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Abstract

In the setting of secure multiparty computation, a set of mutually distrusting parties wish
to securely compute a joint function. It is well known that if the communication model is
asynchronous, meaning that messages can be arbitrarily delayed by an unbounded (yet finite)
amount of time, secure computation is feasible if and only if at least two-thirds of the parties are
honest, as was shown by Ben-Or, Canetti, and Goldreich [STOC’93] and by Ben-Or, Kelmer, and
Rabin [PODC’94]. The running-time of all currently known protocols depends on the function
to evaluate. In this work we present the first asynchronous MPC protocol that runs in constant
time.

Our starting point is the asynchronous MPC protocol of Hirt, Nielsen, and Przydatek [Euro-
crypt’05, ICALP’08]. We integrate threshold fully homomorphic encryption in order to reduce
the interactions between the parties, thus completely removing the need for the expensive king-
slaves approach taken by Hirt et al.. Initially, assuming an honest majority, we construct a
constant-time protocol in the asynchronous Byzantine agreement (ABA) hybrid model. Using
a concurrent ABA protocol that runs in constant expected time, we obtain a constant expected
time asynchronous MPC protocol, secure facing static malicious adversaries, assuming t < n/3.

Keywords: multiparty computation; asynchronous communication; threshold FHE;
constant-time protocols; Byzantine agreement.
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1 Introduction

1.1 Background

In the setting of secure multiparty computation, a set of mutually distrusting parties wish to
jointly and securely compute a function of their inputs. This computation should be such that each
party receives its correct output, and none of the parties learn anything beyond their prescribed
output. The standard definition today [14, 26] formalizes the above requirements (and others) in
the following general way. Consider an ideal world in which an external trusted party is willing to
help the parties carry out their computation. An ideal computation takes place in this ideal world
by having the parties simply send their inputs to the trusted party, who then computes the desired
function and passes each party its prescribed output. The security of a real protocol is established
by comparing the outcome of the protocol to the outcome of an ideal computation. Specifically, a
real protocol that is run by the parties is secure, if an adversary controlling a coalition of corrupted
parties can do no more harm in a real execution than in the ideal execution.

One of the most important parameters for designing a protocol is the communication model.
In the synchronous communication model, messages that are sent are guaranteed to be delivered
within a known and finite time frame. As a result, the computation can proceed in rounds, such
that if a party failed to receive a particular message in some round, within the expected time frame,
the receiver knows that the sender did not transmit the message. Impressive feasibility results are
known in this model [27, 8, 17, 38], stating that every functionality can be securely computed,
assuming that a majority of the parties are honest. Furthermore, under suitable cryptographic
assumptions, the computation can be done using constant-round protocols [4, 31, 2, 24, 28, 33].

The asynchronous model of communication is arguably more appropriate for modeling the real
world. In this model the adversary has a stronger control over the communication channels and
can impose an arbitrary unbounded (yet finite) delay on the arrival of each message. In particular,
an honest party cannot distinguish between a corrupted party that refuses to send messages and
an honest party whose messages are delayed.

This inherent limitation was taken into account by Ben-Or et al. [9] by adjusting the ideal-world
computation. Since messages from t parties might never be delivered during the execution of the
protocol, the trusted party cannot compute the function on all inputs. Therefore, the ideal-world
adversary gets to decide on a core set of n− t input providers (t of which might be corrupted) and
the trusted party computes the function on their inputs (and default values for the rest). Next,
the trusted party sends to each party the output of the computation along with the identities of
the parties in the core set. It immediately follows that a secure protocol implies agreement in the
asynchronous setting, since the core set must be agreed upon as part of the protocol, and therefore is
feasible in the standard model if and only if t < n/3 [9, 10]. Asynchronous protocols that are secure
assuming t < n/2 are only known in weaker models that assume either a synchronous broadcast
round [6] or some form of non-equivocation [3]. Moreover, the running-time1 of all currently known
asynchronous protocols depends on the function to be computed and no constant-time protocols
were known.

In this work we study the following question.

Do there exist asynchronous secure multiparty protocols which run in constant time?

1The running time is measured by the elapsed time of the protocol while normalizing the maximal delay imposed
on a message to 1.
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1.2 Our Result

Our main result is a feasibility result of an asynchronous secure multiparty protocol that runs in
constant time in a hybrid model where the parties have access to an ideal asynchronous Byzantine
agreement (ABA) functionality.

The main tools that we use are threshold fully homomorphic encryption (TFHE) and threshold
signatures (TSIG). A fully homomorphic encryption scheme (FHE) is an encryption scheme that
enables an evaluation of a function over a tuple of ciphertexts to obtain an encrypted result. TFHE
is essentially a distributed version of FHE, where the decryption key is secret shared amongst the
parties. In order to decrypt a ciphertext, each party locally uses its share of the decryption key and
computes a share of the plaintext. The plaintext can then be reconstructed given t+ 1 decryption
shares. Similarly, in a threshold signature scheme, the signing key is secret shared and t+ 1 shares
are required in order to sign a message. We note that both of these computational assumption can
be based on the standard learning with errors (LWE) problem, see Asharov et al. [2], Bendlin and
Damg̊ard [11] and Bendlin et al. [12].

Theorem 1.1 (informal). Assume that TFHE and TSIG schemes exist, and that the cryptographic
keys have been pre-distributed. Then any efficiently computable function f can be securely com-
puted in the asynchronous setting facing static malicious adversaries, assuming an honest majority
and given access to an ABA ideal functionality. The time complexity of the protocol is O(1), the
communication complexity is independent of the multiplication-depth of the circuit representing f
and the number of (concurrent) invocations of the ABA ideal functionality is n.

Using the concurrent ABA protocol of Ben-Or and El-Yaniv [7], which runs in constant expected
time2 and is resilient for t < n/3, we obtain the following corollary.

Corollary 1.2 (informal). Assume that TFHE and TSIG schemes exist, then any function can
be securely computed in the asynchronous setting using a constant expected time protocol, in the
presence of static malicious adversaries, for t < n/3.

1.3 Overview of the Protocol

The basis of our technique is the protocol of Cramer et al. [20] (designed for the synchronous set-
ting), which is based on threshold additively homomorphic encryption (TAHE)3 and is designed in
a hybrid model where the encryption keys are pre-distributed before the protocol begins. Initially,
each party encrypts its input and broadcasts the ciphertext. Next, the circuit is homomorphi-
cally evaluated, where addition gates are computed locally and multiplication gates are computed
interactively. Finally, a threshold decryption protocol is executed, and the parties learn the output.

Hirt et al. [29, 30] adopted the protocol of [20] into the asynchronous setting by introducing the
king-slaves paradigm. Initially, each party sends its encrypted input to all the parties, and the core
set is decided upon using an agreement on a common subset (ACS) protocol, which incorporates n
instances of ABA. Next, n copies of the circuit are interactively evaluated. In each evaluation one
of the parties acts as king while all other parties act as slaves. The role of the slaves is to help the
king with the computation of multiplication gates. At the end of each such evaluation, the slaves
send their decryption shares to the king which recovers the output. The evaluations of the circuit

2Following the lower bound of [22], asynchronous agreement protocols cannot be computed in constant time.
3Which essentially means that ciphertexts can be added but not multiplied.
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are executed asynchronously, i.e., one king may finish its computation while another king hasn’t
started yet, therefore each party must hold a state for each evaluation of the circuit.

