversary. The very possi-
bility of achieving this result stems from one of the most mysterious quantum phenomena, namely
nonlocality (which is introduced in Section 2.5).

While quantum information provides a number of advantages for cryptography, it also has its
unique limitations and challenges, which we survey in Section 4. The first limitations that we sur-
vey are in terms of impossibility results, namely the impossibility of information-theoretically secure
quantum bit commitment (Section 4.1) and of information-theoretically secure two-party quantum
computation (Section 4.2). Next, we cover two topics that are applicable to purely classical proto-
cols, in which essentially the only concern is that the adversary is capable of quantum information
processing: quantum rewinding (Section 4.3) and superposition attacks (Section 4.4). We emphasize
that the cryptographic challenges encountered here are not related to the superior computational
power of a quantum adversary, but rather stem from quantum phenomena such as the no-cloning
theorem (which forces us to develop an alternative to the common rewinding method used in order
to establish the zero-knowledge property of interactive protocols), and of quantum superposition
(which requires a new framework describing interactions with oracles—namely in the quantum ran-
dom oracle model). Finally, in Section 4.5, we survey the research area of position-based quantum
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cryptography, where players use their geographical position as cryptographic credential; while the
current main result in this area is a no-go theorem for quantum protocols for the task of posi-
tion verification, the possibility of position-based quantum cryptography against resource-bounded
adversaries remains a tantalizing open question.

One of the lessons learned from all these impossibility results is that quantum security is defi-
nitely a tricky business—quantum cryptographers should take this as a warning: the desire to find
a “quantum advantage” (i.e. an application where quantum information outperforms all classical
solutions) is extremely strong, and cryptographers must be vigilant since the quantum world comes
with an abundance of subtleties.

We note that the bibliographic entries in this survey are available as an open-source BibTEX
file at https://github.com/cschaffner/quantum-bib.

1.2 Further topics

Already, the literature on quantum cryptography is vast, and in this survey we have chosen to focus
on only a few topics. We briefly mention here some topics that are not included in this survey:

• Everlasting security. A protocol has everlasting security if it is secure against adversaries
that are computationally unlimited after the protocol execution. This type of security is
very difficult to obtain classically, even under strong setup assumptions such as a common
reference string or signature cards [Unr13]. Even though we do not treat the notion explicitly
in this survey, many quantum-cryptographic protocols such as QKD (Section 3.2) and the
limited-quantum-storage protocols (Section 3.4) come with the important benefit of everlast-
ing security. In fact, everlasting security might be the most important reason to use QKD in
the first place [SML10].

• Quantum functionalities. In this survey, we focus mainly on classical functionalities, but
quantum functionalities are of course also of interest: assuming full quantum computers for all
parties, one can study the secure realization of a quantum ideal functionality. This includes
topics such as the encryption of quantum messages in the information-theoretic [AMTdW00,
BR03, HLSW04, Leu02], entropic [Des09, DD10] and computational [BJ15] settings, quan-
tum secret sharing [CGL99], multi-party quantum computation [BCG+06], authentication of
quantum messages [BCG+02], two-party secure function evaluation [DNS10, DNS12], quan-
tum anonymous transmission [CW05, BBF+07], quantum one-time programs [BGS13] and
quantum homomorphic encryption [YPF14,BJ15].

• Key recycling. Using quantum information, it is possible to detect eavesdropping such
that key re-use is possible (if no eavesdropping is detected), while maintaining information-
theoretic security. This idea was originally proposed by Bennett, Brassard and Breidbart in
1982 [BBB14] and was worked out in detail by Damg̊ard, Pedersen and Salvail in [DPS14].

• Quantum uncloneability. Because quantum information cannot, in general, be duplicated,
(see Section 2.4), we can achieve functionalities related to copy-protection that cannot be
obtained in the classical world. These include uncloneable encryption [Got03], quantum
copy-protection [Aar09] and revocable time-release encryption [Unr14b].

• Isolation assumptions. The multi-prover interactive proof scenario [BGKW88] enables the
information-theoretic implementation of primitives that are unachievable in the single-prover
setting. However, the study of quantum information has shed new light on the “isolation”
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assumptions that are required in order to establish security [CSST11]. Related to this is the
study of protocols which are secure against provers sharing correlations that are very strong,
yet do not allow signalling: [KRR14, FF15]. One particular way to enforce isolation is to
spatially separate the players by a far enough distance: the relativistic no-signalling principle
ensuring that no information can travel faster than the speed of light between the two sites. A
relativistic (classical) bit-commitment scheme was first proposed by Kent [Ken99] and lately
improved and experimentally implemented [LKB+15]. See also related work [LKB+13].

• Leakage resilience using quantum techniques. In leakage resilient computation, we are
interested in protecting computations from attacks according to various leakage models. In
one of these models (the “split-state” model), it was shown [DDN15] that quantum infor-
mation allows a solution to the orthogonal-vector problem, while no classical solution exists.
Also, related work [LRR14] shows that techniques from fault-tolerant quantum computation
can be used to construct novel leakage-resilient classical protocols.

• Quantum cryptanalysis. Historically, the study of quantum algorithms is closely related
to quantum cryptanalysis, which is the study of quantum algorithms for cryptanalysis. This is
evidenced by some of the very early work on quantum algorithms, including Shor’s algorithm
for computing discrete logarithms and integer factoring in quantum polynomial-time [Sho94],
Grover’s search algorithm [Gro96, BBHT98] (which provides a square-root speedup in term
of query complexity, for searching in an unstructured database). Recent work in the area
of quantum cryptanalysis includes [Reg04,Hal05,Hal07,BJLM13,CJS13,LMvdP13]. See also
[Mos09,BvD10] for surveys on quantum algorithms, as well as the Quantum Algorithm Zoo.2

• Merkle puzzles in a quantum world. The first unclassified proposal for secure commu-
nication over insecure channels was made by Merkle in 1974 (published years later [Mer78]).
The main idea is that honest parties can establish a secure communication channel by ex-
pending work proportional to N , yet any successful attack requires a computational effort
proportional to N2. In a nutshell, Grover’s search algorithm [Gro96] implies that quantum
computers break the security of Merkle’s scheme. However, [BHK+11] show how to restore
security in the quantum context: either by using a new classical protocol (in which case an
adversary can break the scheme by expending work proportional to N5/3 (which is shown
to be optimal), or by using a quantum protocol (in which case the quadratic security can
essentially be restored).

• From classical to quantum security. What can we say about the relationship between
security in the classical setting versus the quantum setting? In this context, Unruh [Unr10]
shows that if a protocol is statistically secure in the universal composability (UC) frame-
work [Can01,Unr10], then the same protocol is quantum UC secure as well, and Fehr, Katz,
Song, Zhou and Zikas [FKS+13] classified the feasibility of cryptographic functionalities in
the universal composability (UC) framework3, and showed that feasibility in the quantum
world is equivalent (for a large family of functionalities) to classical feasibility, both in the
computational and statistical setting. See also [HSS11,Son14].

• Post-quantum cryptography. The area of post-quantum cryptography [BBD09]4 finds

2http://math.nist.gov/quantum/zoo/
3A primitive is feasible if it can be implemented in the UC model from secure channels only.
4The term is quite well-established by now, but chosen somewhat unfortunately, because the research area is

concerned with cryptography which is still secure at the beginning and not after the end of the era of large-scale
quantum computers.
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alternatives to the RSA and discrete-log assumptions in (classical) cryptography, in order
to circumvent quantum attacks stemming from Shor’s algorithm. This area is traditionally
considered a topic related to classical cryptography, but the issues arising from the problem of
quantum rewinding (Section 4.3) and the superposition model for oracle access (Section 4.4)
may be considered part of post-quantum cryptography as well.

• Quantum public keys. The use of quantum states as public keys presents fundamental
challenges in terms of verifiability and re-usability; nevertheless, these types of keys have been
studied in the context of quantum digital signatures [GC01,DWA14] and quantum public-key
identification [IM11].

• Distributed quantum computation. Quantum information in known to provide advan-
tages in distributed computation, namely in terms of quantum Byzantine agreement [BH05]
and a quantum leader election in anonymous networks [TKM12].

• Experimental implementations. Experimental implementations of quantum cryptog-
raphy are mostly focused on QKD (see [ABB+14]), but also include quantum coin flip-
ping [MTVUZ05, NFHM08, BBB+11], quantum secret sharing [TZG01], delegated quantum
computation [BKB+12, FBS+14], limited-quantum-storage cryptography [NJC+12, ENN+14],
and device-independent randomness generation [PAM+10,CMA+13].

2 Basics of Quantum Information

This section contains the rudiments of quantum information that are used in the main text; we
assume of the reader only basic knowledge of linear algebra. The reader should be warned that
quantum theory is actually much more rich, subtle and beautiful! Textbook references on quantum
information include: [NC00,KLM07,Mer07,Wil13,Wat15].

2.1 State Space

The bit is the fundamental unit of information for classical information processing. In quantum
information processing, the corresponding unit is the qubit, which is described mathematically by
a vector of length one in a two-dimensional complex vector space. We use notation from physics
to denote vectors that represent quantum states, enclosing vectors in a ket, yielding, i.e. ∣ψ⟩. We
can write any state on one qubit as a ∣ψ⟩ = α ∣0⟩ + β ∣1⟩, where the states ∣0⟩ and ∣1⟩ form a basis
for the underlying two-dimensional vector space, and where α, β are complex numbers satisfying
∣α∣2 + ∣β∣2 = 1. If neither α nor β are zero, then we say that ∣ψ⟩ is in a superposition (linear
combination) of both ∣0⟩ and ∣1⟩. The quantum state of two or more qubits can be described by a
tensor product. Hence, the four basis states for two qubits are ∣0⟩⊗∣0⟩ , ∣0⟩⊗∣1⟩ , ∣1⟩⊗∣0⟩ , ∣1⟩⊗∣1⟩ which
is usually abbreviated as ∣00⟩ , ∣01⟩ , ∣10⟩ , ∣11⟩. Extending the concept of superposition to multiple
qubits, we see that a system of n qubits can be in any superposition of the n-bit basis states
∣00 . . .0⟩ , ∣00 . . .1⟩ , . . . , ∣11 . . .1⟩. Hence, an n-qubit state is described by 2n complex coefficients. In
case of bipartite quantum states shared among Alice and Bob, subscripts can be used to indicate
which player holds which qubits. For instance, the 2-qubit state ∣0⟩A ⊗ ∣0⟩B = ∣00⟩AB means that
Alice and Bob both hold a qubit in state ∣0⟩.
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2.2 Unitary Evolution and Circuits

