
Twisted Polynomials and Forgery Attacks on
GCM

Mohamed Ahmed Abdelraheem, Peter Beelen, Andrey Bogdanov, and
Elmar Tischhauser ?

Department of Mathematics and Computer Science
Technical University of Denmark
{mohab,pabe,anbog,ewti}@dtu.dk

Abstract. Polynomial hashing as an instantiation of universal hashing
is a widely employed method for the construction of MACs and authenti-
cated encryption (AE) schemes, the ubiquitous GCM being a prominent
example. It is also used in recent AE proposals within the CAESAR com-
petition which aim at providing nonce misuse resistance, such as POET.
The algebraic structure of polynomial hashing has given rise to security
concerns: At CRYPTO 2008, Handschuh and Preneel describe key recov-
ery attacks, and at FSE 2013, Procter and Cid provide a comprehensive
framework for forgery attacks. Both approaches rely heavily on the abil-
ity to construct forgery polynomials having disjoint sets of roots, with
many roots (“weak keys”) each. Constructing such polynomials beyond
näıve approaches is crucial for these attacks, but still an open problem.
In this paper, we comprehensively address this issue. We propose to
use twisted polynomials from Ore rings as forgery polynomials. We show
how to construct sparse forgery polynomials with full control over the
sets of roots. We also achieve complete and explicit disjoint coverage of
the key space by these polynomials. We furthermore leverage this new
construction in an improved key recovery algorithm.
As cryptanalytic applications of our twisted polynomials, we develop the
first universal forgery attacks on GCM in the weak-key model that do
not require nonce reuse. Moreover, we present universal weak-key forgery
attacks for the recently proposed nonce-misuse resistant AE schemes
POET, Julius, and COBRA.

Keywords: Authenticated encryption, polynomial hashing,
twisted polynomial ring (Ore ring), weak keys, GCM, POET,
Julius, COBRA

1 Introduction

Authenticated encryption (AE) schemes are symmetric cryptographic
primitives combining the security goals of confidentiality and integrity.

? ©IACR 2015. This article is the full version of the paper that appeared at the
proceedings of Eurocrypt 2015 published by Springer-Verlag and available at http:
//link.springer.com/chapter/10.1007%2F978-3-662-46800-5_29.

http://link.springer.com/chapter/10.1007%2F978-3-662-46800-5_29
http://link.springer.com/chapter/10.1007%2F978-3-662-46800-5_29

Providing both ciphertext and an authentication tag on input of a plain-
text message, they allow two parties sharing a secret key to exchange
messages in privacy and with the assurance that they have not been tam-
pered with.

Approaches to construct AE schemes range from generic composition
of a symmetric block or stream cipher for confidentiality and a message
authentication code (MAC) for integrity to dedicated designs. An impor-
tant method for constructing both stand-alone MACs and the authenti-
cation tag generation part of dedicated AE algorithms is based on univer-
sal hash functions, typically following the Carter-Wegman paradigm [22].
This construction enjoys information-theoretic security and is usually in-
stantiated by polynomial hashing, that is, the evaluation of a polynomial
in H (the authentication key) over a finite field with the message blocks
as coefficients.

One of the most widely adopted AE schemes is the Galois Counter
Mode (GCM) [6], which has been integrated into important protocols
such as TLS, SSH and IPsec; and furthermore has been standardized by
among others NIST and ISO/IEC. It combines a 128-bit block cipher in
CTR mode of operation for encryption with a polynomial hash in F128

2

over the ciphertexts to generate an authentication tag. The security of
GCM relies crucially on the uniqueness of its nonce parameter [7,10,11].

As a field, authenticated encryption has recently become a major focus
of the cryptographic community due to the ongoing CAESAR competi-
tion for a portfolio of recommended AE algorithms [1]. A large number of
diverse designs has been submitted to this competition, and a number of
the submissions feature polynomial hashing as part of their authentica-
tion functionality. Among these, the new AE schemes POET [2], Julius [5]
and COBRA [4] feature stronger security claims about preserving con-
fidentiality and/or integrity under nonce reuse (so-called nonce misuse
resistance [13]).

Background. The usual method to build a MAC or the authentica-
tion component of an AE scheme from universal hash functions is to
use polynomial hashing, in other words, to evaluate a polynomial in the
authentication key with the message or ciphertext blocks as coefficients:

Definition 1 (Polynomial-based Authentication Scheme). A poly-
nomial hash-based authentication scheme processes an input consisting of
a key H and plaintext/ciphertext M = (M1||M2|| · · · ||Ml), where each

2

Mi ∈ Fn2 , by evaluating the polynomial

hH(M) :=
l∑

i=1

MiH
i ∈ Fn2 .

To produce an authentication tag, the value hH(M) is often processed
further, for example by encryption, or additive combination with another
pseudorandom function. For a survey of existing constructions, we refer
the reader to [10]. Out of these schemes, GCM [6, 14] is by far the most
important and widespread algorithm. We therefore recapitulate existing
security results about polynomial hashing at the example of GCM.

The Galois Counter Mode. GCM is defined as follows. It takes as input
the plaintext M = M1||M2|| · · · ||Ml, a key k and a nonce N . It outputs
corresponding ciphertext C = C1||C2|| · · · ||Cl and an authentication tag
T . The ciphertext blocks are generated using a block cipher Ek (usually
AES) in counter mode: Ci = Ek(Ji) ⊕ Mi, with J0 an initial counter
value derived from N , and the J1, J2, . . . successive increments of J0. The
ciphertexts are then processed with polynomial hashing to generate the
tag

T = Ek(J0)⊕ hH(C)

with H = Ek(0) as the authentication (hash) key. GCM is typically in-
stantiated with a 128-bit block cipher, uses 128-bit keys and 96-bit nonces
and produces 128-bit tags.

Joux’ “forbidden” attack. Soon after the proposal of GCM, Joux [11]
pointed out that the security of GCM breaks down completely if nonces
are re-used with the same key. Since GCM is built upon the assumption
of nonce uniqueness, his attack is referred to as the “forbidden” attack
against GCM. It recovers the hashing key H using pairs of different mes-
sages M and M ′ that are authenticated using the same nonce N . This
leads to the following equation in one unknown H:

T ⊕ T ′ = hH(C)⊕ EK(N)⊕ hH(C ′)⊕ EK(N) = hH(C ⊕ C ′),

where C/C ′ and T/T ′ are the ciphertext/tag of M/M ′. This is equivalent
to saying that the polynomial T ⊕ T ′ ⊕ hH(C ⊕ C ′) has a root at H.
By using multiple message pairs and computing the GCD of the arising
polynomials, H can be uniquely identified. This attack does not apply to
the nonce-respecting adversarial model.

3

Ferguson’s forgery and key recovery attacks. Ferguson [7] makes use of
so-called error polynomials

l∑
i=1

EiH
i =

l∑
i=1

(Ci − C ′i)H i,

with the Ci the original and the C ′i the modified ciphertext blocks. Since
GCM operates in a field or characteristic two, squaring is a linear oper-
ation, and this allows Ferguson to consider linearized error polynomials,
i.e. where only the coefficients of H2i are nonzero. Due to this linear be-
havior, Ferguson shows that an attacker can force some bits in Ei to zero.
This increases the forgery probability to more than 2−s where s is the
length of the authentication tag. Every successful forgery leads to linear
equations on the bits of H and thus reveals information about H. This
would eventually lead to recovering all the bits of H with complexity
dominated by the first successful forgery which requires approximately
2s−l forgery attempts [12]. In case of a short tag length (e.g. s ≤ 32-bit)
such an attack will be very practical. For more details about Ferguson
attacks, we refer the reader to [7, 12].

Handschuh and Preneel’s Key Recovery Attacks. Handschuh and Pre-
neel [10] propose various methods for recovering the hash key of poly-
nomial hashing-based MACs, among them GCM. The main idea is to
obtain a valid ciphertext-tag pair C, T and then to attempt verification
with a different message C ′ but the same tag; here C ′ is chosen such that
C − C ′ has many distinct roots. If verification is not successful, another
C ′′ is used which is chosen such that C−C ′′ has no roots in common with
C − C ′, and so on. Once a verification succeeds, this indicates that the
authentication key is among the roots of this polynomial. Further queries
can then be made to subsequently reduce the search space until the key
is identified. When using polynomials of degree d in each step, the total
number of verification queries needed is 2n/d. Knowing the authentication
key then allows the adversary to produce forgeries for any given combina-
tion of nonce and corresponding ciphertext blocks. The attack of [10] does
not require nonce reuse, however is limited to ciphertexts as it does not
allow the adversary to create universal forgeries for any desired plaintext
message.

Handschuh and Preneel further identify the key H = 0 as a trivially
weak key for GCM-like authentication schemes. They further provide a
formalization of the concept of weak keys, namely a class D of keys is

4

called weak if membership in this class requires less than |D| key tests
and verification queries.

Saarinen’s Cycling Weak Key Forgery Attacks. This concept of weak keys
for polynomial authentication was taken a step further by Saarinen in [21],
where a forgery attack for GCM is described for the case where the order
of the hash key H in F×

2128
is small. If the hash key belongs to a cyclic

subgroup of order t, i.e. Ht+1 = H, then the attacker can create a blind
forgery by simply swapping any two ciphertext blocks Ci and Ci+jt. Such
hash keys with short cycles (small value of t) can be labelled as weak keys.
In other words, Saarinen identifies all elements with less than maximal
order in F×

2128
as weak keys. Since constructing a corresponding forgery

requires a message length of at least 2t blocks, and GCM limits the mes-
sage to 232 blocks, this means that all keys with order less than 232 are
weak keys for GCM. We finally note that cycling attacks depend on the
factorisation of 2n − 1, since any subgroup order is a divisor of the order
of F×

2128
.

Procter and Cid’s General Weak-Key Forgery Framework. The idea be-
hind cycling attacks was extended and formalized by Procter and Cid [16]
by introducing the notion of so-called forgery polynomials: Let H be the
(unknown) hash key. A polynomial q(X) =

∑l
i=1 qiX

i is then called a
forgery polynomial if it has H as a root, i.e. q(H) = 0. This designa-
tion is explained by noting that for C = (C1||C2|| · · · ||Cl) and writing
Q = q1|| · · · ||ql, we have

hH(C) = hH(C +Q),

that is, adding the coefficients of q yields the same authentication tag,
i.e. a forgery.1 More concretely, for GCM, we have that (N,C+Q,T) is a
forgery for (N,C, T) whenever q(H) = 0. This also means that all roots
of q can be considered weak keys in the sense of [10]. In order to obtain
forgeries with high probability, Procter and Cid note that a concrete
choice for q should have a high degree and preferably no repeated roots.

Since any choice of q is a forgery polynomial for its roots as the key,
Procter and Cid establish the interesting fact that any set of keys in
polynomial hashing can be considered weak: membership to a weak key
class D can namely be tested by one or two verification queries using

1 Note that forgery polynomials are conceptually different from Ferguson’s error poly-
nomials, since the authentication key H typically is not a root of an error polynomial,
while this is the defining property for forgery polynomials.

5

the forgery polynomial q(X) =
∏
d∈D(X − d) regardless of the size of

D. They also note that such a forgery polynomial can be combined
with the key recovery technique of [10], namely by using the polynomial
q(X) =

∏
H∈Fn

2 ,Hn=0(X−H) and then subsequently fixing more bits of H
according to the results of the verification queries. This only requires two
queries for a first forgery, and at most n + 1 for complete key recvoery.
Note however that this requires messages lengths up to 2n blocks, which
is clearly infeasible for GCM (where n = 128).

We also note that all previously described attacks can be seen as
special cases of Procter and Cid’s general forgery framework [16,17].

Our problem. We start by noting that besides the attacks of Joux and
Ferguson, which apply to the special cases where the nonce is reused or
tags are truncated, only Saarinen’s cycling attack gives a concrete secu-
rity result on GCM and similar authentication schemes. In the formalism
of [16], it uses the forgery polynomials Xt−X with t < 232 the subgroup
order. To the best of our knowledge, no other explicit forgery polynomials
have been devised. In [16], two generic classes of forgery polynomials are
discussed: random polynomials of degree d in F2n [X] or näıve multiplica-
tion of linear factors (x−H1)·· · ··(x−Hd). The latter construction requires
d multiplications already for the construction of the forgery polynomial,
which quickly becomes impractical. We also note that in both cases, the
coefficients will be “dense”, i.e. almost all of them will be nonzero. This
means that all of the ciphertext blocks have to be modified by the adver-
sary to submit each verification query. In the same sense, the observation
of [16] that any key is weak is essentially a certificational result only
since |D| multiplications are needed to produce q for a weak key class
of size |D|. The construction of explicit forgery polynomials is left as an
important open problem in [16].

