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Abstract

In this paper, we present a hybrid encryption scheme that is chosen ciphertext secure
in the quantum random oracle model. Our scheme is a combination of an asymmetric and
a symmetric encryption scheme that are secure in a weak sense. It is a slight modification
of the Fujisaki-Okamoto transform that is secure against classical adversaries. In addition,
we modify the OAEP-cryptosystem and prove its security in the quantum random oracle
model based on the existence of a partial-domain one-way injective function secure against
quantum adversaries.

keywords: Quantum, Random oracle, Indistinguishability against chosen ciphertext at-
tack.

1 Introduction

The interest in verifying the security of cryptosystems in the presence of a quantum adversary
increased after the celebrated paper of Shor [Sho97]. Shor showed that any cryptosystem based
on the factoring problem and the discrete logarithm problem is breakable in the existence of
a quantum adversary. Also, many efficient classical cryptosystems are proved to be secure in
the random oracle model [BR93] and many of them still lack equivalent proof in the quantum
setting. Therefore to construct an efficient cryptosystem secure against quantum adversaries,
even if we find a cryptographic primitive immune to quantum attacks, we may have to consider
its security in the quantum random oracle model in which the adversary has quantum access to
the random oracle.

Fujisaki and Okamoto [FO99] constructed a hybrid encryption scheme that is secure against
chosen ciphertext attack (IND-CCA) in the random oracle model. Their scheme is a combi-
nation of a symmetric and an asymmetric encryption scheme using two hash functions where
the symmetric and asymmetric encryption schemes are secure in a very weak sense. However,
their proof of security works against a classical adversary and it is not clear how one can fix
their proof in the quantum setting. Following, we mention the parts of the classical proof that
may not follow against quantum adversaries. The classical proof uses the record list of the
random oracles to simulate the decryption algorithm without possessing the secret key of the
asymmetric encryption scheme. In the quantum case, where the adversary has quantum access
to the random oracles and submits queries in superpositions, there is no such a list. Also, the
classical proof uses the fact that changing output of the random oracle on one random input
does not make it distinguishable from the original random oracle and this may not occur in the
quantum case as long as the adversary can query the random oracle in superposition of all inputs
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and see all corresponding outputs in one query. Finally, the classical proof uses the fact that
finding a collision for a function whose outputs have a high min-entropy is difficult with classical
access to the function and polynomial number of queries. However, this may not happen when
the adversary has quantum access to the function. Consequently, the quantum security of the
scheme is left as an open problem in the related works of Boneh et al.[BDF+11] and Zhandry
[Zha12].

In 1993, Bellar and Rogaway [BR93] introduced a hybrid encryption scheme secure against
chosen ciphertext attack in the random oracle model provided that the trapdoor permutation
used in the scheme is one-way. One year later, they proposed another method, named OAEP,
for converting a trapdoor permutation into an encryption scheme [BR94]. It was believed that
the OAEP-cryptosystem is provable secure in the random oracle model based on one-wayness of
trapdoor permutation, but Shoup [Sho01] showed it is an unjustified belief. Later, Fujisaki et al.
[FOPS04] proved IND-CCA security of the OAEP-cryptosystem based on a stronger assump-
tion, namely, partial-domain one-wayness of the underlying permutation. Quantum security of
the hybrid encryption scheme in [BR93] was proved by Boneh et al. [BDF+11] provided that the
underlying injective trapdoor function is quantum-immune. However, they mentioned preimage
awareness used in the security proof of the OAEP-cryptosystem as a classical technique that
is not known to follow in the quantum setting. A quantum-immune candidate constructed in
[PW08] based on lattices.

Our Contribution: We modify the hybrid encryption scheme presented by Fujisaki and
Okamoto using an extra hash function H ′. We prove that our scheme is indistinguishable secure
against chosen ciphertext attack in the quantum random oracle model. For message m, the
encryption algorithm of our scheme, Enchypk , works as follows:

Enchypk(m; δ) =

(
Encasypk

(
δ;H

(
δ‖EncsyG(δ)(m)

))
, EncsyG(δ)(m), H ′(δ)

)
where pk and sk are the public key and the secret key of the asymmetric encryption scheme.
Encasypk and Encsysk are the asymmetric and symmetric encryption algorithms respectively. δ is
a random element from message space of the asymmetric encryption scheme. H, G and H ′

are random oracles with proper domain and co-domain. The asymmetric encryption scheme is
One-Way secure, that is, the adversary can not decrypt the encryption of a random message.
The symmetric encryption scheme is One-Time secure, that is, the adversary can not distinguish
between encryption of two messages when a fresh key is used for every encryption. In addition,
the asymmetric encryption scheme is well-spread in which any message can lead to at least
2ω(logn) potential ciphertexts. Also, we modify OAEP-cryptosystem and prove its security in
the quantum random oracle model based on the existence of a partial-domain one-way trapdoor
injective function secure against quantum adversaries. We present a sketch of the security proof
of OAEP-cryptosystem in the appendix since its proof is very similar to the security proof of
the Fujisaki-Okamoto transform.

In what follows, we explain how we overcome the challenges that appear in the quantum
security proof of the hybrid constructions. Similar to the idea used in [Unr15], we use extra
hash H ′ and later in the security proof we replace it with a random polynomial to force the
adversary to submit the input that has been used to obtain the cipertext. This can be done
due to result by Zhandry [Zha12] that shows a random oracle is indistinguishable from a 2q-wise
independent function where q is the number of queries that the adversary makes to the oracle
function. In addition, we use the One way to hiding lemmas presented in [Unr14a, Unr14b].
Unruh gives an upper bound for any adversary that is trying to distinguish two random oracles
that have different output on only one random input. Finally, we use the existing result on
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quantum query complexity of finding a collision for an unknown function f whose outputs are
drawn according to a distribution with min-entropy k [ETTU15].

2 Preliminaries

Let KSP and MSP stand for the key space and the message space respectively. Notation x $←− X
shows that x is chosen uniformly at random from set X. A symmetric encryption scheme and
an asymmetric encryption scheme are defined as follows:

A symmetric encryption scheme Π consists of two polynomial time (in the security parameter
n) algorithms, Π = (Enc,Dec), such that:

1. Enc, the encryption algorithm, is a probabilistic algorithm which takes as input a key
k ∈ KSP and message m ∈ MSP, outputs ciphertext c, c ← Enck(m). The message space
can be infinite and it depends on the security parameter.

2. Dec, the decryption algorithm, is a deterministic algorithm that takes as input a key k and
a ciphertext c and returns message m := Deck(c). It is required that decryption algorithm
returns the original message, Deck(Enck(m)) = m, for every k ∈ KSP and every m ∈ MSP.

An asymmetric encryption scheme Π consists of three polynomial time (in the security pa-
rameter n) algorithms, Π = (Gen,Enc,Dec), such that:

1. Gen, the key generation algorithm, is a probabilistic algorithm which on input 1n outputs
a pair of keys, (pk, sk)← Gen(1n), called the public and the secret key for the encryption
scheme respectively.

