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1 Introduction

A stream cipher generates a long pseudo-random keystream from a short se-

cret key to encrypt a message by bitwise XOR operation with the keystream.

Since the sender and the receiver share the same secret key and the keystream

generation algorithm is deterministic, the identical keystream is generated at

the receiver side, which when bitwise XOR-ed with the ciphertext recovers the

message.

For a stream cipher, if there is an event such that the probability of oc-

currence of the event is different from the same event in case of a uniformly

random sequence of bits, the event is said to be biased. If there exists a biased

event based only on the bits of the keystream sequence, then such an event

gives rise to a distinguisher for the cipher. A distinguisher can computationally

differentiate between the keystream output of the stream cipher and a truly

random sequence of bits.

Very often, a distinguisher is directly used in mounting a message recovery

attack on stream ciphers. A famous example is the attack [20] on broadcast

RC4. Let Zr be the r-th keystream byte of RC4 and N = 256 be the standard

state array size of RC4. It was proved in [20] that Pr(Z2 = 0) ≈ 2
N for

RC4, whereas the same event in an uniformly random bitstream would occur

with probability 1
N . In the broadcast scenario, the same plaintext is encrypted

using multiple secret keys, and then the ciphertexts are broadcast to a group

of recipients, possessing the corresponding secret keys. For every encryption

key, the second message byte M2 has the probability ≈ 2
N to be XOR-ed with

0, and the probability ≈ 1
N to be XOR-ed with each of the other possible bytes

(subject to the obvious constraint that the probabilities sum up to 1). Thus, a

fraction of 2
N of the second ciphertext bytes C2 are expected to have the same

value as M2, and thus the most frequent value of C2 across all the samples is

the mostly likely value of M2. The above approach has been adopted by [14]

in mounting message recovery attack on every individual message bytes 3 to

255 based on the distinguishers for RC4 keystream Zr, 3 ≤ r ≤ 255. Later, the

work [1] considered the collection of all the biases in all the keystream byte

together to perform joint message recovery. Similar message recovery attacks

can be performed based on the distinguishers on other stream ciphers as well

such as HC-128, Spritz etc. [18,24,5]. However, as case study, we focus on RC4

only, as its description is comparatively shorter and easier.

The efficiency of a distinguisher is measured by two complexities - the

sample complexity, i.e., the number of samples (of the involved keystream
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bits) required to identify the bias, and the data complexity, i.e., the number

of keystream bits required to identify the bias. For an attacker to successfully

identify and exploit a bias, one requires to inspect a certain length of the

output sequence so that one can collect sufficient number of samples for the

event under consideration. The less the number of samples or keystream bits

required to mount the distinguisher or to perform the message recovery attack,

the more is the efficiency of the distinguisher or the message recovery attack.

In general, the sample complexity and the data complexity need not be the

same. For many distinguishers, the keystream from one single key can be used

to mount the attack, but it is also possible to use different keystreams, with new

IV. For the message recovery attack, one always must use different keystreams

since one needs to look at one message bit/byte. Moreover, the biased bit/byte

might not be in the start of the sequence and this may affect the amount of

keystream required as well. Without loss of generality, in this paper we focus

on the sample complexity, since the goal is to compare the complexities of a

distinguishing attack and the corresponding message recovery attack. In the

rest of the paper, whenever we use the term data complexity, it actually means

sample complexity.

In all the above examples, the number of samples required to mount the

message recovery attack is considered to be of the same order as that of the

underlying distinguisher. However, we observe that in practice it is not always

so. For example, for the broadcast attack on RC4 second byte, the complexity

of message recovery attack for a success probability of 70% is around 8 times

higher than that of the distinguishing attack for the same success probability.

In this paper, we perform a rigorous analysis to understand this gap between

the data complexities of distinguishing attack and message recovery attack.

1.1 Our Contributions

We observe that there exist different approaches to estimate the data com-

plexity of a distinguisher, yielding different expressions, albeit sometimes one

may be a crude approximation of the other. Moreover, the data complexity

of a message recovery attack based on the distinguisher is usually taken to be

the same (or of the same order) as the distinguisher itself, though in practice

it is not necessarily true in all scenarios.

Our current work has the following contributions.

1. In Section 2, we review the different approaches used in the literature to es-

timate the data complexity and point out their connections and applicable
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scenarios. To our knowledge, such an expository coverage of the differ-

ent approaches has not been done so far. Wherever possible, we provide

short proofs of the results to make this exposition self-sufficient. For longer

proofs, we cite appropriate references.