Similarly, the key recovery technique of [10] does not deal with the im-
portant question of how to construct new polynomials of degree d having
distinct roots from all previously chosen ones, especially without the need
to store all d roots from each of the 2n/d iterations. These observations
lead to the following questions:

Can we efficiently construct explicit forgery polynomials having
prescribed sets of roots, ideally having few nonzero coefficients?
Moreover, can we disjointly cover the entire key space using these
explicit forgery polynomials?

Answers to these questions would essentially solve the open problem men-
tioned in [16], and also make the observation concrete that any key in

6

polynomial hashing can be considered weak. It would also improve the
key recovery algorithm of Handschuh and Preneel [10]. On the applica-
tion side, we ask whether plaintext-universal forgeries for GCM can be
constructed in the nonce-respecting adversarial model.

Our results. In this paper, we answer the above-mentioned questions
in the affirmative. We comprehensively address the issue of polynomial
construction and selection in forgery and key recovery attacks on au-
thentication and AE schemes based on polynomial hashing. In detail, the
contributions of this paper are as follows.

Explicit construction of sparse forgery polynomials. In contrast to the
existing generic methods to construct forgery polynomials, we propose
a construction based on so-called twisted polynomial rings that allows
us to explicitly describe polynomials of degree 2d in any finite field Fn2
which have as roots precisely the elements of an arbitrary d-dimensional
subspace of Fn2 , independent of n or the factorisation of 2n − 1. While
achieving this, our polynomials are very sparse, having at most d + 1
nonzero coefficients.

Complete disjoint coverage of the key space by forgery polynomials. In or-
der to recover the authentication key (as opposed to blind forgeries), the
attacks of Handschuh and Preneel [10] and Procter and Cid [16] need to
construct polynomials having a certain set of roots, being disjoint from
the roots of all previous polynomials. We propose an explicit algebraic
construction achieving the partitioning of the whole key space Fn2 into
roots of structured and sparse polynomials. This substantiates the certi-
ficational observation of [16] that any key is weak, in a concrete way. We
give an informal overview of our construction of twisted forgery polyno-
mials in the following proposition.

Proposition (informal). Let q = re and let V be a subspace of Fq of
over the field Fr of dimension d. Then there exists a twisted polynomial
φ from the Ore ring Fq{τ} with the following properties:

1. φ can be written as φ(X) = c0 +
∑d

i=1 ciX
2i, i.e. φ has at most d+ 1

nonzero coefficients;

2. For any a ∈ Fq, the polynomial φ(X)− φ(a) has exactly a+ V as set
of roots;

3. The sets of roots of the polynomials φ(X)− b with b ∈ Imφ partition
Fq.

7

Improved key recovery algorithm. We then leverage the construction of
sparse forgery polynomials from the twisted polynomial ring to propose an
improved key recovery algorithm, which exploits the particular structure
of the root spaces of our forgery polynomials. In contrast to the key
recovery techniques of [10] or [16], it only requires the modification of a
logarithmic number of message blocks in each iteration (i.e., d blocks for
a 2d-block message). It also allows arbitrary trade-offs between message
lengths and number of queries.

New universal forgery attacks on GCM. Turning to applications, we de-
velop the first universal forgery attacks on GCM in the weak-key model
that do not require nonce reuse. We first use tailored twisted forgery poly-
nomials to recover the authentication key. Depending on the length of the
nonce, we then either use a sliding technique on the counter encryptions
or exploit an interaction between the processing of different nonce lengths
to obtain valid ciphertext-tag pairs for any given combination of nonce
and plaintext.

Analysis of POET, Julius, and COBRA. Using our framework, we finally
present further universal forgery attacks in the weak-key model also for
the recently proposed nonce-misuse resistant AE schemes POET, Julius,
and COBRA.

Our results on POET prompted the designers to formally withdraw
the variant with finite field multiplications as universal hashing from the
CAESAR competition. Previously, an error in an earlier specification of
POET had been exploited for constant-time blind forgeries [9]. This at-
tack however does not apply to the corrected specification of POET.
Likewise, for COBRA, a previous efficient attack by Nandi [15] does not
yield universal forgeries.

Organization. The remainder of the paper is organized as follows. We
introduce some common notation in Sect. 2. In Sect. 3, we describe our
method to construct explicit and sparse forgery polynomials. Sect. 4 pro-
poses two approaches to construct a set of explicit forgery polynomials
whose roots partition the whole finite field F128

2 . In Sect. 5, we describe
our improved key recovery algorithm. In Sect. 6, two universal weak-key
forgery attacks against GCM are presented. In Sect. 7, we present several
universal forgery attacks on POET under the weak-key assumption. For
the attacks on Julius and COBRA, we refer to Appendix B and Appendix
C respectively. We conclude in Sect. 8.

8

2 Preliminaries

Throughout the paper, we denote by Fpn the finite field of order pn and
characteristic p, and write Fnp for the corresponding n-dimensional vector
space over Fp. We use + and ⊕ interchangeably to denote addition in F2n

and Fn2 .

Forgery polynomials. We formally define forgery polynomials [16] as poly-
nomials q(X) =

∑r
i=1 qiX

i with the property that that q(H) = 0 for the
authentication key H. Assume that M = (M1||M2|| · · · ||Ml) and that
l ≤ r. Then

hH(M) =

r∑
i=1

MiH
i =

l∑
i=1

MiH
i+

r∑
i=1

qiH
i =

r∑
i=1

(Mi+qi)H
i = hH(M+Q)

where Q = q1|| · · · ||qr. If l < r, we simply pad M with zeros. Throughout
the paper, we will refer to Q as the binary coefficient string of a forgery
polynomial q(X).

Using q as a forgery polynomial in a blind forgery gives a success prob-
ability p = #roots of q(X)

2n . Therefore, in order to have a forgery using the
polynomial q(X) with high probability, q(X) should have a high degree
and preferably no repeated roots.

In the next section, we will present methods to construct explicit
sparse forgery polynomials q(X) with distinct roots and high forgery
probability.

3 Explicit construction of twisted forgery polynomials

When applying either the key recovery attack of [10] or any of the forgery
or key recovery attacks of [16], a crucial issue lies in the selection of
polynomials that have a certain number ` of roots in Fn2 , and additionally
being able to select each polynomial to have no common roots with the
previous ones. Ideally, these polynomials should both be described by
explicit constructive formulas, and they should be sparse, i.e. have few
nonzero coefficients.

As noted in [16], the direct way to do this is to choose distinct elements
α1, . . . , α` ∈ F2n and to work out the product (X−α1) · · · (X−α`), which
quickly gets impractical for typical values of ` and will not result in sparse
polynomials. The second suggestion described in [16] is to select them at
random, which is efficient, but also does not produce sparse polynomials.
Moreover, as noted in [17], subsequently chosen random polynomials will

9

likely have common roots, which rules out the key recovery attacks of
both [10] and [17].

The only proposed explicit construction of forgery polynomials so far
are the polynomials Xt − 1 with t|(2128 − 1), due to Saarinen [21]. Their
roots correspond precisely to the cyclic subgroups of F128

2 , which also
limits their usefulness in the key recovery attacks.

In this section, we propose a new method which yields explicit con-
structions for polynomials with the desired number of roots. At the same
time, the resulting polynomials are sparse in the sense that a polynomial
with 2d roots will have at most d+ 1 nonzero coefficients.

For this, we use the fact that F2128 can be seen as a vector space (of
dimension 128) over F2. More precisely, given a subvector space V of F2128

of dimension d with basis {b1, . . . , bd}, we describe a fast procedure to find
a polynomial pV (X) ∈ F2128 [X] whose roots are exactly all elements of
V . Note that this implies that degPV (X) = 2d. We will also see that the
pV (X) is sparse, more precisely that the only coefficients of pV (X) that
may be distinct from zero are the coefficients of the monomials X2i with
0 ≤ i ≤ d. In particular this will imply that pV (X) has at most d + 1
non-zero coefficients despite the fact that it has degree 2d.

To explain the above, we introduce the concept of a twisted polynomial
ring, also called an Ore ring.

Definition 2. Let Fq be a field of characteristic p. The twisted polyno-
mial or Ore ring Fq{τ} is defined as the set of polynomials in the in-
determinate τ having coefficients in Fq with the usual addition, but with
multiplication defined by the relation τα = αpτ for all α ∈ Fq.

The precise ring we will need is the ring F2128{τ}. In other words, two
polynomials in τ can be multiplied as usual, but when multiplying the
indeterminate with a constant, the given relation applies. This makes the
ring a non-commutative ring (see [8] for an overview of some of its prop-
erties). One of the reasons to study this ring is that it gives a convenient
way to study linear maps from F2128 to itself, when viewed as a vector
space over F2. A constant α ∈ F2128{τ} then corresponds to the linear map
sending x ∈ F2128 to α · x, while the indeterminate τ corresponds to the
linear map sending x ∈ F2128 to x2. Addition in the Ore ring corresponds
to the usual addition of linear maps, while multiplication corresponds to
composition of linear maps. This explains the relation τ ·α = α2 · τ , since
both expressions on the left and right of the equality sign correspond to
the linear map sending x to α2x2. To any element φ from the Ore ring, we
can associate a polynomial φ(X), by replacing τ i with X2i . The resulting

10

polynomials have possibly non-zero coefficients from F2128 only for those
monomials Xe, such that e is a power of 2. Such polynomials are called
linearized and are just yet another way to describe linear maps from F2128

to itself. The advantage of this description is that the null space of a lin-
ear map represented by a linearized polynomial p(X) just consists of the
roots of p(X) in F2128 .

Now we describe how to find a polynomial pV (X) having precisely
the elements of a subspace V of F2128 as roots. The idea is to construct a
linear map from F2128 to itself having V as null space recursively. We will
assume that we are given a basis {β1, . . . , βd} of V . For convenience we
define Vi to be the subspace generated by {β1, . . . , βi}. Note that V0 = ∅
and Vd = V . Then we proceed recursively for 0 ≤ i ≤ d by constructing
a linear map φi (expressed as an element of the Ore ring) with null space
equal to Vi. For i = 0 we define φ0 := 1, while for i > 0 we define
φi := (τ + φi−1(βi))φi−1. For d = 2, we obtain for example

φ0 = 1, φ1 = τ + β1

and

φ2 = (τ + (β22 + β1β2))(τ + β1) = τ2 + (β22 + β1β2 + β21)τ + β1β
2
2 + β21β2.

The null spaces of these linear maps are the roots of the polynomials

X, X2 + β1X

and
X4 + (β22 + β1β2 + β21)X2 + (β1β

2
2 + β21β2)X.

It is easy to see directly that the null spaces of φ0, φ1, φ2 have respective
bases ∅, {β1} and {β1, β2}. More general, a basis for the null space of φi
is given by {β1, . . . , βi}: indeed, since φi := (τ + φi−1(βi))φi−1, it is clear
that the null space of φi−1 is contained in that of φi. Moreover, evaluating
φi in βi, we find that

φi(βi) = (τ + φi−1(βi))(φi−1(βi)) = φi−1(βi)
2 + φi−1(βi)φi−1(βi) = 0.

This means that the null space of φi at least contains Vi (and therefore
at least 2i elements). On the other hand, the null space of φi can be
expressed as the set of roots of the linearized polynomial φi(X), which
is a polynomial of degree 2i. Therefore the null space of φi equals Vi.
For i = d, we obtain that the null space of φd is V . In other words: the
desired polynomial pV (X) is just the linearized polynomial φd(X). The

11

above claim about the sparseness of pV (X) now also follows. It is not
hard to convert the above recursive description to compute pV (X) into
an algorithm (see Alg. 5.1). In a step of the recursion, the multiplication
(τ + φi−1(βi))φi−1 needs to be carried out in the Ore ring. Since the left
term has degree one in τ , this is easy to do. To compute the coefficients
in φi of all powers of τ one needs the commutation relation τα = α2τ for
α ∈ F2128 . Computing a coefficient of a power of τ in a step of the recur-
sion, therefore takes one multiplication, one squaring and one addition.
The computation of φd can therefore be carried out without further opti-
mization in quadratic complexity in d. A straightforward implementation
can therefore be used to compute examples. Two examples are given in
Appendix A with d = 31 and d = 61 needed for attacking GCM and
POET.

Note that the above theory can easily be generalized to the setting of a
finite field Fre and Fr-subspaces V over the field Fre . In the corresponding
Ore ring Fre{τ} the commutation relation is τα = αrτ . Similarly as above,
for any subspace of a given dimension d one can find a polynomial pV (X)
of degree rd having as set of roots precisely the elements of V . It may
have non-zero coefficients only for monomials of the form Xri . In the
program given in Appendix A, r and e can be chosen freely. See [8] for
a more detailed overview of properties of linearized polynomials and the
associated Ore ring.

