
On the Efficiency of FHE-based Private Queries?

Myungsun Kim 1, Hyung Tae Lee 2, San Ling 2, and Huaxiong Wang 2

1 Department of Information Security
The University of Suwon, South Korea

msunkim@suwon.ac.kr
2 Division of Mathematical Sciences

School of Physical & Mathematical Sciences
Nanyang Technological University, Singapore
{hyungtaelee, lingsan, hxwang}@ntu.edu.sg

Abstract. Private query processing is a very attractive problem in the fields of both cryptography
and databases. In this work, we restrict our attention to the efficiency aspect of the problem,
particularly for basic queries with conditions on various combinations of equality. Without loss
of generality, these conditions can be regarded as a Boolean function, and this Boolean function
can then be evaluated at ciphertexts produced by a fully homomorphic encryption (FHE) scheme
without decryption. From the efficiency perspective, the remaining concern is to efficiently test the
equality function without severely downgrading the performance of FHE-based querying solutions.

To this end, we first analyze the multiplicative depth required for an equality test algorithm with
respect to the plaintext space inhabited by general FHE schemes. The primary reason for this
approach is that given an equality test algorithm, its efficiency is measured in terms of the mul-
tiplicative depth required to construct its arithmetic circuit expression. Indeed, the implemented
equality test algorithm dominates the entire performance of FHE-based query solutions, apart from
the performance of the underlying FHE scheme. Then, we measure the multiplicative depth con-
sidering an FHE scheme that takes an extension field as its plaintext space and that supports the
depth-free evaluation of Frobenius maps. According to our analysis, when the plaintext space of
an FHE scheme is a field of characteristic 2, the equality test algorithm for `-bit messages requires
the lowest multiplicative depth dlog `e. Furthermore, we design a set of private query protocols
for conjunctive, disjunctive, and threshold queries based on the equality test algorithm. Similarly,
applying the equality test algorithm over F2` , our querying protocols require the minimum depths.
More specifically, a multiplicative depth of dlog `e+dlog (1 + ρ)e is required for conjunctive and dis-
junctive queries, and a depth of dlog `e+2dlog (1 + ρ)e is required for threshold conjunctive queries,
when their query conditions have ρ attributes to be compared. Finally, we provide a communication-
efficient version of our solutions, though with additional computational costs, when an upper bound
δ (0 ≤ δ ≤ 1) on the selectivity of a database is given. Consequently, we reduce the communication
cost from n to approximately bδnc ciphertexts with dlogne additional depth when the database
consists of n tuples.

Keywords: Encrypted databases, Homomorphic encryption, Private queries

1 Introduction

Group homomorphic encryption (GHE) schemes, such as the Paillier and ElGamal cryptosys-
tems, allow group operations to be performed on encrypted data without decryption. Many
applications, such as private SQL query processing, utilize GHE to prevent breaches of personal
data by strong attackers, such as corrupt employees. However, because GHE does not support
ring operations on ciphertext domains, there are intrinsic restrictions on the range of functions
that are directly computable over ciphertexts.

The past few years have witnessed significant progress in ring-based cryptosystems, reliev-
ing these limitations, since Gentry’s proposal [1] of fully homomorphic encryption (FHE). In
principle, FHE schemes can evaluate arbitrary functions over encrypted data. One of the most

? Published in IEEE Transactions on Dependable and Secure Computing (DOI: 10.1109/TDSC.2016.2568182).

promising applications of such schemes is the ability to realize a search functionality without los-
ing data confidentiality. The first concrete implementation of this functionality using a specific
FHE scheme was presented by Boneh et al. [2]. Their protocol allows users to submit an SQL
query and to obtain only a set of matching results. Kissner-Song’s set intersection protocol [3]
can be used as a sub-protocol through combination with Brakerski’s somewhat homomorphic
cryptosystem [4]. However, their protocol allows only the retrieval of queries with conjunctive
conditions.

Quite recently, Cheon et al. [5] attempted a different approach to obtain a more general
solution to the FHE-based search problem. The basic idea is to find a predicate to efficiently
represent a search condition (e.g., equality test and greater-than comparison) and then to eval-
uate that predicate at each FHE ciphertext. It is obvious that the evaluation result is also an
encryption of one or zero. For instance, consider a predicate EQTest for testing the equality of
two ciphertexts, c1 and c2. If the plaintext of c1 is equal to that of c2, then EQTest outputs an
encryption of 1; otherwise, it outputs an encryption of 0.

Then, applying a few additional computations to the equality test produces only the search
result of interest. Consider a list of ciphertexts R̄ = {c1, . . . , cn}, where ci = E(ai) for a plaintext
message ai and an FHE encryption algorithm E. For a fixed value v, anyone can then compute

〈ci · EQTest(ci,E(v))〉ni=1 .

Under the assumption that a relation R(A) has a state r(R) = {a1, . . . , an} and that R̄ in
the clear is equal to r(R) as a set, the expression is semantically equivalent to the following
pseudo-SQL expression:

select ∗ from R where A = v.

Arguably, this FHE-based technique allows any SQL statement to be privately processed.

In their solution, the efficiency of the implemented predicates dominates the entire perfor-
mance of the query processing system. Of course, one may regard the efficiency of the underlying
FHE scheme as more important. This topic is of interest in its own right but is beyond our scope.
Thus, the next step naturally appears to be to explore efficient predicates for SQL query pro-
cessing, their performance, and their further optimization within an FHE context. These issues
were broadly addressed in Cheon et al.’s work. Still, we have identified several points that the
authors missed. The first is that Cheon et al.’s narrow choice for the plaintext domain does not
harmonize well with their goal of generality. Specifically, their work focused on the plaintext
domain F2. Of course, Cheon et al. also considered F2` , but the aim of such consideration was
to reduce the required multiplicative depth for an addition algorithm by applying the lazy carry
operation technique, and merely considered a small integer `. The reason for focusing on the
plaintext space is that the efficiency of a predicate is measured in terms of its multiplicative
depth in Boolean circuit form, which is, in turn, strongly related to the plaintext space.