The time complexity of the protocols of Hirt et al. [29, 30] depends on the depth of the circuit
to compute. In this work, we use a TFHE instead of TAHE in order to reduce the running time.
This adjustment not only yields better time complexity and better communication complexity, but
also enables a design without the expensive king-slave paradigm, since each party can locally and
non-interactively evaluate the entire circuit. As a consequence, the description of the new protocol
is greatly simplified, and also results with a better memory complexity compared to [29, 30], since
the parties do not need to store a local state for each of the n evaluations of the circuit.

Our protocol consists of three stages. The input stage, in which the core set of input providers is
determined, follows in the lines of Hirt et al. [29, 30]. In the computation and threshold decryption
stage, each party homomorphically evaluates the circuit non-interactively and obtains an encrypted
output c̃. Next, the party uses its share of the decryption key to compute a decryption share and
send it to all other parties. Once a party receives t + 1 valid decryption shares it can recover the
output. During these stages, the validity of each message sent by some party must be proven.
This is done by running a sub-protocol which produces a certificate for the message (which is
essentially a signature produced by n− t parties). Therefore, a party must remain active and assist
in constructions of certificates even after it obtained its output. The termination stage ensures
a safe termination of all the parties and follows Bracha [13]. Once a party obtained its output
it sends it to all other parties. When a party receives t + 1 consisting values it can safely set its
output to this value (even if it did not complete the computation and threshold decryption stage)
and once receiving outputs from n− t parties, terminate.

1.4 Additional Related Work

Ben-Or et al. [9] were the first to define asynchronous secure multiparty computation. They con-
structed a BGW-alike [8] asynchronous protocol that is secure in the presence of malicious ad-
versaries when t < n/4; the authors showed that this threshold is tight when considering perfect
correctness. Ben-Or et al. [10] constructed a protocol with statistical correctness that is secure in
the presence of malicious adversaries, for t < n/3. This threshold is also tight following the lower
bound of Toueg [41], stating that asynchronous Byzantine agreement is impossible if t ≥ n/3, even
in the PKI model.

Following the feasibility results of [9, 10] great improvements have been made regarding the
communication complexity. Two main approaches have been used, the first is in the information-
theoretic model and does not rely on cryptographic assumptions [40, 37, 5, 35, 36, 19] while the
second is in the computational model and is based on threshold additively homomorphic encryption,
these protocols appear in [29, 30, 18] and rely on a preprocessing phase for key distribution.

In order to achieve security for an honest majority, the model must be weakened in some sense.
Beerliová-Trub́ıniová et al. [6] allowed a limited usage of synchronous Byzantine agreement and
adjusted the protocol from [30] to the case where t < n/2. Backes et al. [3] augmented the model
with a non-equivocation oracle, and constructed a protocol that is secure assuming an honest
majority.

In an independent work, Choudhury and Patra [18] suggested using TFHE in order to reduce
the time complexity, but did not proceed in this route since they considered concrete efficiency. We
note that in this work we focus on feasibility results rather than concrete efficiency of the protocols.

A comparison of the asynchronous MPC protocols appears in Table 1.
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Paper Resilience Correctness Timea Communicationb Assumptionsc Hybrid Modeld

[9] t < n/4 Perfect O(cM ) O(cM · n6)
[10] t < n/3 Statistical O(cM ) Ω(cM · n11)
[40] t < n/4 Perfect O(cM ) Ω(cM · n5)
[37] t < n/4 Statistical O(cM ) O(cM · n4 + n5)
[29] t < n/3 Computational O(cM ) O(cM · n3κ) TAHE, TSIG KeyDist
[5] t < n/4 Perfect O(cM ) O(cM · n3)
[30] t < n/3 Computational O(cM ) O(cM · n2κ+ n3κ) TAHE, TSIG KeyDist
[35] t < n/3 Statistical O(cM ) O(cM · n5)
[36] t < n/4 Statistical O(cM ) O(cM · n2 + n4)
[36] t < n/4 Perfect O(cM ) O(cM · n2 + n3)
[6] t < n/2 Computational O(cM ) O(cM · n4κ) TAHE, TSIG KeyDist, Bcast
[19] t < n/4 Statistical O(cM ) O(cM · n+ n3)
[3] t < n/2 Computational O(cM ) O(cM · n3κ) AHE, TSIG KeyDist, NEQ
[3] t < n/2 Computational O(cM ) O(cM · n2κ+ n3κ) TAHE, TSIG KeyDist, NEQ
[18] t < n/3 Computational O(cM ) O(cM · nκ+ n3κ) TSHE KeyDist

This work t < n/3 Computational O(1) O(n3κ) TFHE, TSIG KeyDist

aTime complexity is measured in the ABA-hybrid model.
bcM denotes the number of multiplication gates. Input, output and addition gates are ignored.
cTSIG is a threshold digital signature scheme, AHE is an additively homomorphic encryption scheme, TAHE is

a threshold additively homomorphic encryption scheme, TSHE is a threshold somewhat homomorphic encryption
scheme, TFHE is a threshold fully homomorphic encryption scheme.

dKeyDist stands for key distribution for a threshold cryptosystem, NEQ stands for transferable non-equivocation
mechanism, Bcast stands for synchronous broadcast.

Table 1: Comparison of asynchronous MPC protocols.

1.5 Open Questions

Our main result establishes a feasibility result of asynchronous secure computation in constant
time, however it requires quite strong assumptions, e.g., threshold FHE and a preprocessing phase
for distributing the cryptographic keys. An interesting open question is to construct constant-time
asynchronous protocols under weaker assumptions.

Paper Organization

The cryptographic primitives are defined in Section 2, followed by an overview of the UC framework
in Section 3. Certificates are defined in Section 4 and Section 5 presents our asynchronous MPC
protocol. The security proof is given in Section 6 and the conclusions appear in Section 7.

2 Preliminaries

In this section we present the definitions of the cryptographic schemes that are used in our protocol.

2.1 Threshold Fully Homomorphic Encryption

Definition 2.1. A homomorphic encryption (HE) scheme consists of 4 PPT algorithms:

• Key generation: (dk, ek) ← Gen(1κ); outputs a pair of keys: the secret decryption key dk
and the public encryption (and evaluation) key ek.
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• Encryption: c← Encek(m); using ek, encrypt a plaintext m into a ciphertext c.

• Decryption: m = Decdk(c); using dk, decrypt the ciphertext c to into a plaintext m.

• Homomorphic evaluation: c = Evalek(C, c1, . . . , c`); using ek, evaluate a circuit C over a
tuple of ciphertexts (c1, . . . , c`) to produce a ciphertext c.