Basic evolutions of a quantum system are described by linear operations that preserve the norm;
formally, these operations can be expressed as unitary complex matrices (a complex matrix U is
unitary if UU † = I, where U † is the complex-conjugate transpose of U). Quantum algorithms
are commonly described as circuits (rather than by quantum Turing machines) consisting of basic
quantum gates from a universal set. Commonly used single-qubit gates are the negation (X), phase
(Z) and Hadamard (H) gates, expressed by the following unitary matrices:

X = (0 1
1 0

) , Z = (1 0
0 −1

) , H = 1√
2
(1 1

1 −1
) . (1)

An example of a two-qubit gate is the controlled-not operation (CNOT ):

CNOT =
⎛
⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎟
⎠
. (2)

2.3 Measurement

In addition to unitary evolution, we specify an operation called measurement, which, in the simplest
case, takes a qubit and outputs a classical bit. If we measure a qubit ∣ψ⟩ = α ∣0⟩ + β ∣1⟩, we will
get as outcome a single bit, which takes the value 0 with probability ∣α∣2 and the value 1 with
probability ∣β∣2. We further specify that, after the process of measurement, the quantum system
collapses to the measured outcome. Thus, the quantum state is disturbed and it becomes classical :
any further measurements have a deterministic outcome. We have described measurement with
respect to the standard basis; of course, a measurement can be described according to an arbitrary
basis; the probabilities of the outcomes can be computed by first applying the corresponding change-
of-basis, followed by the standard basis measurement. Measurements can actually be described
much more generally: e.g. we can describe outcomes of measurements of a strict subset of a quantum
system—the mathematical formalism to describe the outcomes uses the density matrix formalism,
which we do not describe here.

As a simple example of quantum measurements, consider the states ∣ψ1⟩ = ∣0⟩ and ∣ψ2⟩ = 1√
2
(∣0⟩+

β ∣1⟩). Then measuring the state ∣ψ1⟩ yields the outcome 1 with unit probability and the state
remains ∣0⟩, while measuring ∣ψ2⟩ yields the outcome 0 or 1, each with probability 1

2 , and the
post-measurement state is ∣0⟩ if we observed outcome 0 and ∣1⟩ if we observed 1.

2.4 Quantum No-Cloning

One of the most fundamental properties of quantum information is that it is not physically possible,
in general, to clone a quantum system [WZ82] (i.e. there is no physical process that takes as input
a single quantum system, and outputs two identical copies of its input). A simple proof follows
from the linearity of quantum operations5. At the intuitive level, this principle is present in almost
all of quantum cryptography, since it prevents the classical reconstruction of the description of

5Assume a quantum operation A which takes as input a qubit in state ∣ψ⟩ (together with a “helping” qubit in
state ∣0⟩) and outputs ∣ψ⟩ ∣ψ⟩. Hence, A ∣0⟩ ∣0⟩ = ∣0⟩ ∣0⟩ and A ∣1⟩ ∣0⟩ = ∣1⟩ ∣1⟩. By linearity of A, it must hold that

A ∣0⟩+∣1⟩√
2
∣0⟩ = A∣0⟩∣0⟩+A∣1⟩∣0⟩√

2
=
∣0⟩∣0⟩+∣1⟩∣1⟩√

2
which is not equal to the state ∣0⟩+∣1⟩√

2
⊗
∣0⟩+∣1⟩√

2
which we would expect as output

from a perfect copying operation A. Hence, such an A does not exist.
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a given qubit system. For instance, given a single copy of a general qubit α ∣0⟩ + β ∣1⟩, it is not
possible to “extract” a full classical description of α and β, because measuring disturbs the state.
At the formal level, however, we generally require more sophisticated tools to prove the security of
quantum cryptography protocols (see Section 3.1).

2.5 Quantum Entanglement and Nonlocality

A crucial and rather counter-intuitive feature of quantum mechanics is quantum entanglement, a
physical phenomenon that occurs when quantum particles behave in such a way that the quantum
state of each particle cannot be described individually. A simple example of such an entangled state
are two qubits in the state (∣00⟩AB+ ∣11⟩AB)/

√
2. When Alice measures her qubit (in system A), she

obtains a random bit a ∈ {0,1} as outcome and her qubit collapses to the state ∣a⟩A she observed.
At the same time, Bob’s qubit (in system B) also collapses to ∣a⟩B and hence, a subsequent
measurement by Bob yields the same outcome b = a. It is important to realize that this collapse
of state at Bob’s side occurs simultaneously with Alice’s measurement, but it does not allow the
players to send information from Alice to Bob. It simply provides Alice and Bob with a shared
random bit. In general, quantum entanglement does not contradict the fundamental non-signaling
principle of the theory of relativity stating that no information can travel faster than the speed
of light.6

It turns out that by measuring entangled quantum states, Alice and Bob are able to produce
correlations that are stronger than all correlations they could obtain when sharing only classical
randomness. In this case, physicists say that the correlations violate a Bell inequality [Bel64].
The most well-known example of such an inequality was proposed by Clauser, Horne, Shimony
and Holt [CHSH69]. It can be described as a so-called non-local game among two players Alice
and Bob. In this CHSH game, Alice and Bob can initially discuss in order to establish a joint
strategy. Once the game starts, they are separated and cannot communicate. They receive as
input uniformly random bits x and y and have to output bits a and b respectively. They win
the game if and only if a ⊕ b = x ∧ y (imagine a third party, called a referee who chooses x and
y, receives a and b and checks whether the relationship a ⊕ b = x ∧ y holds). A possible classical
strategy for Alice and Bob is to ignore their inputs and always output a = b = 0. This strategy
lets them win the game with probability 3/4. It can be checked that there exist no better strategy
for two classical players who are not allowed to communicate. In other words, we have the Bell
inequality Pr[classical players win CHSH] ≤ 3/4. However, if Alice and Bob share a maximally
entangled state (e.g. an EPR pair (∣00⟩ + ∣11⟩)/

√
2), they can perform a quantum measurement

which allows them to win the CHSH game with probability cos2(π/8) ≈ 0.85 which is strictly larger
than 3/4, hence violating the Bell inequality. Many experimental tests of this inequality have been
performed and consistently found violations of this inequality, thereby proving that the world is
actually more accurately described by quantum mechanics rather than by classical mechanics.

2.6 Physical Representations

The mathematical model of quantum mechanics is currently the most accurate description of the
physical world. This theory is without doubt the most successful and well-tested physical theory of
all times; it describes a wide range of physical systems, and thus offers a large number of possible
physical systems which can serve as quantum devices. These possibilities include photonic quantum

6However, this “spooky action at a distance” puzzled Einstein a lot, and was the inspiration for his very influential
paper co-authored with Podolsky and Rosen [EPR35]. Nowadays, we often call two qubits in the maximally entangled
state (∣00⟩AB + ∣11⟩AB)/

√

2 an EPR pair.
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computing, superconduction qubits, nuclear magnetic resonance, ion trap quantum computing and
atomic quantum computing (see, e.g. [dMM03]). For our purposes, at the abstract level, all of
these systems are described by the same formalism; however there may be experimental reasons to
prefer one implementation over the other (e.g. photons are well-suited for long-distance quantum
communications, but other systems such as superconducting qubits are better suited for quantum
interactions.)

3 Quantum Cryptographic Constructions

In this section, we survey a number of quantum cryptographic protocols (see Section 1.1 for a brief
overview of these topics). Many of these protocols share the remarkable feature of being based on
a very simple pattern of quantum information called conjugate coding. Because of its paramount
importance in quantum cryptography, we first present this notion in Section 3.1. We then show how
conjugate coding is the crucial ingredient in the quantum-cryptographic constructions for quantum
money (Section 3.1), quantum key distribution (Section 3.2), a quantum reduction from oblivious
transfer to bit commitment (Section 3.3), the limited-quantum-storage model (Section 3.4) and
delegated quantum computation (Section 3.5). Further topics covered in this section are quantum
coin-flipping (Section 3.6) and device-independent cryptography (Section 3.7).

3.1 Conjugate Coding

Conjugate coding [Wie83] is based on the principle that we can encode classical information into
conjugate quantum bases. This primitive is extremely important in quantum cryptography—in
fact, the vast majority of quantum cryptographic protocols exploit conjugate coding in one way
or another. Conjugate coding is also called quantum coding [BBB14] and quantum multiplex-
ing [BBBW82].

The principle of conjugate coding is simple: for clarity of presentation and consistency with
commonly used terminology, we associate a qubit with a photon (a particle of light), and use
photon polarization as a quantum degree of freedom. Among others, photons can be polarized
horizontally (∣↔⟩), vertically (∣↕⟩), diagonally to the left (∣⤢⟩), or diagonally to the right (∣⤡⟩).
Photon polarization is a quantum property, and by associating ∣↔⟩ = ∣0⟩,∣↕⟩ = ∣1⟩, ∣⤢⟩ = 1√

2
(∣0⟩+ ∣1⟩)

and ∣⤡⟩ = 1√
2
(∣0⟩ − ∣1⟩), we can apply quantum operations to these states, as in Section 2.

Each set R = {∣↔⟩ , ∣↕⟩} and D = {∣⤢⟩ , ∣⤡⟩} forms a basis (called the rectilinear and diagonal
bases, respectively), and can thus be used to encode a classical bit (see Table 1). R and D are
conjugate bases.

encoded bit 0 0 1 0 1 1 0 0 0 0
basis choice R D D D R R D R R D

quantum encoding ∣↕⟩ ∣⤡⟩ ∣⤢⟩ ∣⤡⟩ ∣↔⟩ ∣↔⟩ ∣⤡⟩ ∣↕⟩ ∣↕⟩ ∣⤡⟩

Table 1: Example of conjugate coding. Here, we use the abbreviation R for the rectilinear basis
and D for the diagonal basis.

The relevance of conjugate coding to cryptography is summarized by two key features that were,
remarkably, already mentioned and exploited in Wiesner’s work [Wie83]:

1. Measuring in one basis irrevocably destroys any information about the encoding in its conju-
gate basis.
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2. The originator of the quantum encoding can verify its authenticity; however, without knowl-
edge of the encoding basis, and given access to a single encoded state, no third party can
create two quantum states that pass this verification procedure with high probability.