2. Enc, the encryption algorithm, is a probabilistic algorithm which takes as input a public
key pk and message m ∈ MSP and outputs the ciphertext c, c ← Encpk(m). The message
space, MSP, depends on pk.

3. Dec, the decryption algorithm, is a deterministic algorithm that takes as input a se-
cret key sk and a ciphertext c and returns message m := Decsk(c). It is required that
decryption algorithm returns the original message, Decsk(Encpk(m)) = m, for every
(pk, sk) ← Gen(1n) and every m ∈ MSP. Algorithm Dec returns ⊥ if ciphertext c is
not decryptable.

Let y := Encpk(x;h) be the encryption of message x using the public key pk and the randomness
h ∈ COIN where COIN stands for the coin space of the encryption scheme. Pr[P : G] is the
probability that the predicate P holds true where free variables in P are assigned according to
the program in G.

Definition 1 (γ-spread, Definition 5.2 [FO99]). An asymmetric encryption scheme Π = (Gen,Enc,Dec)
is γ-spread if for every pk generated by Gen(1n) and every x ∈ MSP,

max
y∈{0,1}∗

Pr[y = Encpk(x;h) : h
$←− COIN] ≤ 1

2−γ
.

Particularly, we say that the encryption scheme Π is well-spread if γ = ω(log(n)).

Definition 2. We say that function f : {0, 1}n1 → {0, 1}n2 has min-entropy k if,

− log max
y∈{0,1}n2

Pr[y = f(x) : x
$←− {0, 1}n1 ] = k.
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2.1 Security Definitions

Let neg(n) be any non-negative function that is smaller than the inverse of any non-negative
polynomial p(n) for sufficiently large n. That is, limn→∞ neg(n)p(n) = 0 for polynomial p(n).
In the following, we present the security definitions that are needed in this paper. Note that the
definitions are the same with the security definitions in [FO99], except they have been represented
in the presence of a quantum adversary in this paper. As the two following security definitions
will be used in the security proof of our scheme, we differentiate between them using neg(n)sy

and neg(n)asy in the definitions.

Definition 3 (One-Time secure). A symmetric encryption scheme Π = (Enc,Dec) is indistin-
guishable in the presence of an eavesdropper (One-Time secure) if no quantum polynomial time
adversary A can win in the PrivKOT

A,Π(n) game, except with probability at most 1/2 + neg(n)sy:

PrivKPrivKPrivKOTOTOT
A,ΠA,ΠA,Π(n) game:

Key Gen: The challenger picks up a key k from KSP uniformly at random, k $←− KSP.

Query: The adversary A on input (1n) chooses two messages m0,m1 of the same length and
sends them to the challenger. The challenger chooses b $←− {0, 1} and responds with c∗ ←
Enck(mb).

Guess: The adversary A produces a bit b′ , and wins if b = b
′.

Definition 4 (One-Way secure). An asymmetric encryption scheme Π = (Gen,Enc,Dec) is
One-Way secure if no quantum polynomial time adversary A can win in the PublKOW

A,Π (n)
game, except with probability at most neg(n)asy:

PublKPublKPublKOWOWOW
A,ΠA,ΠA,Π(n) game:

Key Gen: The challenger runs Gen(1n) to obtain a pair of keys (pk, sk).

Challenge Query: The challenger picks up uniformly at random x from the message space,
x

$←− MSP, and encrypts it by the encryption algorithm Encpk to obtain the ciphertext y, y ←
Encpk(x) and sends y to the adversary A.
Guess: The adversary A on input (pk, y) produces a bit string x′ , and wins if x′ = x.

In the next definition, we say that the quantum algorithm A has quantum access to the
random oracle H where A can submit queries in superposition and the oracle H answers to the
queries by a unitary transformation that maps |x, y〉 to |x, y ⊕H(x)〉.

Definition 5 (IND-CCA in the Quantum Random Oracle Model). An asymmetric encryption
scheme Πasy = (Gen,Enc,Dec) is indistinguishable under chosen ciphertesxt attack in the quan-
tum random oracle model (IND-CCA secure in QRO) if no efficient quantum adversary A can
win in the PublKCCA−QRO

A,Π (n) game, except with probability at most 1/2 + neg(n):

PublKPublKPublKCCA−QROCCA−QROCCA−QRO
A,ΠA,ΠA,Π (n) game:

Key Gen: The challenger runs Gen(1n) to obtain a pair of keys (pk, sk) and chooses random
oracles.

Query: The adversary A is given the public key pk and with classical oracle access to the de-
cryption oracle and quantum access to the random oracles chooses two messages m0,m1 of the
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same length and sends them to the challenger. The challenger chooses b $←− {0, 1} and responds
with c∗ ← Encpk(mb).

Guess: The adversary A continues to query the decryption oracle and the random oracles, but
may not query the ciphertext c∗ as a decryption query. Finally, The adversary A produces a bit
b
′, and wins if b = b

′ .

2.2 Quantum accessible random oracles

In this section, we present some existing results that we need to prove the security of our scheme.

Lemma 1 (One way to hiding (O2H) [Unr14b]). Let H : {0, 1}n → {0, 1}m be a random
oracle. Consider an oracle algorithm A1 that makes at most q1 queries to H. Let C be an oracle
algorithm that on input x does the following: pick i $←− {1, . . . , q1} and y

$←− {0, 1}m, run AH1 (x, y)
until (just before) the i-th query, measure the argument of the query in the computational basis,
output the measurement outcome (When A1 makes less than i queries, C outputs ⊥ /∈ {0, 1}n.).
Let,

P 1
A := Pr[b′ = 1 : H

$←− ({0, 1}n → {0, 1}m), x
$←− {0, 1}n, b′ ← AH1 (x,H(x))]

P 2
A := Pr[b′ = 1 : H

$←− ({0, 1}n → {0, 1}m), x
$←− {0, 1}n, y $←− {0, 1}m, b′ ← AH1 (x, y)]

PC := Pr[x′ = x : H
$←− ({0, 1}n → {0, 1}m), x

$←− {0, 1}n, x′ ← CH(x, i)]

Then, ∣∣P 1
A − P 2

A

∣∣ ≤ 2q1

√
PC

Lemma 2 (One way to hiding, adaptive (O2HA) [Unr14a]). Let H : {0, 1}∗ → {0, 1}n be a
random oracle. Consider an oracle algorithm A0 that makes at most q0 queries to H. Consider
an oracle algorithm A1 that uses the final state of A0 and makes at most q1 queries to H. Let
C be an oracle algorithm that on input (j, B, x) does the following: run AH1 (x,B) until(just
before) the jth query, measure the argument of the query in the computational basis, output the
measurement outcome (When A1 makes less than j queries, C outputs ⊥ /∈ {0, 1}`.).
Let,

P 1
A := Pr[b′ = 1 : H

$←− ({0, 1}∗ → {0, 1}n),m← AH0 (), x
$←− {0, 1}`, b′ ← AH1 (x,H(x||m))]

P 2
A := Pr[b′ = 1 : H

$←− ({0, 1}∗ → {0, 1}n),m← AH0 (), x
$←− {0, 1}`, B $←− {0, 1}n, b′ ← AH1 (x,B))]

PC := Pr[x = x′ ∧m = m′ : H
$←− ({0, 1}∗ → {0, 1}n),m← AH0 (), x

$←− {0, 1}`, B $←− {0, 1}n,

j
$←− {1, · · · , q1}, x′||m′ ← CH(j, B, x)]

Then, ∣∣P 1
A − P 2

A

∣∣ ≤ 2q1

√
PC + q02−`/2+2

.