We say that a HE scheme is correct for circuits in a circuit class C if for every C ∈ C and every
series of inputs m1, . . . ,m` ∈ {0, 1}∗ it holds that

Pr [Decdk (Evalek (C,Encek(m1), . . . ,Encek(m`))) 6= C (m1, . . . ,m`)] ≤ negl(κ).

Semantic security of HE schemes is defined in the standard way, see [25].

Definition 2.2. A family of HE schemes {Π(d) = (Gen(d),Enc(d),Dec,Eval(d)) | d ∈ N+} is leveled
fully homomorphic if for every d ∈ N+, the following holds:

• Correctness: Π(d) correctly evaluates the set of all boolean circuits of depth at most d.

• Compactness: There exists a polynomial s such that the common decryption algorithm can
be expressed as a circuit of size at most s(κ) and is independent of d.

In our protocol for computing a function f , the depth d of the circuit C representing f is known
in advance. We remove the notation (d) from the schemes throughout the paper for clarity. We also
require the FHE scheme to have a threshold decryption, informally this means that Gen generates
the public key ek as well as a te-secret sharing of the secret key (dk1, . . . , dkn), such that decrypting
c using dki produces a share mi of the plaintext m. We will use te = t+ 1.

Definition 2.3. A threshold homomorphic encryption scheme is a homomorphic encryption scheme
augmented with the following properties:

• The key generation algorithm is parameterized by (te, n) and outputs (dk, ek)← Gen(te,n)(1
κ),

where dk is represented using a (te, n)-threshold secret sharing of the secret key (dk1, . . . , dkn).

• Given a ciphertext c and a share of the secret key dki, the share-decryption algorithm outputs
di = DecSharedki(c) such that (d1, . . . , dn) forms a (te, n)-threshold secret sharing of the
plaintext m = Decdk(c). We denote the reconstruction algorithm that receives te decryption
shares {di} by m = DecRecon({di}).

2.2 Threshold Signatures

A threshold signature scheme is a signature scheme in which the signing key is shared amongst n
parties using a ts-threshold secret-sharing scheme. Using ts shares of the signing key it is possible
to sign on any message, however using less than ts shares it is infeasible to forge a signature. We
will use ts = n− t.

Definition 2.4 (Threshold Signature Scheme). A threshold signature scheme is a signature scheme
(SigGen,Sign,Vrfy) augmented with the following properties

• The signature key generation algorithm is parameterized by (ts, n) and outputs (sk, vk) ←
SigGen(ts,n)(1

κ), where sk is represented using a (ts, n)-threshold secret sharing of the secret
signing key (sk1, . . . , skn).
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• Given a plaintext m and a share of the secret key ski, the share-signing algorithm outputs
σi ← SignShareski(m) such that (σ1, . . . , σn) forms a (ts, n)-threshold secret sharing of the
signature σ ← Signsk(m).

For a security definition of threshold signatures see, for example, [1].

3 The Security Model

3.1 The UC Framework

In this section we present a high-level description of the security model. We follow the UC frame-
work of Canetti [14], which is based on the real/ideal paradigm, i.e., comparing what an adversary
can do in the real execution of the protocol to what it can do in an ideal model where an uncor-
rupted trusted party (an ideal functionality) assists the parties. Informally, a protocol is secure if
whatever an adversary can do in the real protocol (where no trusted party exists) can be done in
the ideal computation.

The real world. An execution of a protocol π in the real model consists of n interactive Turing
machines (ITMs) P1, . . . , Pn representing the parties, along with two additional ITMs, an adversary
A, describing the behavior of the corrupted parties and an environment Z, representing the external
environment in which the protocol operates. The environment gives inputs to the honest parties,
receives their outputs, and can communicate with the adversary at any point during the execution.
The adversary controls the operations of the corrupted parties and the delivery of messages between
the parties.

In more details, each ITM is initialized with the security parameter κ and random coins, where
the environment may receive an additional auxiliary input. We consider static corruptions, meaning
that the set of corrupted parties is fixed before the protocol begins and is known to A and Z. The
protocol proceeds by a sequence of activations, where the environment is activated first and at each
point a single ITM is active. The environment can either activate one of the parties with input or
activate the adversary by sending it a message. Once a party is activated it can perform a local
computation, write on its output tape or send messages to other parties. After the party completes
its operations the control is returned to the environment. Once the adversary is activated it can
send messages on behalf of the corrupted parties or send a message to the environment. In addition,
A controls the communication between the parties, and so it can read the content of the messages
sent between the parties and is responsible for delivering each message to its recipient. Once A
delivers a message to some party, this party is activated. We assume that the adversary cannot
omit, change or inject messages, however it can decide which message will be delivered and when.4

The protocol completes once Z stops activating other parties and outputs a single bit.
If the adversary is fail-stop, it always instructs the corrupted parties to follow the protocol,

with the exception that they can halt prematurely and stop sending messages. If the adversary is
malicious, it may instruct the corrupted parties to deviate from the protocol arbitrarily.

Let REALπ,A,Z(κ, z, ~r) denote Z’s output on input z and security parameter κ, after in-
teracting with adversary A and parties P1, . . . , Pn running protocol π with random tapes

4This behaviour is formally modeled using the eventual-delivery secure message transmission ideal functionality
in [32].
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~r = (r1, . . . , rn, rA, rZ) as described above. Let REALπ,A,Z(κ, z) denote the random variable
REALπ,A,Z(κ, z, ~r), when the vector ~r is uniformly chosen.

The ideal model. A computation in the ideal model consists of n dummy parties P1, . . . , Pn, an
ideal adversary (simulator) S, an environment Z, and an ideal functionality F . The environment
gives inputs to the honest (dummy) parties, receives their outputs, and can communicate with the
ideal adversary at any point during the execution. The dummy parties act as channels between the
environment and the ideal functionality, meaning that they send the inputs received from Z to F ,
and transfer the output they receive from F to Z. We consider static corruptions, and so the set
of corrupted parties is fixed before the computations, and is known to Z, S and F . As before, the
computation completes once Z stops activating other parties and outputs a single bit.

The ideal functionality defines the desired behaviour of the computation. F receives the inputs
from the dummy parties, executes the desired computation and sends the output to the parties. The
ideal adversary does not see and cannot delay the communication between the parties and the ideal
functionality, however, S can communicate with F . As we consider asynchronous protocols in the
real model, ideal functionalities must consider some inherent limitations, for instance, the ability
of the adversary to decide when each honest party learns the output. Since the UC framework has
no notion of time, we follow [34, 32] and model time by number of activations. Once F prepares
an output for some party it does not ask permission from the adversary to deliver it to the party,
instead the party must request the functionality for the output, and this can only be done when the
party is active. Furthermore, the adversary can instruct F to delay the output for each party by
ignoring the requests for a polynomial number of activations. If the environment activates the party
sufficiently many times, the party will eventually receive the output from the ideal functionality. It
follows that the ideal computation will terminate, i.e., all honest parties will obtain their output,
in case the environment will allocate enough resources to the parties. We use the term F sends a
request-based delayed output to Pi to describe the above interaction between the F , S and Pi.