4 Disjoint coverage of the key space with roots of
structured polynomials

The purpose of this section is to describe how one can cover the elements
of a finite field Fq by sets of roots of families of explicitly given polynomi-
als. We will focus our attention to the case that q = 2128, but the given
constructions can directly be generalized to other values of q = re. We
denote by γ a primitive element of Fq. Two approaches will be described.
The first one exploits the multiplicative structure of Fq\{0}, while the
second one exploits the additive structure of Fq seen as a vector space
over F2. We will in fact describe a way to partition the elements of Fq as
sets of roots of explicit polynomials, that is to say that two sets of roots
of distinct polynomials will have no elements in common. In both cases
the algebraic fact that will be used is the following: Let G be a group
with group operation ∗ and let H ⊂ G be a subgroup. Then two cosets
g ∗H and f ∗H are either identical or disjoint. Moreover the set of cosets
gives rise to a partition of G into disjoint subsets.

12

4.1 Using the multiplicative structure

We first consider the group G = Fq\{0} with group operation ∗ the
multiplication in Fq. For any factorization q−1 = n·m we find a subgroup
Hm := {γnj | 0 ≤ j ≤ m− 1} consisting of m elements. This gives rise to
the following proposition:

Proposition 1. Let γ be a primitive element of the field Fq and suppose
that q−1 = n ·m for positive integers n and m. For i between 0 and n−1
define

Ai := {γi+nj | 0 ≤ j ≤ m− 1}.
Then the sets A0, . . . , An−1 partition Fq\{0}. Moreover, the set Ai con-
sists exactly of the roots of the polynomial Xm − γim.

Proof. As mentioned we work in the multiplicative group Fq\{0} and let
Hm be the subgroup of G of order m. Note that A0 = Hm and that Hm

is the kernel of the group homomorphism φ : G → G sending x to xm.
In particular, Hm is precisely the set of roots of the polynomial Xm − 1.
Any element from the coset gHm is sent by φ to gm. This means that
gHm is precisely the set of roots of the polynomial Xm − gm. Note that
gm = γim for some i between 0 and n − 1, so that the set of roots of
Xm − gm equals γiHm = Ai for some i between 0 and n − 1. Varying i
we obtain all cosets of Hm, so the result follows.

If q = re for some prime power r, one can choose n = r − 1 and
m = re−1 + · · · + r + 1. For any element α ∈ Fq we then have αm ∈ Fr,
since αm is just the so-called Fq/Fr-norm of α. Therefore the family of
polynomials in the above lemma in this case take the particularly simple
form xm − a, with a ∈ Fr\{0}. In case q = 2128, Proposition 1 gives
rise to a family of polynomials whose roots partition F2128\{0}. For more
details about the explicit form of these polynomials, we refer the reader
to Appendix F.

4.2 Using the additive structure

Now we use a completely different approach to partition the elements
from Fq in disjoint sets where we exploit the additive structure. Suppose
again that q = re, then we can view Fq as a vector space over Fr. Now let
V ⊂ Fq be any linear subspace (still over the field Fr). If V has dimension
d, then the number of elements in V equals rd. For any a ∈ Fq, we define
a+ V , the translate of V by a, as

a+ V := {a+ v | v ∈ V }.

13

Of course a+ V can also be seen as a coset of the subgroup V ⊂ Fq with
addition as group operation. Any translate a + V has rd elements and
moreover, it holds that two translates a+V and b+V are either disjoint
or the same. This means that one can choose n := re/rd = re−d values of
a, say a1, . . . , an such that the sets a1 + V, . . . , an + V partition Fq.

The next task is to describe for a given subspace V of dimension d,
the n := rd−e polynomials with a1 + V, . . . , an + V as sets of roots. As
a first step, we can just as before, construct an Fr-linear map φ from Fq
to itself, that can be described using a linearized polynomial of the form
pV (X) = Xrd + cd−1X

rd−1
+ · · · + c1X

r + c0X. The linear map φ then
simply sends x to pV (x) and has as image

W := {pV (x) | x ∈ Fq}.

A coset a + V of V is then sent to the element pV (a) by φ. This means
that any coset of V can be described as the set of roots of the polynomial
pV (X) − pV (a), that is to say of the form pV (X) − b with b ∈ W (the
image of the map φ). Combining this, we obtain that we can partition
the elements of Fq as sets of roots of polynomials of the form pV (X)− b
with b ∈W . Note that these polynomials still are very structured: just a
constant term is added to the already very sparse polynomial pV (X). Note
that pV (X)−pV (a) = pV (X−a), since pV (X) is a linearized polynomial.
This makes it easy to confirm that indeed the set of roots of a polynomial
of the form pV (X)−pV (a) is just the coset a+V . The number of elements
in W is easily calculated: since it is the image of the linear map φ and the
dimension of the null space of φ is d (the dimension of V), the dimension
of its image is e − d. This implies that W contains re−d elements. We
collect some of this in the following proposition:

Proposition 2. Let q = re and let V be a linear subspace of Fq of over
the field Fr of dimension d. Moreover denote by pV (x) be the linearized
polynomial associated to V and define W := {pV (x) | x ∈ Fq}.

Then for any a ∈ Fq, the polynomial pV (x)−pV (a) has as sets of roots
exactly a + V . Moreover, the sets of roots of the polynomials pV (x) − b
with b ∈W partition Fq.

A possible description of a basis of W can be obtained in a fairly
straightforward way. If {β1, . . . , βd} is a basis of V , one can extend this
to a basis of Fq, say by adding the elements βd+1, . . . , βe. Then a basis
of the image W of φ is simply given by the set {pV (βd+1), . . . , pV (βe)}
(note that φ(βi) = pV (βi) = 0 for 1 ≤ i ≤ d). This means that the re−d

14

polynomials whose roots partition Fq are given by

pV (X) +

e∑
i=d+1

aipV (βi), with ai ∈ Fr.

The set of roots of a polynomial of this form is given by
∑e

i=d+1 aiβi+V .
In the appendix, we give examples for re = 2128 and d = 31 or d = 61.

5 Improved key recovery algorithm

Suppose that we have observed a polynomial hash collision for some
forgery polynomial pV (X) of degree d, i.e. some observed message M
and M + pV have the same image under hH with the unknown authenti-
cation key H. This means that H must be among the roots of pV (X), and
we can submit further verification queries using specially chosen forgery
polynomials to recover the key.

5.1 An explicit key recovery algorithm using twisted
polynomials

Being constructed in a twisted polynomial ring, our polynomials pV (X)
are linearized polynomials, so that all roots are contained in a d-
dimensional linear space V ⊂ Fn2 . This enables an explicit and particularly
efficient key recovery algorithm which recovers the key H by writing it
as H =

∑d
i=1 biβi with respect to (w.r.t.) a basis B = {β1, . . . , βd} for

V over F2 and determining its d binary coordinates w.r.t. B one by one.
Shortening the basis by the last element, we can test if bd = 0 by using
the forgery polynomial corresponding to V ′ = span{β1, . . . , βd−1}. If this
query was not successful, we deduce bd = 1. We then proceed recursively
for the next bit.

Unless all bi = 0, the search space will be restricted to an affine instead
of a linear subspace at some point. It is easy to see, however, that the
corresponding polynomial for A = V + a with V a linear subspace, can
always be determined as pA(X) = pV (X − a) = pV (X)− pV (a) since the
pV (X) are linearized polynomials.

The complexity of Algorithm 5.2 for a polynomial of degree d (corre-
sponding to |V | = 2d) is given by d verification queries and one invocation
of the polynomial construction algorithm 5.1, which in turn takes O(d2)
finite field operations. Note that typically, d < 64. The total length of
all verification queries is limited by 2d+1 blocks. Since the polynomials

15

Algorithm 5.1 Construction of
twisted polynomials

Input: basis B = {β1, . . . , βd} of V ⊂
Fn
2

Output: polynomials pV (i)(X) having
span{β1, . . . , βi} as set of roots

1: Set a1 ← 1
2: Set ai ← 0 for 2 ≤ i ≤ d+ 1
3: for i = 1 to d do
4: v ←

∑d
k=1 akβ

2k

i

5: c1 ← v · a1
6: for j = 2 to d+ 1 do
7: cj ← a2j−1 + v · aj
8: end for
9: pV (i) ←

∑d+1
k=1 ckX

2k−1

10: end for
11: return polynomials

pV (1)(X), . . . , pV (d)(X)

Algorithm 5.2 Key recovery using
twisted polynomials
Input: message M , polynomial pV (X)

s.t. hH(M) = hH(M + PV),basis
B = {β1, . . . , βd} of d-dimensional
linear subspace V ⊂ Fn

2 .
Output: authentication key H.
1: bi ← 0, 1 ≤ i ≤ d
2: Call Alg. 5.1 on V , obtain
pV (1) , . . . , pV (d)

3: for i = d downto 1 do
4: Denote U (i) = span{β1, . . . , βi−1},

so that pU(i) = pV (i−1)

5: α← pU(i)(
∑d

j=i bjβj)
6: if hH(M) = hH(M + PU(i) + α)

then
7: bi ← 0
8: else
9: bi ← 1

10: end if
11: end for
12: return key H =

∑d
i=1 biβi

pU(i)(X) have at most d + 1 nonzero coefficients, they are very sparse
and only very few additions to M are required to compute the message
M + PU(i) for the forgery attempt.

We emphasize that this algorithm can be readily generalized to deal
with input polynomials pA(X) having affine root spaces A = V + a by
operating with the corresponding linear space V and adding pV (i)(a) to
all verification queries. This especially allows to combine this algorithm
with the key space covering strategy of Sect. 4.2.

In the context of authenticated encryption, M will typically corre-
spond to ciphertexts instead of plaintexts, so also in this case, only calls
to the verification oracle are required. It is also straightforward to adapt
Algorithm 5.2 to cases where a polynomial hash collision cannot directly
be observed, but instead propagates into some other property visible from
ciphertext and tag. This is for example used in our attacks on the COBRA
authenticated encryption scheme (see Appendix C).

16

5.2 Comparison to previous work

The idea of using a binary search-type algorithm to recover authentica-
tion keys has previously been applied to various universal hashing-based
MAC constructions by Handschuh and Preneel [10]. Their attack algo-
rithm however does not deal with the (important) questions of determin-
ing new polynomials having distinct roots from all previously used ones,
and also requires the calculation and storage of the 2d roots during the
key search phase. Also, the required polynomials will not be sparse and re-
quire up to 2d nonzero coefficients. By contrast, our algorithm leverages
the twisted polynomial ring to explicitly construct sparse polynomials
with exactly the necessary roots for restricting the search space in each
iteration.

A different approach for binary-search type key recovery is given
in Sect. 7.3 of [16], suggesting the use of forgery polynomial q(X) =∏
H∈Fn

2 ,Hn=0(X−H) and then subsequently fixing more bits of H accord-
ing to the results of the verification queries. While this is clearly optimal
with respect to the number of queries (which is n), the resulting mes-
sages are up to 2n blocks long, which typically exceeds the limits imposed
by the specifications. Additionally, the polynomials will have almost no
zero coefficients, which requires up to 2n+1 additions for the verification
queries. By contrast, when combined with the keyspace covering strategy
outlined in Sect. 4.2, our algorithm requires 2n/d · d queries, each of them
being maximally 2d blocks long. This not only allows staying within the
specified limits, but also allows choosing any desired trade-off between
the number and length of the queries. Our explicit polynomials also have
a maximum of d + 1 nonzero coefficients each, which limits the number
of additions to 2n/d · (d+ 1).

6 Nonce-respecting universal forgeries for GCM

In this section, we describe two nonce-respecting universal forgery attacks
against GCM [6] under weak keys. Before describing the attacks we de-
scribe the GCM authenticated encryption scheme and the GCM counter
values generation procedure as defined in the NIST standard [6].

6.1 More details on GCM

We recall the GCM ciphertext/tag generation:

T = Ek(J0)⊕ hH(C),

17

with T denoting the tag, with M = M1||M2|| · · · ||Ml the plaintext and
C = C1||C2|| · · · ||Cl the ciphertext blocks produced using a block ci-
pher Ek in counter mode, i.e. Ci = EK(Ji)⊕Mi. The Ji’s are successive
counters with the initial J0 generated from the nonce N ; furthermore
H = Ek(0) with k the secret key.

We now focus on the detailed generation of the counter values in
GCM. We have

J0 =

{
N ||031||1 if |N | = 96,

hH(N ||0s+64||[|N |]64) if |N | 6= 96,

where Ji = inc32(Ji−1), where s = 128d|N |/128e−|N |, [X]64 is the 64-bit
binary representation of X and inc32(X) increments the right-most 32
bits of the binary string X modulo 232; the other left-most |X| − 32 bits
remain unchanged.

6.2 Universal Forgery Attacks on GCM

Our universal forgery attacks are possible if the hash key H is weak.
Therefore, our attack starts by detecting whether the hashing key H
is weak or not using our forgery polynomial q(X) = pV (X) of degree
231 explicitly described in Appendix A.1. In other words, we make a
blind forgery for an observed ciphertext/tag pair (C;T) by asking for
the verification of the forged ciphertext (C + Q);T where Q = q1||...||ql.
Now if H is a weak key according to our forgery polynomial – is a root
of q(X) = pV (X) – then the verification succeeds and the GCM scheme
outputs a random plaintext.