Lemma 3 (Corollary 6 [ETTU15]). Let f : {0, 1}n1 → {0, 1}n2 be a function with min-entropy
k. Let H : {0, 1}∗ → {0, 1}n1 be a random oracle. Then any quantum algorithm A making q
queries to H returns a collision for f ◦H with probability at most O

(
q9/5

2k/5

)
.
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3 The Hybrid Scheme and its security

In this section, we combine an asymmetric encryption scheme with a symmetric encryption
scheme by using three hash functions in order to gain an IND-CCA secure public encryption
scheme Πhy = (Genhy, Enchy, Dechy) in the quantum random oracle model.

Let Πasy = (Genasy, Encasy, Decasy) be an asymmetric encryption scheme with message
space MSPasy = {0, 1}n1 and coin space COINasy = {0, 1}n2 . Let Πsy = (Encsy, Decsy) be a
symmetric encryption scheme where MSPsy and KSPsy = {0, 1}m are its message space and key
space, respectively. The parameters n1, n2 and m depend on the security parameter n. We
define three hash functions:

G : MSPasy → KSPsy, H : {0, 1}∗ → COINasy and H ′ : MSPasy → MSPasy.

These hash functions will be modeled as random oracles in the followings.
The hybrid scheme Πhy = (Genhy, Enchy, Dechy) is constructed as follows in which MSPhy is

its message space:

1. Genhy, the key generation algorithm, on input 1n runs Genasy to obtain a pair of keys
(pk, sk).

2. Enchy, the encryption algorithm, on input pk and message m ∈ MSPhy (:= MSPsy) does the
following:

• Select δ $←− MSPasy.

• Compute c← Encsya (m), where a := G(δ).

• Compute e := Encasypk (δ;h), where h := H(δ ‖ c).

• Finally, output (e, c, d) as Enchypk(m; δ), where d := H ′(δ).

3. Dechy, the decryption algorithm, on input sk and ciphertext (e, c, d) does as follows:

• Compute δ̂ := Decasysk (e).

• Set ĥ := H(δ̂ ‖ c).
• If e 6= Encasypk (δ̂; ĥ): abort and output ⊥.

• Else if d = H ′(δ̂):

– Compute â := G(δ̂) and output Decsyâ (c).

• Else abort and output ⊥.

Note that our construction is the same with Fujisaki-Okamoto construction, except we use an
extra random oracle H ′. Consequently, the ciphertext has one more coordinate, the encryption
algorithms has a new line to compute H ′(δ) and the decryption algorithm has an additional
check corresponding to H ′.

Theorem 4. The hybrid scheme Πhy constructed as above is IND-CCA secure in the quantum
random oracle model if Πsy is an One-Time secure symmetric encryption scheme and Πasy is a
well-spread One-Way secure asymmetric encryption scheme.

Proof. Let Ahy be a polynomial time adversary that attacks Πhy in the sense of IND-CCA in
the quantum random oracle model. Suppose that Ahy makes at most qH , qG and qH′ quantum
queries to the random oracles H, G and H ′ respectively and qdec classical decryption queries.
Set qhy := qH + qG + qH′ + qdec + 1, that is the total number of queries that the adversary
Ahy may make, including the challenge query. Let ΩH , ΩG, ΩH′ be the set of all function
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H : {0, 1}∗ → {0, 1}n2 , G : {0, 1}n1 → {0, 1}m and H ′ : {0, 1}n1 → {0, 1}n1 respectively. The
following game shows the chosen-ciphertext attack by the adversary Ahy in the quantum setting
where the adversary Ahy has quantum access to the random oracles H, G and H ′ and classical
access to the decryption algorithm Dechy.

Game 0:

let H $←− ΩH , G
$←− ΩG, H ′

$←− ΩH′ , δ∗
$←− MSPasy, (pk, sk)← Genasy(1n)

let m0,m1 ← AH,G,H
′,Dechy

hy (pk)

let b $←− {0, 1}, c∗ ← EncsyG(δ∗)(mb), e∗ ← Encasypk (δ∗;H(δ∗ ‖ c∗)), d∗ := H ′(δ∗)

let b′ ← AH,G,H
′,Dechy

hy (e∗, c∗, d∗)
return [b = b′]

In order to show that the success probability of Game 0 is at most 1/2 + neg(n), we shall
introduce a sequence of games and compute the difference between their success probability.
For simplicity, we remove the definition of random variables that appear with the same prob-
ability and without any changes in all of the following games. These random variables are:
H

$←− ΩH , G
$←− ΩG, δ∗

$←− MSPasy, (pk, sk)← Genasy(1n), and b $←− {0, 1}.

In the next game, we replace the decryption algorithm Dechy with Dec∗ where Dec∗ on
input sk and ciphertext (e, c, d) does as follows:

1. If e∗ is defined and e = e∗: abort and return ⊥.

2. Else do:

• Compute δ̂ := Decasysk (e).

• Set ĥ := H(δ̂ ‖ c).
• If e 6= Encasypk (δ̂; ĥ): query H ′(δ∗ ⊕ 1), abort and output ⊥.

• Else if d = H ′(δ̂): compute â := G(δ̂) and output Decsyâ (c).

• Else: output ⊥.

Therefore, the Game 1 is:

Game 1:

let H ′ $←− ΩH′

let m0,m1 ← A
H,G,H′,Dec∗

hy (pk)

let c∗ ← EncsyG(δ∗)(mb), e∗ ← Encasypk (δ∗;H(δ∗ ‖ c∗))

let b′ ← A
H,G,H′,Dec∗

hy (e∗, c∗, H ′(δ∗))
return [b = b′]

We prove that the probability of success in Game 0 and Game 1 are in a negligible difference.
We can conclude the result by the fact that the asymmetric encryption scheme is well-spread.
We present the proof of the following lemma in Section 3.1.

Lemma 5. If the asymmetric encryption scheme Πasy is well-spread, then

∣∣∣Pr[1← Game 0]− Pr[1← Game 1]
∣∣∣ ≤ O((qH + qdec + 1)9/5

2ω(log(n))/5

)
=: `(n).
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It is clear that `(n) is a negligible function and as a result Game 0 and Game 1 are in a
negligible difference.

We replace G(δ∗) and H ′(δ∗) with random elements in the next game.