The second is that the communication cost for search operations is exactly n times the ci-
phertext size, where n is the dataset size. Interestingly, although Boneh et al.’s protocol supports
only conjunctive queries, it returns a set of exactly matching results. Namely, for a database
of selectivity δ, the communication cost decreases to δn times the ciphertext size. We will thus
attempt to reduce the communication cost of the general solution by encoding the resulting
output as a polynomial.

Throughout the remainder of this work, we focus on the predicate for an equality test
because it can cover most basic SQL retrieval queries. However, we believe that our analysis
can also be extended to address the efficiency of different predicates, such as greater-than
comparisons and min/max computations on ciphertexts.

2

1.1 Our Results

In this work, our contributions are three-fold: (1) we analyze the multiplicative depth of an
equality test algorithm associated with the specific plaintext space of an FHE scheme, (2) we
design a series of private query techniques based on an equality test algorithm with the minimum
depth, and (3) finally, we devise an efficient variant of our solutions from the perspective of
communication cost on the server side. More concretely, we can rephrase these contributions as
follows.

– We analyze the multiplicative depth for running an equality test algorithm3 based on the
plaintext message space inhabited by the FHE schemes. We consider plaintext spaces of F2,
F2` , Fp, and Fp` , where p is prime and ` is a positive integer.
Specifically, we first demonstrate the minimum multiplicative depth for an equality test
with respect to the plaintext spaces. We then show how to reduce the required depth,
provided that we can adopt a means of Frobenius map evaluation whose computation does
not consume multiplicative depth. According to our analysis, when an FHE scheme takes a
plaintext space as a field of characteristic 2, the equality test algorithm requires the lowest
multiplicative depth.

– Based on an equality test algorithm, we design a set of private query processing protocols
for conjunctive, disjunctive, and threshold conjunctive queries. In addition, we investigate
the total multiplicative depth required for the protocols to function correctly.

– The key concept for achieving privacy in FHE-based query applications is to cause all ci-
phertexts whose corresponding plaintext do not satisfy a given condition to carry encryption
of 0 by multiplying by a zero encryption. As a trade-off, all resulting outputs must be sent
because it is impossible to know whether any particular output is an encryption of 0. Given
an upper bound δ on the selectivity of a database with n elements, we show that using
polynomial representations makes it possible to transmit only approximately δn ciphertexts
rather than n ciphertexts at the expense of an additional multiplicative depth of dlog ne.
Although an overhead of ciphertext expansion arises when using larger depth FHE schemes,
our improvement appears to perform sufficiently well in practice. According to our estima-
tion in Section 5, our proposed approach reduces the communication cost by about 80 %
when n = 220 and δ = 0.05.

1.2 Related Work

To our knowledge, few FHE-based private query solutions have been reported in the literature.
The primary reason for this lack is that the efficiency of known FHE schemes has been the
primary concern and these schemes are assumed to be far from practical usage. However, their
efficiency has been significantly improved by various researchers (e.g., [6, 7]).

Before the end of this section, it is worthwhile to briefly consider the available non-FHE-
based approaches for private query processing. We simply provide a short summary of the most
recent results. Of particular interest among these results are CryptDB [8] and its extension,
called Monomi [9]. These approaches involve the repeated application of cryptographic tools
(e.g., AES, PRF, OPE,4 and GHE) in different manners depending on the properties of the
data. Hence, it is difficult to estimate the security of their schemes in the cryptographic sense.
The cryptography literature also contains many intensive studies in this area. Searchable en-
cryption [10] is one leading example. One can also find examples based on private information

3 The equality test must be expressed in the form of a Boolean or arithmetic circuit prior to being employed in
real applications. We call a circuit representation of the equality predicate an equality test algorithm. However,
we will sometimes use the two terms interchangeably when no confusion can arise.

4 PRF and OPE are abbreviations for pseudorandom function and order-preserving encryption, respectively.

3

retrieval, predicate encryption, or oblivious RAM. However, none of them can achieve all desired
goals with only a single cryptosystem, as can be done in the FHE-based approach.

The structure. The remainder of the paper is organized as follows. In Section 2, we present
some background on the problem. Section 3 provides the detailed analysis of the multiplicative
depth of an equality test on each underlying plaintext space. Using this result, in Section 4, we
construct a set of private query protocols for various equality conditions. Section 5 shows how
to improve the communication cost of our work, followed by our conclusion in Section 6.

2 Basics and Definitions

Notation. Throughout the paper, dae (resp. bac) denotes the smallest (resp. largest) integer
that is larger (resp. smaller) than or equal to a real number a. For an integer a, [a] denotes the
set of positive integers from 1 to a. The cardinality of a set S is denoted by |S|. Let ā denote
an encryption of a plaintext message a, omitting its randomness. The set of positive integers is
denoted by Z+.

2.1 Fully Homomorphic Encryption

An FHE scheme, denoted by FHE = (Kg,E,D,Ev), is a quadruple of probabilistic polynomial-
time algorithms as follows.

– Key generation. This algorithm takes the security parameter λ and outputs a public en-
cryption key pk, a public evaluation key ek, and a secret decryption key sk. We write the
algorithm as (pk, ek, sk)← Kg(1λ) and assume that the public key specifies both the plain-
text space P and the ciphertext space C.

– Encryption. The algorithm ā ← Epk(a) takes the public key pk and a message a ∈ P and
outputs a ciphertext ā ∈ C.

– Decryption. The algorithm a∗ ← Dsk(ā) takes the secret key sk and a ciphertext ā and
outputs a message a∗ ∈ P.

– Homomorphic evaluation. The algorithm Ev takes the evaluation key ek, a function ϕ :
Pn → P, and a set of n ciphertexts ā1, . . . , ān and outputs a ciphertext āϕ.