Once we know that H is a weak-key, then we can recover it using
Algorithm 5.2 over the roots of q(X) = pV (X) (see Appendix A.1) where
at each query we can choose different nonces.

Now, the only hurdle for generating a nonce-respecting forgery is com-
puting the value of EK(J0) since we do not know the secret keyK (we have
only recovered H = EK(0)). However, since GCM is using a counter mode
encryption where the successive counter values Ji, are generated from the
nonce, we can easily get the encryption of the counter values EK(Ji) by
simply xoring the corresponding plaintext and ciphertext blocks (Note
that in NIST GCM, the right-most 32 bits of the counter values are suc-
cessive modulo 232 as shown below). In the sequel, we show how to use the
encryption of the counter values in order to construct universal forgeries.

18

Slide universal forgeries using chosen nonce N with |N | 6= 96
Suppose that we have observed an l-block plaintext/ciphertext with tag
T , M = M1|| · · · ||Ml and C = C1|| · · · ||Cl, where Ci = Mi ⊕ EK(Ji),
Ji = inc32(Ji−1) and T = EK(J0) ⊕ hH(C). Our goal now is to generate
a valid ciphertext/tag for a different message M ′ using a different chosen
nonce N ′ where |N ′| 6= 96.

As mentioned above, the counter mode of operation enables us to find
the encryption of the counter values

EK(J0), EK(J1), · · · , EK(Jv), · · · , EK(Jl).

The idea of the attack is to slide these encrypted counter values v posi-
tions to the left in order to re-use the (l − v) encrypted counter values
EK(Jv), · · · , EK(Jl) to generate valid ciphertext/tag for any new mes-
sage M ′ with a new chosen nonce N ′ that gives us an initial counter
value J ′0 = Jv. This will enable us to make slide universal forgeries for an
(l − v)-block message. See Fig. 1.

One can see that using Jv, v > 0, it is possible to choose a nonce N ′

that gives J ′0 = Jv by solving the following equation for N ′

J ′0 = Jv = hH(N ′||0s+64||[|N ′|]64)

Note that when |N ′| = 128 (i.e. s = 0), we have only one solution for
N ′ and more than one solution for |N ′| > 128. However, when |N ′| < 128
we might have no solution. Therefore we assume that |N ′| ≥ 128.

Once we find the nonce N ′ that yields J ′0 = Jv, then one can see that
we have the following ‘slid’ identities:

EK(J ′0) = EK(Jv), EK(J ′1) = EK(Jv+1), · · · , EK(J ′l−v) = EK(Jl)

Consequently, we are able to compute C ′i = M ′i ⊕ EK(J ′i) for 1 ≤ i ≤
l − v and T ′ = EK(J ′0) ⊕ hH(C ′). Thus observing the encryption of an
l-block message and setting J ′0 = Jv as shown above enable us to generate
a valid ciphertext/tag (C ′/T ′) for an (l− v)-block message M ′ under the
nonce-respecting setting.

19

EK(J0) EK(J1) EK(Jv) EK(Jl)

EK(Jv+1)

EK(Jv+1)

J0
’ = Jv J1

’ = Jv+1
Jl-v

’ = Jl

 J0
’ = hH(N’||0s+64||[|N’|])

EK(Jv) EK(Jl)

Fig. 1: Forgeries for GCM via sliding the counter encryptions

Universal forgeries using arbitrary nonces N with |N | = 96
Assume that we are using a GCM implementation that supports variable
nonce lengths. For example, the implementation of GCM in the latest
version of OpenSSL [18,19] makes the choice of the nonce length optional,
i.e. one can use different nonce sizes under the same secret key. Now,
suppose that using such a GCM oracle with the secret key K, we need to
find the ciphertext/tag of a message M = M1|| · · · ||Ml with a nonce N
where |N | = 96, so J0 = N ||031||1. In order to generate the ciphertext/tag
we need to find EK(Ji) where Ji = inc32(Ji−1). We do not know the secret
key K. However, since we know the secret hash key H, we can solve for
N ′ the following equation

J0 = hH(N ′||0s+64||[|N ′|]64) where |N ′| 6= 96

Note that we assume that |N ′| ≥ 128 as otherwise we might not get a
solution. After finding N ′, we can query the same GCM oracle (that has
been queried for encrypting M with the nonce N where |N | = 96) with
a new nonce N ′ that has a different size |N ′| ≥ 128 2 for the encryption
of some plaintext M = M ′1|| · · · ||M ′l . Now, |N ′| 6= 96 means that the ini-
tial counter value J ′0 = hH(N ′||0s+64||[|N ′|]64) = J0. Therefore, from the
corresponding ciphertext blocks C ′1, · · · , C ′l , we find EK(Ji) = EK(J ′i) =
M ′i ⊕ C ′i. Consequently the corresponding ith ciphertext block of Mi is
Ci = EK(J ′i)⊕Mi and the corresponding tag is T = EK(J ′0)⊕ hH(C). It

2 Two of the test vectors (Test Case 3 and Test Case 6, see Appendix D) for the GCM
implementation in the latest release of OpenSSL share the same secret key (and
therefore the same hash key) but they use different nonce sizes, Test Case 3 uses
a nonce with length 96 while Test Case 6 uses a nonce with length 480 [19]. This
suggests that it is conceivable to have different IV sizes under the same secret key.

20

is worthy to note, that this interaction possibility between two different
nonce lengths on GCM had been listed in [20] as one of the undesirable
characteristics of GCM. Fig. 2 demonstrates the interaction attack.

J0 = J0
’ inc incJ1 = J1

’ J2 = J’
2

EK EK EK

M’
1

C’
1

H

C’
2

H

M’
2

A

H

len(A)||len(C’
1||C

’
2)

H

T'=T

J0=N||031||1

1. Given N,
|N|=96, forge
M1||M2

J0=hH(N’||0s+64||[|N’|]64)=J0
’

2. Find N’

J’
0

3.Submit N/
and M’

1||M
’
2

Interaction attack
on OpenSSL-GCM

4. EK(Ji
’) = M’

i⊕C’
i,

EK(Ji
’)=EK(Ji) then

Ci=Mi⊕EK(Ji
’)

Fig. 2: Forgeries for GCM via cross-nonce interaction

7 Analysis of POET

In this section, we present a detailed weak key analysis of the online
authentication cipher POET when instantiated with Galois-Field multi-
plication. More specifically, we create universal forgery attacks once we
recover the hashing weak key. Before this we give a brief description of
POET.

7.1 Description of POET

A schematic description of POET [2] is given in Fig. 3a. Five keys
L,K,Ltop, Lbot and LT are derived from a user key as encryptions of the
constants 1, . . . , 5. K denotes the block cipher key, L is used as the mask
in the AD processing, and LT is used as a mask for computing the tag.
Associated data (AD) and the nonce are processed using the secret value
L in a PMAC-like fashion (see [2] for details) to produce a value τ which
is then used as the initial chaining value for both top and bottom mask
layers, as well as for generating the authentication tag T . The “header”

21

H encompasses the associated data (if present) and includes the nonce in
its last block. S denotes the encryption of the bit length of the message
M , i.e. S = EK(|M |). The inputs and outputs of the i-th block cipher
call during message processing are denoted by Xi and Yi, respectively.

One of the variants of POET instantiates the functions Ft and Fb by
Ft(x) = Ltop ·x and Fb(x) = Lbot ·x, with the multiplication taken in F128

2 .
This is also the variant that we consider in this paper. The top AXU hash
chain then corresponds to the evaluation of a polynomial hash in F128

2 :

gt(X) = τLtop
m +

m∑
i=1

XiLtop
m−i,

with gt being evaluated at X = M1, . . . ,Mm−1,Mm ⊕ S.

For integral messages (i.e., with a length a multiple of the block size),
the authentication tag T then generated as T = T β with empty Z, as
shown in Fig. 3b. Otherwise, the tag T is the concatenation of the two
parts Tα and T β, see Fig. 3a and 3b.

...

FtFt FtFt

FbFb FbFb

S

S

E E EE

X0 X2 XℓM−2 XℓM−1
XℓM

Y0 Y2 YℓM−2 YℓM−1

YℓM

M1 M2 MℓM−1 MℓM
|| τα

C1 C2 CℓM−1 CℓM
|| T α

Figure 6.1.: Schematic illustration of the encryption process with POET for an (ℓM)-block message
M = M1, . . . , MℓM , where S denotes the encrypted message length, i.e., S = EK(|M |), F is an
ǫ-AXU family of hash functions, and τα is taken from the most significant bits of the header
processing to pad the final message block. Note that the functions Ft and Fb use the keys Ltop

F

and Lbot
F , respectively.

6.1. Definition of POET

Definition 6.1 (POET). Let m, n, k ≥ 1 be three integers. Let POET = (K, E ,D) be an
AE scheme as defined in Definition 4.9, E : {0, 1}k ×{0, 1}n → {0, 1}n a block cipher and
F : {0, 1}k × {0, 1}n → {0, 1}n be a family of keyed ǫ-AXU hash functions. Furthermore,
let H be the header (including the public message number N appended to its end), M
the message, T the authentication tag, and C the ciphertext, with H, M, C ∈ {0, 1}∗ and
T ∈ {0, 1}n. Then, E is given by procedure EncryptAndAuthenticate, D by procedure
DecryptAndVerify, and K by procedure GenerateKeys, as shown in Algorithms 6.1
and 6.2, respectively.

Algorithm 6.1 EncryptAndAuthenticate and DecryptAndVerify.
EncryptAndAuthenticate(H, M)
101: ℓM ← ⌈|M |/n⌉
102: τ ← ProcessHeader(H)
103: (C, XℓM

, YℓM
)← Encrypt(M, τ)

104: (CℓM
, T α)← Split(CℓM

, |M | mod n)
105: T β ← GenerateTag(τ, XℓM

, YℓM
)

106: T ← T α || T β

107: return (C1 || . . . || CℓM
, T)

DecryptAndVerify(H, C, T)
201: ℓC ← ⌈|C|/n⌉
202: τ ← ProcessHeader(H)
203: (M, XℓC

, YℓC
)← Decrypt(C, τ)

204: (MℓC
, τ ′)← Split(MℓC

, |C| mod n)
205: if VerifyTag(T, XℓC

, YℓC
, τ, τ ′) then

206: return M
207: end if
208: return ⊥

17

(a) First-part tag generation in POET [2]

Ft

Fb

E

LT

LT

XℓM

YℓM

τ

T β || Z

Figure 6.3.: Schematic illustration of the tag-generation procedure in POET.

significant bits of C∗ℓC+1 are compared to the |MℓC
| least significant bits of T . If both

checks are valid, the decrypted ciphertext is output; otherwise, the decryption fails (cf.
lines 205 to 208 of Algorithm 6.1).

6.2. Instantiations for the ǫ-AXU Family of Hash Functions

We highly recommend to instantiate POET with AES-128 as a block cipher. For the ǫ-AXU
families of hash functions F , we propose three different instantiations in the following:

1. POET with Galois-Field multiplications in GF (2128),
2. POET with 4-round AES, and
3. POET with full-round AES.

POET with Galois-Field Multiplications. We recommend multiplications in GF (2128),
similar to the multiplication in AES-GCM [36] as universal hash function with an ǫ ≈
2−128. The family of hash functions F is then defined by Ft(X) = X · Ltop

F or Fb(X) =
X · Lbot

F , depending on whether it is applied to the top or the bottom row.
When using multiplications in GF (2128), one has to consider the risk of weak keys. As
stressed by Saarinen in [48], 2128 − 1 is not prime, so it produces some smooth-order
multiplicative groups. Thus, one can explore a weak key with a probability about 2−96.
To avoid the risk of having weak multiplication keys (one for processing the header and
two hash-function keys for processing the message), we propose to perform a checking on
the keys L, Ltop

F , and Lbot
F right after their generation phase. For each weak key, we choose

a fresh unique constant consti with 1 ≤ i ≤ 3, depending on which key is weak, re-generate
the corresponding key, and check it again. This procedure can be repeated until none of
the keys is weak. In addition, one can add a test function to assure that all keys are
pairwise independent, and none of them represents a multiple of another one. Since this
additional security measurement must be applied only at the time of key setup, and since
only a small fraction of keys are weak, the effort for this can be considered negligible in

21

(b) Second-part tag
generation in POET [2]

Fig. 3: Schematic description of POET

7.2 Universal weak-key forgeries for POET

We start by the following observations.

Observation 1 (Collisions in gt imply tag collisions). Let M =
M1, . . . ,Mm and M ′ = M ′1, . . . ,M

′
m be two distinct messages of m blocks

length such that gt(M) = gt(M
′) or gt(M1, . . . ,M`) = gt(M

′
1, . . . ,M

′
`)

22

with ` < m and Mi = M ′i for i > `. This implies a collision on POET’s
internal state Xi, Yi for i = m or i = ` respectively, and therefore equal
tags for M and M ′.