In order to explain the first property, recall the well-known Heisenberg uncertainty relation [Hei27],
which forbids learning both the position and momentum of a quantum particle precisely and simul-
taneously. In terms of photon polarization, and for a single photon, let us denote by PX the distri-
bution of outcomes when measuring the photon in the rectilinear basis and by QX the distribution
when measuring in the diagonal basis. Following Heisenberg, Maassen and Uffink [MU88] showed
an uncertainty relation: H(PX) +H(QX) ≥ 1 (where H is the Shannon entropy, an information-
theoretic measure of uncertainty given by H(PX) = −∑x px log2 px). Intuitively, such a relation
quantifies the fact that one can know the outcome exactly in one basis, but consequently has com-
plete uncertainty in the other basis. Looking ahead, we will see that such uncertainty relations play a
key role in proving security of quantum cryptographic protocols, e.g. in the limited-quantum-storage
setting (Section 3.4). The second property above is explained by noting that a quantum encoding
can be verified by measuring each qubit in its encoding basis and checking that the measurement
result corresponds to the correct encoded bit. Intuitively, the no-cloning theorem (Section 2.4)
prevents a third party from forging a state that would pass this verification procedure; however,
formalizing this concept requires more work (see Section 3.1).

What is more, the technological requirements of conjugate coding are very basic: the single-
qubit “prepare-and-measure” paradigm of conjugate coding is feasible with today’s technology—
thus, many protocols derived from conjugate coding inherit this desirable property (which is, in
fact considered the gold standard for “feasible” quantum protocols).

In the late 1960’s, Wiesner [Wie83] had the visionary idea that quantum information could be
used to create unforgeable bank notes. His ideas were in fact so much ahead of their time that it
took years to publish them! (According to [BBB14], Wiesner’s original manuscript was written in
1968.)

In a nutshell, Wiesner’s proposal consists in quantum banknotes created by encoding quantum
particles using conjugate coding (Section 3.1), with both the classical information and basis choice
being chosen as random bitstrings. Thus, a banknote consists of a sequence of single qubits,
chosen randomly from the states {∣↕⟩ , ∣↔⟩ , ∣⤡⟩ , ∣⤢⟩}. As discussed in Section 3.1, the originator
of the quantum banknote (typically called “the bank”) can verify that a quantum banknote is
genuine, yet quantum mechanics prevents essentially any possibility of counterfeiting. Clearly such
a functionality is beyond what classical physics can offer: since any digital record can be copied,
classical information simply cannot be used for uncloneability (not even computational assumptions
will help).

Wiesner’s work was improved and extended in many ways: early work of Bennett, Brassard,
Breidbart and Wiesner [BBBW82] showed how to combine computational assumptions with con-
jugate coding in order to achieve a type of public verifiability for the encoded states (they coined
their invention unforgeable subway tokens). Further work on publicly-verifiable (also called public-
key quantum money) includes schemes based on the computational difficulty of some knot-theory
related problems [FGH+12] (see also [AFG+12]), verification “oracles” [Aar09] and hidden sub-
spaces [AC12].

Returning to Wiesner’s scheme (which is often called private-key quantum money in order
to distinguish it from the public-key quantum money schemes), we note that the first proof of
security in the case of multiple qubits is based on semi-definite programming, and appeared only
recently [MVW13] (this result is tight, since it also gives an explicit optimal attack). We also note
work on variants of Wiesner’s scheme in which quantum encodings are returned after validation: in
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all cases (whether the post-verification state is always returned [FGH+10], or the post-verification
state is returned only for encodings that are deemed valid [BNSU14]), the resulting protocol has
been found to be insecure.

We also note that further work has studied the possibility of private-key quantum money
that can be verified using only classical interaction with the bank [Gav12, MVW13], quantum
coins [MS10] (which provide a perfect level of anonymity), as well as noise-tolerant versions of
Wiesner’s scheme [PYJ+12].

3.2 Quantum Key Distribution

Quantum key distribution (QKD) is by far the most successful application of quantum information
to cryptography. By now, QKD is the main topic of a large number of surveys (see, for instance,
[Ben92,BC96,GRTZ02,BEM+07,Feh10]). Due to abundance of very good references on this topic,
we survey it only briefly here.

The “BB84” protocol [BB84, BB14] was the first to show how conjugate coding could be used
for an information-theoretically secure key agreement protocol. In a nutshell, the protocol consists
in Alice sending a sequence of single qubits, chosen randomly from the states {∣↕⟩ , ∣↔⟩ , ∣⤡⟩ , ∣⤢⟩}.
Bob chooses to measure them according to his own random choice of measurement bases. They
communicate their basis choice for each encoded qubit; eavesdropper detection is performed by
comparing the measurement results on a fraction of the bases on which their choices coincide—if
successful, this procedure gives a bound on the secrecy and similarity of the remaining shared
string, which can be used to distill an almost-perfect shared secret between Alice and Bob. In
order to prevent man-in-the-middle attacks, this procedure requires authenticated classical chan-
nels. Usually, authentication is achieved by an initial shared classical secret between Alice and
Bob. Thus, QKD is more accurately described as a key-expansion primitive. We note that, as a
theoretical or experimental tool, it is often useful to consider a protocol equivalent to BB84, where
the random choice of encoding basis (rectilinear of diagonal) is delayed ; thus a quantum source
would produce a sequence of maximally entangled states (∣00⟩+ ∣11⟩)/

√
2, with both Alice and Bob

then measuring in their random choice of bases. That an entangled system could be used in lieu of
single qubits was suggested by Ekert [Eke91], but note that Ekert’s idea was to base security on the
observation of a Bell-inequality violation — which implies a set of different measurements than in
the rectilinear/diagonal bases. The entanglement-based (“purified”) BB84 protocol was introduced
by Bennett, Brassard and Mermin in [BBM92].

We briefly mention that the formal security of QKD was originally left open, and that a long
sequence of works (e.g. [LC99, May01]) culminated in a relatively accessible proof by Shor and
Preskill, based on the use of quantum error correction [SP00]. Further work by Renner [Ren05]
showed a very different approach for proving the security of QKD based on exploiting the sym-
metries of the protocol (and applying a de Finetti style representation theorem), and splitting the
security analysis into the information-theoretic steps of error-correction and privacy amplification.
Other proofs of QKD are more directly based on the complementarity of the measurements [Koa09].
It is a sign for the complexity of QKD security proofs that most articles on this topic focus only
on subparts of the security analysis and only very recently did a first comprehensive analysis of
security appear [TL15].

The huge success of QKD is due in part to the fact that it is readily realizable in the laboratory
(the first demonstration appeared in 1992 [BBB+92]). In light of practical implementations, security
proofs for QKD need to be re-visited in order to obtain concrete security parameters—this is the
realm of finite-key security [SR08,TLGR12,HT12,TL15]. Furthermore, we note that when it comes
to real-world implementations, QKD is vulnerable to side-channel attacks, which are due to the
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fact that physical implementations deviate from the idealized models used for security proofs (this
is often referred to as quantum hacking [LWW+10]).

We further note that the assumption of an initial short shared secret (for authenticating the
classical channel) in the implementation of QKD can be replaced with a computational assumption
or an assumption about the storage capabilities of the eavesdropper (see Section 3.4). The result
is everlasting [Unr13] or long-term [SML10] security: information-theoretic security is guaranteed
except during the short period of time during which we assume a computational (or memory)
assumption holds.

3.3 Bit Commitment implies Oblivious Transfer

Oblivious transfer (OT) and bit commitment (BC) are two basic and important primitives for
cryptography. In the classical case, it is easy to show that OT implies BC (in the information-
theoretic setting), but the implication in the other direction does not hold.7 In stark contrast, OT
and BC are known to be equivalent in the quantum world. In the following sections, we introduce
these primitives (Section 3.3.1) and describe a quantum reduction from oblivious transfer to bit
commitment (Section 3.3.2).

3.3.1 Oblivious Transfer (OT) and Bit Commitment (BC)

Wiesner’s paper about quantum cryptography [Wie83] introduced “a means for transmitting two
messages either but not both of which may be received”. This classical cryptographic primitive
was later rediscovered (under a slightly different form) by Rabin [Rab81], and was given in the
form of 1-out-of-2 Oblivious Transfer (OT)) by Even, Goldreich and Lempel [EGL85]. In OT,
Alice sends two messages m0,m1 to Bob who receives only one of the messages mc according to
his choice bit c. Security for Alice (against dishonest Bob) guarantees that Bob receives only one
of the two messages, whereas security for Bob (against dishonest Alice) ensures that Alice does
not learn anything about Bob’s choice bit8. In the version by Rabin [Rab81], this primitive is
essentially a secure erasure channel where Alice sends a single bit to Bob. This bit gets erased with
probability 1/2 (in this case Bob receives �), but Alice does not learn whether the bit was erased.
In fact, it is known that Rabin OT is equivalent to 1-out-of-2 OT [Cré88].

The importance of OT is embodied by the fact that it is universal for secure two-party compu-
tation [Kil88] (i.e. using several instances of 1-out-of-2 OT, any function can be securely evaluated
among two parties such that no dishonest player can learn any information about the other player’s
input—beyond what can already be inferred from the output of the computed function).9 Due to
this universality, the innocent-looking OT primitive gives an excellent indicator for the crypto-
graphic power of a model.

Bit Commitment (BC) is a cryptographic primitive that captures the following two-party func-
tionality: Alice has a bit b that she wants to commit to Bob, but she wants to prevent Bob from
reading b until she chooses to reveal it (concealing or hiding). Although Bob should not be able to
determine b before Alice reveals it, Alice should be unable to change the bit after it is committed
(binding). A physical-world implementation of bit commitment would be for Alice to write b on
a piece of paper, lock it in a safe, and send the safe to Bob. Since Bob cannot open the safe, he

7See [Unr13][Lemma 7] for a proof in the UC framework; the stand-alone impossibility is folklore and can be
derived from the impossibility of OT in the plain model [Lo97] (see also Section 4.2).

8In fact, formalizing these innocent-looking requirements correctly turns out to be rather tricky [CSSW06,FS09]
9A prime example of a secure two-party computation is Yao’s millionaire’s problem [Yao82]: two millionaires want

to compare their fortune without telling the other specifically how much money they own. This problem can be
solved by the secure computation of the greater-than function.
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cannot determine b (concealing), and since Alice has physically given the safe to Bob, she cannot
change b after the commitment phase (binding). When Alice wishes to reveal the bit, she sends
the key to Bob.