2. In Section 3 and 4, we perform a rigorous statistical analysis of the message

recovery attack and show that in practice there is a significant gap between

the data complexities of a message recovery attack and the underlying

distinguishing attack. This gap is not necessarily determined by a constant

factor as a function of the false positive and negative rate, as one would

expect. Rather, this gap is also a function of the number of samples of

the distinguishing attack. Note that all the results (lemmas and theorems)

except Lemma 7 in Section 3 and 4 are our original contributions.

Though we have focused on one biased keystream byte in our analysis, the

result is directly applicable to biased sum of keystream bits from which

biased sum of message bits can be recovered, or more generally, it is also

applicable to biased vector of keystream bits from which the corresponding

biased vector of message bits can be recovered.

3. In Section 5, we perform a case study on RC4 stream cipher to demonstrate

that the typical message complexities inferred in the literature are but

under-estimates and the actual estimates are quite larger. We choose RC4

as our case study, as it has several well-known biases in the keystream and

serves as a good model to illustrate our theoretical analysis.

1.2 Notations

Before going into technical discussion, we list down some notations frequently

used in this article below.
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M : The message space (the set of all possible bytes)

P : The distribution of the keystream bytes overM
P ⊕m : Distribution of the random variable X ⊕m, where X ∼ P and m ∈ M

pz : Probability of the byte z in the distribution P
P(k) : The distribution of vector of k keystream bytes overMk

p(k)z : Probability of the k-byte vector z in the distribution P(k)

Q : The prior distribution of the plaintext bytes overM
qz : Probability of the byte z in the distribution Q

Q(k) : The prior distribution of vector of k plaintext bytes overMk

q(k)z : Probability of the k-byte vector z in the distribution Q(k)

Dn : n-dimensional discrete distribution over some countable set (same is Pn, Qn)

EP [X] : Expectation of the random variable X under distribution P

VP (X) : Variance of the random variable X under distribution P

σP (X) : Standard deviation of the random variable X under distribution P

Rc : Complement of a set R
Ber(p) : Bernoulli distribution with success probability p

B(n, p) : Binomial distribution with n trials and success rate p

N (µ, σ2) : Normal distribution with mean µ and variance σ2

Φ : Distribution function of standard normal distribution

φ : Density of standard normal distribution

AN : Asymptotic Normal distribution
P−→ : Convergence in probability [15]
D−→ : Convergence in distribution [15]
a.s.−→ : Almost sure Convergence [15]

diag(v) : Diagonal matrix with diagonal being the vector v

2 Revisiting Data Complexity of Distinguishing Attacks

In this section, we revisit the existing techniques for estimating the data com-

plexity of a distinguisher and point out their relations and subtleties.

2.1 Distance between Expectations

This approach has been used in [20]. We revisit their main result below.

Theorem 1 Suppose the event e happens in distribution P0 with probability

p and in distribution P1 with probability p(1 + q). Then for small p and q,

O( 1
pq2 ) samples suffice to distinguish P0 from P1 with a constant probability

of success.

Proof Suppose we observe a random variable Xe specifying the number of

occurrences of e in n samples. We are to make a decision whether the samples

come from P0 or P1. Then, Xe have binomial distributions with parameters

(n, p) and (n, p(1+q)) under P0 and P1 respectively. Its expectations, variances

and standard deviations are (assuming both p, q � 1) as follows.

EP0
[Xe] = np,EP1

[Xe] = np(1 + q),
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VP0(Xe) = np(1− p) ≈ np,
VP1(Xe) = np(1 + q)(1− p(1 + q)) ≈ np(1 + q),

σP0(Xe) =
√
VP0(Xe) ≈

√
np,

σP1
(Xe) =

√
VP1

(Xe) ≈
√
np(1 + q) ≈ √np.

The authors of [20] consider the size of n that implies a difference of at least

one standard deviation between the expectations of the two distributions. So,

we shall infer that the underlying distribution of Xe is P1, if the difference

between Xe and np is at least one standard deviation, i.e.

Xe − np ≥
√
np.

Hence, if the true sample generating distribution is P1, and α denotes the

failure probability, then our probability of success is given by

1− α = Pr(Xe − np ≥
√
np|P1)

= Pr

(
Xe − np(1 + q)

√
np

≥ −q√np+ 1|P1

)
≈ 1− Φ(−q√np+ 1) = Φ(q

√
np− 1).