Let IDEALF ,S,Z(κ, z, ~r) denote Z’s output on input z and security parameter κ, after interacting
with ideal adversary S and dummy parties P1, . . . , Pn which interact with ideal functionality F with
random tapes ~r = (rS , rZ) as described above. Let IDEALF ,S,Z(κ, z) denote the random variable
IDEALF ,S,Z(κ, z, ~r), when the vector ~r is uniformly chosen.

Definition 3.1. We say that a protocol π t-securely UC realizes an ideal functionality F in the
presence of static malicious (resp., fail-stop) adversaries, if for any PPT malicious (resp., fail-
stop) real model adversary A, controlling a subset of up to t parties, and any PPT environment
Z, there exists a PPT ideal model adversary S such that following two distribution ensembles are
computationally indistinguishable

{REALπ,A,Z (κ, z)}κ∈N,z∈{0,1}∗
c≡ {IDEALF ,S,Z (κ, z)}κ∈N,z∈{0,1}∗ .

The hybrid model. In a G-hybrid model, the execution of the protocol proceeds as in the real
model, however, the parties have access to an ideal functionality G for some specific operations.
The communication of the parties with the ideal functionality G is performed as in the ideal model.
An important property of the UC framework is that an ideal functionality in a hybrid model can be
replaced with a protocol that securely UC realizes G. We informally state the composition theorem
from Canetti [14].
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Theorem 3.2 ([14]). Let π be a protocol that t-securely UC realizes F in the G-hybrid model and
let ρ be a protocol that t-securely UC realizes G. Then the protocol πρ that is obtained from π by
replacing every ideal call to G with the protocol ρ, t-securely UC realizes F in the model without
ideal functionality G.

3.2 Some Ideal Functionalities

We now present the asynchronous SFE and asynchronous BA functionalities.

3.2.1 Asynchronous Secure Function Evaluation

Secure function evaluation (SFE) is a multiparty primitive where a set of n parties wish to compute
a (possibly randomized) function f : ({0, 1}∗)n×{0, 1}∗ → ({0, 1}∗)n, where f = (f1, . . . , fn). That
is, for a vector of inputs x = (x1, . . . , xn) ∈ ({0, 1}∗)n and random coins r ∈R {0, 1}∗, the output
vector is (f1(x; r), . . . , fn(x; r)). The output for the i’th party (with input xi) is defined to be
fi(x; r). The function f has public output, if all parties output the same value, i.e., f1 = . . . = fn,
otherwise f has private output.

In an asynchronous protocol for computing secure function evaluation, the adversary can always
delay messages from t parties, and so t input values might not take part in the computation. There-
fore, in the definition of the ideal functionality for asynchronous SFE, the ideal-model adversary is
given the power to determine a core set of n − t input providers (t of which might be corrupted)
that will contribute input values for the computation. The asynchronous secure function evaluation
functionality, FfASFE, is presented in Figure 1.

Functionality FfASFE

FfASFE proceeds as follows, running with parties P1, . . . , Pn and an adversary S, and parameterized
by an n-party function f : ({0, 1}∗)n × {0, 1}∗ → ({0, 1}∗)n. For each party Pi initialize an input
value xi = ⊥ an output value yi = ⊥.

• Upon receiving a message (input, sid, v) from some party Pi, if CoreSet has not been recorded
yet or if Pi ∈ CoreSet, set xi = v. Next, send a message (input, sid, Pi) to S.

• Upon receiving a message (coreset, sid,CoreSet) from S, verify that CoreSet is a subset of
{P1, . . . , Pn} of size n − t; else ignore the message. If CoreSet has not been recorded yet,
record CoreSet and for every Pi not in CoreSet, set xi to some default input value xi = x̃i.

• Upon receiving a message (output, sid) from some party Pi, do:

1. If CoreSet has not been recorded yet or if xj has not been recorded for some Pj ∈
CoreSet, ignore the message.

2. Otherwise, if y1, . . . , yn have not been set yet, then choose r ∈R {0, 1}∗ and compute
(y1, . . . , yn) = f(x1, . . . , xn; r).

3. Generate a request-based delayed output (output, sid, (CoreSet, yi)) to Pi and send
(output, sid, Pi) to S.

Figure 1: The asynchronous secure function evaluation functionality
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3.2.2 Asynchronous Byzantine Agreement

In a synchronous Byzantine agreement, each party has an input bit and outputs a bit. Three
properties are required: agreement, meaning that all honest parties agree on the same bit, validity,
meaning that if all honest parties have the same input bit then this will be the common output and
termination, meaning that the protocol eventually terminates. When considering asynchronous
Byzantine agreement (ABA), the definition must be weakened, since t input values may be delayed
and not effect the result. We adopt the ABA functionality as defined in [34]. The asynchronous
Byzantine agreement functionality, FABA, is presented in Figure 2.

Functionality FABA

FABA proceeds as follows, running with parties P1, . . . , Pn and an adversary S:

• Upon receiving a message (vote, sid, b), where b ∈ {0, 1} from party Pi, send a message
(vote, sid, Pi, b) to the adversary. The adversary is also allowed to vote.

• The result is computed using one of the following rules:

– If n− t parties voted, and t+ 1 voted b and S voted b, then set the result to be b.

– If n− t parties voted b, then set the result to be b.

– If n− t parties voted, but do not agree, then the result is set by the vote of S.

When the result of voting sid has been decided to be v, the functionality sends (decide, sid, v)
as a request-based delayed output to all parties.

Figure 2: The asynchronous Byzantine agreement functionality

4 Zero-Knowledge Proofs and Certificates

In order to ensure security against malicious behaviour, the parties must prove their actions using
zero-knowledge proofs during the protocol. The zero-knowledge functionality FZK and its one-to-
many extension F1:M

ZK are defined in Section 4.1 and the notion of certificates in Section 4.2.

4.1 Zero-Knowledge Proofs

In the zero-knowledge functionality, parameterized by a relation R, the prover sends the function-
ality a statement x to be proven along with a witness w. In response, the functionality forwards
the statement x to the verifier if and only if R(x,w) = 1 (i.e., if and only if x a correct statement
and w is a witness for x). Thus, in actuality, this is a proof of knowledge in that the verifier is
assured that the prover actually knows w (and has explicitly sent w to the functionality), rather
than just being assured that such a w exists. The zero-knowledge functionality, FZK, is presented
in Figure 3.5

5For simplicity, we concentrate on the single-session version of FZK, which requires a separate common reference
string for each protocol that realizes FZK. The protocols realizing FZK will later be composed, using the universal
composition with joint state of Canetti and Rabin [16], to obtain protocols that use only a single copy of the common
reference string when realizing all the copies of FZK.
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Functionality FZK

FZK proceeds as follows, running with prover P , a verifier V and an adversary S, and parameter-
ized with a relation R:

• Upon receiving (ZK-prover, sid, x, w) from P , do: if R(x,w) = 1, then send (ZK-proof, sid, x)
to S, send a request-based delayed output (ZK-proof, sid, x) to V and halt. Otherwise, halt.