3.3.2 Quantum Protocol for Oblivious Transfer

In [BBCS01], Bennett, Brassard, Crépeau, and Skubiszewska suggested a very natural quantum
protocol for OT (assuming BC): suppose Alice would like to obliviously send m0 and m1 so that
Bob receives the message mc according to his choice bit c. She uses conjugate coding to send n
quantum states each chosen randomly from the states {∣↕⟩ , ∣↔⟩ , ∣⤡⟩ , ∣⤢⟩} to Bob. Let us denote by
x ∈ {0,1}n the string of encoded bits and by θ ∈ {R,D}n the string of basis choices. Bob measures
the received qubits in a random basis θ′ ∈ {R,D}n of his choice, resulting in outcomes x′ ∈ {0,1}n.
After Alice tells Bob the bases θ ∈ {R,D}n she was using, Bob can partition the set of indices into
two disjoint sets I0 ⊍ I1 = {1,2, . . . , n}: depending on his OT choice bit c, he puts all the indices
where he measured correctly in Ic and the rest in I1−c. Bob then informs Alice about I0, I1 (in this
fixed order, independent of c). Alice picks two independent hash functions f0, f1 (mapping from
n/2 bits to 1 bit) and sends si = fi(x∣Ii) ⊕mi for i = 0,1 to Bob. Here, x∣I denotes the substring
of x with bit indices in I. Bob will be able to recover mc by computing fc(x′∣Ic)⊕ sc.

While it is easy to show that the above protocol is correct and secure against dishonest Alice
(i.e. Alice does not learn anything about Bob’s choice bit c), it is clearly insecure against a dishonest
Bob who is able to store all quantum states until Alice tells Bob the basis string θ. Such a Bob
can then measure all positions in the correct basis and hence recover both m0 and m1. The
idea of [BBCS01] was to force Bob to perform the measurement by requiring him to commit to the
bases θ′ and outcomes x′. Alice then checks a fraction of these commitments before Alice announces
the basis string θ.

A long line of research [CK88,MS94,Yao95,May96a,BBCS01] has worked towards proving the
security of this protocol. However, the crucial tools for an actual proof were eventually developed
by Damg̊ard, Fehr, Lunemann, Salvail, and Schaffner [DFL+09] nearly two decades after the orig-
inal protocol was proposed; Unruh subsequently used these techniques to formally establish the
equivalence of BC and OT in the quantum UC model [Unr10].

3.4 Limited-Quantum-Storage Models

As we will see in Section 4.1, bit commitment is impossible to construct in the quantum world.
More generally, it has been shown (see Section 4.2) that secure two-party computation is impossible
in the plain quantum model, without any additional restrictions on the adversaries. One option
in order to obtain security is to make computational assumptions. However, as we discuss below,
it is also possible to obtain information-theoretic security, while making instead some reasonable
assumptions about the storage capabilities of the adversary.

One of the challenges in building quantum devices is the difficulty of storing quantum informa-
tion in a physical system (such as atomic or phototonic systems) under stable conditions over a
long period of time—building a reliable quantum memory is a major research goal in experimental
quantum physics (see e.g. [SAA+10] for a review produced by the European integrated project
Qubit Applications (QAP)). Despite continuous progress over the last years, large-scale quantum
memories that can reliably store quantum information are currently out of reach. As we discuss
in this section, ingenious quantum cryptographers have turned this technological challenge into an
advantage for quantum cryptography!

The bounded-quantum-storage model, introduced by Damg̊ard, Fehr, Salvail and Schaffner
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in [DFSS05], is a model which assumes that an adversary can only store a limited number of qubits.
Generally, protocols in this model require no quantum storage for the honest players, and are secure
against adversaries that are unable to store a constant fraction of the qubits sent in the protocol.

This model is inspired by the classical bounded-storage model, as introduced by Maurer [Mau92,
CM97]. In this model, honest parties are required to store Θ(n) bits, but protocols (for OT and key
agreement) are insecure against attackers with storage capabilities of Ω(n2) bits. Unfortunately,
this gap between storage requirements for honest and dishonest players can never be bigger than
quadratic [DM04,DM08]. Combined with the fact that classical storage is constantly getting smaller
and cheaper, this quadratic gap puts the classical-bounded-storage assumption on a rather weak
footing. In sharp contrast, the quantum bounded-storage model gives an unbounded gap between
the quantum-storage requirements of the honest and dishonest players, making this model model
robust to technological improvements.

In the bounded-quantum storage model, a protocol for OT was proposed [DFSS05]. Again, it
is based on conjugate coding and is essentially identical to the protocol outlined in the previons
Section 3.3.2, except that there is a waiting time ∆t (say, 1 second) right after the quantum
phase, before Alice sends her basis string θ to Bob. In this time, a dishonest receiver Bob is
forced to use his (imperfect) quantum memory and therefore loses some information about Alice’s
string x which intuitively leads to the security of the oblivious transfer. In a subsequent series of
works [DFR+07, DFSS07, DFSS08], protocols for BC, OT and password-based identification (i.e.
the secure evaluation of the equality function) were presented. For an overview of these results,
see [Sch07,Feh10].

The noisy-quantum-storage model, as introduced by Wehner, Schaffner and Terhal [WST08]
captures the difficulty of storing quantum information more realistically. Whereas in the bounded-
quantum-storage model, the physical number of qubits an attacker can store is limited, dishonest
players are allowed arbitrary (but imperfect) quantum storage in the noisy-quantum-storage model.

Beyond Limited Quantum Storage. Continuing the idea of assuming realistic technological
restrictions on the adversary, researchers have developed protocols that are secure under the as-
sumption that certain classes of quantum operations are hard to perform. A natural class to study
consists of adversaries who can store perfectly all qubits they receive, but who cannot perform any
quantum operations, except for single-qubit measurements (adaptively in arbitrary bases) at the
end of the protocol. Such a model was first studied by Salvail in [Sal98], and later by Bouman,
Fehr, Gonzáles-Guillén and Schaffner [BFGGS13] and Liu [Liu14a, Liu14b, Liu15] under the name
of “isolated-qubit model”.

Cryptographic Proof Techniques. In Section 3.1, we mentioned uncertainty relations (and
in particular entropic uncertainty relations—which quantify uncertainty in information-theoretic
terms). These relations play a key role in the security proofs for protocols in the limited-quantum-
storage model. We refer to [WW10] for a survey by Wehner and Winter on this topic. In fact,
one can argue that the areas of limited-quantum storage models and entropic uncertainty relations
have benefited a lot from each other, as research questions in one area have led to results in the
other and vice versa. This fruitful co-existence is witnessed by a series of publications: [NBW12,
BFGGS13,BBCW13,BFW14,DFW15].

Composability It is natural to ask whether limited-quantum-storage protocols for basic tasks
such as OT can be composed to yield more involved two- or multi-party secure computations. This
question was answered in the positive in a number of works, including: Fehr and Schaffner [FS09],
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Wehner and Wullschleger [WW08] (for sequential composition) and Unruh [Unr11] (for bounded
concurrent composition).

Implementations. The technological requirements to implement limited-quantum-storage pro-
tocols in practice are modest and rather similar to already available QKD technology (often, the
actual quantum phase is the same as in QKD). A small but significant difference is that it makes
sense to run secure computations among players which are located within a few meters of each
other, whereas the task of distributing keys demands large separations between players. This dif-
ference allows experimenters to optimize some parameters (such as the rate) differently for secure-
computation protocols. The experimental feasibility of these protocols was analyzed theoretically
in [WCSL10] and demonstrated practically in [NJC+12,ENN+14].

3.5 Delegated Quantum Computation

Quantum computers are known to enable extraordinary computational feats unachievable by to-
day’s devices [Sho94, Gro96, Mos09]. However, technologies to build quantum computers are cur-
rently in their infancy; the current state-of-the-art suggests that, when quantum computers become
a reality, these devices are likely to be available at a few location only. In this context, we envisage
the outsourcing of quantum computations from quantum computationally weak clients to universal
quantum computers (a type of quantum cloud architecture). This scenario has appealing crypto-
graphic applications, such as the delegated execution of Shor’s algorithm [Sho94] for factoring, and
thus breaking RSA public keys [RSA78]. From the cryptographic point of view, this scenario raises
many questions in terms of the possibility of privacy in delegated quantum computation.

Pioneering work of Childs [Chi05] and Arrighi and Salvail [AS06] studied this problem for the
first time. The first practical and universal protocol for private delegated quantum computation,
called “universal blind quantum computation” (uBQC) was given by Broadbent, Fitzsimons and
Kashefi [BFK09]. In uBQC, the client only needs to be able to prepare random single-qubit auxiliary
states (the client requires no quantum memory or quantum processor). Via a classical interaction
phase, the client remotely drives a quantum computation of her choice, such that the quantum
server cannot learn any information about the computation that is performed—with only the client
learning the output. The uBQC protocol has been demonstrated experimentally [BKB+12].

It is remarkable that uBQC is also based on conjugate coding! For the first time, it is an
application where the states derived from conjugate coding are used to directly achieve computa-
tional cryptographic tasks (versus other applications of conjugate coding which essentially directly
measure these states in order to extract classical information). This relationship with conjugate
coding is more clearly apparent in a related protocol called “quantum computing on encrypted
data” (QCED) [FBS+14,Bro15]. Here, the computation (as given by a quantum circuit) is public,
but is executed remotely on an encrypted version of the data (reminiscent of the work on classical
fully homomorphic encryption [Gen09, RAD78]). In this situation, QCED shows that it is possi-
ble to achieve delegated quantum computation where the client only needs to send random states
in {∣↔⟩ , ∣↕⟩ , ∣⤢⟩ , ∣⤡⟩} (hiding of the computation itself can be achieved via a universal circuit
construction).

We mention further that the verifiability of delegated quantum computations has been ad-
dressed in [ABE10,FK12,BGS13,KDK15], and that the protocol of [FK12] has been the object of
an experiment [BFKW13]. Also, security of delegated quantum computation has been analyzed in
terms of a strong notion of composability [DFPR14]. Furthermore, work of Reichardt, Unger and
Vazirani shows that delegated quantum computation is achievable for a purely classical client, if
we are willing to make the assumption of two universal quantum computers that cannot communi-
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cate [RUV13] (see also Section 3.7, as well as recent work [GKW15,HPF15] that improves on this
result using uBQC).