FHE algorithm selection. FHE schemes (e.g., [11, 12]) that follow Gentry’s design philosophy
have fairly poor performance. A later series of results were proposed to address this concern. In
particular, Brakerski and Vaikuntanathan introduced the notion of leveled FHE, which allows
the evaluation of arbitrary arithmetic circuits of polynomial depth [13]. Following this proposal,
Brakerski, Gentry, and Vaikuntanathan (BGV) in [14] further presented a leveled FHE scheme
with significantly improved performance.

For certain performance-critical systems, we recommend somewhat homomorphic encryption
(SHE) if possible, but if circumstances do not permit this approach, an efficient leveled FHE
scheme should be considered while minimizing the multiplicative depth of the target algorithms.
Because an equality test algorithm can take as input a large plaintext message, the minimum
requirement for the implementation of a private query system is to use an efficient leveled FHE
scheme with depth-free automorphisms, and further optimization is recommended. (See the
HElib library [15]).

In principle our proposed protocols work by repeatedly invoking an equality test algorithm as
a sub-routine. Different from our choice, one may implement an algorithm for equality test based
on SHE. All currently existing SHE and (leveled) FHE schemes are constructed by following
Gentry’s strategy [1] that is to insert small noise into a ciphertext and so noise in a result of

4

the evaluation algorithm grows up. While the noise growth in SHE schemes is exponential in
the number of multiplications, that in leveled FHE schemes is polynomial. Thus a leveled FHE
is a better choice for efficient implementations of our protocols.

2.2 Polynomial Representation of Sets

Given a set, using its equivalent polynomial rather than the set itself is a standard technique in
cryptography, particularly in the privacy-preserving literature.

Let R be a ring. For a set S = {s1, s2, . . . , sn} whose elements are in R, a polynomial
representation of S is defined by

fS(x) =
∏
si∈S(x− si) ∈ R[x].

Freedman et al. [16] first introduced this representation for the construction of private set inter-
section protocols. Later, various related methods [3, 17] were proposed to ensure privacy while
efficiently addressing set-related problems.

3 Probing the Equality Test

An equality test algorithm (or circuit) is the primitive considered in this work and in other
FHE-based private query techniques. Its efficiency is directly related to the efficiency of its
higher applications. In this section, we evaluate the multiplicative depth to construct an efficient
equality test algorithm for application to encrypted data with various underlying plaintext
spaces.

Throughout this section, we use M to denote a native message space. We intentionally
distinguish this space from the plaintext space P associated with the public key of an FHE
scheme. In essence, the algebraic framework of FHE requires a ring P. Here, the key lies in
the definition of the native message space M. The general convention is to implicitly assume
a map that associates an element in M with a ring element in P. A typical example of M is
{0, 1}∗, and F2 is a typical example of the plaintext spaces used in most FHE schemes. Because
this work is focused on the plaintext space in relation to the multiplicative depth, it appears
preferable to address the native message space separately.

In addition, we prefer the term “algorithm” to the term “circuit” because the latter may
cause confusion for cryptographic hardware engineers. If there is no potential for confusion, the
reader may interchange the two terms.

3.1 Background

We first define an equality test algorithm for two encrypted data, denoted by EQTest(·, ·), as
follows: For messages a1, a2 ∈M,

EQTest(ā1, ā2) :=

{
1̄ if a1 = a2

0̄ otherwise.

This algorithm outputs an encryption of 1 if the two plaintexts of the input ciphertexts are the
same and an encryption of 0 otherwise.

3.2 Analysis of the Multiplicative Depth

We continue by constructing an EQTest algorithm using arithmetic circuits and present a step-
by-step evaluation of the multiplicative depth for this algorithm.

5

The Case over F2 For the case in which the plaintext space of an FHE scheme is F2 and
the native message space M is {0, 1}` for a fixed positive integer `, several works have already
evaluated the multiplicative depth required to perform the EQTest algorithm (e.g., [5, 18, 19]).

For a message ai = (ai`, . . . , ai1) ∈ {0, 1}`, let us define an encryption of ai in a bit-by-bit
manner, i.e., āi = (āi`, . . . , āi1). According to previous work, for given ciphertexts ā1 and ā2,
the EQTest algorithm can be realized by computing

EQTest(ā1, ā2) =
∧`
j=1

(
1̄ + ā1j + ā2j

)
because

∧`
j=1(1⊕ a1j ⊕ a2j) = 1 if and only if a1j = a2j for all j ∈ [`]. Here, ‘+’ represents the

addition of ciphertexts. Because ` multiplications between ciphertexts are required to compute
the EQTest algorithm as above, it consumes a multiplicative depth of dlog `e.

Supporting Lemmas on Finite Extension Fields In this subsection, we present several
theories to prepare for discussing plaintext spaces other than F2.

Henceforth, let p be a prime, and let ` ∈ Z+. We begin by introducing a new concept
regarding a relationship between a polynomial and a function defined over an extension field Fp` .

Definition 1 Let p be a prime, and let `, n ∈ Z+. For a function f : (Fp`)n → Fp`, we say
that a polynomial g is a polynomial expression of f if g(a1, . . . , an) = f(a1, . . . , an) for all
(a1, . . . , an) ∈ (Fp`)n.

The following lemma guarantees the existence and uniqueness of a polynomial expression
g of a function f : (Fp`)n → Fp` , under the restriction that the degree of g with respect to

each variable is at most p` − 1. This lemma is a generalization of Proposition 1 in [20], which
addresses the case of a finite prime field, i.e., ` = 1 in our case, and thus, the proof of this
lemma is a natural extension of that of Proposition 1 in [20].

Lemma 1 For any function f : (Fp`)n → Fp` with p, `, and n as above, there exists a unique

polynomial expression g of f whose degree is at most p` − 1 with respect to each variable.

Proof. To prove the existence of g, we define a polynomial ga(x) as ga(x) :=
∏n
i=1

(
1− (xi − ai)p

`−1
)

for any a = (a1, . . . , an) ∈ (Fp`)n and variables x = (x1, . . . , xn). Then, we have

ga(b) =

{
1 if a = b

0 otherwise

by Fermat’s Little Theorem on extension fields. We then define g(x) as g(x) :=
∑

a∈(F
p`

)n

ga(x)f(a).