Game 2:

let H ′ $←− ΩH′ , a∗
$←− KSPsy, d∗ $←− MSPasy

let m0,m1 ← AH,G,H
′,Dec∗

hy (pk)

let c∗ ← Encsy
a∗

(mb), e∗ ← Encasypk (δ∗;H(δ∗ ‖ c∗))

let b′ ← AH,G,H
′,Dec∗

hy (e∗, c∗, d∗)
return [b = b′]

Now, one can prove that Pr[1 ← Game 2] = 1/2 + neg(n)sy. This follows from the One-Time
security assumption of the symmetric encryption scheme. We postpone the detailed proof of the
following lemma to Section 3.1 in favor of not having a messy proof.

Lemma 6. If the symmetric encryption scheme Πsy is One-Time secure, then Pr[1← Game 2] =
1/2 + neg(n)sy.

By using Lemma 6, we only need to show that the difference between the success probability
of Game 1 and Game 2 is negligible. To achieve our goal, we use the O2H Lemma 1 to obtain
an upper bound for

∣∣∣Pr[1← Game 1] - Pr[1← Game 2]
∣∣∣.

Let AG×H′ be an adversary that has quantum access to random oracle G × H ′
(
where

(G×H ′)(δ) :=
(
G(δ), H ′(δ)

))
. The adversary AG×H′ on input

(
δ∗, (a∗, d∗)

)
does the following:

The adversary AG×H
′(
δ∗, (a∗, d∗)

)
:

let H $←− ΩH , (pk, sk)← Genasy(1n), b $←− {0, 1}
let m0,m1 ← AH,G,H

′,Dec∗

hy (pk)

let c∗ ← Encsya∗(mb), e∗ ← Encasypk (δ∗;H(δ∗ ‖ c∗))
let b′ ← AH,G,H

′,Dec∗

hy (e∗, c∗, d∗)
return [b = b′]

Note that the adversary AG×H′ makes at most qo2h := qG + qH′ + 2qdec number of queries to
the random oracle G×H ′ in order to respond to the Ahy queries 1.

Let C be an oracle algorithm that on input δ∗ does the following: pick i $←− {1, . . . , qo2h} and
(a∗, d∗)

$←− KSPsy × MSPasy, run AG×H
′(
δ∗, (a∗, d∗)

)
until (just before) the i-th query, measure

the argument of the G×H ′ query in the computational basis, output the measurement outcome
(when AG×H′ makes less than i queries, C outputs ⊥ /∈ {0, 1}n1). Note that with this definition
we can say P 1

A = Pr[1 ← Game 1] and P 2
A = Pr[1 ← Game 2] where P 1

A and P 2
A are defined

in O2H Lemma 1 for the adversary AG×H′ . Therefore, we will define Game 3 such that PC =
Pr[1← Game 3] where PC is defined in O2H Lemma 1 for the adversary CG×H′ . Thus by O2H
Lemma 1: ∣∣∣Pr[1← Game 1] - Pr[1← Game 2]

∣∣∣ ≤ 2qo2h
√
Pr[1← Game 3].

1For example to respond to a query to the random oracle G on input |δ〉, the adversary AG×H′ prepares three
registers where first register contains the input, second register stores the output of G and finally third register
stores the output ofH ′. Then, the adversary AG×H′ applies the unitary transformation (I⊗I⊗H⊗n1)(UG×H′)(I⊗
I ⊗H⊗n1) to the input |δ, y, 0n1〉 to obtain the output |δ,G(δ)⊕ y, 0n1〉 and sends the first and second wire to
the adversary Ahy. The same idea applies to answer to the queries submitted to the random oracle H ′.
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We define Game 3 as follows:

Game 3:

let H ′ $←− ΩH′ , a∗
$←− KSPsy, d∗ $←− MSPasy, i $←− {1, . . . , qo2h}

run until i-th query to oracle G×H ′

let m0,m1 ← AH,G,H
′,Dec∗

hy (pk)

let c∗ ← Encsya∗(mb), e
∗ ← Encasypk (δ∗;H(δ∗ ‖ c∗))

let b′ ← AH,G,H
′,Dec∗

hy (e∗, c∗, d∗)

measure the argument δ̃ of the i-th query to oracle G×H ′

return [δ̃ = δ∗]

In the next Game, we replace the random oracle H ′ with a 2(qH′+qdec+1)-wise independent
function. Random polynomials of degree 2(qH′ + qdec + 1) − 1 over finite field GF (2n1) of size
2n1 are 2(qH′ + qdec + 1)-wise independent. Let Ωwise be the set of all such polynomials.

Game 4:

let H ′ $←− Ωwise H
′ $←− ΩH′ , a∗

$←− KSPsy, d∗ $←− MSPasy, i $←− {1, . . . , qo2h}
run until i-th query to oracle G×H ′

let m0,m1 ← AH,G,H
′,Dec∗

hy (pk)

let c∗ ← Encsya∗(mb), e
∗ ← Encasypk (δ∗;H(δ∗ ‖ c∗))

let b′ ← AH,G,H
′,Dec∗

hy (e∗, c∗, d∗)

measure the argument δ̃ of the i-th query to oracle G×H ′
return [δ̃ = δ∗]

Due to a result by Zhandry [Zha12], a 2(qH′ + qdec + 1)-wise independent function H ′ is indis-
tinguishable from a random function when the adversary makes at most qH′ + qdec + 1 queries
to H ′. Therefore, Game 3 and Game 4 are identical.

We replace the decryption algorithm Dec∗ with a new decryption algorithm Dec∗∗ in Game
5 where Dec∗∗ on input (e, c, d) works as follows:

1. If e∗ is defined and e = e∗: output ⊥.

2. Else do:

• Calculate all roots of the polynomial H ′ − d. Let S be the set of those roots.

• If there exists δ̂ ∈ S \ {δ∗} such that e = Encasypk

(
δ̂;H(δ̂ ‖ c)

)
:

– query H ′ on input δ̂.
– compute â := G(δ̂) and return Decsyâ (c).

• Else if e = Encasypk

(
δ∗;H(δ∗ ‖ c)

)
:

– If H ′(δ∗) = d, then compute â := G(δ∗) and return Decsyâ (c).
– Else: return ⊥.

• Else: query H ′ on random input δ $←− (MSPasy \ {δ∗}), and output ⊥.

We emphasis that finding roots of polynomial H ′ − d is polynomial time computable [Ben81]
and it does not involve query to the polynomial H ′.
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Game 5:

let H ′ $←− Ωwise H
′ $←− ΩH′ , a∗

$←− KSPsy, d∗ $←− MSPasy, i $←− {1, . . . , qo2h}
run until i-th query to oracle G×H ′

let m0,m1 ← A
H,G,H′,Dec∗∗

hy (pk)

let c∗ ← Encsya∗(mb), e
∗ ← Encasypk (δ∗;H(δ∗ ‖ c∗))

let b′ ← A
H,G,H′,Dec∗∗

hy (e∗, c∗, d∗)

measure the argument δ̃ of the i-th query to oracle G×H ′
return [δ̃ = δ∗]

In order to show that Game 4 and Game 5 are identical, we need to prove that two decryption
algorithms Dec∗ and Dec∗∗ return the same output. Also, we have to prove that the total
number of queries submitted to the random oracles G and H ′ are equal in two algorithms and
the number of queries with argument δ∗ are equal and appear in the same time.