3.6 Quantum Protocols for Coin Flipping and Cheat-Sensitive Primitives

In a classic cryptography paper [Blu83], Blum describes how to “flip a coin over the telephone” with
the help of bit commitment: Alice commits to a random bit a, Bob tells Alice another random bit b,
and Alice opens the commitment to a. The outcome of the coin is a⊕ b which cannot be biased by
any of the two players (intuitively, because at least one random bit of an honest player was involved
in determining the outcome). A coin flip with this property is called a strong coin flip. In contrast,
for a weak coin flip, Alice and Bob have a desired outcome, i.e. Alice “wins” if the outcome is 0,
and Bob “wins” if the outcome is 1. A weak-coin-flipping protocol with bias ε guarantees that no
dishonest player can bias the coin towards his or her desired outcome with probability greater than ε.
In the classical world, coin-flipping can be achieved under computational assumptions. However, in
the information-theoretic setting, it was shown [HMU06,HW11] that one of the players can always
achieve his desired outcome with probability 1.

In the quantum world, we note that the general impossibility results for quantum two-party
computation (Section 4.2) are not applicable to coin flipping, since the participants in a coin flipping
protocol have no inputs, and instead aim to implement a randomized functionality. Nevertheless,
Kitaev showed [Kit] (see also [ABDR04]) that any quantum protocol for strong coin-flipping is
insecure since it can be biased by a dishonest player. Formally, the bias of any strong coin-flipping
protocol is bounded from below by 1√

2
− 1

2 . Interestingly, Mochon [Moc07] managed to expand

Kitaev’s formalism of point games to prove the existence of a weak coin-flipping protocol with
arbitrarily small bias ε > 0. Unfortunately, Mochon’s 80-page proof has never been peer-reviewed
and is rather difficult to follow. Aharonov, Chailloux, Ganz, Kerenidis and Magnin [ACG+14] have
managed to simplify this proof considerably.

Based on this result, Chailloux and Kerenidis [CK09] derived an optimal strong-coin-flipping
protocol with the best possible bias 1√

2
− 1

2 , matching Kitaev’s lower bound. Also based on a weak-

coin flip, Chailloux and Kerenidis [CK11] gave the best possible imperfect quantum bit commitment.
For the optimality, they prove that in any quantum bit commitment protocol, one of the players
can cheat with significant probability10. Such a result shows that an imperfect bit commitment
cannot be amplified to a perfect one—which severely limits the applicability of the scheme to the
cryptographic setting.

Cheat Sensitivity. Quantum mechanics offers the possibility to construct imperfect crypto-
graphic primitives in the sense that they are correct (as long as the players are honest), but
they are insecure, i.e. they do allow one of the players (say Alice) to cheat. However, the other
player Bob has the possibility to check if Alice has been cheating (possibly by sacrificing the pro-
tocol outcome he would have obtained if he followed the protocol without checking). Hence, a
cheating Alice has non-zero probability to be detected. These protocols are called cheat sensi-
tive [ATVY00, HK04, BCH+08, GLM08, GLM10, JSG+11, CLM+14]. In this context, it is argued
that one could set up a game-theoretic environment: a player caught cheating has to pay a huge
fine (or undergo another punishment) and is therefore deterred from actually doing it.

We note, however, that the applications of cheat sensitive protocols to the cryptographic setting
are limited: while quantum protocols for imperfect and cheat-sensitive primitives can provide nice

10Formally, max{P ∗
A, P

∗
B} ≥ 0.739 where P ∗

A is the average over the probabilities that a dishonest committer Alice
successfully reveals bit b = 0 and successfully reveals b = 1; and P ∗

B is the probability that a dishonest verifier Bob
guesses the committed bit b after the commitment phase. P ∗

A = P ∗
B =

1
2

holds for a perfect bit-commitment protocol.
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examples of separations between the classical and quantum worlds, they fulfill their purpose as
long as they are considered as “final products”, for instance in case of private information retrieval.
However, it is difficult to argue that a strong coin flip with a constant bias, an imperfect bit
commitment, or imperfect OT are cryptographically useful primitives, because they do not inherit
the cryptographic importance of their perfect counterparts which can be used as building blocks
for more advanced cryptographic primitives. In the case of cheat sensitivity, it is often unclear how
such primitives behave under composition. In fact, it is a challenging open question to come up
with a composability framework for cheat-sensitive quantum primitives.

3.7 Device-Independent Cryptography

An exciting feature of quantum cryptography is that it allows the possibility of device-independent
cryptography in the sense that protocols can be run on untrusted devices which have possibly
been constructed by the adversary. The crucial insight is that the “quantumness” of two (or more)
devices can be tested and guaranteed by using the devices to violate a Bell inequality, i.e. to produce
correlations that are stronger than allowed by classical mechanics. As outlined in Section 2.5, the
most well-known example of such an inequality is the CHSH game [CHSH69]. The key observation
of device-independent cryptography is that in order to violate the CHSH inequality, a certain
amount of intrinsic quantum randomness has to be present in the players’ outputs. That we could
exploit this relationship for cryptography was originally pointed out by Ekert [Eke91], and further
studied by Mayers and Yao [MY98] and Barrett, Hardy and Kent [BHK05]. In fact, this latter
work shows not only how to accomplish cryptography with untrusted devices, but also how to do
away completely with assumptions on the validity of quantum mechanics: instead, it shows how to
accomplish QKD solely based on the non-signaling principle [HRW10,MPA11]!

The relation between the CHSH violation and the amount of entropy in the outcomes of the
measurements can be quantified exactly [PAM+10]. In fact, on the topic of self-testing quantum
devices [MY04, MDMO06, MYS12, MS13], Reichardt, Unger and Vazirani have shown a strong
robustness result [RUV13] in the sense that being close to winning the CHSH-game with optimal
probability implies that the players must essentially be in possession of a state which is close to an
EPR pair. This is an extremely powerful result which has various applications.

The two qubits of an EPR state are maximally entangled. Quantum mechanics forbids any
third party to be entangled with such a state (a phenomenon called monogamy of entanglement).
Hence, measurements on an EPR state result in shared randomness which is guaranteed to be
unknown to any eavesdropper.11 In a similar vein, one can argue that the measurement outcomes
of Alice and Bob while successfully playing the CHSH game cannot be known to any adversary
even if this adversary has built the devices herself and is possibly still entangled with them.

This effect leads to the interesting cryptographic applications of device-independent randomness
amplification and expansion and device-independent quantum key distribution. In randomness am-
plification, the task at hand is to obtain near-perfect randomness from a weak random source using
untrusted quantum devices (without using any additional randomness); this idea was originally pro-
posed by Colbeck and Renner [CR12]. In randomness expansion, one wants to expand a few truly
random bits into more random bits, again using untrusted quantum devices; this idea was originally
proposed by Colbeck and Kent [Col06,CK11]. Providing formal security proofs has turned out to be
rather challenging and was first established against classical adversaries [PAM+10, PM13, FGS13],

11In fact, the first formal security proof of QKD by Shor and Preskill [SP00] exploited this monogamy of entan-
glement by showing that a QKD protocol can be transformed (in a series of steps) into a protocol that distills pure
EPR states which Eve cannot be entangled with. These EPR states are then measured by Alice and Bob to obtain
the secure shared key.
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and later also against quantum adversaries [VV12, MS14]. A combination of the latest protocols
allows to arbitrarily amplify very weak sources of randomness in a device-independent fashion.
Experimental realizations of device-independent randomness include [PAM+10,CMA+13].

In device-independent quantum key distribution, we make the additional assumption that there
is no communication between the adversary and the quantum devices. The first formal proof for
a device-independent quantum key distribution scheme was given by Vazirani and Vidick [VV14].
Current research in this area aims to propose more practical device-independent QKD schemes that
retain their functionality at realistic levels of noise.

4 Quantum Cryptographic Limitations and Challenges

In this section, we survey a number of limitations and challenges of quantum cryptography (see Sec-
tion 1.1 for a brief overview of these topics). We cover the impossibility of information-theoretically
secure quantum bit commitment (Section 4.1) as well as the impossibility of information-theoretically
secure two-party quantum computation (Section 4.2). Next, we survey the challenges imposed by
quantum information in the context of quantum rewinding (Section 4.3) and superposition access to
oracles in a quantum world (Section 4.4). Finally, we discuss impossibility results for position-based
quantum cryptography (Section 4.5).

4.1 Impossibility of Quantum Bit Commitment

The ten-year period following the publication of the first quantum key distribution protocol [BB84]
saw only a handful of cryptographers working in quantum cryptography. This era was a period of
vivid optimism. Indeed, the concept that quantum mechanics could allow unconditionally secure
key expansion is mind-boggling, so why stop there? The next natural step to examine was obliv-
ious transfer, which is an important building block for cryptography [Kil88] (see Section 3.3.1 for
definitions of bit commitment and oblivious transfer).

From this early period of quantum cryptography, we know of a quantum reduction from bit
commitment to oblivious transfer [BBCS01] (see Section 3.3). Hence, the holy grail of oblivious
transfer is achievable, if only we have access to a bit commitment ! Thus, researchers explored
the possibility of quantum bit commitment (i.e. of using quantum information in order to build bit
commitment), with the hopes of founding all of cryptography on the unique assumption of quantum
mechanics. This line of work started in [BC91], culminating in a claim of a unconditionally secure
quantum bit commitment protocol [BCJL93]. However, the optimism for quantum cryptography
lasted only a few years as Mayers [May96b] found a subtle flaw in the original argument of security.
This result was generalized to rule out all quantum protocols for bit commitment by Mayers, and
Lo and Chau [May97,LC97]. Note that the possibility of bit commitment in the limited-quantum-
storage model (Section 3.4) introduces an extra physical assumption, and does not contradict the
impossibility as discussed here!