We note that such a collision also allows the recovery of Ltop by Algo-
rithm 5.2.

Observation 2 (Knowing Ltop implies knowing Lbot). Once the first
hash key Ltop is known, the second hash key Lbot can be determined with
only two 2-block queries: Choose arbitrary M1,M2,∇1 with ∇1 6= 0 and
obtain the encryptions of the two 2-block messages M1,M2 and M ′1,M

′
2

with M ′1 = M1 ⊕ ∇1,M
′
2 = M2 ⊕ ∇1 · Ltop. Denote ∆i = Ci ⊕ C ′i. Then

we have the relation ∆1 · Lbot = ∆2, so Lbot = ∆−11 ·∆2.

It is worth noting that this procedure works for arbitrary Lbot, and is
in particular not limited to Lbot being another root of the polynomial q.

A generic forgery. In the setting of [16], consider an arbitrarily chosen
polynomial q(X) =

∑m−1
i=1 qiX

i = pV (X) of degree m − 1 and some
message M = M1‖ · · · ‖Mm−1‖Mm. Write Q = q1‖ · · · ‖qm−1 and define

M ′
def
= M + Q with Q zero-padded as necessary. For a constant nonce

(1-block header) H, denote ciphertext and tag corresponding to M by
C = C1, . . . , Cm and T , and ciphertext and tag corresponding to M ′ =
M +Q by C ′ = C ′1, . . . , C

′
m and T ′, respectively.

If some root of q is used as the key Ltop, we have a collision between
M and M ′ = M+Q in the polynomial hash evaluation after m−1 blocks:

τLtop
m +

m−1∑
i=1

MiLtop
m−i = τ ′Ltop

m +

m−1∑
i=1

M ′iLtop
m−i

This implies Xm−1 = X ′m−1 and therefore Ym−1 = Y ′m−1. Since the mes-
sages are of equal length, S = S′ and we also have a collision in Xm and
Ym. It follows that Cm = C ′m. Furthermore, since τ = τ ′, the tag T is
colliding as well. Since then M and M + Q have the same tag, M + Q
is a valid forgery whenever some root of q(X) = pV (X) is used as Ltop.
Note that both M and the forged message will be m blocks long.

Using the class of weak keys represented by the roots of the forgery
polynomial q(X) = pV (X) explicitly described in Appendix A and Ap-
pendix A.2, we discuss the implication of having one such key as the uni-
versal hash key Ltop. Since POET allows nonce-reuse, we consider nonce-
repeating adversaries, i.e. for our purposes, the nonce will be fixed to
some constant value for all encryption and verification queries. However,

23

once we recovered τ , we will be able to recover the secret value L and
consequently we can make forgeries without nonce-reuse.

More specifically, we show that weak keys enable universal forgeries for
POET under the condition that the order of the weak key is smaller than
the maximal message length in blocks. For obtaining universal forgeries,
we first use the polynomial hash collision described above to recover the
weak keys Ltop and Lbot, and then recover τ , which is equal to the initial
states X0 and Y0, under the weak key assumption.

Recovering τ Suppose that we have recovered the weak keys Ltopand
Lbot. Now our goal is to recover the secret X0 = Y0 = τ . We know that
Xi = τLitop+M1L

i−1
top +M2L

i−2
top +· · ·+Mi and Xi+j = τLi+jtop +M1L

i+j−1
top +

M2L
i+j−2
top + · · ·+Mi+j .

Now if Ltop has order j , i.e. Ljtop = Identity, then we get Xi = Xi+j

by constructing Mi+1, · · · ,Mi+j such that Mi+1L
j−1
top +Mi+2L

j−2
top + ...+

Mi+j = 0. The easiest choice is to set Mi+1 = Mi+2 = · · · = Mi+j = 0.
This gives us Yi = Yi+j . Now equating the following two equations and

assuming that Ljbot 6= Identity, Yi = τLibot + C1L
i−1
bot + C2L

i−2
bot + · · · + Ci

and Yi+j = τLi+jbot + C1L
i+j−1
bot + C2L

i+j−2
bot + · · ·+ Ci+j . We get

τ =
(
C1L

i−1
bot + C2L

i−2
bot + · · ·+ Ci + C1L

i+j−1
bot + C2L

i+j−2
bot + · · ·+ Ci+j

)
· (Li

bot + Li+j
bot)−1,

which means that we now know the initial values of the cipher state.

Querying POET’s block cipher EK . One can see from Fig. 3a that
once we know Ltop, Lbot and τ , we can directly query POET’s internal
block cipher without knowing its secret key K. internal block cipher, i.e.
we want to compute EK(x). Now from Fig. 3a, we see that the following
equation holds: EK(τLtop ⊕M1) = C1 ⊕ τLbot, therefore EK(x) = C1 ⊕
τLbot. If M1 was the last message block, however, we would need the
encryption S = EK(|M |). Therefore we have to extend the auxiliary
message for the block cipher queries by one block, yielding the following:

Observation 3 (Querying POET’s block cipher). Knowing Ltop,
Lbot and τ enables us to query POET’s internal block cipher without the
knowledge of its secret key K. To compute EK(x) for arbitrary x, we form
a two-block auxiliary message M ′1 = (x⊕ τLtop,M

′
2) for arbitrary M ′2 and

obtain its POET encryption as C ′1, C
′
2. Computing EK(x) := C ′1 ⊕ τLbot

then yields the required block cipher output.

This means that we can produce valid ciphertext blocks C1, . . . , C`M
and (if necessary) partial tags Tα for any desired messages, by sim-
ply following the POET encryption algorithm using the knowledge of

24

Ltop, Lbot, τ and querying POET with the appropriate auxiliary messages
whenever we need to execute an encryption EK . Note that this also in-
cludes the computation of S = EK(|M |).

Generating the final tag. In order to generate the second part of the
tag T β (see Fig. 3b), which is the full tag T for integral messages, we use
the following procedure.

We know the value of X`M for our target message M from the com-
putation of C`M . If we query the tag for an auxiliary message M ′ with
the same X ′`M′

, the tag for M ′ will be the valid tag for M as well, since

having X ′`M′
= X`M means that Y ′`M′

= Y`M and consequently T β
′
= T β.

Therefore, we construct an auxiliary one-block message M ′ = (X`M ⊕
EK(|M ′|) ⊕ τLtop and obtain its tag as T ′ (computing the encryption of
the one-block message length by querying EK as above). By construction
X ′1 = X`M , so T ′ is the correct tag for our target message M as well.

By this, we have computed valid ciphertext blocks and tag for an
arbitrary message M by only querying some one- or two-block auxiliary
messages. This constitutes a universal forgery.

We finish by noting that in case a one- or two-block universal forgery is
requested, we artificially extend our auxiliary messages in either the final
tag generation (for one-block targets) or the block cipher queries (for
two-block messages) with one arbitrary block to avoid having queried the
target message as one of our auxiliary message queries.

7.3 Further forgery strategies

Since the universal forgery of the previous section relies on having a weak
key Ltop with an order smaller than the maximum message length for
recovering τ , we describe two further forgery strategies that are valid
for any weak key, regardless of its order. We also show how the knowl-
edge of τ enables us to recover the secret value L. This will enable us to
make universal forgeries on POET within the nonce-respecting adversary
model. In other words, recovering the secret value L means that we will
be able to process the header (associated data and nonce) and generate
a new τ and consequently have a total control over the POET scheme.
Due to the space limitation, all these further forgery attacks are given in
Appendix E.

25

8 Conclusion

Polynomial hashing is used in a large number of MAC and AE schemes to
derive authentication tags, including the widely deployed and standard-
ized GCM, and recent nonce misuse-resistant proposals such as POET,
Julius, and COBRA. While a substantial number of works has pointed
out weaknesses stemming from its algebraic structure [10, 16, 21], a cru-
cial part of the proposed attacks, the construction of appropriate forgery
polynomials, had not been satisfactorily addressed.

In this paper, we deal with this open problem of polynomial construc-
tion and selection in forgery and key recovery attacks on such schemes.
We describe explicit constructions of such forgery polynomials with con-
trolled sets of roots that have the additional advantage of being very
sparse. Based upon this, we propose two strategies to achieve complete
disjoint coverage of the key space by means of such polynomials, again
in an explicit and efficiently computable construction. We also saw that
this yields an improved strategy for key recovery in such attacks.

We then apply our framework to GCM in the weak-key model and
describe, to the best of our knowledge, the first universal forgeries without
nonce reuse. We also describe such universal forgeries for the recent AE
schemes POET, Julius, and COBRA.

References

1. CAESAR: Competition for Authenticated Encryption: Security, Applicability, and
Robustness, March 2014. http://competitions.cr.yp.to/caesar.html.

2. Farzaneh Abed, Scott Fluhrer, John Foley, Christian Forler, Eik List, Stefan Lucks,
David McGrew, and Jakob Wenzel. The POET Family of On-Line Authenticated
Encryption Schemes. Submission to the CAESAR competition, 03 2014.

3. Elena Andreeva, Andrey Bogdanov, Martin M. Lauridsen, Atul Luykx, Bart Men-
nink, Elmar Tischhauser, and Kan Yasuda. COBRA: A Parallelizable Authenti-
cated Online Cipher Without Block Cipher Inverse. Submission to the CAESAR
competition, 03 2014.

4. Elena Andreeva, Atul Luykx, Bart Mennink, and Kan Yasuda. COBRA: A Paral-
lelizable Authenticated Online Cipher Without Block Cipher Inverse. In Carlos Cid
and Christian Rechberger, editors, Fast Software Encryption, FSE 2014, Lecture
Notes in Computer Science, page 24. Springer-Verlag, 2014. to appear.

5. Lear Bahack. Julius: Secure Mode of Operation for Authenticated Encryption
Based on ECB and Finite Field Multiplications. Submission to the CAESAR
competition, 03 2014. http://competitions.cr.yp.to/round1/juliusv10.pdf.

6. Morris Doworkin. Recommendation for Block Cipher Modes of Operation:
Galois/Counter Mode (GCM) and GMAC, November, 2007. csrc.nist.gov/

publications/nistpubs/800-38D/SP-800-38D.pdf.
7. Neils Ferguson. Authentication weaknesses in GCM. Comments submitted to

NIST Modes of Operation Process, 2005.

26

http://competitions.cr.yp.to/caesar.html
http://competitions.cr.yp.to/round1/juliusv10.pdf
csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf

8. David Goss. Basic structures of function field arithmetic, volume 35 of Ergebnisse
der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related
Areas (3)]. Springer-Verlag, Berlin, 1996.

9. Jian Guo, Jrmy Jean, Thomas Peyrin, and Wang Lei. Breaking POET Authen-
tication with a Single Query. Cryptology ePrint Archive, Report 2014/197, 2014.
http://eprint.iacr.org/.

10. Helena Handschuh and Bart Preneel. Key-Recovery Attacks on Universal Hash
Function Based MAC Algorithms. In David Wagner, editor, CRYPTO, volume
5157 of Lecture Notes in Computer Science, pages 144–161. Springer, 2008.

11. Antoine Joux. Authentication Failures in NIST version of GCM. Comments sub-
mitted to NIST Modes of Operation Process, 2006.

12. John Mattsson and Magnus Westerlund. Authentication key recovery on galois/-
counter mode (gcm). In International Conference on Cryptology in Africa, pages
127–143. Springer, 2016.

13. David McGrew, Scott Fluhrer, Stefan Lucks, Christian Forler, Jakob Wenzel,
Farzaneh Abed, and Eik List. Pipelineable On-Line Encryption. In Carlos Cid
and Christian Rechberger, editors, Fast Software Encryption, FSE 2014, Lecture
Notes in Computer Science, page 24. Springer-Verlag, 2014. to appear.

14. David McGrew and John Viega. The galois/counter mode
of operation (gcm). Submission to NIST. http://csrc. nist.
gov/CryptoToolkit/modes/proposedmodes/gcm/gcm-spec. pdf, 2004.

15. Mridul Nandi. Forging attacks on two authenticated encryptions cobra and poet.
Cryptology ePrint Archive, Report 2014/363, 2014. https://eprint.iacr.org/

2014/363.
16. Gordon Procter and Carlos Cid. On Weak Keys and Forgery Attacks against

Polynomial-based MAC Schemes. In Shiho Moriai, editor, Fast Software Encryp-
tion, FSE 2013, Lecture Notes in Computer Science, page 14. Springer-Verlag,
2013. to appear.

17. Gordon Procter and Carlos Cid. On weak keys and forgery attacks against
polynomial-based mac schemes. Cryptology ePrint Archive, Report 2013/144,
2013. http://eprint.iacr.org/.