Figure 3: The zero-knowledge functionality

The zero-knowledge functionality, as defined in Figure 3, is parameterized by a single relation
R (and thus a different copy of FZK is needed for every different relation required). In this work
we require zero-knowledge proofs for several relations, therefore, we use standard techniques by
considering the relation R index several predetermined relations. This can be implemented by
separating the statement x into two parts: x1 that indexes the relation to be used and x2 that is
the actual statement. Then, define R((x1, x2), w) as Rx1(x2, w).

We now define the one-to-many extension of the zero-knowledge functionality, where one party
proves a statement to some subset of parties. The definition of the one-to-many zero-knowledge
functionality, denoted F1:M

ZK , is presented in Figure 4.

Functionality F1:M
ZK

F1:M
ZK proceeds as follows, running with parties P1, . . . , Pn and an adversary S, and parameterized

with a relation R:

• Upon receiving (ZK-prover, sid,P, x, w) from party Pi, where P ⊆ {P1, . . . , Pn} do: if
R(x,w) = 1, then send (ZK-proof, sid, Pi,P, x) to S, a request-based delayed output
(ZK-proof, sid, Pi,P, x) to all parties in P and halt. Otherwise, halt.

Figure 4: The one-to-many zero-knowledge functionality

4.2 Certificates

As we consider static corruptions, there exists efficient constant-round zero-knowledge protocols in
the FCRS-hybrid model, e.g., omega protocols [23], and even non-interactive zero-knowledge proofs
[21]. These protocols would suffice for realizing FZK as it is a two-party functionality. However,
when considering the multiparty functionality F1:M

ZK , some problems may arise. The reason is that
the statement that needs to be proven is not public, and a malicious prover may prove different
statements to different parties.

This problem is resolved using certificates, introduced by Hirt et al. [30]. Certificates are gener-
ated by an interactive protocols among the parties such that at the end of the execution, one party
can non-interactively prove correctness of some statement to each other party, without revealing
additional information. The protocol for issuing a certificate is based on threshold signatures and
involves two stages. First, a signature proving the statement is computed interactively with all the
parties – it is essential that all the parties are active during this stage, otherwise the prover might
not receive enough shares to reconstruct the signature. Next, the prover can send the signature as
a non-interactive proof of the statement and every other party can validate it.

During out main protocol, in Section 5, we consider three relations:
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• Proof of Plaintext Knowledge. The relations is parameterized by a TFHE scheme. The
statement consists of a public encryption key ek and a ciphertext c and the witness consists
of the plaintext x and random coins r, explaining c as an encryption of x under ek. That is

RPoPK = {((ek, c), (x, r)) | c = Encek(x; r)} .

• Proof of Correct Decryption. The relations is parameterized by a TFHE scheme. The
statement consists of a public encryption key ek, a ciphertext c and a decryption share d and
the witness consists of the decryption key dk. That is

RPoCD = {((ek, c, d), dk) | d = DecSharedk(c)} .

• Proof of Correct Signature. The relations is parameterized by a TSIG scheme. The
statement consists of a public verification key vk, a message msg and a signature share σ and
the witness consists of the signing key sk. That is

RPoCS = {((vk,msg, σ), sk) | σ = SignSharesk(msg)}

Lemma 4.1. Let n > 2t+ 1 and let Rx1 be a binary relation. Assuming the existence of threshold
signature schemes, F1:M

ZK can be UC realized in the FZK-hybrid model in the presence of static
malicious adversaries.

Proof. Consider a party Pi, holding a witness w, that wishes to prove a statement x to all other
parties. The high-level idea is for Pi to prove x to each other Pj using a two-party zero-knowledge
proof. If all parties are active and Pi is honest, it is guaranteed that eventually at least n − t
proofs will successfully terminate. Once a verifier Pj accepts the proof, it produces a share σj of a
signature approving x, sends the share back to Pi and proves the validity of σj to Pi using another
two-party zero-knowledge proof. After Pi obtains n − t valid signature shares, it can reconstruct
the signature σ which serves as its certificate.

Assuming that n > 2t+ 1, it holds that (n− t)− t ≥ 1, and so it is guaranteed that at least one
honest party accepted the proof of the statement x; it follows that the corrupted parties cannot
falsely certify invalid statements. Furthermore, assuming the two-parties zero-knowledge proofs are
constant round, certifying a statement takes constant time.

Protocol 4.2 shows how to compute F1:M
ZK in the FZK-hybrid model. During the protocol, two

instances of FZK are used; the first is for proving statements for the relation Rx1 and the second
for the relation RPoCS. We use the notation sidkj for the string sid ◦ k ◦ j.

Let A be an adversary attacking Protocol 4.2 and let Z be an environment. We construct a
simulator S as follows. S runs the adversary A and simulates the environment, the honest parties
and the ideal functionality FZK towards A. In order to simulate Z, S forwards every message it
receives from Z to A and vice-versa. S simulates the honest parties towards A. In case Pi is
corrupted, S receives ((x1, x2), w) by simulating FZK and in addition receives P from A. Next, S
sends (ZK-prover, sid,P, (x1, x2), w) to F1:M

ZK and continues simulating the honest parties and FZK

to A. In case Pi is not corrupted, it first receives (ZK-proof, sid, Pi,P, (x1, x2)) from F1:M
ZK . Next,

whenever A requests output from FZK with sid1j for j ∈ I, S replies with (ZK-proof, sid, (x1, x2)).
The rest of the simulation follows the protocol. It is straight-forward to see that the view of A is
indistinguishable when interacting with S and when attacking the execution of Protocol 4.2, and
the proof follows.
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Protocol 4.2 (F1:M
ZK protocol, in the FZK-hybrid model).

Offline setup:
For every j ∈ [n], party Pj is initialized with keys for a threshold signature scheme (vk, skj),
where (sk, vk)← SigGen(n−t,n)(1

κ), and sk = (sk1, . . . , skn).

Code for sender Pi:

• Upon receiving (ZK-prover, sid,P, (x1, x2), w) from the environment, party Pi sends
(ZK-prover, sid1j , (x1, x2), w) to FZK where Pi acts as the prover and Pj acts as the verifier
(for every j ∈ [n] \ {i}). In addition, send (sid,P) to every party.

• Request output from FZK until receiving (ZK-proof, sid2j , (PoCS, vk,msg, σ)), with msg =
〈(x1, x2) is a valid statement, for (sid,P)〉 (for every j ∈ [n] \ {i}), until receiving n − t
signature shares {σj}.

• Compute cert = SignRecon({σj}), send (sid, (x1, x2), cert) to every party in P and halt.

Code for receiver Pj (for j 6= i):

• Requests output from FZK until receiving (ZK-proof, sid1j , (x1, x2)). Next, upon receiving
the message (sid,P) from Pi, set msg = 〈(x1, x2) is a valid statement, for (sid,P)〉, com-
pute σj = SignShareskj (msg) and send (ZK-prover, sid2j , (PoCS, vk,msg, σj), skj) to FZK

where Pj acts as the prover and Pi acts as the verifier.

• Upon receiving the first message (sid, (x1, x2), cert) from Pi set msg =
〈(x1, x2) is a valid statement, for (sid,P)〉 and verify that Vrfyvk(msg, cert) = 1. If so
output (ZK-proof, sid, Pi,P, (x1, x2)) and halt.