We now briefly review the main impossibility argument [BCMS97] (for ease of presentation, we
focus on the exact case)12. First, consider the following sketch of impossibility for perfectly se-
cure classical bit commitment: suppose such a protocol exists. Then by the information-theoretic
security requirement, at the end of the commitment phase, Bob’s view of the protocol must be
independent of b (since, otherwise, the protocol would not be perfectly hiding). But this inde-
pendence implies that Alice can choose to reveal either b = 0 or b = 1 in the reveal phase, with

12See also a more recent proof exploiting “quantum combs” [CDP+13], as well as a more general result about the
impossibility of “growing” quantum bit commitments [WTHR11].
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both being accepted by Bob. Hence, the bit commitment cannot be binding. It is interesting that
the same proof structure is applicable to the quantum case, albeit by invoking some slightly more
technical tools. Namely, we first consider a purified version of the protocol, which consists in all
parties acting at the quantum level (measurements are replaced by a unitary process via a stan-
dard technique). Next, by the information-theoretic hiding property, the reduced quantum state
that Bob holds at the end of the commit phase must be identical, whether b = 0 or b = 1. This
condition is enough to break the binding property, since it means [Uhl76] that Alice can locally
perform a unitary quantum operation on her system in order to re-create a joint state consistent
with either b = 0, or b = 1, at her choosing13. Hence, she can chose to open either b = 0 or b = 1 at a
later time, and Bob will accept: the commitment scheme cannot be binding.

Going back to the original paper on quantum bit commitment [BCJL93], we note that a subtlety
in the definition of the binding property is the origin of the false claim of security: while it is true
that the protocol is such that Alice is unable to simultaneously hold messages that would unveil a
commitment to b = 0 and as b = 1 (and thus, to be able to choose to open b = 0 and b = 1), this is
insufficient to prove security, since in fact Alice is able to delay her choice of commitment until the
very end of the protocol—at which point she can choose to open as either b = 0 or b = 1 (but not
necessarily both at the same time!).

4.2 Impossibility of Secure Two-Party Computation using Quantum Commu-
nication

Given the impossibility of quantum bit commitment, the next question to ask is: are there any
classical primitives that may be implemented securely using quantum communication? In fact, the
possibility for OT was stated as a open problem in [BC96]. Unfortunately, this hope was shattered
rather quickly, as impossibility results were given by Lo in [Lo97] for one-sided computations (where
only one party receives output). This result already shows the impossibility of 1-out-of-2 OT—
the proof technique follows closely the technique developed for the impossibility of quantum bit
commitment (see Section 4.1).

It took almost ten years until Colbeck showed the first impossibility result for two-sided com-
putations, namely that Alice can always obtain more information about Bob’s input than what
is implied by the value of the function [Col07]. In a similar vein, Salvail, Schaffner and Sotakova
proved in [SSS14] that any quantum protocol for a non-trivial primitive leaks information to a
dishonest player. What is worse, even with the help of a trusted party, the cryptographic power of
any primitive cannot be “amplified” by a quantum-communication protocol.

Buhrman, Christandl and Schaffner [BCS12] have strengthened the above impossibility results
by showing that the leakage in any quantum protocol is essentially as bad as one can imagine:
even in the case of approximate correctness and security, if a protocol is “secure” against Bob,
then it is completely insecure against Alice (in the sense that she can compute the output of the
computation for all of her possible inputs). For impossibility results in the universal composability
(UC) framework, see [FKS+13].

4.3 Zero-Knowledge Against Quantum Adversaries —“Quantum Rewinding”

Zero-knowledge interactive proofs, as introduced by Goldwasser, Micali, and Rackoff [GMR89] are
interactive proofs with the property that the verifier learns nothing from her interaction with the
honest prover, beyond the validity of the statement being proved. These proof systems play an

13Technically, Uhlmann’s theorem states that any two purifications of Bob’s reduced quantum state are related by
a unitary transform.
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important role in the foundations of cryptography, and are also fundamental building blocks to
achieve cryptographic functionalities (see [Gol02] for a survey).

In zero-knowledge interactive proofs, the notion that the verifier “learns nothing” is formalized
via the simulation paradigm: if, for every cheating verifier (interacting in the protocol on a positive
instance), there exists a simulator (who does not interact with the prover) such that the output
of the verifier is indistinguishable from the output of the simulator, then we say that the zero-
knowledge property holds. In the classical world, a common proof technique used for establishing
the zero-knowledge property is rewinding : a simulator is typically built by executing the given
verifier—except that some computation paths are culled if the random choices of the verifier are
not consistent with the desired effect. This selection is done by keeping a trace of the interaction,
thus, if the interaction is deemed to have followed an incorrect path, the simulation can simply
reset the computation (“rewind”) to an earlier part of the computation (see [Gol02] and references
therein).

In the quantum setting, such a rewinding approach is impossible: the no-cloning theorem tells
us that it is not possible, in general, to keep a secondary copy of the transcript in order to return
to it later on. This problem is further aggravated by the fact that, in the most general case, the
verifier starts with some auxiliary quantum information (which we do not, in general, know how
to re-create)—thus even a “patch” that would emulate the rewinding approach in the simple case
would appear to fail in the case of auxiliary quantum information. We emphasize that the above
concerns about the zero-knowledge property are applicable to purely classical protocols: honest
parties are completely classical, but we wish to establish the zero-knowledge property against a
verifier that may receive, store and process quantum information (these concerns are independent
of the computational power of the verifier—they simply relate to the computational model!).

The fundamental difficulty in proving the zero-knowledge property in the quantum world was
first discussed by van de Graaf [vdG97]; while some progress was made on this question [DFS04],
it is the breakthrough result of Watrous [Wat06] that restored confidence that the zero-knowledge
property of many standard classical zero-knowledge proofs is maintained in a quantum world.

In a nutshell, Watrous introduced the technique of quantum rewinding, which establishes that
under some reasonable (and commonly satisfied) conditions, the success probabilities of certain
processes with quantum inputs and outputs can be amplified. This technique therefore provides
an alternative to the classical rewinding paradigm, and is used to show that the Goldreich-Micali-
Wigderson graph 3-coloring protocol [GMW91] is zero-knowledge against quantum attacks. We
briefly mention that quantum rewinding is established using a technique resembling amplitude
amplification [BHMT00] as is related to Grover’s quantum search algorithm [Gro96].

Further work on quantum rewinding has dealt with extending the domain of applicability to
proofs of knowledge [Unr12]. However, [ARU14] show limitations to this technique (so that, in fact—
relative to an oracle—there exists classical protocols that are insecure against quantum adversaries).
See also [DFS04].

4.4 Superposition Access to Oracles — Quantum Security Notions

Post-quantum cryptography [BBD09] (see Section 1.2) investigates classical cryptographic schemes
which remain secure in the presence of quantum adversaries. In classical cryptography, security
is often defined in terms of an interactive game between an adversary and a challenger: a scheme
is deemed secure if the adversary can only win the game with negligible probability. When such
notions are used to prove post-quantum security, one must consider quantum adversaries which
are potentially able to communicate quantumly with the challenger. An example is the chosen-
plaintext-attack (CPA) learning phase that is present in game-based security definitions, for in-
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stance for defining indistinguishability (IND) security of encryption schemes [GM84,KL07], where
it is natural to consider attackers that can query superpositions of plaintexts to be encrypted and
are returned superpositions of according ciphertexts from the challenger.

Another important example relates to the random-oracle (RO) model. A common technique
used in classical cryptography is to assume that hash functions are perfect random oracles which
adversaries can evaluate. It is well-known in classical cryptography that the RO-methodology comes
with a plethora of techniques that can be employed in order to give formal proofs. Unfortunately,
most of these tricks do not work in a quantum context for the following reason: a quantum adversary
can always evaluate a classical hash function on an arbitrary superposition of inputs. Therefore,
in the quantum random oracle (QRO) model, it is necessary to give the adversary superposition
access to the oracle. As a consequence, standard techniques from the classical RO model (such as
planting the challenge in a random one of the RO queries of the adversary) fail in the more realistic
QRO model setting (the adversary might make a single quantum query with all input values in
superposition).

Boneh, Dagdelen, Fischlin, Lehmann, Schaffner, and Zhandry [BDF+11] first showed how to
correctly define the random-oracle model in the quantum setting. They also showed a separation
between the classical and quantum RO models. Zhandry [Zha12] showed how to plant challenges
in the QRO model at the beginning of the execution, and Unruh [Unr15] showed how to reprogram
the RO during runtime. Security definitions allowing superposition access have subsequently been
studied by Boneh and Zhandry [Zha12, BZ13] in the context of encryption, digital signatures and
the construction of pseudo-random functions. See also related work by Damg̊ard, Funder, Nielsen
and Salvail [DFNS14], who study superposition attacks on secret-sharing and multi-party protocols.

4.5 Position-Based Quantum Cryptography

In cryptography, digital keys or biometric features are used to verify the identity of a person. The
goal of position-based cryptography is to use the geographical position of an entity as a cryptographic
credential. As a physical analogy, consider the scenario of a bank, where typically, the mere fact
that a bank teller is behind the counter (her position) suffices as a credential in order to initiate
the exchange of sensitive information.

A central building block of position-based cryptography is the task of position verification, a
problem previously studied in the field of wireless security [BC93,SSW03,VN06,Bus04,ČH05,SP05,
ZLFW06, ČČS06]. The goal is to prove to a set of verifiers that one is at a certain geographical
location. Protocols typically exploit the relativistic no-signaling principle that messages cannot
travel faster than the speed of light. By responding to a verifier in a timely manner, one can guar-
antee that one is within a certain distance of that verifier [BC93]. It was shown in [CGMO09] that
classical position-verification protocols based only on this relativistic principle can be broken by
multiple attackers who simulate being at the claimed position while physically residing elsewhere
in space. Because of the no-cloning property of quantum information (see Section 2.4), it was
believed that with the use of quantum messages one could devise protocols that were resistant to
such collaborative attacks. Several schemes were proposed [KMS11,Mal10a,CFG+10,Mal10b,LL11]
that later turned out to be insecure. Finally, Buhrman, Chandran, Fehr, Gelles, Goyal, Ostrovsky
and Schaffner showed that also in the quantum case, no unconditionally secure schemes are possi-
ble [BCF+14], as long as the colluding adversaries share a large enough amount of entanglement:
attackers can break the protocol if the number of pre-shared EPR pairs is exponential in the size
of the messages of the protocol [BK11]. This exponential overhead in resources (in terms of entan-
glement and quantum memory) leads to the main open problem in this research area, namely to
find quantum protocols which remain secure under the assumption that adversarial resources are
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restricted to a polynomial amount, while at the same time, honest players can perform the schemes
efficiently.

Historically, position-based schemes were first studied by Kent, Monroe and Spiller in 2002
under the name of “quantum tagging”. A US-patent was granted in 2006 [KMSB06], but the
results appeared in the scientific literature only in 2010 [KMS11]. Some simple position-verification
schemes are studied in [KMS11,BFSS13]. The only quantum ingredient in these protocols is a single
qubit sent to the prover who is required to route this qubit back to the correct verifier depending
on the classical information he also receives from the verifiers. Note that the actions of the honest
players are simple enough that they can be implemented using current quantum technology.