We see that g(a) = f(a) for all a ∈ (Fp`)n and that the degree of g with respect to each xi is at

most p` − 1. Therefore, g is a polynomial expression of f .

To show the uniqueness of g, it is sufficient to consider the case in which f = 0. The proof
is by mathematical induction on n, the number of variables. We note that the zero polynomial
is a trivial polynomial expression of a zero function f .

(i) The case n = 1 is that for all a ∈ Fp` , because g(a) = f(a) = 0, the polynomial remainder
theorem states that (x−a) divides g(x). Hence, g(x) is the zero polynomial, or the degree of
g(x) should be at least p`. Therefore, g(x) is the zero polynomial and the uniqueness holds
for n = 1.

6

(ii) Suppose that the uniqueness holds in the case that the number of variables is at most n− 1.
Assume that for the zero function f defined on (Fp`)n, there exists a non-zero polynomial

ĝ(x1, . . . , xn) such that ĝ(a) = f(a) = 0 for all a ∈ (Fp`)n and its degree is at most p` − 1

with respect to each variable. Then, w.l.o.g, for some integer 0 ≤ k ≤ p` − 1, there exists a

non-zero polynomial ĝk ∈ Fp` [x1, . . . , xn−1] such that ĝ =
∑p`−1

j=0 ĝj(x1, . . . , xn−1) · xnj with
ĝj ∈ Fp` [x1, . . . , xn−1]. However, by considering ĝ as a polynomial of one variable xn, ĝ should
be the zero polynomial by the same reason in (i) and hence ĝk(x1, · · · , xn−1) should be equal
to the zero function as a function. Hence, there exists a non-zero polynomial expression ĝk
of the zero function of n−1 variables and this is a contradiction with the statement that the
uniqueness holds in the case that the number of variables is at most n− 1.

From (i) and (ii), the uniqueness is therefore proven by mathematical induction on n. �

We call the unique polynomial expression of a function f in Lemma 1 the minimal polynomial
expression of f . The following lemma shows that such a minimal polynomial expression has the
minimum total degree among all polynomial expressions of f . As implied above, Lemma 2 is a
generalization of Proposition 2 in [20]. We state the lemma below and provide a formal proof.

Lemma 2 For a function f : (Fp`)n → Fp` with p, `, and n as above, the minimal polynomial
expression of f has the minimum total degree among all polynomial expressions of f .

Proof. For a polynomial g, let deg(g) denote the total degree of g, and let degxi(g) denote the
degree of g with respect to a variable xi. Let g be the minimal polynomial expression of a function
f . Assume that a polynomial expression ĝ of f has the minimum total degree and that ĝ 6= g
as polynomials. Because of the uniqueness of the minimal polynomial expression, degxi(g) ≥ p`

for some i ∈ [n]. Additionally, because xi
p` = xi for each i by Fermat’s Little Theorem, we can

obtain a polynomial h such that h = ĝ as functions on
(
Fp`
)n

and degxi(h) < p` by repeatedly

replacing xi
p` with xi for all i ∈ [n]. Then, h = g because of the uniqueness property, and

deg(g) = deg(h) < deg(ĝ). Therefore, the minimal polynomial expression g has the minimum
total degree among all polynomial expressions of f . This completes the proof. �

The multiplicative depth required to evaluate a polynomial at FHE ciphertexts is determined
by the total degree of the polynomial. Lemma 2 states that in general, we can evaluate a function
with the minimum multiplicative depth by evaluating it in the form of the minimal polynomial
expression.

The Case over Fp` Keeping the lemmas in mind, we estimate the multiplicative depth for the
EQTest algorithm when the plaintext space P and the native message space M are both Fp` .

We first obtain the minimal polynomial expression of the EQTest function as follows:

g(x1, x2) = 1− (x1 − x2)p
`−1 =

{
1 if x1 = x2

0 otherwise.

Hence, the EQTest algorithm for M = Fp` can be realized by computing

EQTest(ā1, ā2) = g(ā1, ā2) = 1̄− (ā1 − ā2)p
`−1

for a1, a2 ∈ Fp` . We see that a multiplicative depth of dlog (p` − 1)e is required to perform the
EQTest algorithm in a näıve manner; this quantity is approximately equal to d` log pe.

7

Improvements We can further reduce the multiplicative depth to dlog (p− 1)e + dlog `e by
switching to an FHE scheme that consumes (almost) no depth to evaluate Frobenius maps.
For instance, the BGV FHE cryptosystem [14] and YASHE [21] consume no depth to evaluate
Frobenius maps; it consists of an exponentiation with exponent p when the BGV encryption
scheme and YASHE scheme take Fp` as their plaintext spaces. Using this property, we can
improve the multiplicative depth when performing exponentiation over FHE ciphertexts.

Assume that we are using an FHE scheme with the same condition as above; additionally,
assume that the FHE scheme may apply Frobenius maps while consuming no depth.

To compute āe, we first find the unique p-ary representation of e as e =
∑n

i=0 eip
i, where

ei ∈ Zp. Then, we evaluate āe as follows:

āe = ā
∑n
i=0 eip

i
=
∏n
i=0

(
āp

i
)ei

.

Because the computation of āp
i

is depth-free, this requires a multiplicative depth of at most
log (

∑n
i=1 ei) for first computing āp

i
and then multiplying āp

i
ei times for all 0 ≤ i ≤ n.

Furthermore, in the case of the EQTest algorithm, because p` − 1 can be divided by two
factors, (p − 1) and (p`−1 + · · · + p + 1), we can compute EQTest(ā1, ā2) with a multiplicative
depth of (dlog (p− 1)e+dlog `e) by first computing āp−1 and then computing an exponentiation
with the exponent (p`−1 + · · ·+ p+ 1) or vice versa.