18. OpenSSL Project. https://www.openssl.org/.
19. OpenSSL Project. GCM Implementation: crypto/modes/gcm128.c. https://www.

openssl.org/source/, Latest release: 7 April 2014, openssl-1.0.1g.
20. Phillip Rogaway. Evaluation of some blockcipher modes of operation. Evaluation

carried out for the Cryptography Research and Evaluation Committees (CRYP-
TREC) for the Government of Japan, 2011.

21. Markku-Juhani Olavi Saarinen. Cycling Attacks on GCM, GHASH and Other
Polynomial MACs and Hashes. In Anne Canteaut, editor, FSE, volume 7549 of
Lecture Notes in Computer Science, pages 216–225. Springer, 2012.

22. Mark N Wegman and J Lawrence Carter. New hash functions and their use in au-
thentication and set equality. Journal of computer and system sciences, 22(3):265–
279, 1981.

A Appendix: Forgery polynomial suggestions for GCM
and POET

In this appendix we give some examples of polynomials whose roots form a
linear subspace Vd of F2128 of dimension d for d = 31 and d = 61. As vector

27

http://eprint.iacr.org/
https://eprint.iacr.org/2014/363
https://eprint.iacr.org/2014/363
http://eprint.iacr.org/
https://www.openssl.org/
https://www.openssl.org/source/
https://www.openssl.org/source/

space Vd we have chosen the space spanned by the elements 1, γ, · · · , γd−1,
with γ a primitive elements of F2128 satisfying γ128 = γ7 +γ2 +γ+1. The
following MAGMA-program produces such polynomials:

Fig. 4: Magma source code generating forgery polynomial of degree 2d on
F128
2 (here d = 61)

The calculated polynomial will have the form cd+1X
2d + cdX

2d−1
+

· · · + c1X
20 and it is sufficient to simply state the coefficients ci, which

can be expressed in the form aei with 0 ≤ ei ≤ 2128− 2. To save space we
only list the exponents ei for each polynomial in the following tables.

A.1 Forgery polynomial with degree 231 for attacking GCM

For d = 31, one obtains the following coefficients:

28

i ei

1 5766136470989878973942162593394430677
2 88640585123887860771282360281650849369
3 228467699759147933517306066079059941262
4 60870920642211311860125058878376239967
5 69981393859668264373786090851403919597
6 255459844209463555435845538974500206397
7 263576500668765237830541241929740306586
8 37167015149451472008716003077656492621
9 58043277378748107723324135119415484405
10 321767455835401530567257366419614234023
11 45033888451450737621429712394846444657
12 258425985086309803122357832308421510564
13 105831989526232747717837668269825340779
14 267464360177071876386745024557199320756
15 280644372754658909872880662034708629284
16 105000326856250697615431403289357708609
17 45825818359460611542283225368908192857
18 82845961308169259876601267127459416989
19 44217989936194208472522353821220861115
20 69062943960552309089842983129403174217
21 268462019404836089359334939776220681511
22 30001648942113240212113555293749765514
23 669737854382487997736546203881056449
24 127958856468256956044189872000451203235
25 277162238678239965835219683143318848400
26 134662498954166373112542807113066342554
27 219278415175240762588240883266619436470
28 216197476010311230105259534730909158682
29 281783005767613667130380044536264251829
30 181483131639777656403198412151415404929
31 38384836687611426333051602240884584792
32 0

Table 1: The table shows the coefficients of the forgery polynomial q(X) =
pV (X) for attacking GCM

29

A.2 Forgery polynomial with degree 261 for attacking POET

Similarly for d = 61 one obtains the following coefficients:

i ei i ei
1 20526963135026773119771529419991247327 32 109604555581389038896555752982244394616
2 264546851691026540251722618719245777504 33 119482829110451460647031381779266776526
3 79279732305833474902893647967721594921 34 165259785861038013124994816644344468967
4 325712555585908542291537560181869632351 35 155444340258770748055544634836807134293
5 28114083879843420358932488547561249913 36 86982184438730045821274025831061961430
6 271147943451442547572675283203493325775 37 104870645496065737272877350967826010844
7 335255520823733252020392488407731432338 38 56281281579002318337037919356127105369
8 6718016882907633170860567569329895273 39 10006851898283792847187058774049983141
9 255889065981883867903019621991013125435 40 93687920075554812358890244898088345449
10 49457687721601463712640189217755474230 41 69832672900303432248401753658262533506
11 311579005442569730277030755228683616807 42 246360754285298743574294101515912517720
12 227984510405461964893924913268809066393 43 89567893601904271767461459448076404968
13 324660953045118328235538900161997992161 44 337681726780870315172220356080972321854
14 101370059745789285127519397790494215441 45 210317547004302372764274348440690947691
15 335840777837142047555650075244373419708 46 158574321133010145534802861165087620178
16 31458849980267201461747347071710907523 47 291559826228649927512447763293001897434
17 339477818976914242962960654286547702007 48 15635124331244231609760952717791457746
18 267056244491330957618685443721979120206 49 196562458398036090488379086660199368109
19 115274327651619347046091793992432007152 50 308779188958300135859037769338975723488
20 309606471838332610868454369483105904888 51 311961723579011854596575128443762996895
21 31472831963470543380493543496732929763 52 153505386496968503239745640447605550270
22 191332595597193424626322329032056378009 53 266880473479137548264080346617303001989
23 189553913431309255614514163550670075672 54 325361660912502344542873376867973189476
24 224617322052671248319257827067474740867 55 75648626101374794093175916332043285057
25 63041230306788032973111145533307051562 56 122904035765598179315104311504496672627
26 221576606272152354153350739375040337239 57 240654849065616783877381099532333510366
27 291799903540006289220245045188573741192 58 71774746460316463981542974558280671865
28 290489624437950764499707232619770186293 59 318833970371431372762935716012099244730
29 263754726506046639985479240660603777000 60 176351990917361872511208705771673004140
30 45160807436167307990689150792052670707 61 227372417807158122619428517134408021585
31 33630881905996630925237701622950425950 62 0

Table 2: The table shows the coefficients of the forgery polynomial q(X) =
pV (X) for attacking POET

Let us denote the found polynomials by pd(X) (with d = 31 or d =
61). From pd(X), we can obtain a family of 2128−d polynomials whose
root sets partition F128

2 . The polynomials have the form pd(X) + b, with
b ∈ Wd := {pd(a) | a ∈ F128

2 }. Since in the above examples Vd has basis
{1, γ, . . . , γd−1} A basis of Wd is given by {pd(γi) | d ≤ i ≤ 127}, making
it straightforward to describe all possibilities for b.

B Universal forgeries for Julius under weak keys

Julius is a new authenticated encryption scheme submitted to the ongoing
CAESAR competition [5]. Julius has four modes of operation: Julius-
regular and Julius-compact, both offered in ECB and CTR modes. We
only consider the regular versions of Julius-ECB and Julius-CTR, which
are considered stronger and are the recommended versions.

30

All Julius modes use polynomial hashing to generate a seed which is
then encrypted to produce a value µ = EK(seed). This µ serves either
directly as tag (CTR) or is encrypted once more (ECB) to form the tag.
We exploit weak keys in polynomial hashing to describe universal forgery
strategies for Julius.

B.1 Description of regular Julius-ECB and Julius-CTR

Both Julius-ECB and Julius-CTR use mode-specific padding rules. For
simplicity, we describe the algorithms when the message length |M | is a
multiple of the block length n = 128 bits, and when no associated data
A is used.

For Julius-CTR, a message M is padded as follows, where brackets
denote full 128-bit blocks:

P = 0 · · · 01 IV 0 |M | M 0 · · · 0

For Julius-ECB, the padded message P is formed as follows:

P = 0 · · · 01 IV 0 |M | 0 · · · 0 M (1)

The padded message P = P1|| · · · ||Pl is then used to generate a seed

using polynomial hashing with key δ
def
= EK(0):

seed = P1δ
l−1 ⊕ P2δ

l−2 ⊕ · · · ⊕ Pl−1δ ⊕ Pl.

Both Julius-CTR and Julius-ECB then encrypt the seed to produce
a value µ = EK(seed). In Julius-CTR, the i-th ciphertext block, 1 ≤
i ≤ l, is given by Ci = Mi ⊕ EK(µ ⊕ i), with Cl+1 = µ serving as the
authentication tag. In Julius-ECB, we have C1 = EK(µ) serving as the
tag, and Ci+1 = EK(µδi ⊕Mi) for 1 ≤ i ≤ l.

The Julius scheme is designed to provide resistance against nonce
misuse [5].

B.2 Universal forgeries for Julius-ECB and CTR

We now describe how forge ciphertext and tags for arbitrary messages if
the authentication key δ occurs as the root of an arbitrary forgery poly-
nomial q. In this case, suppose we have obtained the encryption and tag
for some message M . Then the polynomial hashing of M and M +Q (fol-
lowing the notation of Sect. 1) will produce the same output seed, which
by single (CTR) or double encryption (ECB) in turn leads to identical
tags. Having observed this, we can recover the value of δ by the key search
algorithm of Sect. 5.

31

Generating universal forgeries for Julius-CTR. Having recovered
δ, we can calculate the value of seed for arbitrary messages. In the nonce-
reuse model, we can therefore produce universal forgeries for any de-
sired message M = M1, . . . ,Ml by calculating the seed for this mes-
sage and then querying the Julius-CTR oracle on the auxiliary mes-
sage M ′ = M ′1, . . . ,M

′
l−1,M

′
l constructed by choosing arbitrary values

for M ′1, . . . ,M
′
l−1 and setting

M ′l := seed⊕ δl+3−1 ⊕ δl+3−2IV⊕ δl+3−3|M ′| ⊕ δl+3−4M ′1 ⊕ · · · ⊕ δM ′l−1,

which implies seed’ = seed and hence µ′ = µ. From this, we obtain a
ciphertext C ′1, . . . , C

′
l , C

′
l+1 with C ′l+1 = µ′ = µ, and since the CTR

keystream is given by EK(µ + i − 1) = C ′i ⊕ M ′i , we can construct
C1, . . . , Cl+1 as

Ci := C ′i ⊕M ′i ⊕Mi, 1 ≤ i ≤ l,
Cl+1 := C ′l+1 = µ,

which gives a valid ciphertext and tag for our target message M .

Generating universal forgeries for Julius-ECB. Even with knowl-
edge of the authentication key δ, generating universal forgeries for Julius-
ECB is more involved since seed is encrypted twice to form the tag, which
means that the value of µ is not revealed to the adversary. The key ob-
servation here is that the same block cipher key K is used to derive
δ = EK(0) and µ = EK(seed). Since we know δ, we can carefully choose
messages M ′ such that seed’ = 0. This implies µ′ = δ, which is known
and allows queries to the internal block cipher calls of Julius-ECB (which
are masked by powers of µ).

Denote by pδ(M) the polynomial hash evaluation of the message M
padded according to the rule from Eq. (1). Since the message is hashed
last, for any n-bit block N we have pδ(M ||N) = pδ(M)·δ⊕N . To produce
ciphertext and tag for an arbitrary message M = M1, . . . ,Ml, we then
proceed as follows:

1. Calculate the value of seed for M as seed = pδ(M).

2. Query Julius-ECB on the auxiliary message M ′ = (M ′1,M
′
2) with

M ′1 := δ2 ⊕ seed, M ′2 := pδ(M
′
1) · δ,

such that seed’ = 0. Obtain the correct µ for M as µ := C ′2.

32

3. Query Julius-ECB on the auxiliary messageM ′′ = (M ′′1 , . . . ,M
′′
l ,M

′′
l+1)

with

M ′′i := δi+1 ⊕ µ · δi ⊕Mi, 1 ≤ i ≤ l,
M ′′l+1 := pδ(M

′′
1 || · · · ||M ′′l) · δ,

such that seed” = 0. Obtain the target ciphertexts Ci := C ′′i for
2 ≤ i ≤ l.

4. Query Julius-ECB on the auxiliary message M ′′′ = (M ′′′1 ,M
′′′
2) with

M ′′′1 := δ2 ⊕ µ, M ′′′2 := pδ(M
′′′
1) · δ,

such that seed′′′ = 0 and obtain the first target ciphertext (the tag)
as C1 := C ′′′2 .

Then C1, . . . , Cl+1 constitutes a valid ciphertext and tag for the message
M .

C Weak-Key Analysis of COBRA

In this section, we briefly describe COBRA [3, 4]. We also note that we
only describe the COBRA scheme defined for messages whose lengths are
positive multiple of 2n since it is the scheme that we have analyzed in
this paper.

C.1 Description of COBRA

COBRA is a Feistel network and misuse resistant online authentication ci-
pher. It is a GCM-like authentication scheme – meaning that it uses one
finite field multiplication plus one block cipher call per message block
– with the additional feature of being secure under nonce repetition.
One advantage of COBRA over the recent parallelizable authentication
schemes is that it does not use the inverse block cipher during the decryp-
tion process since it employs a Feistel network. A schematic description
of COBRA is given in Fig. 5 and Fig. 6.