In order to analyze how much entanglement colluding adversaries need to break these simple
schemes, a new model of (classical) communication complexity (called the garden-hose model) was
introduced by Buhrman, Fehr, Schaffner and Speelman [BFSS13]. This model connects attacks
on position-based quantum protocols to various interesting problems in classical complexity theory
and communication complexity, as witnessed in related work [CSWX14, KP14]. In particular, the
garden-hose complexity of a function gives an upper bound on the amount of entanglement required
to break the security of the position-verification protocol based on that function. However, it is
an open question whether more advanced techniques will allow to also prove lower bounds on the
entanglement required to break these simple position-verification protocols.

In [Unr14a], Unruh introduces a helpful methodology for analyzing quantum circuits in space-
time and gives a position-verification protocol in three dimensions which is secure in the quantum-
random-oracle model. Furthermore, [BCF+14,Unr14a] give schemes for position-based authentica-
tion which allows the verifiers to be convinced that a message originated from a certain location.
However, it remains an open problem to find efficient schemes which do not use random oracles.

5 Conclusion and Open Problems

Since its inception almost 50 years ago, quantum cryptography has developed into an active and
exciting multidisciplinary area of research that combines state-of-the-art techniques from cryptog-
raphy, quantum physics, complexity theory, information theory and beyond. While experimental
implementations are still at the prototype level, our theoretical understanding of the power and
limitations of quantum cryptography is continuously expanding.

Ongoing work on quantum cryptography consists in improving existing schemes as well as finding
further applications and proof techniques. As final words, we mention here some open problems of
interest.

• What types of cryptosystems can quantum algorithms break? The area of post-quantum
cryptography bases classical cryptography on computational problems which are hard even
for quantum computers. More research on quantum algorithms for quantum cryptanalysis
is needed to fully understand how difficult these problems are. This understanding is also
crucial when choosing the security parameters for post-quantum cryptographic schemes.

• Can we make device-independent protocols that are feasible in practice? It is a challenging
open problem to develop device-independent protocols (for key distribution, but possibly also
for other applications) which can tolerate a realistic amount of noise.

• Can quantum protocols verify the position of a player? As outlined in Section 4.5, one of
the main open questions in the area of position-based cryptography is to find a protocol
which can be executed efficiently (with current technology) by honest players, but requires
an exponential amount of resources (such as entangled qubits) for attackers to break it.
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• How can we construct quantum-secure pseudorandom permutations (qPRP)? Related to the
topic of quantum security notions (Section 4.4), Zhandry [Zha12] has shown how to construct
quantum-security pseudo-random functions (qPRF). Classically, it is well-known that using
the PRF in a three-round Feistel network yields a pseudo-random permutation. However,
this construction is probably insecure in the quantum setting [KM10]. It is an open question
how to construct quantum-secure pseudo-random permutations.

• Which cryptographic functionalities can be achieved by quantum protocols? The impossibil-
ity results from Section 4.2 are all concerned with deterministic classical functionalities. In
Section 3.6, we have seen that quantum protocols for (weak or biased strong) coin flipping
exist. Hence what exactly is the set of randomized classical functionalities that can be imple-
mented by quantum protocols? More generally, can these impossibility results be extended
to quantum functionalities?

• Does quantum information allow for devices that hide the inner workings of a computer pro-
gram? Due to its diverse and far reaching applications, program obfuscation has been long
considered as a holy grail of cryptography. However, hopes of attaining highly secure ob-
fuscation were diminished in 2011 by an impossibility proof [BGI+12] (note, however that
weaker security notions are attainable [GGH+13]). The situation is completely different in
the quantum case, since the proof technique is not applicable (essentially due to the no-
cloning theorem). As such, a positive result establishing that quantum information allows
program obfuscation would unleash a number of powerful primitives, and would yield another
qualitative advantage of quantum information over its classical counterpart.

• What are the limits of the delegated quantum computation scenario? In Section 3.5, we
reviewed results on how a quantum computationally weak client can outsource a quantum
computation. An open question that remains is to establish the ultimate limits in terms of
the power of the client: can a fully classical client delegate a private quantum computation
to a single quantum server, while ensuring privacy and/or verifiability? In the computational
setting, this question is related to that of quantum fully homomorphic encryption: can we
encrypt quantum data such that any quantum circuit can be applied to the encrypted data
(without revealing the key, of course!)?

• Can we build quantum public-key money from standard assumptions? Current techniques for
quantum public-key money rely on ad hoc assumptions (see Section 3.1). An open problem is
to construct these primitives on standard cryptographic assumptions (such as the existence
of quantum-secure one-way functions [MRV07,Ajt96,Pei15]).
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[CSSW06] C. Crépeau, G. Savvides, C. Schaffner, and J. Wullschleger. Information-theoretic
conditions for two-party secure function evaluation. In Advances in Cryptology—
EUROCRYPT 2006, pages 538–554, 2006.
DOI: 10.1007/11761679 32.

[CSWX14] W. Y. Chiu, M. Szegedy, C. Wang, and Y. Xu. The garden hose complexity for the
equality function. In Algorithmic Aspects in Information and Management, pages
112–123, 2014.
DOI: 10.1007/978-3-319-07956-1 11.

[CW05] M. Christandl and S. Wehner. Quantum anonymous transmissions. In Advances in
Cryptology—ASIACRYPT 2005, pages 217–235, 2005.
DOI: 10.1007/11593447 12.

[DD10] S. P. Desrosiers and F. Dupuis. Quantum entropic security and approximate quantum
encryption. IEEE Transactions on Information Theory, 56(7): 3455–3464, 2010.
DOI: 10.1109/TIT.2010.2048488.

[DDN15] I. Damg̊ard, F. Dupuis, and J. B. Nielsen. On the orthogonal vector problem and
the feasibility of unconditionally secure leakage-resilient computation. In Information
Theoretic Security, pages 87–104, 2015.
DOI: 10.1007/978-3-319-17470-9 6.

[Des09] S. P. Desrosiers. Entropic security in quantum cryptography. Quantum Information
Processing, 8(4): 331–345, 2009.
DOI: 10.1007/s11128-009-0111-3.

[DFL+09] I. Damg̊ard, S. Fehr, C. Lunemann, L. Salvail, and C. Schaffner. Improving the
security of quantum protocols via commit-and-open. In Advances in Cryptology—
CRYPTO 2009, pages 408–427, 2009.
DOI: 10.1007/978-3-642-03356-8 24.

[DFNS14] I. Damg̊ard, J. Funder, J. B. Nielsen, and L. Salvail. Superposition attacks on cryp-
tographic protocols. In Information Theoretic Security, pages 142–161, 2014.
DOI: 10.1007/978-3-319-04268-8 9.

[DFPR14] V. Dunjko, J. F. Fitzsimons, C. Portmann, and R. Renner. Composable security of
delegated quantum computation. Advances in Cryptology—ASIACRYPT 2014, pages
406–425, 2014.
DOI: 10.1007/978-3-662-45608-8 22.

[DFR+07] I. B. Damg̊ard, S. Fehr, R. Renner, L. Salvail, and C. Schaffner. A tight high-order
entropic quantum uncertainty relation with applications. In Advances in Cryptology—
CRYPTO 2007, pages 360–378, 2007.
DOI: 10.1007/978-3-540-74143-5 20.

[DFS04] I. Damg̊ard, S. Fehr, and L. Salvail. Zero-knowledge proofs and string commitments
withstanding quantum attacks. In Advances in Cryptology—CRYPTO 2004, pages
254–272, 2004.

32

http://dx.doi.org/10.1007/978-3-642-25385-0_22
http://dx.doi.org/10.1007/11761679_32
http://dx.doi.org/10.1007/978-3-319-07956-1_11
http://dx.doi.org/10.1007/11593447_12
http://dx.doi.org/10.1109/TIT.2010.2048488
http://dx.doi.org/10.1007/978-3-319-17470-9_6
http://dx.doi.org/10.1007/s11128-009-0111-3
http://dx.doi.org/10.1007/978-3-642-03356-8_24
http://dx.doi.org/10.1007/978-3-319-04268-8_9
http://dx.doi.org/10.1007/978-3-662-45608-8_22
http://dx.doi.org/10.1007/978-3-540-74143-5_20


[DFSS05] I. Damg̊ard, S. Fehr, L. Salvail, and C. Schaffner. Cryptography in the bounded
quantum-storage model. In 46th Annual Symposium on Foundations of Computer
Science—FOCS 2005, pages 449–458, 2005.
DOI: 10.1109/SFCS.2005.30.

[DFSS07] I. B. Damg̊ard, S. Fehr, L. Salvail, and C. Schaffner. Secure identification and QKD
in the bounded-quantum-storage model. In Advances in Cryptology—CRYPTO 2007,
volume 4622, pages 342–359, 2007.
DOI: 10.1007/978-3-540-74143-5 19.

[DFSS08] I. B. Damg̊ard, S. Fehr, L. Salvail, and C. Schaffner. Cryptography in the bounded-
quantum-storage model. SIAM Journal on Computing, 37(6): 1865–1890, 2008.
DOI: 10.1137/060651343.

[DFW15] F. Dupuis, O. Fawzi, and S. Wehner. Entanglement sampling and applications. IEEE
Transactions on Information Theory, 61(2): 1093–1112, 2015.
DOI: 10.1109/TIT.2014.2371464.

[DM04] S. Dziembowski and U. Maurer. On generating the initial key in the bounded-storage
model. In Advances in Cryptology—CRYPTO 2004, pages 126–137, 2004.
DOI: 10.1007/978-3-540-24676-3 8.

[DM08] S. Dziembowski and U. Maurer. The bare bounded-storage model: The tight bound
on the storage requirement for key agreement. IEEE Transactions on Information
Theory, 54(6): 2790–2792, 2008.
DOI: 10.1109/TIT.2008.921864.

[dMM03] F. de Martini and C. Monroe. Experimental Quantum Computation and Information.
International School of Physics Enrico Fermi. IOS Press, 2003.
Online: https://books.google.ca/books?id=7xrvAgAAQBAJ.

[DNS10] F. Dupuis, J. B. Nielsen, and L. Salvail. Secure two-party quantum evaluation of
unitaries against specious adversaries. In Advances in Cryptology—CRYPTO 2010,
pages 685–706, 2010.
DOI: 10.1007/978-3-642-14623-7 37.