Suppose the adversary submits decryption query (e, c, d). Let δ̂ := Decasysk (e). We consider
the following cases:

1. If δ̂ =⊥. In this case, both decryption algorithms return ⊥ and query the random oracle
H ′, but not on input δ∗.

2. If δ̂ 6=⊥, δ̂ 6= δ∗ and H ′(δ̂) 6= d. Note that δ̂ 6= δ∗ implies that e 6= e∗. Therefore, there
are two subcases:

(a) If e 6= Encasypk (δ∗;H(δ∗ ‖ c)), then the decryption algorithm Dec∗ queries the random
oracle H ′ on input δ∗ ⊕ 1 and decryption algorithm Dec∗∗ queries H ′ on a random
element from MSPasy \ {δ∗} since δ̂ 6∈ S. Both algorithms return ⊥.

(b) Else, the decryption algorithm Dec∗ queries random oracle H ′ on input δ̂ and the
decryption algorithm Dec∗∗ queries H ′ on a random element from MSPasy \ {δ∗} since
δ̂ 6∈ S. Both algorithms return ⊥.

3. If δ̂ = δ∗ and H ′(δ̂) 6= d. There are three subcases:

(a) If e∗ is defined and e = e∗, then both decryption algorithms return ⊥ without any
query to the random oracles G and H ′.

(b) Else if e 6= Encasypk (δ∗;H(δ∗ ‖ c)), then the decryption algorithm Dec∗ queries the
random oracle H ′ on input δ∗ ⊕ 1 and the decryption algorithm Dec∗∗ queries H ′ on
a random element from MSPasy \ {δ∗}. Both decryption algorithms return ⊥.

(c) Else, both decryption algorithms query H ′ on input δ∗ and output ⊥.

4. If δ̂ = δ∗ and H ′(δ̂) = d. There are three subcases:

(a) If e∗ is defined and e = e∗, then both decryption algorithms return ⊥ without any
query to the random oracles G and H ′.

(b) Else if e 6= Encasypk (δ∗;H(δ∗ ‖ c)), then the decryption algorithm Dec∗ queries the
random oracle H ′ on input δ∗ ⊕ 1 and decryption algorithm Dec∗∗ queries H ′ on a
random element from MSPasy \ {δ∗}. Both decryption algorithms return ⊥.

(c) Else, both decryption algorithms query random oracles G and H ′ on input δ∗ and
output DecsyG(δ∗).

5. If δ̂ 6=⊥, δ̂ 6= δ∗ and H ′(δ̂) = d. Note that δ 6= δ∗ implies that e 6= e∗. Therefore, there are
two subcases:

10



(a) If e 6= Encasypk (δ∗;H(δ∗ ‖ c)), then the decryption algorithm Dec∗ queries the random
oracle H ′ on input δ∗⊕1 and outputs ⊥, and the decryption algorithm Dec∗∗ queries
H ′ on a random element from MSPasy \ {δ∗} and outputs ⊥.

(b) Else, both decryption algorithms query random oracles G and H ′ on input δ̂ and
output Decsy

G(δ̂)
.

Hence, Pr[1← Game 4] = Pr[1← Game 5].

Note that Dec∗∗ does not use the secret key of asymmetric encryption scheme to decrypt the
ciphertext. Therefore, we replace the H(δ∗ ‖ c∗) with a random element from COINasy, once we
will be able to reduce the proof of security to the One-Way security of asymmetric encryption
scheme.

Game 6:

let H ′ $←− Ωwise H
′ $←− ΩH′ , a∗

$←− KSPsy, d∗ $←− MSPasy, i $←− {1, . . . , qo2h}
run until i-th query to oracle G×H ′

let m0,m1 ← AH,G,H
′,Dec∗∗

hy (pk)

let c∗ ← Encsya∗(mb), e
∗ ← Encasypk (δ∗ )

let b′ ← AH,G,H
′,Dec∗∗

hy (e∗, c∗, d∗)

measure the argument δ̃ of the i-th query to oracle G×H ′
return [δ̃ = δ∗]

Suppose that adversary Ahy makes q0GH′ queries before challenge query and q1GH′ queries
after challenge query to the random oracle G × H ′. In order to obtain an upper bound for∣∣∣Pr[1← Game 5] - Pr[1← Game 6]

∣∣∣, we use O2HA Lemma 2. Let AH0 be a quantum adversary

that has oracle access to the random oracle H. The adversary AH0 does the following:

The adversary AH0 :

let G $←− ΩG, H ′
$←− Ωwise, (pk, sk)← Genasy(1n), b $←− {0, 1}, a∗ $←− KSPsy, d∗ $←− MSPasy,

i
$←− {1, . . . , qo2h}

run until i-th query to oracle G×H ′

let m0,m1 ← AH,G,H
′,Dec∗∗

hy (pk)

let c∗ ← Encsya∗(mb)
return c∗

Let AH1 be an adversary that has quantum access to the random oracle H and use the final
sate of AH0 . Therefore, he can use all the random variables that are chosen by AH0 and also he
can use the output of AH0 . The adversary AH1 on input (δ∗, h∗) does the following:

The adversary AH1 (δ∗, h∗):

let δ∗ $←− MSPasy

if i > q0GH′ then
run until (i− q0GH′)-th query to oracle G×H ′

let e∗ ← Encasypk (δ∗;h∗)

let b′ ← AH,G,H
′,Dec∗∗

hy (e∗, c∗, d∗)

measure the argument δ̃ of the i-th query to oracle G×H ′
return [δ̃ = δ∗]

Note that the adversary AH0 may be stopped before receiving the challenge query (or when
i ≤ q0GH′), in this case the adversary AH1 measures the argument δ̃ of i-th query to the random
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oracle G × H ′ and outputs [δ̃ = δ∗]. If i > q0GH′ , then the adversary AH1 continue running
the adversary Ahy till (i − q0GH′)-th query to the random oracle G ×H ′ and he measures the
argument δ̃ of i-th query to the random oracle G × H ′ and outputs [δ̃ = δ∗]. Note that with
these definitions we have P 1

A = Pr[1 ← Game 5] and P 2
A = Pr[1 ← Game 6] where P 1

A and P 2
A

are as O2HA Lemma 2 for random oracle H.
Let AH0 makes q0 queries to the random oracle H and AH1 makes at most q1 queries to

the random oracle H. Let C be an oracle algorithm that on input δ∗ does the following: pick
j

$←− {1, . . . , q1} and h∗
$←− {0, 1}n2 , run AH1

(
δ∗, h∗

)
until (just before) the j-th query to the

random oracle H, measure the argument of the query in the computational basis, output the
measurement outcome (when AH1 makes less than j queries, C outputs ⊥ /∈ {0, 1}n). Now, we
can introduce Game 7 such that by O2HA Lemma 2,∣∣∣Pr[1← Game 5] - Pr[1← Game 6]

∣∣∣ ≤ 2q1

√
Pr[1← Game 7] + q02−n1/2+2.