Table 1. Comparison of the multiplicative depths required for EQTest(·, ·)

M P
Depth-free

Multiplicative depth
Frobenius

{0, 1}` F2 − dlog `e
Fp Fp − dlog (p− 1)e

F2` F2`
× `

O dlog `e

Fp` Fp`
× d` log pe
O dlog (p− 1)e+ dlog `e

M: the native message space, P: the plaintext space

In Table 1, we summarize the multiplicative depths required to perform the EQTest algorithm
with respect to the native message space and the plaintext space of an FHE scheme as well as the
availability of depth-free Frobenius map evaluation. Our analysis shows that when the plaintext
space is a field of characteristic 2, the depth required for the EQTest algorithm is dlog `e, and this
is the optimal choice among all (existing) plaintext spaces for FHE schemes. For example, when
the native message space is F232 or {0, 1}32, the EQTest algorithm consumes a multiplicative
depth of 5 when using FHE schemes whose plaintext space is either F2 or F232 .

4 Return to Private Query Processing

This section presents a series of private querying protocols to support conjunctive, disjunctive,
and threshold conjunctive queries and analyzes their required multiplicative depths.

To exploit the best result from Section 3, in Section 4 and Section 5, we assume that a
database was encrypted using an FHE scheme with a plaintext space of F2` for ` ∈ Z+, that
supports the depth-free evaluation of Frobenius maps. Henceforth, let p(x) be an irreducible
polynomial where F2` is isomorphic to F2[x]/(p(x)) and t ∈ F2` be a root of p(x).

8

Remark 1 We note that one may select an FHE scheme whose plaintext space is F2, because
the required multiplicative depth for an equality test algorithm for `-bit messages is also dlog `e
in this case. For our conjunctive and disjunctive query protocols, we can easily adapt such FHE
schemes and they consume the same multiplicative depth as the case where we use an FHE
scheme with the plaintext space F2`. However, for our threshold querying protocol, the server
has to evaluate a polynomial (denoted by g in our protocol in Section 4.2) defined over a field,
where the number of elements in a field is larger than the number of attributes in the threshold
condition, ρ. Since at least dlog ρe depth is required for addition and multiplication over such
a field, our threshold protocol with an FHE scheme whose plaintext space is F2, spends more
multiplicative depths than that with an FHE scheme whose plaintext space is F2`.

4.1 Background

Additional notation. Throughout Section 4 and Section 5, let D = ᾱ1‖ᾱ2‖ · · · ‖ᾱn be a
database encrypted using the assumed FHE scheme, where αi = (vi, wi1, . . . , wiτ) with vi, wij ∈
{0, 1}`−1 for i ∈ [n] and j ∈ [τ] and where ᾱi denotes a component-wise encryption of αi,
i.e., ᾱi = (v̄i, w̄i1, . . . , w̄iτ). For notational convenience, we will frequently use vi in place of αi.vi
and wij in place of αi.wij for i ∈ [n] and j ∈ [τ]. The reader may think of D as a collection of
n (τ + 1)-tuples and αi.wij (or wij) as the value of a key attribute.

For the correctness of our protocols, we assume that vi 6= 0 for all i ∈ [n]. To handle this
issue, we employ an FHE encryption scheme with the plaintext space F2` , not F2`−1 , and assume
that each vi is encoded into 1‖vi in advance, where a‖b denotes the concatenation of strings a
and b. Unless confusion arises, we omit encoding and decoding steps between vi and 1‖vi in our
protocols.

Message encoding into F2`. To encrypt an `-bit message a = (a`, . . . , a1) ∈ {0, 1}` us-
ing an FHE scheme with the plaintext space F2` , we must first encode the message a using∑`−1

i=0 ai+1t
i ∈ F2` . We can then write an encryption of the message a as follows:

ā := Epk

(∑`−1
i=0 ai+1t

i
)
.

4.2 Private Query Processing Protocols

The descriptions of our private query processing protocols follow. For completeness, we provide
a brief description of a correctness check and an evaluation of the total multiplicative depth for
each protocol along with a communication cost analysis on the server side.

Let J ⊆ [τ] be a set of indices such that |J | = ρ.

Conjunctive Queries We first show how to privately process a query with conjunctive con-
ditions. To this end, suppose that a client has an SQL code that requests all αi.vi’s such that
αi.wij = aj for j ∈ J and aj ∈ P. An example of such an SQL code5 is as follows: for a relation
R(V,W1, . . . ,Wτ) and for each encryption āj = E(aj),

select V from R where W1 = ā1 and · · · and Wρ = āρ.

Our protocol is described as follows:

5 It is assumed that a suitable transforming module is present on the client side and that the module takes as
inputs a plain SQL code and a set of data (e.g., a1, . . . , aρ) and outputs a transformed SQL code, as in the
example given above, by invoking the FHE encryption algorithm. Unless otherwise stated, by an SQL code,
we mean a properly transformed SQL code.

9

1. The client sends an SQL code with the where clause correctly encoded in the form of
conjunctive combinations of equality, i.e.,

∧
j∈J (αi.wij = aj).

2. Upon receiving the query, the server parses it and performs the following operations.

(a) Computes β̄ij = EQTest(w̄ij , āj) for i ∈ [n] and j ∈ J . Note that w̄ij = ᾱi.w̄ij .

(b) Computes γ̄i =
(∏

j∈J β̄ij

)
· v̄i for i ∈ [n]; hereafter, ‘·’ indicates the multiplication of

two ciphertexts. Note that ᾱi.v is written as v̄i for short.

(c) Sends {γ̄1, γ̄2, . . . , γ̄n} to the client.

3. The client obtains γi by decrypting γ̄i for i ∈ [n].

Correctness. From the properties of the EQTest algorithm, βij = 1 if αi.wij = aj and βij = 0
if αi.wij 6= aj . Hence, γi = αi.vi if αi.wij = aj for all j ∈ J ; otherwise, γi = 0. Therefore,
the client obtains only αi.vi such that αi.wij = aj for all j ∈ J . This means that our protocol
functions correctly.

Complexity. For Step 2 (b), the protocol requires a multiplicative depth of dlog(1 + ρ)e, and
thus, the total multiplicative depth amounts to dlog `e+ dlog(1 + ρ)e. The communication cost
on the server side is n ciphertexts using the employed FHE scheme.