[DNS12] F. Dupuis, J. B. Nielsen, and L. Salvail. Actively secure two-party evaluation of
any quantum operation. In Advances in Cryptology—CRYPTO 2012, pages 794–811,
2012.
DOI: 10.1007/978-3-642-32009-5 46.

[DPS14] I. Damg̊ard, T. B. Pedersen, and L. Salvail. How to re-use a one-time pad safely and
almost optimally even if P = NP. Natural Computing, 13(4): 469–486, 2014.
DOI: 10.1007/s11047-014-9454-5.

[DWA14] V. Dunjko, P. Wallden, and E. Andersson. Quantum digital signatures without quan-
tum memory. Physical Review Letters, 112: 040502, 2014.
DOI: 10.1103/PhysRevLett.112.040502.

[EGL85] S. Even, O. Goldreich, and A. Lempel. A randomized protocol for signing contracts.
Communications of the ACM, 28(6): 637–647, 1985.
DOI: 10.1145/3812.3818.

33

http://dx.doi.org/10.1109/SFCS.2005.30
http://dx.doi.org/10.1007/978-3-540-74143-5_19
http://dx.doi.org/10.1137/060651343
http://dx.doi.org/10.1109/TIT.2014.2371464
http://dx.doi.org/10.1007/978-3-540-24676-3_8
http://dx.doi.org/10.1109/TIT.2008.921864
https://books.google.ca/books?id=7xrvAgAAQBAJ
http://dx.doi.org/10.1007/978-3-642-14623-7_37
http://dx.doi.org/10.1007/978-3-642-32009-5_46
http://dx.doi.org/10.1007/s11047-014-9454-5
http://dx.doi.org/10.1103/PhysRevLett.112.040502
http://dx.doi.org/10.1145/3812.3818


[Eke91] A. K. Ekert. Quantum cryptography based on Bell’s theorem. Physical Review
Letters, 67(6): 661–663, 1991.
DOI: 10.1103/PhysRevLett.67.661.

[ENN+14] C. Erven, N. Ng, N.Gigov, R.Laflamme, S. Wehner, and G.Weihs. An experimental
implementation of oblivious transfer in the noisy storage model. Nature Communi-
cations, 5: 3418, 2014.
DOI: 10.1038/ncomms4418.

[EPR35] A. Einstein, B. Podolsky, and N. Rosen. Can quantum-mechanical description of
physical reality be considered complete? Physical Review Letters, 47(10): 777–780,
1935.
DOI: 10.1103/physrev.47.777.

[FBS+14] K. A. G. Fisher, A. Broadbent, L. K. Shalm, Z. Yan, J. Lavoie, R. Prevedel, T. Jen-
newein, and K. J. Resch. Quantum computing on encrypted data. Nature Commu-
nications, 5: 3074, 2014.
DOI: 10.1038/ncomms4074.

[Feh10] S. Fehr. Quantum cryptography. Foundations of Physics, 40(5): 494–531, 2010.
DOI: 10.1007/s10701-010-9408-4.

[FF15] S. Fehr and M. Fillinger. Multi-prover commitments against non-signaling attacks.
In Advances in Cryptology—CRYPTO 2015, pages 403–421, 2015.
DOI: 10.1007/978-3-662-48000-7 20.

[FGH+10] E. Farhi, D. Gosset, A. Hassidimand, A. Lutomirski, D. Nagaj, and P. Shor. Quan-
tum state restoration and single-copy tomography for ground states of hamiltonians.
Physical Review Letters, 105(19): 190503, 2010.
DOI: 10.1103/physrevlett.105.190503.

[FGH+12] E. Farhi, D. Gosset, A. Hassidim, A. Lutomirski, and P. W. Shor. Quantum money
from knots. In Innovations in Theoretical Computer Science—ITCS 2012, pages 276–
289, 2012.
DOI: 10.1145/2090236.2090260.

[FGS13] S. Fehr, R. Gelles, and C. Schaffner. Security and composability of randomness
expansion from Bell inequalities. Physical Review A, 87(1): 012335, 2013.
DOI: 10.1103/physreva.87.012335.

[FK12] J. F. Fitzsimons and E. Kashefi. Unconditionally verifiable blind computation, 2012.
arXiv: 1203.5217.

[FKS+13] S. Fehr, J. Katz, F. Song, H. Zhou, and V. Zikas. Feasibility and completeness of
cryptographic tasks in the quantum world. In Theory of Cryptography, pages 281–
296, 2013.
DOI: 10.1007/978-3-642-36594-2 16.

[FS09] S. Fehr and C. Schaffner. Composing quantum protocols in a classical environment.
In Theory of Cryptography, pages 350–367, 2009.
DOI: 10.1007/978-3-642-00457-5 21.

34

http://dx.doi.org/10.1103/PhysRevLett.67.661
http://dx.doi.org/10.1038/ncomms4418
http://dx.doi.org/10.1103/physrev.47.777
http://dx.doi.org/10.1038/ncomms4074
http://dx.doi.org/10.1007/s10701-010-9408-4
http://dx.doi.org/10.1007/978-3-662-48000-7_20
http://dx.doi.org/10.1103/physrevlett.105.190503
http://dx.doi.org/10.1145/2090236.2090260
http://dx.doi.org/10.1103/physreva.87.012335
http://arxiv.org/abs/1203.5217
http://dx.doi.org/10.1007/978-3-642-36594-2_16
http://dx.doi.org/10.1007/978-3-642-00457-5_21


[Gav12] D. Gavinsky. Quantum money with classical verification. In 27th Annual Conference
on Computational Complexity—CCC 2012, pages 42–52, 2012.
DOI: 10.1109/CCC.2012.10.

[GC01] D. Gottesman and I. Chuang. Quantum digital signatures, 2001.
arXiv: quant-ph/0105032.

[Gen09] C. Gentry. Fully homomorphic encryption using ideal lattices. In 41st Annual ACM
Symposium on Theory of Computing—STOC 2009, pages 169–178, 2009.
DOI: 10.1145/1536414.1536440.

[GGH+13] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters. Candidate
indistinguishability obfuscation and functional encryption for all circuits. In 54th
Annual Symposium on Foundations of Computer Science—FOCS 2013, pages 40–49,
2013.
DOI: 10.1109/FOCS.2013.13.

[GKW15] A. Gheorghiu, E. Kashefi, and P. Wallden. Robustness and device independence of
verifiable blind quantum computing. New Journal of Physics, 17(8): 083040, 2015.
DOI: 10.1088/1367-2630/17/8/083040.

[GLM08] V. Giovannetti, S. Lloyd, and L. Maccone. Quantum private queries. Physical Review
Letters, 100(23): 230502, 2008.
DOI: 10.1103/physrevlett.100.230502.

[GLM10] V. Giovannetti, S. Lloyd, and L. Maccone. Quantum private queries: Security anal-
ysis. IEEE Transactions on Information Theory, 56(7): 3465–3477, 2010.
DOI: 10.1109/tit.2010.2048446.

[GM84] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and
System Sciences, 28(2): 270–299, 1984.
DOI: 10.1016/0022-0000(84)90070-9.

[GMR89] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive
proof systems. SIAM Journal on Computing, 18(1): 186–208, 1989.
DOI: 10.1137/0218012.

[GMW91] O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing but their
validity for all languages in NP have zero-knowledge proof systems. Journal of the
ACM, 38(3): 690–728, 1991.
DOI: 10.1145/116825.116852.

[Gol02] O. Goldreich. Zero-knowledge twenty years after its invention, 2002.
Online: www.wisdom.weizmann.ac.il/~oded/PSX/zk-tut02v3.pdf.

[Got03] D. Gottesman. Uncloneable encryption. Quantum Information & Computation, 3(6):
581–602, 2003.
Online: http://arxiv.org/abs/quant-ph/0210062.

[Gro96] L. K. Grover. A fast quantum mechanical algorithm for database search. In 28th
Annual ACM Symposium on Theory of Computing—STOC 1996, pages 212–219,
1996.
DOI: 10.1145/237814.237866.

35

http://dx.doi.org/10.1109/CCC.2012.10
http://arxiv.org/abs/quant-ph/0105032
http://dx.doi.org/10.1145/1536414.1536440
http://dx.doi.org/10.1109/FOCS.2013.13
http://dx.doi.org/10.1088/1367-2630/17/8/083040
http://dx.doi.org/10.1103/physrevlett.100.230502
http://dx.doi.org/10.1109/tit.2010.2048446
http://dx.doi.org/10.1016/0022-0000(84)90070-9
http://dx.doi.org/10.1137/0218012
http://dx.doi.org/10.1145/116825.116852
www.wisdom.weizmann.ac.il/~oded/PSX/zk-tut02v3.pdf
http://arxiv.org/abs/quant-ph/0210062
http://dx.doi.org/10.1145/237814.237866


[GRTZ02] N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden. Quantum cryptography. Reviews
of Modern Physics, 74(1): 145–195, 2002.
DOI: 10.1103/revmodphys.74.145.

[Hal05] S. Hallgren. Fast quantum algorithms for computing the unit group and class group
of a number field. In 37rd Annual ACM Symposium on Theory of Computing—STOC
2005, pages 468–474, 2005.
DOI: 10.1145/1060590.1060660.

[Hal07] S. Hallgren. Polynomial-time quantum algorithms for Pell’s equation and the princi-
pal ideal problem. Journal of the ACM, 54(1): 4:1–4:19, 2007.

[Hei27] W. Heisenberg. Schwankungserscheinungen und quantenmechanik. Zeitschrift fuer
Physik, 40(7): 501–506, 1927.
DOI: 10.1007/BF01440827.

[HK04] L. Hardy and A. Kent. Cheat sensitive quantum bit commitment. Physical Review
Letters, 92(15): 157901, 2004.
DOI: 10.1103/physrevlett.92.157901.

[HLSW04] P. Hayden, D. Leung, P. W. Shor, and A. Winter. Randomizing quantum states:
Constructions and applications. Communications in Mathematical Physics, 250(2):
371–391, 2004.
DOI: 10.1007/s00220-004-1087-6.

[HMU06] D. Hofheinz, J. Müller-Quade, and D. Unruh. On the (im-)possibility of extending
coin toss. In Advances in Cryptology—EUROCRYPT 2006, pages 504–521, 2006.
DOI: 10.1007/11761679 30.
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