Game 7:

let H ′ $←− Ωwise, a∗
$←− KSPsy, d∗ $←− MSPasy, i $←− {1, . . . , qo2h}

run until i-th query to oracle G×H ′

let m0,m1 ← AH,G,H
′,Dec∗∗

hy (pk)

let c∗ ← Encsya∗(mb)

let δ∗ $←− MSPasy, j $←− {0, . . . , q1}
run until j-th query to oracle H

if i > q0GH′ then
run until (i− q0GH′)-th query to oracle G×H ′

let e∗ ← Encasypk (δ∗;h∗)

let b′ ← AH,G,H
′,Dec∗∗

hy (e∗, c∗, d∗)

measure the argument δ̃ of the i-th query to oracle G×H ′
measure the argument δ̂||ĉ of the j-th query to oracle H
return [δ̂ = δ∗] ∧ [ĉ = c∗]

The next lemma shows that the success probability in Game 6 and Game 7 are negligible.
We present the proof of the lemma in Section 3.1.

Lemma 7. If the asymmetric scheme Πasy is One-way secure then,

Pr[1← Game 6] ≤ neg(n)asy and Pr[1← Game 7] ≤ neg(n)asy.

With combining the bounds derived above we can conclude that,

Pr[1← Game 0] ≤ 1

2
+ neg(n)sy +O

(
(qH + qdec + 1)9/5

2ω(log(n))/5

)
+

2qo2h

√
neg(n)asy + 2q1

√
neg(n)asy + q02−n1/2+2.

3.1 Proof of Lemma

Lemma 5.

Proof. We list all the possibilities that the adversary can do to differentiate between two games.
Suppose that the adversary sends ciphertext (e, c, d). Note that if e 6= e∗ or e∗ is not defined,
then two decryption algorithms Dechy and Dec∗ return the same output and nothing is left to
show. Therefore we analyze the following cases where e∗ is defined and e = e∗.

12



1. (e = e∗, c = c∗, d 6= d∗) or (e = e∗, c 6= c∗, d 6= d∗). In these two cases, two decryption
algorithms return ⊥.

2. (e = e∗, c 6= c∗, d = d∗). This means that Encasypk (δ∗;H(δ∗ ‖ c)) = Encasypk (δ∗;H(δ∗ ‖
c∗)) and it is a collision in the sense of Lemma 3 since δ∗ is chosen randomly and the
Encasypk (δ∗;H(δ∗ ‖ ·)) has min-entropy ω(log(n)). Therefore, it happens with probability

at most O
(

(qH+qdec+1)9/5

2ω(log(n))/5

)
.

3. (e = e∗, c = c∗, d = d∗). This query never happen.

We can conclude that:∣∣∣Pr[1← Game 0] - Pr[1← Game 1]
∣∣∣ ≤ O ( (qH+qdec+1)9/5

2ω(log(n))/5

)
.

Lemma 6.

Proof. Let ε(n) :=Pr[1← Game 2]. We construct the adversary Asy such that:

Pr[PriKOT
Asy ,Πsy = 1] = ε(n).

The adversary Asy is given input 1n works as following:

1. Runs Genasy(1n) to obtain (pk, sk).

2. Runs the adversary Ahy(pk).

3. Use 2(qH +qdec+1)-wise independent function, 2(qG+qdec+1)-wise independent function,
2(qH′ + qdec + 1)-wise independent function to answer to the queries submitted to the
random oracles H, G and H ′ respectively.

4. Whenever Ahy outputs challenge messages (m0,m1), does as follow:

• Selects b $←− {0, 1}, r $←− COINsy, δ∗ $←− MSPasy, a∗ ← KSPsy, d∗ $←− {0, 1}n1 .
• Sets c∗ = Encsya∗(mb; r) and e∗ = Encasypk (δ∗;H(δ∗, c∗)).
• Sends (e∗, c∗, d∗) to the adversary Ahy.

5. Answer to the oracle queries and decryption queries as before.

6. When Ahy returns bit b′, outputs the same b′.

It is obvious that Pr[PriKOT
Asy ,Πsy = 1] = ε(n). Therefore, ε(n) ≤ 1/2 + neg(n)sy.

Lemma 7.
As the proof for two games is similar we provide the instances for Game 7 in brackets

wherever there is a difference.

Proof. Let ε(n) :=Pr[1 ← Game 6] J := Pr[1 ← Game 7]K. We construct the adversary Aasy

such that:

Pr[PublKOW
Aasy ,Πasy = 1] = ε(n).

The adversary Aasy is given input (1n, pk, y) works as following:

1. Run the adversary Ahy(pk).

2. Use 2(qH +qdec+1)-wise independent function, 2(qG+qdec+1)-wise independent function,
2(qH′+qdec+1)-wise independent polynomial to answer to the queries submitted to random
oracles H, G and H ′ respectively.
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3. Answer to the decryption queries as Dec∗∗.

4. Whenever Ahy outputs challenge messages (m0,m1), does as follow:

• Selects b $←− {0, 1}, r $←− COINsy, a∗ ← KSPsy, d∗ $←− {0, 1}n1 .

• Sets c∗ := Encsya∗(mb; r) and e∗ := y.

• Sends (e∗, c∗, d∗) to the adversary Ahy.

5. Answer to the oracle queries as before and to the decryption queries by algorithm Dec∗∗.

6. When Ahy returns bit b′ and halts, Aasy selects i $←− {1, · · · , qo2h} Ji $←− {1, · · · , q1}K and
measures the argument δ̂ of i-th J (i + q0)-th K query to the random oracle G × H ′ JHK
and outputs δ̂ (When Ahy makes less than i query output ⊥).

It is obvious that Pr[PriKOW
Aasy ,Πasy = 1] = ε(n). Therefore, ε(n) ≤ neg(n)asy.
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A OAEP-cryptosystem

The following definitions are similar to the definitions presented in [FOPS04], except we define
them in the presence of a quantum adversary.

Definition 6 (Quantum partial-domain one-way function). We say function f : {0, 1}n+k1 ×
{0, 1}k0 → {0, 1}m is partial-domain one-way if for any polynomial time quantum adversary A,

Pr[s̃ = s : s
$←− {0, 1}n+k1 , t

$←− {0, 1}k0 , s̃← A(f(s, t))] ≤ neg(n).
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Definition 7. Let G : {0, 1}k0 → {0, 1}k−k0 , H : {0, 1}k−k0 → {0, 1}k0 and H ′ : {0, 1}k →
{0, 1}k be random oracles. The Q-OAEP = (Gen,Enc,Dec) encryption scheme is defined as:

1. Gen: Specifies an instance of injective function f and its inverse f−1. Therefore, the
public key and secret key are f and f−1 respectively.