And therefore to get a success probability 1 − α, we have to get number of

samples

n ≥ (Φ−1(1− α) + 1)
2

pq2
.

ut

For the sake of completeness, we present the algorithm for the above dis-

tinguisher below:

Algorithm Distinguisher 1

Xe ← Number of occurrences of the event e in n trials

if Xe ≥ np+
√
np

Infer the distribution is P1;

else

Infer the distribution is P0;

Another important thing to note is the advantage of the above distinguisher:

Advantage = Pr(Inferred to be P1|P1)− Pr(Inferred to be P1|P0)

= Pr(Xe − np ≥
√
np|P1)− Pr (Xe − np ≥

√
np|P0)

= 1− α− Pr

(
Xe − np√

np
≥ 1|P0

)
≈ 1− α− (1− Φ(1)) = Φ(1)− α.

Note that when at least one of p � 1 and q � 1 does not hold, the above

approach does not work.
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2.2 Simple Hypothesis Testing

A more rigorous analysis appeared in [6] that gets rid of the restriction p� 1

and q � 1. We revisit this technique here.

Theorem 2 Suppose the event e happens in uniform random bitstream with

probability p and in keystream of a stream cipher with probability p(1+q). Then

the data complexity of the distinguisher with false positive and false negative

rates α and β is given by

n >

(
κ1
√

1− p+ κ2
√

(1 + q) (1− p(1 + q))
)2

pq2
,

where Φ(−κ1) = α and Φ(κ2) = 1− β.

Proof Consider an event e with Pr(e) = p∗, while observing samples of keystream

words of a stream cipher. Let Xr = 1, if the event e occurs in the r-th sample;

Xr = 0, otherwise. In other words, Pr(Xr = 1) = p∗ for all r. Thus,

Xr ∼ Ber(p∗).

If we observe n many samples, then

n∑
r=1

Xr ∼ B(n, p∗).

When Xr’s are independent and identically distributed (i.i.d.) random vari-

ables and n is large enough,

n∑
r=1

Xr ∼ N (np∗, np∗(1− p∗)) .

We are interested in testing the null hypothesis

H0 : p∗ = p(1 + q), q > 0,

against the alternative hypothesis

H1 : p∗ = p.

The objective is to find a threshold c in [np, np(1 + q)] such that

Pr

(
n∑
r=1

Xr ≤ c | H0

)
≤ α,
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i.e.,

Pr

(∑n
r=1Xr − np(1 + q)

σ1
≤ c− np(1 + q)

σ1
| H0

)
≤ α ⇐⇒ c ≤ np(1+q)−κ1σ1

and

Pr

(
n∑
r=1

Xr > c | H1

)
≤ β,

i.e.,

Pr

(∑n
r=1Xr − np

σ2
≥ c− np

σ2
| H1

)
≤ β ⇐⇒ c ≥ np+ κ2σ2,

where

σ2
1 = np(1 + q) (1− p(1 + q)) ,

σ2
2 = np(1− p),

Φ(−κ1) = α,

and Φ(κ2) = 1− β.

For such a c to exist, we need

np(1 + q)− κ1σ1 ≥ np+ κ2σ2, (1)

i.e.,

np(1 + q)− np > κ1σ1 + κ2σ2, (2)

This gives,

n >

(
κ1
√

1− p+ κ2
√

(1 + q) (1− p(1 + q))
)2

pq2
. (3)

ut

In the special case, when both p, q � 1, the numerator of Equation (3)

is approximately equal to (κ1 + κ2)2, and one needs at least (κ1+κ2)
2

pq2 many

samples to perform the test.

Table 1 gives the sample complexity, false positive and negative rates and

the success probability for some selected values of k1 and k2.

Since 0.6915 > 0.5 is a reasonably good success probability, O( 1
pq2 ) many

samples are enough to mount a distinguisher and this threshold is indeed used

as a benchmark to compare the data complexities of different distinguishing

attacks in practice.

A question now remains in the above distinguisher about how to choose

the cut-off point c. Theoretically, any value between the limits given in (1) will
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Table 1 Sample complexity and success probability for distinguishers.