Remark 2 Here, we cannot achieve query privacy that requires hiding from an attacker whose
query has been submitted to the server. Query privacy appears to be a stronger requirement than
data privacy, ensuring the confidentiality of data returned in response to a submitted query. The
current version of our solutions satisfies only the latter data privacy requirement.

In addition, the server should know the client’s public key pk and evaluation key ek to
generate ciphertexts and perform evaluation on ciphertexts, respectively. Hence, our solutions
in this paper cannot achieve the clients’ anonymity requirement.

Disjunctive Queries We next consider a disjunctive query that requests αi.vi’s such that
there is at least one j that satisfies αi.wij = aj among all j ∈ J . The protocol description
follows.

1. The client sends an SQL code with a disjunctive where condition, i.e.,
∨
j∈J (αi.wij = aj).

2. Upon receiving the request, the server parses it and performs the following operations.

(a) Computes β̄ij = (1̄− EQTest(w̄ij , āj)) for i ∈ [n] and j ∈ J .

(b) Computes γ̄i =
(

1̄−
∏
j∈J β̄ij

)
· v̄i for i ∈ [n].

(c) Sends {γ̄1, γ̄2, . . . , γ̄n} to the client.

3. The client obtains γi by decrypting γ̄i for i ∈ [n].

Correctness. By the same argument as above, βij = 1 if αi.wij 6= aj and βij = 0 if αi.wij = aj
using an output of the EQTest algorithm. Hence, γi = 0 if αi.wij 6= aj for all j ∈ J , and
γi = αi.vi otherwise. Therefore, the client obtains αi.vi’s such that there is at least one j that
satisfies αi.wij = aj among all j ∈ J . Hence, the correctness of the protocol is proven.

Complexity. As in the conjunctive case, the protocol requires a multiplicative depth of dlog (1 + ρ)e
for Step 2 (b), and thus, the total multiplicative depth amounts to dlog `e + dlog(1 + ρ)e. The
communication cost on the server side is also n ciphertexts of the employed FHE scheme.

10

Threshold Conjunctive Queries Finally, we discuss a protocol for a threshold conjunctive
query that requests αi.vi’s such that the number of j’s satisfying αi.wij = aj is greater than T
for j ∈ J and a prefixed threshold T ∈ Z+. For the correctness of the proposed protocol, we
assume that ` > ρ.

Our protocol for this special type of conjunctive query is as follows.

1. The client sends an SQL code with a threshold conjunctive condition in its where clause,
i.e., |{j ∈ J : αi.wij = aj}| > T .

2. Upon receiving the query, the server parses it and performs the following operations.

(a) Finds a polynomial g ∈ P[x] of deg(g) = ρ such that g(tκ) = 1 for T < κ ≤ ρ and
g(tκ) = 0 for 0 ≤ κ ≤ T .

(b) Computes β̄ij = EQTest(w̄ij , āj) · (t+ 1) + 1̄ for i ∈ [n] and j ∈ J .

(c) Computes ζ̄i =
∏
j∈J β̄ij and then γ̄i = g(ζ̄i) · v̄i for i ∈ [n].

(d) Sends {γ̄1, γ̄2, . . . , γ̄n} to the client.

3. The client obtains γi by decrypting γ̄i for i ∈ [n].

Correctness. From the properties of the EQTest algorithm over the plaintext domain of char-
acteristic 2, βij = t if αi.wij = aj and βij = 1 otherwise. Hence, ζi = tκ for κ = |{j ∈ J :
αi.wij = aj}|. Therefore, if κ > T , then g(ζi) = 1; otherwise, g(ζi) = 0 by the definition of the
polynomial g. This proves the correctness of our protocol.

Complexity. The protocol requires a multiplicative depth of dlog ρe to compute ζ̄i and a
multiplicative depth of dlog (1 + ρ)e to evaluate g and then multiply by v̄i. Hence, our protocol
requires a total multiplicative depth of dlog `e+ 2dlog (1 + ρ)e, and the communication cost to
the server is n ciphertexts using the employed FHE scheme.

We generalize the results of our depth analyses from the above sections in Table 2.

Table 2. The multiplicative depth for each query type†

Query type Multiplicative depth‡

Conjunction dlog `e+ dlog (1 + ρ)e
Disjunction dlog `e+ dlog (1 + ρ)e
Threshold Conjunc-
tion

dlog `e+ 2dlog (1 + ρ)e

†M = {0, 1}`−1, P = F2`

‡ρ: the number of attributes in the condition

5 A Communication-efficient Improvement

In this section, we devise a method to reduce the communication overhead from n to bδnc
ciphertexts, at the cost of additional computations, when an upper bound δ on the selectivity
of a database D of n tuples is given.6

Following Boneh et al.’s scheme, our strategy takes advantage of polynomial representations.
Recall that given a set S = {s1, s2, . . . , sn}, we can construct a polynomial representation of S,

6 The selectivity is defined as the ratio of the number of records that satisfy a given condition with respect to
the total number of records in D, and thus, we assume that an upper bound on the selectivity of a database
satisfies 0 ≤ δ ≤ 1.

11

denoted by fS(x), as follows:

fS(x) =
∏
si∈S(x− si).

Let Γ̄ = {γ̄1, γ̄2, . . . , γ̄n} be the set of elements that the server obtains at the end of our
protocols described in Section 4, and let Γ = {γ1, γ2, . . . , γn} be the set of plaintexts γi corre-
sponding to the ciphertexts γ̄i ∈ Γ̄ . If we assume that the upper bound on the selectivity of
the database D is δ, then there are at most bδnc ciphertexts of nonzero elements in the set Γ̄ .
Without loss of generality, we assume that γi = αi.vi 6= 0 for 1 ≤ i ≤ m and that γi = 0 for
m < i ≤ n, where m ≤ bδnc.

Next, consider a polynomial representation of Γ :

fΓ (x) =
∏
γi∈Γ (x− γi).