2. Enc: Given message m ∈ {0, 1}n, the encryption algorithm computes

s := m||0k1 ⊕G(r) and t := r ⊕H(s),

where r $←− {0, 1}k0, and outputs ciphertext (c, d) :=
(
f(s, t), H ′(s‖t)

)
.

3. Dec: Given ciphertext (c, d), the decryption algorithm does as follows:

• When c /∈ Im f :
(a) If c∗ is defined (where c∗ is the challenge ciphertext), then query the random

oracle H ′ on input (s∗‖t∗)⊕ 1 (where f(s∗, t∗) = c∗) and output ⊥.
(b) If c∗ is not defined, then query the random oracle H ′ on a random input and

return ⊥.
• When c ∈ Im f , the decryption algorithm extracts (s, t) = f−1(c). If H ′(s‖t) 6= d it
outputs ⊥, otherwise it does as follows:
(a) query the random oracle H on input s and compute r := t⊕H(s).
(b) query the random oracle G on input r and compute M := s⊕G(r).
(c) if the k1 least significant bits of M are zero then return the n most significant

bits of M , otherwise return ⊥.

Note that k0 and k depend on the security parameter n.

Theorem 8. If the underlying injective function is quantum partial-domain one-way, then the
Q-OAEP scheme is IND-CCA secure in the quantum random oracle model.

Proof. Since the proof is similar and relatively easier compared to the proof of Fujisaki-Okamoto
transform, we only present the main games in pseudocode and the intuition of the their negli-
gibility. Let ΩH , ΩG, ΩH′ be the set of all function H : {0, 1}k−k0 → {0, 1}k0 , G : {0, 1}k0 →
{0, 1}k−k0 and H ′ : {0, 1}k → {0, 1}k, respectively. Let A be a polynomial time quantum ad-
versary that attacks the OAEP-cryptosystem in the sense of IND-CCA in the quantum random
oracle model and makes at most qH , qG and qH′ queries to the random oracles H, G and H ′

respectively and qdec decryption queries.

Game 0:

let H $←− ΩH , G
$←− ΩG, H ′

$←− ΩH′ , r
$←− {0, 1}k0 , (pk, sk)← Gen(1n)

let m0,m1 ← AH,G,H
′,Dec(pk)

let b $←− {0, 1}, s∗ := mb||0k1 ⊕G(r), t∗ := r ⊕H(s∗), c∗ := f(s∗, t∗), d∗ := H ′(s∗‖t∗)
let b′ ← AH,G,H

′,Dec(c∗, d∗)
return [b = b′]

Game 1:

let H $←− ΩH , G
$←− ΩG, H ′

$←− ΩH′ , r
$←− {0, 1}k0 , (pk, sk)← Gen(1n), α∗ $←− {0, 1}k−k0

let m0,m1 ← AH,G,H
′,Dec(pk)

let b $←− {0, 1}, s∗ = mb||0k1 ⊕ α∗, t∗ = r ⊕H(s∗), c∗ = f(s∗, t∗), d∗ := H ′(s∗‖t∗)
let b′ ← AH,G,H

′,Dec(c∗, d∗)
return [b = b′]
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The probability of success in Game 1 is 1/2 for the reason that s∗ is a random element and
independent of the bit b.

Game 2:

let H $←− ΩH , G
$←− ΩG, H ′

$←− ΩH′ , r
$←− {0, 1}k0 , (pk, sk)← Gen(1n), α∗ $←− {0, 1}k−k0 ,

i
$←− {1, . . . , qG + qdec}

run until i-th query to oracle G
let m0,m1 ← AH,G,H

′,Dec(pk)

let b $←− {0, 1}, s∗ := mb||0k1 ⊕ α∗, t∗ := r ⊕H(s∗), c∗ := f(s∗, t∗), d∗ := H ′(s∗‖t∗)
let b′ ← AH,G,H

′,Dec(c∗, d∗)
measure the argument r̃ of the i-th query to oracle G
return [r̃ = r] (When A makes less than i queries return ⊥)

By O2H Lemma 1,

|Pr[1← Game 0]− Pr[1← Game 1]| ≤ 2(qG + qdec)
√

Pr[1← Game 2].

Game 3:

let H $←− ΩH , G
$←− ΩG, H ′

$←− ΩH′ , r
$←− {0, 1}k0 , (pk, sk)← Gen(1n), α∗ $←− {0, 1}k−k0 ,

i
$←− {1, . . . , qG + qdec + 1}, β∗ $←− {0, 1}k0

run until i-th query to oracle G
let m0,m1 ← AH,G,H

′,Dec(pk)

let b $←− {0, 1}, s∗ := mb||0k1 ⊕ α∗, t∗ := r ⊕ β∗, c∗ := f(s∗, t∗), d∗ := H ′(s∗‖t∗)
let b′ ← AH,G,H

′,Dec(c∗, d∗)
measure the argument r̃ of the i-th query to oracle G
return [r̃ = r] (When A makes less than i queries return ⊥)

Since t∗ is random and independent of r, the probability of success in Game 3 is 1
2k0

.

Game 4:

let H $←− ΩH , G
$←− ΩG, H ′

$←− ΩH′ , r
$←− {0, 1}k0 , (pk, sk)← Gen(1n), α∗ $←− {0, 1}k−k0 ,

i
$←− {1, . . . , qG + qdec}, β∗

$←− {0, 1}k0 , j $←− {1, . . . , qH + qdec}
run until j-th query to oracle H

run until i-th query to oracle G
let m0,m1 ← AH,G,H

′,Dec(pk)

let b $←− {0, 1}, s∗ := mb||0k1 ⊕ α∗, t∗ := r ⊕H(s∗), c∗ := f(s∗, t∗), d∗ := H ′(s∗‖t∗)
let b′ ← AH,G,H

′,Dec(c∗, d∗)
measure the argument r̃ of the i-th query to oracle G

measure the argument s̃ of the j-th query to oracle H
return [s̃ = s∗] (When A makes less than j queries return ⊥)

By O2H Lemma 1,

|Pr[1← Game 2]− Pr[1← Game 3]| ≤ 2(qH + qdec)
√

Pr[1← Game 4].
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Game 5:

let H $←− ΩH , G
$←− ΩG, H ′

$←− ΩH′ , r
$←− {0, 1}k0 , (pk, sk)← Gen(1n), s∗ $←− {0, 1}k−k0 ,

i
$←− {1, . . . , qG + qdec}, β∗

$←− {0, 1}k0 , j $←− {1, . . . , qH + qdec}, d∗
$←− {0, 1}k

run until j-th query to oracle H
run until i-th query to oracle G

let m0,m1 ← AH,G,H
′,Dec(pk)

let b $←− {0, 1}, s∗ := mb||0k1 ⊕ α∗, t∗ := r ⊕H(s∗), c∗ := f(s∗, t∗),
let b′ ← AH,G,H

′,Dec(c∗, d∗)
measure the argument r̃ of the i-th query to oracle G

measure the argument s̃ of the j-th query to oracle H
return [s̃ = s∗] (When A makes less than j queries return ⊥)