As shown in the figures, COBRA uses a user key K during each block
cipher call. It also uses the user key K for generating the secret values
L and L′ used in finite field multiplication during the encryption and
authentication processes and the secret value J used in processing the
associated data.

COBRA’s encryption process takes as input: a message of length mul-
tiple to 2n, a nonce N and associated data. It uses the secret value L to

33

perform polynomial hashing on the input message and also the user key
K during each block cipher call to produce the corresponding ciphertext
blocks. Before computing the tag, it computes the value U after perform-
ing polynomial hashing for the associated data using J as the key. For
the purpose of our paper, let Pi denotes the hash polynomial value af-
ter the employment of ith Feistel network. Let S denote the polynomial
hash value resulting from processing the associated data before generat-
ing U by calling the block cipher. The following formula gives the value
of Pt – the polynomial hash value just before the employment of the last
Feistel network – resulting during processing the (2t+ 3)-blocks message
M = M1M2|| · · · ||M2tM2t+1||M2t+2M2t+3.

Pt = L2t+2 +N · L2t+1 +
2t−1∑
i=0

Mi+1L
2t−i

The following formula gives the value of S – the polynomial hash value
resulting from processing the associated data before generating U by the
block cipher.

S = J4 ⊕A1J
3 ⊕A2J

2 ⊕A410 ∗ ⊕2j

Ek

Ek

Ek

Ek

Ek

Ek

+

+

+

+

+

+

+

+

+

+

+

+

+ + + + + +

20L′

20L′

L

21L′

21L′

L

22L′

22L′

L

M [1] M [2] M [3] M [4] M [5] M [6]

C[1] C[2] C[3] C[4] C[5] C[6]

× × × × ×

σ1 σ2 σ3

ρ1 ρ2 ρ3

+L2

L L L L LN · L

Fig. 2: Processing plaintext. Note that L′ is defined in Fig. 3 below.

UEk++×+×+×+J

A[1] A[2] A[3] A[4]10∗

J J J 2J

ρ1 ⊕ ρ2 ⊕ ρ3 ⊕ σ1 ⊕ σ2 ⊕ σ3

+

Ek

+N ⊕ U

Ek

T

3(22L′ ⊕ L)

32(22L′ ⊕ L)

Ek Ek

0 1

J L

×

L′

4

Fig. 3: Processing associated data (top), computing the tag (bottom left), and the secret
values (bottom right).

A uniform random function (URF) from m bits to n bits is a uniformly
distributed random variable over the set of all functions from {0, 1}m to {0, 1}n.
A uniform random permutation (URP) on n bits is a uniformly distributed
random variable over the set of all permutations on n bits.

Definition 1. Let E be a block cipher. Let π be a URP on n bits. The prp
advantage of a distinguisher D is defined as

Advprp
E (D) = ∆

D
(Ek ; π).

Here, D is a distinguisher with oracle access to either Ek or π. The probabilities

are taken over k
$← K, the randomness of π, and random coins of D, if any.

By Advprp
E (t, q) we denote the maximum advantage taken over all distinguishers

that run in time t and make q queries.

7

P1
|

P2
|

Fig. 5: Schematic description of COBRA’s encryption process [4]

34

Ek

Ek

Ek

Ek

Ek

Ek

+

+

+

+

+

+

+

+

+

+

+

+

+ + + + + +

20L′

20L′

L

21L′

21L′

L

22L′

22L′

L

M [1] M [2] M [3] M [4] M [5] M [6]

C[1] C[2] C[3] C[4] C[5] C[6]

× × × × ×

σ1 σ2 σ3

ρ1 ρ2 ρ3

+L2

L L L L LN · L

Fig. 2: Processing plaintext. Note that L′ is defined in Fig. 3 below.

UEk++×+×+×+J

A[1] A[2] A[3] A[4]10∗

J J J 2J

ρ1 ⊕ ρ2 ⊕ ρ3 ⊕ σ1 ⊕ σ2 ⊕ σ3

+

Ek

+N ⊕ U

Ek

T

3(22L′ ⊕ L)

32(22L′ ⊕ L)

Ek Ek

0 1

J L

×

L′

4

Fig. 3: Processing associated data (top), computing the tag (bottom left), and the secret
values (bottom right).

A uniform random function (URF) from m bits to n bits is a uniformly
distributed random variable over the set of all functions from {0, 1}m to {0, 1}n.
A uniform random permutation (URP) on n bits is a uniformly distributed
random variable over the set of all permutations on n bits.

Definition 1. Let E be a block cipher. Let π be a URP on n bits. The prp
advantage of a distinguisher D is defined as

Advprp
E (D) = ∆

D
(Ek ; π).

Here, D is a distinguisher with oracle access to either Ek or π. The probabilities

are taken over k
$← K, the randomness of π, and random coins of D, if any.

By Advprp
E (t, q) we denote the maximum advantage taken over all distinguishers

that run in time t and make q queries.

7

S
|

Ek

Ek

Ek

Ek

Ek

Ek

+

+

+

+

+

+

+

+

+

+

+

+

+ + + + + +

20L′

20L′

L

21L′

21L′

L

22L′

22L′

L

M [1] M [2] M [3] M [4] M [5] M [6]

C[1] C[2] C[3] C[4] C[5] C[6]

× × × × ×

σ1 σ2 σ3

ρ1 ρ2 ρ3

+L2

L L L L LN · L

Fig. 2: Processing plaintext. Note that L′ is defined in Fig. 3 below.

UEk++×+×+×+J

A[1] A[2] A[3] A[4]10∗

J J J 2J

ρ1 ⊕ ρ2 ⊕ ρ3 ⊕ σ1 ⊕ σ2 ⊕ σ3

+

Ek

+N ⊕ U

Ek

T

3(22L′ ⊕ L)

32(22L′ ⊕ L)

Ek Ek

0 1

J L

×

L′

4

Fig. 3: Processing associated data (top), computing the tag (bottom left), and the secret
values (bottom right).

A uniform random function (URF) from m bits to n bits is a uniformly
distributed random variable over the set of all functions from {0, 1}m to {0, 1}n.
A uniform random permutation (URP) on n bits is a uniformly distributed
random variable over the set of all permutations on n bits.

Definition 1. Let E be a block cipher. Let π be a URP on n bits. The prp
advantage of a distinguisher D is defined as

Advprp
E (D) = ∆

D
(Ek ; π).

Here, D is a distinguisher with oracle access to either Ek or π. The probabilities

are taken over k
$← K, the randomness of π, and random coins of D, if any.

By Advprp
E (t, q) we denote the maximum advantage taken over all distinguishers

that run in time t and make q queries.

7

Ek

Ek

Ek

Ek

Ek

Ek

+

+

+

+

+

+

+

+

+

+

+

+

+ + + + + +

20L′

20L′

L

21L′

21L′

L

22L′

22L′

L

M [1] M [2] M [3] M [4] M [5] M [6]

C[1] C[2] C[3] C[4] C[5] C[6]

× × × × ×

σ1 σ2 σ3

ρ1 ρ2 ρ3

+L2

L L L L LN · L

Fig. 2: Processing plaintext. Note that L′ is defined in Fig. 3 below.

UEk++×+×+×+J

A[1] A[2] A[3] A[4]10∗

J J J 2J

ρ1 ⊕ ρ2 ⊕ ρ3 ⊕ σ1 ⊕ σ2 ⊕ σ3

+

Ek

+N ⊕ U

Ek

T

3(22L′ ⊕ L)

32(22L′ ⊕ L)

Ek Ek

0 1

J L

×

L′

4

Fig. 3: Processing associated data (top), computing the tag (bottom left), and the secret
values (bottom right).

A uniform random function (URF) from m bits to n bits is a uniformly
distributed random variable over the set of all functions from {0, 1}m to {0, 1}n.
A uniform random permutation (URP) on n bits is a uniformly distributed
random variable over the set of all permutations on n bits.

Definition 1. Let E be a block cipher. Let π be a URP on n bits. The prp
advantage of a distinguisher D is defined as

Advprp
E (D) = ∆

D
(Ek ; π).

Here, D is a distinguisher with oracle access to either Ek or π. The probabilities

are taken over k
$← K, the randomness of π, and random coins of D, if any.

By Advprp
E (t, q) we denote the maximum advantage taken over all distinguishers

that run in time t and make q queries.

7

Fig. 6: Associated data processing, tag generation and secret keys gener-
ation in COBRA [4]

C.2 Two Weak Key Attacks on COBRA

In this section, we describe two weak key attacks on COBRA. Both of
the attacks work under the assumption that the involved polynomial hash
keys – only J in the first attack and only L in the second attack – are
weak keys. Both of the attacks use the following observation to make a
forgery.

Observation 4 (Forgery on COBRA).
Two different messages, M and M ′, have the same tag if

∑
i ρi⊕σi =∑

i ρ
′
i ⊕ σ′i and N ⊕ U = N ′ ⊕ U ′.

The first attack performs a forgery attack by targeting the possible
weakness of the secret polynomial hash key J during the process of the
associated value and the generation of the value U which is a secret value
since it is not in COBRA’s output.

The second attack starts by firstly finding a distinguisher assuming
that the secret polynomial hash key L is a weak key and secondly re-
covering the weak key L and consequently the key L′ = 4L. Then the
attack uses the following observation which will be explained later to
make arbitrary forgeries for any message/ciphertext/tag and to generate
ciphertext/tag for a new message with more than two blocks without
knowing the block cipher’s secret key K.

Observation 5 (Querying COBRA’s Block Cipher). Recovering
the weak keys L and L′ enables us to query COBRA’s internal block cipher
without the knowledge of its secret key K.

35

First weak key attack Suppose that we are processing the same mes-
sage with the same nonce but with two different associated data: the first
is A = A1|| · · · ||As and the other is A + Q, where Q = q1|| · · · ||qr and
all the qi’s represent the coefficients of our forgery polynomial q(X) =∑r

i=1 qiX
i. So we have the following two inputs I1 = M ||A||N and

I2 = M ||A ⊕ Q||N . Then we always get the same cipertext blocks but
different tags.

However, assuming that the secret value J is weak according to our
forgery polynomial we can get the same value S right before the block
cipher call during processing the associated data and generating the value
U for both inputs I1 and I2. This means that we will get the same U for
both inputs I1 and I2 and consequently the same tags for two reasons:
firstly because we are using the same plaintext which means that the
difference in the input values for the first block cipher call

∑
i ρi ⊕ σi

during the tag generation for both inputs I1 and I2, and secondly because
we are using the same nonce, so the difference in the input values to the
second block cipher call N⊕U during the tag generation will also be zero
for both I1 and I2 and therefore the difference in the tags output for both
inputs I1 and I2 will be zero which means that we get the same tag for
both inputs I1 and I2.

To summarize, assuming the secret value J is weak according to our
forgery polynomial q(X) we can get endless number of forgeries by re-
peating two times the authentication of any message and any nonce of
our choice using two different associated data yielding the same value U
as described above.

Second weak key attack

Recovering the weak key L Suppose that the secret value L is a weak
key according to our forgery polynomial q(X) =

∑r
i=1 qiX

i, i.e. q(L) =
0, then two different messages M = M1M2|| · · · ||M2tM2t+1||M2t+2M2t+3

and M ′ = M ⊕Q where Q = q1q2|| · · · ||q2tq2t+1||q2t+2q2t+3 might collide
at Pt right before the employment of the last Feistel network. Now if the
last two input blocks for both messages are equal, i.e. q2t+2 = M2t+2 and
q2t+3 = M2t+3, then we will get the same ciphertext blocks C2t+2 and
C2t+3 for both input messages M and M ′. As a result, we will be assured
that these two messages have already collided at Pt which means that
the secret key L is weak key, i.e. it is one of the roots of our forgery
polynomial q(x). In the following we describe how to recover L and how
to query the COBRA’s internal block cipher.

36

Using a binary search algorithm, one can find L from the roots of the
forgery polynomial q(X) using only few queries to COBRA. Consequently,
we can easily find the secret value L′ since it is equal to 4L. Now we know
almost everything to produce the ciphertext blocks and the tag except the
block cipher’s secret key and the secret value J used during processing
the associated data and the generation of U . However, if we are able to
query COBRA’s internal block cipher, then we can nicely produce the
ciphertext blocks and the tag without knowing the block cipher’s secret
key. Next, we will explain exactly how to do this.

Querying COBRA’s internal block cipher Suppose we want to find the
encryption of the plaintext x using COBRA’s internal block cipher, EK(x)
where K is the secret key which is unknown to us. Now from Fig. 5, we
see that the following equation holds:

EK(L3 ⊕N · L2 ⊕M1L⊕M2 ⊕ 20L′) = ρ1 = L2 ⊕NL⊕M1 ⊕ C1

Since we know L and L′, using the above equation we can choose the
values N , M1 and M2 such that:

L3 ⊕NL2 ⊕M1L⊕M2 ⊕ 20L′ = x

If the above equation holds, then

EK(x) = ρ1 = C1 ⊕ L2 ⊕NL⊕M1

One can make the above equations simpler by setting N = 0 and M1 = 0.
Then we choose M2 in order to get

x = L3 +M2 + 20L′

Thus,
EK(x) = ρ1 = C1 ⊕ L2

Now setting x = 0, gives us J = EK(0) and consequently we will be able
to compute U .