We see that the polynomial fΓ (x) can be represented by a product of two polynomials xn−bδnc

and gΓ (x), where

gΓ (x) =
∏

1≤i≤bδnc(x− γi),

because γi = 0 for all bδnc < i ≤ n. Letting fΓ (x) =
∑n

i=0 fix
i and gΓ (x) =

∑bδnc
i=0 gix

i, we can
write that fi+(n−bδnc) = gi for 0 ≤ i ≤ bδnc and fi = 0 for 0 ≤ i ≤ (n− bδnc).

In fact, it is not difficult to reduce the communication overhead using the property described
above. For a given set Γ̄ , the server first computes its polynomial representation

fΓ̄ (x) =
∏

1≤i≤n(x− γ̄i) =
∑n

i=0 f̄ix
i

and sends the client the encrypted coefficients f̄i, where (n − bδnc) ≤ i < n, rather than the
set of all γ̄i’s. Note that the server does not need to send f̄n because fn is trivially 1. After
decrypting the sequence of encrypted coefficients, the client reconstructs a polynomial fΓ and
computes the roots of the polynomial using a root-finding algorithm on an extension field F2`

in [22], whose computational complexity is Õ(n`2) to find all roots of a degree-n polynomial
over a finite field Fp` of small characteristic p. Computing f̄i’s on the server side requires a
multiplicative depth of dlog ne in addition.

Estimation with selecting concrete parameters. Here, we compare the communication
costs of our protocols under a specific FHE scheme instantiated with concrete parameters.
We chose the BGV scheme as an underlying FHE scheme which allows SIMD technique, and
set the native message space M and the plaintext space P to {0, 1}31 and F232 , respectively.
In our estimation, the basic protocols in Section 4 use the BGV scheme instantiated with a
multiplicative depth of 20. On the other hand, the protocol in Section 5 uses new instances
with multiplicative depths of 30 and 40 for the databases of n = 210 and n = 220 elements,
respectively. Specifically, the concrete parameter values used in our computations may be found
in reference [23]. Applying SIMD technique, the total ciphertext size is approximately 2 ×
(n/32)× deg(Φ)×dlogQe bits, where the ciphertext space of the lowest level is ZQ[x]/〈Φ〉 for a
polynomial Φ. We note that deg(Φ) is selected as n in Table 2 of [23]. For more details on the
parameter selections, see Section 3 in the reference [23].

Table 3 presents a comparison of communication costs with respect to the number of elements
n and an upper bound δ on the selectivity. Note that for each case, the parameters in the table
allow up to 32767 (= 215 − 1) attributes in conjunction and disjunction queries and up to
127 (= 27 − 1) attributes in threshold conjunction queries. This table demonstrates that our
communication efficiency-oriented protocol reduces the communication cost by approximately
88% (resp. 77%) for n = 210 and 80% (resp. 59%) for n = 220 when δ = 0.05 (resp. δ = 0.10).

12

Table 3. Comparison of Communication Costs§

n δ

Basic Improved

(B)/(A)
Protocol Protocol

(Section 4) (Section 5)

(A) (B)

210 0.05
41.42 MB

4.77 MB 11.52 %

0.10 9.55 MB 23.05 %

220 0.05
42.42 GB

8.70 GB 20.05 %

0.10 17.39 GB 40.99 %
§M = {0, 1}31, P = F232

Remark 3 There has been a lot of work to evaluate an upper bound of selectivity on the server
side (see references in [24]). However, the server in our setting cannot perform such a selectiv-
ity estimation. A rudimentary solution is to make the client measure a bound of selectivity by
issuing an aggregate query periodically. Specifically, the client sends to the server a count query
with a proper predicate where the count function can be easily obtained by a sum of evaluating
the predicate on ciphertexts. (In our setting, we may obtain such a protocol by requesting an
encrypted sum of (

∏
βij)’s (resp., g(δij)’s) to the server in conjunctive and disjunctive (resp.,

threshold) protocols. For integer addition evaluation, we can apply the technique in [5] by re-
garding the plaintext space as {0, 1}. It takes a total multiplicative depth of d1 + log (n− 2)e,
and the communication cost of dlog ne ciphertexts.) As a result, the client finds the number of
tuples which pass the predicate and the total number of tuples and so he learns a selectivity ratio
at this point. Cumulating these ratios will allow the client to predict a more precise selectivity.

6 Concluding Remarks

We analyzed the multiplicative depth required for private query protocols for application to
databases encrypted using an FHE scheme. For this purpose, we first evaluated the depth re-
quired for an equality test algorithm with respect to the native message and plaintext spaces of
currently available FHE schemes. Our analysis demonstrated that the equality test algorithm
consumes the minimum multiplicative depth when the plaintext space of the FHE scheme is a
field of characteristic 2. Then, we developed a series of private query processing protocols for
conjunctive, disjunctive, and threshold queries on encrypted databases. Furthermore, we ana-
lyzed the multiplicative depth and communication cost for each protocol. Finally, we designed
a method of reducing the communication overhead from n to bδnc ciphertexts when we know
δ, the upper bound on the selectivity of a database.

Acknowledgments

The authors would like to thank the anonymous reviewers for their helpful comments. Myungsun
Kim was supported by the Basic Science Research Program through the National Research
Foundation of Korea (NRF) funded by the Ministry of Education (2014-R1A1A2058377). This
work was partially done while visiting Nanyang Technological University, Singapore. Hyung Tae
Lee, San Ling, and Huaxiong Wang were supported by Research Grant TL-9014101684-01 and
the Singapore Ministry of Education under Research Grant MOE2013-T2-1-041.

13

References

1. C. Gentry, “Fully homomorphic encryption using ideal lattices,” in Symposium on Theory of Computing
Conference (STOC) 2009, M. Mitzenmacher, Ed. ACM, 2009, pp. 169–178.

2. D. Boneh, C. Gentry, S. Halevi, F. Wang, and D. J. Wu, “Private database queries using somewhat homomor-
phic encryption,” in ACNS 2013, ser. LNCS, M. J. J. Jr., M. E. Locasto, P. Mohassel, and R. Safavi-Naini,
Eds., vol. 7954. Springer, 2013, pp. 102–118.