Game 6:

let H $←− ΩH , G
$←− ΩG, H ′

$←− ΩH′ , r
$←− {0, 1}k0 , (pk, sk)← Gen(1n), α∗ $←− {0, 1}k−k0 ,

i
$←− {1, . . . , qG + qdec}, β∗

$←− {0, 1}k0 , j $←− {1, . . . , qH + qdec}, d∗
$←− {0, 1}k,

`
$←− {1, . . . , qH′ + qdec}

run until `-th query to oracle H ′

run until j-th query to oracle H
run until i-th query to oracle G

let m0,m1 ← AH,G,H
′,Dec(pk)

let b $←− {0, 1}, s∗ := mb||0k1 ⊕ α∗, t∗ := r ⊕H(s∗), c∗ = f(s∗, t∗)
let b′ ← AH,G,H

′,Dec(c∗, d∗)
measure the argument r̃ of the i-th query to oracle G

measure the argument s̃ of the j-th query to oracle H
measure the argument (s̃, t̃) of the `-th query to oracle H ′

return [s̃ = s∗] ∧ [t̃ = t∗] (When A makes less than ` queries return ⊥)

By O2H Lemma 1,

|Pr[1← Game 4]− Pr[1← Game 5]| ≤ 2(qH′ + qdec)
√

Pr[1← Game 6].

Therefore, we only need to prove that the probability of success in Game 5 and Game 6 are
negligible. Since a 2q-wise independent function is indistinguishable from a random oracle
provided the adversary makes at most q queries [Zha12], we replace H ′ in Game 5 and Game 6
with a random polynomials of the proper degree. Let Ωwise be the set of all such polynomials.

Game 5.b:

let H $←− ΩH , G
$←− ΩG, H ′

$←− Ωwise, r
$←− {0, 1}k0 , (pk, sk)← Gen(1n), α∗ $←− {0, 1}k−k0 ,

i
$←− {1, . . . , qG + qdec}, β∗

$←− {0, 1}k0 , j $←− {1, . . . , qH + qdec}, d∗
$←− {0, 1}k

run until j-th query to oracle H
run until i-th query to oracle G

let m0,m1 ← AH,G,H
′,Dec(pk)

let b $←− {0, 1}, s∗ := mb||0k1 ⊕ α∗, t∗ := r ⊕H(s∗), c∗ = f(s∗, t∗)
let b′ ← AH,G,H

′,Dec(c∗, d∗)
measure the argument r̃ of the i-th query to oracle G

measure the argument s̃ of the j-th query to oracle H
return [s̃ = s∗] (When A makes less than j queries return ⊥)

By Zhandry’s result [Zha12]:

Pr[1← Game 5] = Pr[1← Game 5.b].
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Now we define the decryption algorithm Dec∗ that on input (c, d) does as follows:

1. It calculates the roots of polynomial H ′ − d. Let S be the set of all the roots.

2. If there exists (s, t) ∈ S such that f(s, t) = c, then it outputs a message m using (s, t) and
similar to the algorithm Dec. Otherwise it outputs ⊥.

Game 5.c:

let H $←− ΩH , G
$←− ΩG, H ′

$←− Ωwise, r
$←− {0, 1}k0 , (pk, sk)← Gen(1n), α∗ $←− {0, 1}k−k0 ,

i
$←− {1, . . . , qG + qdec}, β∗

$←− {0, 1}k0 , j $←− {1, . . . , qH + qdec}, d∗
$←− {0, 1}k

run until j-th query to oracle H
run until i-th query to oracle G

let m0,m1 ← AH,G,H
′,Dec∗(pk)

let b $←− {0, 1}, s∗ := mb||0k1 ⊕ α∗, t∗ := r ⊕H(s∗), c∗ = f(s∗, t∗)

let b′ ← AH,G,H
′,Dec∗(c∗, d∗)

measure the argument r̃ of the i-th query to oracle G
measure the argument s̃ of the j-th query to oracle H
return [s̃ = s∗] (When A makes less than j queries return ⊥)

We show that two decryption algorithms Dec and Dec∗ return the same output with the same
number of queries to the random oracle H. For given ciphertext (c, d):

1. If c /∈ Im f , then both decryption algorithms return ⊥ with no query to the random oracle
H.

2. If c ∈ Im f . Let (ŝ, t̂) := f−1(c). There are two subcases:

• If H ′(ŝ‖t̂) 6= d, then both algorithms return ⊥ with no query to the random oracle
H.

• If H ′(ŝ‖t̂) = d, then both decryption algorithms return the same output and query
H on input ŝ for the reason that (ŝ, t̂) ∈ S and f(ŝ, t̂) = c.

As a result:
Pr[1← Game 5.b] = Pr[1← Game 5.c].

Note that the decryption algorithm Dec∗ does not use the secret key f−1, therefore we can
reduce the success probability of Game 5.c to the partial-domain one-wayness of function f .

We repeat a similar approach (define Game 6.b and Game 6.c as before) to prove the success
probability of Game 6 is negligible. Note that the decryption algorithm Dec∗∗ does as follows
in the case of Game 6:

1. It calculates the roots of polynomial H ′ − d. Let S be the set of all the roots.

2. If there exists (s, t) ∈ S such that f(s, t) = c, then it queries the random oracle H ′ on
input (s‖t) and outputs a message m using (s, t) and similar to the algorithm Dec.

3. Else:

• If c∗ is defined and c = c∗, then query H ′ on input (s∗‖t∗) and return ⊥.
• If c∗ is defined and c 6= c∗, then query H ′ on input (s∗‖t∗)⊕ 1 and return ⊥.
• If c∗ is not defined then query H ′ on a random input and return ⊥.
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We show that two decryption algorithms Dec and Dec∗∗ return the same output with the same
number of queries to the random oracle H ′. For given ciphertext (c, d):

1. If c /∈ Im f , then both decryption algorithms return ⊥ and query the random oracle H ′ on
a random input or on input (s∗‖t∗)⊕ 1.

2. If c ∈ Im f and c∗ is defined. Let (ŝ, t̂) := f−1(c). The decryption algorithm does as
follows:

• If H ′(ŝ‖t̂) = d, then both decryption algorithms return the same output and query
H ′ on input (ŝ‖t̂).

• If H ′(ŝ‖t̂) 6= d and c 6= c∗, then both algorithms return ⊥ and query the random
oracle H ′ on an input different from (s∗‖t∗).

• If H ′(ŝ‖t̂) 6= d and c = c∗, then both algorithms return ⊥ and query the random
oracle H ′ on input (s∗‖t∗).

3. If c ∈ Im f and c∗ is not defined:

• If H ′(ŝ‖t̂) 6= d, then both algorithms return ⊥ and query the random oracle H ′ on
an input.

• If H ′(ŝ‖t̂) = d, then both decryption algorithms return the same output and query
H ′ on input (ŝ‖t̂).

By combining all the inequalities from the proof, we can conclude that:

Pr[1← Game 0] ≤ 1/2 + neg(n).

Since our security proof does not depend on the bit padding, the message space can be extended
to the set {0, 1}n+k1 .
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