The one-to-many zero-knowledge protocol

5 Asynchronous MPC Protocol

Following the spirit of [29, 30], the protocol consists of an offline key-distribution stage (preprocess-
ing) followed three online stages: the input stage, the computation and threshold-decryption stage
and the termination stage. We present the protocol for public-output functionalities, and a variant
for private-output functionalities can be obtained using the technique of [29].

5.1 Key-Distribution Stage

The key-distribution stage can be computed once for multiple instances of the protocol and es-
sentially distributes the keys for threshold schemes amongst the parties. We will describe the
protocol in a hybrid model where the key-distribution is done by an ideal functionality FKeyDist.
This ideal functionality can be realized using any asynchronous MPC protocol that does not re-
quire preprocessing, e.g., [35]. We emphasize that the time complexity of the protocol realizing the
key-distribution stage is independent of the function to compute.
FKeyDist generates the public and secret keys for the TFHE and the TSIG schemes and sends

to each party its corresponding keys. The key-distribution functionality is described in Figure 5.

5.2 Input Stage

In the input stage, as described in Protocol 5.1, each party encrypts its input and sends it to
all the other parties along with certificates proving that the party knows the plaintext (and so
independence of inputs is retained) and that n − t parties have obtained it. Next, the parties
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Functionality FKeyDist

FKeyDist proceeds as follows, interacting with parties P1, . . . , Pn and an adversary S, and param-
eterized by TFHE and TSIG schemes.

• Upon receiving a message (keydist, sid) from party Pi, do:

1. If there is no value (sid, dk, ek, sk, vk) recorded, compute (dk, ek) ← Gen(t,n)(1
κ),

where dk = (dk1, . . . , dkn), and (sk, vk) ← SigGen(n−t,n)(1
κ), where sk =

(sk1, . . . , skn) and record (sid, dk, ek, sk, vk).

2. Send (sid, Pi, ek, vk) to S and a request-based delayed outputa (sid, dki, ek, ski, vk) to
Pi.

aThis is the standard formalization of the asynchronous setting in the UC framework, see Section 3;
Pi must request the output from FKeyDist, and S can continuously instruct FKeyDist to arbitrarily delay the
answer.

Figure 5: The key-distribution functionality

jointly agree on a common subset of input providers, CoreSet, which consists of n− t parties whose
encrypted input has been obtained by all the parties. This stage proceeds in a similar manner to
[29] with the difference that the plaintexts are encrypted using TFHE rather than TAHE.

In more details, each party Pi starts by encrypting its input ci ← Encek(xi), and proving to
each other party knowledge of the plaintext. Once a party Pj accepts the proof, it sends Pi a
signature share for the statement msg = 〈n − t parties hold the input ci of Pi〉. After Pi obtains
n− t signature shares, it can reconstruct and distribute the certificate certinput

i , which is essentially
a signature on msg.

When a party collects n− t certificates it knows that at least n− t parties have their certified
inputs distributed to at least n − t parties. Since n ≥ 2t + 1, by assumption, this means that at
least (n − t) − t ≥ 1 honest parties obtained certified inputs from at least n − t parties. Hence, if
the honest parties echo the certified inputs they receive and collect n − t echoes, then all honest
parties will end up holding the certified inputs of the n− t parties which had their certified inputs
distributed to at least one honest party. These n− t parties will eventually be the input providers.
To determine who they are, the asynchronous Byzantine agreements functionality FABA is invoked
(concurrently) n times. During the protocol description we use the notation sidkj for the string
sid ◦ k ◦ j.

5.3 Computation and Threshold Decryption Stage

In the computation and threshold-decryption stage, as described in Protocol 5.2, each party locally
prepares the circuit Circ(CoreSet) (with hard-wired default input values for parties outside CoreSet)
and evaluates it over the encrypted input ciphertexts that were agreed upon in the input stage.
Since the encryption scheme is fully homomorphic, this part is done without interaction between
the parties. Once the encrypted output c̃i is obtained, Pi computes a decryption share di and
interactively certifies it. Next, Pi sends the certified decryption share to all other parties and waits
until it receives t+ 1 certified decryption shares, from which it can reconstruct the output yi.

Once Pi obtains the output, it should send it to all other parties in order to trigger the termi-
nation stage. This is done by first computing a signature share σoutput

i for the statement that yi
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Protocol 5.1 (The input stage, in the (FKeyDist,FZK,F1:M
ZK ,FABA)-hybrid).

Setup: Upon receiving input (input, sid, xi) from the environment, proceed as follows:

1. Send (keydist, sid) to FKeyDist.

2. Request the output from FKeyDist until receiving (sid, dki, ek, ski, vk).

3. Initialize the following sets to ∅: VerProvi (verified input providers), VerDistProvi (verified
distributed input providers), GlobalProvi (globally verified distributed input providers),
CertInputsi (certified inputs) and GlobalInputsi (globally certified inputs).

Distribution of Encrypted Input:

1. Compute ci = Encek(xi; ri) (for uniformly distributed ri).

2. Send (ZK-prover, sid1i , {P1, . . . , Pn} \ {Pi}, (PoPK, ek, ci), (xi, ri)) to F1:M
ZK .

3. Request output from FZK (with sid2i,j for every j ∈ [n] \ {i}) until receiving

(ZK-proof, sid2i,j , (PoCS, vk,msg, σ
inputi
j )), where Pi acts as the verifier and Pj acts as the

prover, with msg = 〈n − t parties hold the input ci of Pi〉, until receiving n − t signature

shares {σinputi
j }.

4. Compute the certificate certinput
i = SignRecon({σinputi

j }) (which equals Signsk(msg)). Send

(sid,msg, ci, cert
input
i ) to all the parties.

Grant Certificate:
Request the output from F1:M

ZK (with sid1j for every j ∈ [n] \ {i}). Upon receiving

(ZK-proof, sid1j , Pj , {P1, . . . , Pn} \ {Pj}, (PoPK, ek, cj)), add j to VerProvi. Next, set the mes-

sage msg = 〈n − t parties hold the input cj of Pj〉, compute σ
inputj
i = SignShareski(msg), and

send (ZK-prover, sid2j,i, (PoCS, vk,msg, σ
inputj
i ), ski) to FZK, where Pi acts as the prover and Pj

as the verifier.

Echo Certificate:
Upon receving (sid,msg, cj , cert

input
j ) with the message msg = 〈n −

t parties hold the input cj of Pj〉 and Vrfyvk(msg, certinput
j ) = 1, check if j /∈ VerDistProvi. If

so, add j to VerDistProvi, add (cj , cert
input
j ) to CertInputsi and forward (sid,msg, cj , cert

input
j )

to all the parties.

Select Input Providers:
When |VerDistProvi| ≥ n− t, stop executing the above rules and proceed as follows:

1. Send (sid,VerProvi,CertInputsi) to all the parties.

2. Collect a set of
{

(VerProvj ,CertInputsj)
}
j∈J of n− t pairs.