Next, we will show how to use our ability to query COBRA’s block
cipher in order to construct universal forgeries.

Universal forgeries Suppose we want to find the ciphertext blocks and
tag of the message M = M1||M2|| · · · ||Mt−1||Mt. Then, we query COBRA
several times for different messages M ′ = M ′1M

′
2 where M ′1 and M ′2 are

chosen as follows.

37

To find the ciphertext block C1, we need to find EK(L3 ⊕ NL2 ⊕
M1L⊕M2⊕ 20L′) by querying COBRA’s block cipher as outlined above.
More specifically, we ask for the ciphertext blocks of M ′ = M ′1||M ′2 with
nonce N ′, where

L3 ⊕N ′L2 ⊕M ′1L⊕M ′2 ⊕ 20L′ = L3 ⊕NL2 ⊕M1L⊕M2 ⊕ 20L′

Setting M ′1 = 0, N ′ = 0 in the above equation, we get

L3 ⊕M ′2 ⊕ 20L′ = L3 ⊕NL2 ⊕M1L⊕M2 ⊕ 20L′

This gives us M ′2 = NL2 ⊕M1L ⊕M2. Now we query COBRA for
M ′ = 0||NL2 ⊕M1L⊕M2, we get C ′1 = ρ′1 ⊕ L2 ⊕N ′L⊕M ′1 = ρ′1 ⊕ L2.
Note that ρ1 = ρ′1. Therefore ρ1 = C ′1 ⊕ L2 and consequently

C1 = ρ1 ⊕ L2 ⊕NL⊕M1

Now using our knowledge of ρ1, we can find C2 by asking for
EK(L2 ⊕ NL ⊕ M1 ⊕ ρ1 ⊕ 20L′ ⊕ L) as described above, say we get
σ1. Then C2 = σ1 ⊕ L3 ⊕ NL2 ⊕ M1L ⊕ M2. Repeating this proce-
dure for any two blocks M2i−1||M2i we find all the ciphertext blocks of
M = M1||M2|| · · · ||Mt−1||Mt.

38

D OpenSSL GCM Implementation using different IV
sizes under the same secret key

Here we explain that some users could use different IV sizes under the
same secret key. From the figures below, one can see that Test Case 3 and
Test Case 6 share the same secret key K3 = K6 and therefore share the
same hash key but they use different IVs (which are nonces according to
our description). Test Case 3 uses a nonce IV 3 with |IV 3| = 96-bit while
Test Case 6 uses a nonce IV 6 with |IV 6| = 480-bit [19].

Fig. 7: Test Case 3 [19]

Fig. 8: Test Case 6 [19]

Fig. 9: Test Case 3 and Test Case 6 share the same secret key K3 = K6
[19]

39

E Further Forgery Strategies

Constructing shorter (blind) forgeries Having generated a polyno-
mial hash collision, and therefore recovered the universal hash keys Ltop

and Lbot, we can freely produce blind forgeries for any ciphertext-tag pair
of at least 2 blocks length. Suppose we have a ciphertext C = C1, . . . , Cm
with corresponding tag T for m ≥ 2. Then T is also a valid tag for
C ′ = (C1⊕∆,C2⊕∆ ·Lbot, C3, . . . , Cm) and the same nonce, since during
the decryption process, we have Y ′2 = C2⊕∆·Lbot⊕(C1⊕∆⊕τ ·Lbot)·Lbot =
C2⊕(C1⊕τ ·Lbot)·Lbot = Y2. Therefore X ′2 = X2 as well, and this collision
is preserved by having C ′i = Ci for i > 2.

Recovering the secret value L The secret value L is used during
the generation of the intermediate tag τ . Recovering the secret value L
means that we will be able to process the header (associated data and
nonce) and generate a new τ and consequently have a total control over
the POET scheme.

Using the blind forgery outlined above, we can decrypt the recovered
secret value τ . Now assuming that the recovered τ was generated using
an integral one block header H1, we get 3L+ τ̂ = H1, where τ̂ as shown in
Fig. 10 is the value right before the last block cipher call that generates
τ . Therefore L = 3−1(τ̂ ⊕H1).

τ̂−

Fig. 10: Generation of τ in POET [2]

In the following, we describe how to find τ̂ . Let C = C1||C2||C3 be a
valid ciphertext with tag T . Then as described above, the ciphertext

40

C ′ = (C ′1||C ′2||C ′3) = (C1 ⊕∆||C2 ⊕∆Lbot||C3)

where ∆ can be any difference, yields the same tag T . Now setting
∆ = C1 ⊕ τ ⊕ τLbot, we get Y ′1 = τ since Y ′1 = C ′1 ⊕ τLbot. Now when
querying for the decryption and authentication of C ′ with tag T , the
POET scheme will return M ′ = M ′1||M ′2||M ′3. Now since M ′1 = τLtop⊕X ′1
where X ′1 = τ̂ since X ′1 is the value before the block cipher that generates
Y ′1 = τ , then τ̂ = M ′1 ⊕ τLtop.

Once we get the secret value L, we can use our ability to query POET’s
internal block cipher (using the recovered τ) to generate a new τ and thus
gain full control over the POET scheme.

Constructing meaningful (targeted) forgeries We can also leverage
collisions in the polynomial hash to produce targeted forgeries with com-
plete control over the differences in the first m− 2 message blocks with a
complexity of only two encryption queries per forgery. The length of these
queries is one block longer or shorter than the length of the message we
want to provide a forgery for, and can be as short as two blocks. Being
able to produce forgeries for arbitrary messages with chosen differences in
the first m− 2 message blocks already comes close to a universal forgery.

We first describe the procedure for the case of m-block messages with
m ≥ 3 and deal with m = 2 later.

Let m ≥ 3, M = M1, . . . ,Mm−1,Mm denote the target message,
(C1, . . . , Cm;T) its encryption and tag and ∇1 6= 0, . . . ,∇m−2 6= 0 the
desired differences in M1, . . . ,Mm−2. We then produce a valid ciphertext
with equal tag T for M1 ⊕ ∇1,M2 ⊕ ∇2, . . . ,Mm−1 ⊕ ∇m−1,Mm, with
uncontrollable ∇m−1.

Step 1: Recovering Ltop. We first note that the collisions in Cm and T
from the generic forgery can be used to detect the collision in gt(X) and
therefore whether a root of q was used as Ltop. We can then use our
binary search key recovery algorithm to recover the value of Ltop with
about 128− log2(m) + 1 verification queries.

Step 2: Querying for prefix. Once Ltop is known, we can use this to query
for a prefix of our forged message as follows. Define

∇m−1
def
=

{
∇1 · Ltop if m = 3

∇1 · (Ltop)m−2 ⊕ · · · ⊕ ∇m−2 · Ltop if m > 3.

41

Form m−1-block messages M1, . . . ,Mm−1 and M ′1, . . . ,M
′
m−1 with M ′i

def
=

Mi ⊕ ∇i, and obtain their encryptions C1, . . . , Cm−1 and C ′1, . . . , C
′
m−1.

Denote the ciphertext differences by ∆i
def
= Ci ⊕ C ′i. Note that ∇m−1 is

chosen to eliminate the differences introduced by the previous message
blocks, yielding Xm−1 = X ′m−1 and therefore also Ym−1 = Y ′m−1, a colli-
sion on the internal state of POET. This situation is illustrated in Fig. 11.

...

FtFt FtFt

FbFb FbFb

S

S

E E EE

X0 X2 XℓM−2 XℓM−1
XℓM

Y0 Y2 YℓM−2 YℓM−1

YℓM

M1 M2 MℓM−1 MℓM
|| τα

C1 C2 CℓM−1 CℓM
|| T α

Figure 6.1.: Schematic illustration of the encryption process with POET for an (ℓM)-block message
M = M1, . . . , MℓM , where S denotes the encrypted message length, i.e., S = EK(|M |), F is an
ǫ-AXU family of hash functions, and τα is taken from the most significant bits of the header
processing to pad the final message block. Note that the functions Ft and Fb use the keys Ltop

F

and Lbot
F , respectively.

6.1. Definition of POET

Definition 6.1 (POET). Let m, n, k ≥ 1 be three integers. Let POET = (K, E ,D) be an
AE scheme as defined in Definition 4.9, E : {0, 1}k ×{0, 1}n → {0, 1}n a block cipher and
F : {0, 1}k × {0, 1}n → {0, 1}n be a family of keyed ǫ-AXU hash functions. Furthermore,
let H be the header (including the public message number N appended to its end), M
the message, T the authentication tag, and C the ciphertext, with H, M, C ∈ {0, 1}∗ and
T ∈ {0, 1}n. Then, E is given by procedure EncryptAndAuthenticate, D by procedure
DecryptAndVerify, and K by procedure GenerateKeys, as shown in Algorithms 6.1
and 6.2, respectively.

Algorithm 6.1 EncryptAndAuthenticate and DecryptAndVerify.
EncryptAndAuthenticate(H, M)
101: ℓM ← ⌈|M |/n⌉
102: τ ← ProcessHeader(H)
103: (C, XℓM

, YℓM
)← Encrypt(M, τ)

104: (CℓM
, T α)← Split(CℓM

, |M | mod n)
105: T β ← GenerateTag(τ, XℓM

, YℓM
)

106: T ← T α || T β

107: return (C1 || . . . || CℓM
, T)

DecryptAndVerify(H, C, T)
201: ℓC ← ⌈|C|/n⌉
202: τ ← ProcessHeader(H)
203: (M, XℓC

, YℓC
)← Decrypt(C, τ)

204: (MℓC
, τ ′)← Split(MℓC

, |C| mod n)
205: if VerifyTag(T, XℓC

, YℓC
, τ, τ ′) then

206: return M
207: end if
208: return ⊥

17

0

0

∇1

∇1

∆1

∆1

∇2

∇1 · Ltop

∆2

· · ·
∇m−1

∆m−1

∇m−1

0

0

0

0

Fig. 11: Constructing targeted forgeries for POET. Freely chosen differ-
ences are indicated in red, uncontrolled differences in blue.

Step 3: Constructing the forgery. The knowledge of the “right pair”
(M1, . . . ,Mm−1) and (M ′1, . . . ,M

′
m−1) for our internal state collision dif-

ferential now enables us to construct the desired forgery. Query POET
on the target message M = (M1, . . . ,Mm−1,Mm) and obtain ciphertext
C = (C1, . . . , Cm) and tag T . Then (C1⊕∆1, . . . , Cm−1⊕∆m−1, Cm;T) is
a valid ciphertext-tag pair for (M1 ⊕∇1, . . . ,Mm−1 ⊕∇m−1,Mm). Since
this message was not queried before, this constitutes a valid forgery.

Constructing two-block forgeries. If the target message is two blocks long,
we cannot use the above procedure since we need at least a two-block
prefix query to achieve the internal state collision. For m = 2, we would
then already have queried the message forged in Step 3 in Step 2. We
can however follow an entirely analogous procedure by simply extending
the queries in Step 2 by one arbitrary block Z. Let ∇1 be the chosen
difference for the first message block. Compute Ltop as described in Step 1.
In Step 2, we then obtain the encryption of (M1,M2, Z) as (C1, C2, CZ)
and (M1⊕∇1,M2⊕∇1 ·Ltop, Z) as (C ′1, C

′
2, C

′
Z), and then construct the

forgery in Step 3 as (C ′1, C
′
2).

42

F Forgery polynomials constructed using the
multiplicative structure

In case q = 2128, Proposition 1 gives rise to the following family of poly-
nomials whose roots partition F2128\{0}:

Example 1. Let γ be a primitive element of F2128 and n be a divisor of
2128 − 1. Further define m := (2128 − 1)/n. Then the sets of roots of the
polynomials xm − γim with 0 ≤ i ≤ n− 1 partition F2128\{0}.

The number 2128− 1 is relatively easy to factor, since we can directly
obtain the partial factorization

2128 − 1 = (264 + 1)(232 + 1)(216 + 1)(28 + 1)(24 + 1)(22 + 1)(21 + 1).

The numbers 22
k

+ 1 with k ∈ {0, 1, 2, 3, 4} are prime (so-called Fer-
mat primes), while 232 + 1 = 641 · 6700417 and 264 + 1 = 274177 ·
67280421310721. This gives an easy way to determine all possibilities
for n and m.

43

	Twisted Polynomials and Forgery Attacks on GCM
	Mohamed Ahmed Abdelraheem, Peter Beelen, Andrey Bogdanov, and Elmar Tischhauser