3. L. Kissner and D. X. Song, “Privacy-preserving set operations,” in Advances in Cryptology - CRYPTO 2005,
ser. LNCS, V. Shoup, Ed., vol. 3621. Springer, 2005, pp. 241–257.

4. Z. Brakerski, “Fully homomorphic encryption without modulus switching from classical gapsvp,” in Advances
in Cryptology - CRYPTO 2012, ser. LNCS, R. Safavi-Naini and R. Canetti, Eds., vol. 7417. Springer, 2012,
pp. 868–886.

5. J. H. Cheon, M. Kim, and M. Kim, “Search-and-compute on encrypted data,” in Financial Cryptography
and Data Security, 2015, pp. 142–159.

6. C. Gentry, S. Halevi, and N. P. Smart, “Homomorphic evaluation of the AES circuit,” in Advances in
Cryptology - CRYPTO 2012, ser. LNCS, R. Safavi-Naini and R. Canetti, Eds., vol. 7417. Springer, 2012,
pp. 850–867.

7. J. Coron, T. Lepoint, and M. Tibouchi, “Scale-invariant fully homomorphic encryption over the integers,” in
Public-Key Cryptography - PKC 2014, ser. LNCS, H. Krawczyk, Ed., vol. 8383. Springer, 2014, pp. 311–328.

8. R. A. Popa, C. M. S. Redfield, N. Zeldovich, and H. Balakrishnan, “CryptDB: protecting confidentiality with
encrypted query processing,” in SOSP 2011, T. Wobber and P. Druschel, Eds. ACM, 2011, pp. 85–100.

9. S. Tu, M. F. Kaashoek, S. Madden, and N. Zeldovich, “Processing analytical queries over encrypted data,”
PVLDB, vol. 6, no. 5, pp. 289–300, 2013.

10. D. X. Song, D. Wagner, and A. Perrig, “Practical techniques for searches on encrypted data,” in IEEE
Symposium on Security and Privacy 2000. IEEE Computer Society, 2000, pp. 44–55.

11. C. Gentry and S. Halevi, “Implementing Gentry’s fully-homomorphic encryption scheme,” in Advances in
Cryptology - EUROCRYPT 2011, ser. LNCS, K. G. Paterson, Ed., vol. 6632. Springer, 2011, pp. 129–148.

12. J. Coron, A. Mandal, D. Naccache, and M. Tibouchi, “Fully homomorphic encryption over the integers with
shorter public keys,” in Advances in Cryptology - CRYPTO 2011, ser. LNCS, P. Rogaway, Ed., vol. 6841.
Springer, 2011, pp. 487–504.

13. Z. Brakerski and V. Vaikuntanathan, “Efficient fully homomorphic encryption from (standard) LWE,” in
Foundations of Computer Science (FOCS) 2011, R. Ostrovsky, Ed. IEEE Computer Society, 2011, pp.
97–106.

14. Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(Leveled) fully homomorphic encryption without boot-
strapping,” in Innovations in Theoretical Computer Science (ITCS) 2012, S. Goldwasser, Ed. ACM, 2012,
pp. 309–325.

15. S. Halevi and V. Shoup, “HElib-An implementation of homomorphic encryption,”
https://github.com/shaih/HElib/, 2014.

16. M. J. Freedman, K. Nissim, and B. Pinkas, “Efficient private matching and set intersection,” in Advances in
Cryptology - EUROCRYPT 2004, ser. LNCS, C. Cachin and J. Camenisch, Eds., vol. 3027. Springer, 2004,
pp. 1–19.

17. K. B. Frikken, “Privacy-preserving set union,” in Applied Cryptography and Network Security (ACNS) 2007,
ser. LNCS, J. Katz and M. Yung, Eds., vol. 4521. Springer, 2007, pp. 237–252.

18. J. H. Cheon, M. Kim, and K. Lauter, “Homomorphic computation of edit distance,” in Financial Cryptog-
raphy and Data Security, 2015, pp. 194–212.

19. G. S. Çetin, Y. Doröz, B. Sunar, and E. Savas, “Depth optimized efficient homomorphic sorting,” in Progress
in Cryptology - LATINCRYPT 2015, ser. LNCS, K. E. Lauter and F. Rodŕıguez-Henŕıquez, Eds., vol. 9230.
Springer, 2015, pp. 61–80.

20. S. Kaji, T. Maeno, K. Nuida, and Y. Numata, “Polynomial expressions of carries in p-ary arithmetics,”
CoRR, vol. abs/1506.02742, 2015. [Online]. Available: http://arxiv.org/abs/1506.02742

21. J. W. Bos, K. E. Lauter, J. Loftus, and M. Naehrig, “Improved security for a ring-based fully homomorphic
encryption scheme,” in IMA International Conference on Cryptography and Coding (IMACC) 2013, ser.
LNCS, M. Stam, Ed., vol. 8308. Springer, 2013, pp. 45–64.

22. V. Shoup, “A fast deterministic algorithm for factoring polynomials over finite fields of small characteristic,”
in International Symposium on Symbolic and Algebraic Computation (ISSAC) 1991, S. M. Watt, Ed. ACM,
1991, pp. 14–21.

23. J. van de Pol and N. P. Smart, “Estimating key sizes for high dimensional lattice-based systems,” in IMA
International Conference on Cryptography and Coding (IMACC) 2013, ser. LNCS, M. Stam, Ed., vol. 8308.
Springer, 2013, pp. 290–303.

24. V. Markl, N. Megiddo, M. Kutsch, T. M. Tran, P. J. Haas, and U. Srivastava, “Consistently estimating the
selectivity of conjuncts of predicates,” in Very Large Data Bases (VLDB) 2005, K. Böhm, C. S. Jensen, L. M.
Haas, M. L. Kersten, P. Larson, and B. C. Ooi, Eds. ACM, 2005, pp. 373–384.

14