3. Let GlobalProvi = ∪j∈JVerProvj and GlobalInputsi = ∪j∈JCertInputsj .

4. For j ∈ [n], send (vote, sid3j , vj) to FABA, where vj = 1 iff j ∈ GlobalProvi.

5. Request the outputs from FABA until receiving (decide, sid3j , wj) for every j ∈ [n].

6. Denote CoreSet = {j ∈ [n] | wj = 1}.

7. For each j ∈ GlobalProvi ∩ CoreSet, send (sid, cj , cert
input
j ) to all the parties (note that

(cj , cert
input
j ) ∈ GlobalInputsi).

8. Wait until receiving (cj , cert
input
j ) for every j ∈ CoreSet.

The input stage code for Pi
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is the output value, interactively certify σoutput
i and send it to all parties. Once Pi receives n − t

signature shares it can reconstruct a certificate proving that yi is indeed the output value. Finally
Pi sends yi along with the certificate to all the parties.

Protocol 5.2 (The computation and threshold-decryption stage).
Wait until input stage is completed, resulting with a core set CoreSet and input ciphertexts
{cj | j ∈ CoreSet}.

Circuit Evaluation:

1. For each j /∈ CoreSet, hard-wire the default value x̃j for Pj into the circuit Circ, denote the
new circuit by Circ(CoreSet).

2. Locally compute the homomorphic evaluation of the circuit

c̃i = Evalek
(
Circ(CoreSet), cj1 , . . . , cj|CoreSet|

)
.

Threshold Decryption:

1. Compute the decryption share di = DecSharedki(c̃i).

2. Send (ZK-prover, sid4i , {P1, . . . , Pn} \ {Pi}, ((PoCD, ek, c̃i, di), dki) to F1:M
ZK .

3. Request the output from F1:M
ZK (for every j ∈ [n] \ {i}). Upon receiving

(ZK-proof, sid4j , Pj , {P1, . . . , Pn} \ {Pj}, (PoCD, ek, c̃j , dj)), accept the proof if c̃i = c̃j .

4. Once t + 1 decryption shares with accepted proofs {(ek, c̃i, dj)} have arrived, reconstruct
the output yi = DecRecon({dj}).

5. Set msg = 〈yi is the output value〉 and compute σoutput
i = SignShareski(msg).

6. Send (ZK-prover, sid5i , {P1, . . . , Pn} \ {Pi}, (PoCS, vk,msg, σoutput
i ), ski) to F1:M

ZK .

7. Request output from F1:M
ZK (for j ∈ [n]\{i}) until receiving (ZK-proof, sid5j , Pj , {P1, . . . , Pn}\

{Pj}, (PoCS, vk,msg, σoutput
j )), with msg = 〈yi is the output value〉.

8. Compute the certificate certoutput-verified
i = SignRecon({σoutputi

j }) (which equals Signsk(msg)
with msg = 〈yi is the output value〉).
Send (sid,msg, certoutput-verified

i ) to all the parties.

The computation and threshold-decryption stage code for Pi

5.4 Termination Stage

The termination stage, as described in Protocol 5.3, ensures that all honest parties will eventually
terminate the protocol, and will do so with the same output. Recall that the computation and
threshold-decryption stage is concluded when a party sends a certified output value to all the
parties. The party cannot terminate at this point since it might be required to assist in certifying
statements for other parties. Therefore, during the entire course of the protocol the termination
code is run concurrently. The termination stage follows the technique of Bracha [13]. In this
stage, each party continuously collects certified outputs sent by other parties. Once it receives t+1
certified outputs of the same value it knows that this is the correct output value for the computation
(since at least one honest party sent it). The party then adopts this certified output as its own
output (in case it did not obtain the output value earlier) and echoes it to all other parties. Once
the party receives n− t certified outputs of the same value, it can terminate.
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Protocol 5.3 (The termination stage).
During the protocol, concurrently executes the following rule:

Collecting Output Values:
When receiving for the first time from party Pj the value (sid,msg, certoutput-verified

j ), with msg =

〈yj is the output value〉 and Vrfyvk(msg, certoutput-verified
j ) = 1.

1. If the value yj has arrived from t + 1 parties and the output of Pi is not set to be yj , then

set the output yi to be yj and echo (sid,msg, certoutput-verified
j ) to all the parties.

2. If the value yj has arrived from n− t parties, then terminate with output
(output, sid, (CoreSet, yi)).

The termination stage code for Pi

6 Proof of Security

Lemma 6.1. Let f be an n-party functionality and assume the existence of TFHE and TSIG
schemes. Then the protocol π described in Protocol 5.1, Protocol 5.2 and Protocol 5.3 UC realizes
FfASFE in the (FKeyDist,FZK,F1:M

ZK ,FABA)-hybrid model, in constant time, in the presence of static
malicious adversaries corrupting at most t parties, for t < n/2.

Proof. LetA be a static malicious adversary against the execution of π and let Z be an environment.
Denote by I the set of indices of the corrupted parties. We construct an ideal-process adversary S,
interacting with the environment Z and with the ideal functionality FfASFE. S constructs virtual
real-model honest parties and runs the real-model adversary A. S must simulate the view of A,
i.e., its communication with Z, the messages sent by the uncorrupted parties, and the interactions
with the functionalities (FKeyDist,FZK,F1:M

ZK ,FABA).
In order to simulate the communication with Z, every message that S receives from Z is sent

to A, and likewise, every message sent from A sends to Z is forwarded by S.

Simulating the input stage. S starts by simulating FKeyDist and generates the crypto-
graphic keys by computing (dk, ek) ← Gen(t,n)(1

κ), where dk = (dk1, . . . , dkn), and (sk, vk) ←
SigGen(n−t,n)(1

κ), where sk = (sk1, . . . , skn), and recording (dk, ek, sk, vk). Upon request from A,
S sends the corresponding keys (dki, ek, ski, vk) for each corrupted party Pi (i ∈ I).

Next, S simulates the operations of all honest parties in the input stage (Protocol 5.1). During
the Distribution of Encrypted Input phase, S sets every ciphertext of an honest party to be an
encryption of zero, that is for every j /∈ I, compute cj ← Encek(0). When the adversary send a
request to F1:M

ZK with sid1j (for j /∈ I) on behalf of a corrupted party, S responds with a confirmation

of the validity of the ciphertext cj , i.e., with (ZK-proof, sid1j , Pj , {P1, . . . , Pn}\{Pj}, (PoPK, ek, cj)).
When a corrupted party Pi (i ∈ I) sends (ZK-prover, sid1i , {P1, . . . , Pn}\{Pi}, (PoPK, ek, ci), (xi, ri))
to F1:M

ZK , S confirms that indeed ci = Encek(xi; ri) and if so records the input xi. S continues
to simulate the honest parties by following the protocol; in all other calls to FZK, S responds
according to the ideal functionality. When the simulation reaches the Select Input Providers phase,
S simulates the interface to FABA to A. When the first honest party completes the simulated input
stage, S learns the set CoreSet.

Note that S learned the input values that were used by the adversary A on behalf of the
corrupted parties that were selected to be input providers. This follows since for every i ∈ I ∩
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CoreSet, there exists an honest party that confirmed the ciphertext ci and sent a signature share
to Pi (except for the negligible probability that A managed to forge a signature). It follows that
the corrupted party must have sent its input to F1:M

ZK during the Distribution of Encrypted Input
phase, and so its input value xi was recorded by S.

Interacting with FfASFE. Once S learns CoreSet, it sends to FfASFE the input value xi that was
recorded for each i ∈ I ∩CoreSet, the input value xi = 0 for each i ∈ I \CoreSet and the set CoreSet
as the set of input providers. Once S receives back the output value y, it starts the simulation of
the computation and threshold-decryption stage.

Simulating the computation and threshold-decryption stage. In order to simulate
the honest parties in this stage (Protocol 5.2), S proceeds as follows. Initially, S computes
the evaluated ciphertext c̃ based on the input ciphertexts of the input providers, i.e., c̃ =
Evalek(Circ(CoreSet), cj1 , . . . , cj|CoreSet|). Next, for every i ∈ I, use the share of the decryption
key dki to compute the decryption share di = DecSharedki(c̃). S then sets the decryption
share dj , for every j /∈ I, such that (d1, . . . , dn) form a secret sharing of the output value
y. When the adversary sends a request to F1:M

ZK with sid4j (for j /∈ I) on behalf of a cor-
rupted party, S responds with a confirmation of the validity of the decryption share dj , i.e., with
(ZK-proof, sid4j , Pj , {P1, . . . , Pn}\{Pj}, (PoCD, ek, c̃, dj)). S continues to simulate the honest parties
by following the protocol; in all other calls to F1:M

ZK , S responds according to the ideal functionality.

Simulating the termination stage. S simulates the honest parties in the termination stage
(Protocol 5.3) by following the protocol;

We now define a series of hybrid games that will be used to prove the indistinguishability of
the real and ideal worlds. The output of each game is the output of the environment.

The game REALπ,A,Z . This is exactly the execution of the protocol π in the real-model with
environment Z and adversary A (and ideal functionalities (FKeyDist,FZK,F1:M

ZK ,FABA)).

The game HYB1
π,A,Z . In this game, we modify the real-model experiment in the computation

stage as follows. Whenever a corrupted party requests output from F1:M
ZK with sid4j (for j /∈ I), the

response from F1:M
ZK is (ZK-proof, sid4j , Pj , {P1, . . . , Pn} \ {Pj}, (PoCD, ek, c̃, dj)), without checking if

Pj sent a valid witness.

Claim 6.2. REALπ,A,Z ≡ HYB1
π,A,Z .

Proof. This follows since in the execution of π, honest parties always send a valid witness to F1:M
ZK ,

and so the response from F1:M
ZK is the same in both games.

The game HYB2
π,A,Z . This game is just like an execution of HYB1 except for the computation of

the decryption shares of honest parties during the computation stage. Let y be the output of f ,
let c̃ be the evaluated ciphertext, let dki (for i ∈ I) be the shares of the decryption key held by
the corrupted parties, and let di = DecSharedki(c̃) be the corresponding decryption shares. Then,
instead of computing the decryption share of the honest parties as dj = DecSharedkj (c̃) (for j /∈ I),
the decryption shares are computed such that (d1, . . . , dn) form a secret sharing of the output value
y.
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Claim 6.3. HYB1
π,A,Z

c≡ HYB2
π,A,Z .

Proof. The ability to compute the decryption shares of the honest parties follows from the properties
of the secret sharing scheme.6 Computational indistinguishability follows from the semantic security
of the TFHE scheme.

The game HYB3
π,A,Z . This game is just like an execution of HYB2 except for the following differ-

ence. Whenever a corrupted party requests output from F1:M
ZK with sid1j (for j /∈ I), the response

from F1:M
ZK is (ZK-proof, sid1j , Pj , {P1, . . . , Pn} \ {Pj}, (PoPK, ek, cj)), without checking if Pj sent a

valid witness.

Claim 6.4. HYB2
π,A,Z ≡ HYB3

π,A,Z .

Proof. This follows since in the execution of π, honest parties always send a valid witness to F1:M
ZK ,

and so the response from F1:M
ZK is the same in both games.

The game HYB
4,`
π,A,Z . This game is just like an execution of HYB3 with the following difference.

In the input stage, in case i ≤ ` honest party Pi encrypts its actual input ci ← Encek(xi), whereas
in case i > ` Pi encrypts zeros ci ← Encek(0). (Note that HYB4,n is exactly HYB3.)

Claim 6.5. For every ` ∈ {0, . . . , n− 1}, HYB
4,`
π,A,Z

c≡ HYB
4,`+1
π,A,Z .

Proof. This follows from the semantic security of the encryption scheme.

Claim 6.6. HYB
4,0
π,A,Z ≡ IDEALf,S,Z .

Proof. This follows since the joint behaviour of ideal functionalities (FKeyDist,FZK,FABA), the mod-
ified behaviour of the ideal functionality F1:M

ZK and the behaviour of the honest parties in HYB4,0 is
identical to the simulation done by S.

Combining Claims 7-11, we conclude that REALπ,A,Z
c≡ IDEALf,S,Z .

7 Conclusions

By Lemma 4.1, F1:M
ZK can be realized in the FZK-hybrid model (assuming the existence of TSIG

and an honest majority). Assuming the existence of enhanced trapdoor permutations, FZK can be
UC realized in the FCRS-hybrid model non-interactively (meaning that the prover sends a single
message to the verifier) [21]. Using universal composition with joint state [16], a multi-session
version of FZK that requires a single copy of the CRS can be used. We thus obtain the following
theorem from Lemma 6.1:

Theorem 7.1 (formal statement of Theorem 1.1). Let f be an n-party function and assume that

enhanced trapdoor permutations, TFHE schemes and TSIG schemes exist. Then FfASFE can be
UC realized in the (FCRS,FKeyDist,FABA)-hybrid model, in constant time, in the presence of static
malicious adversaries corrupting at most t parties, for t < n/2.

6In the scheme of Shamir [39], fix the points corresponding to the shares di (for i ∈ I) and the secret y, create a
degree t polynomial interpolating these points, and compute the shares dj (for j /∈ I) accordingly.
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During the input stage (Protocol 5.1) the functionality FABA is concurrently invoked n times.
If FABA is instantiated using a constant expected round protocol, e.g., the protocol of Canetti and
Rabin [15], the time complexity of the concurrent composition will result with expectancy of log(n).
Ben-Or and El-Yaniv [7] constructed a concurrent ABA protocol that runs in constant expected
time, assuming that t < n/3.7 We therefore conclude with the following corollary.

Corollary 7.2 (formal statement of Corollary 1.2). Let f be an n-party function and assume that

enhanced trapdoor permutations, TFHE schemes and TSIG schemes exist. Then FfASFE can be UC
realized in the (FCRS,FKeyDist)-hybrid model, in constant expected time, in the presence of static
malicious adversaries corrupting at most t parties, for t < n/3.
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