κ1 κ2 Number of samples α β Success probability(1− α) %

0.5 0.5 1/pq2 0.3085 0.3085 69.15%

1 0.5 2.25/pq2 0.1587 0.3085 84.13%

2 0.5 6.25/pq2 0.0228 0.3085 97.72%

0.5 1 2.25/pq2 0.3085 0.1587 69.15%

1 1 4/pq2 0.1587 0.1587 84.13%

2 1 9/pq2 0.0228 0.1587 97.72%

0.5 2 6.25/pq2 0.3085 0.0228 69.15%

1 2 9/pq2 0.1587 0.0228 84.13%

2 2 16/pq2 0.0228 0.0228 97.72%

work. As we move along from the left hand upper bound, the false positive rate

decreases and the false negative rate increases. A popular idea in statistical

literature is to prefix the maximum value of the false positive rate, which is

called the level and consider the tests with a certain level. If we adopt the

same idea here, we should choose c = np(1+ q)−κ1σ1. Then the false positive

error will be exactly equal to α and the false negative error will be

1− Φ
(
npq − κ1σ1

σ2

)
≤ β.

We would also like to mention that the above test procedure is asymp-

totically equivalent to the most powerful test with level α [9] (asymptotically

equivalent because it uses normal approximation to determine the critical val-

ues), which can be constructed with a sample of n iid Bernoulli observations.

For the sake of completeness, the algorithm of this distinguisher is given below:

Algorithm Distinguisher 2

Xr ← Indicator of occurrences of event e in the r-th sample, r = 1, . . . , n;

X =
∑n
r=1Xr;

if X < np(1 + q)− κ1σ1
Infer H0 is false;

else

Infer H0 is true;

2.3 Relative Entropy Between Distributions

This analysis appeared in [19, Appendix A]. The relative entropy between two

discrete probability distributions P (·) andQ(·) is given by the Kullback-Leibler



10 Goutam Paul, Souvik Ray

divergence [17]

DKL(P ||Q) :=
∑
x

P (x) log2

P (x)

Q(x)
, (4)

where x runs over all the sample points. Note that this can also be written as

DKL(P ||Q) = EP

[
log2

P (X)

Q(X)

]
,

where X ∼ P . We have the following straight-forward result.

Proposition 1 For the above-mentioned single event e with probabilities p

and p(1 + q) in two different distributions P (·) and Q(·), the relative entropy

is approximately equal to pq2, for small p, q.

Proof We have

DKL(P ||Q) = p log2

[
p

p(1 + q)

]
+ (1− p) log2

[
1− p

1− p(1 + q)

]
= p log2

[
1− q

1 + q

]
+ (1− p) log2

[
1 +

pq

1− p(1 + q)

]
≈ −p

(
q

1 + q

)
+ (1− p)

(
pq

1− p(1 + q)

)
≈ pq2.

Similarly, for small p, q, we also have,

DKL(Q||P ) = p(1 + q) log2

[
p(1 + q)

p

]
+ (1− p(1 + q)) log2

[
1− p(1 + q)

1− p

]
= p(1 + q) log2(1 + q)− (1− p(1 + q)) log2

[
1 +

pq

1− p(1 + q)

]
≈ p(1 + q)q − (1− p(1 + q))

(
pq

1− p(1 + q)

)
≈ pq2.

ut

Also, the following small technical result directly follows from the definition

in Equation (4).



Title Suppressed Due to Excessive Length 11

Proposition 2 If P,Q are two distributions defined over the domain A and

P ′, Q′ are two other distributions defined over the domain B, then it can be

shown that the overall relative entropy of the joint distributions (considering

independence of the corresponding random variables over the two domains)

PP ′ and QQ′ is given by DKL(PP ′||QQ′) = DKL(P ||Q) +DKL(P ′||Q′).

Now we can state the following result.

Lemma 1 For n independent occurrences of the event e with probabilities p

and p(1 + q) in two different distributions P (·) and Q(·), the relative entropy

is approximately equal to npq2, for small p, q.

Proof Applying Proposition 2 to n samples from the same distribution as in

Proposition 1, we get the result. ut

Now, according to [12,7], we have the following result connecting the rela-

tive entropy to the false positive and negative rates.

Lemma 2 Suppose Dn is an unknown discrete distribution and Pn and Qn

are two known distributions. Suppose we have a test (may be randomized) for

H0 : Dn = Pn vs H1 : Dn = Qn ,

based on X := (X1, X2, . . . , Xn), a sample from the distribution Dn, with false

positive rate (α) and false negative rate (β). Then we have the following bound

DKL(Qn||Pn) ≥ β log2

β

1− α
+ (1− β) log2

1− β
α

. (5)

Proof Proof is given at the Appendix A.

Now, combining Lemma 1 and Lemma 2, we have the following result on

the data complexity.

Theorem 3 For n independent occurrences of the event e with probabilities p

and p(1 + q) in two different distributions, the sample complexity of a distin-

guisher with false positive and negative rates α and β is given by

n ≥ 1

pq2

(
β log2

β

1− α
+ (1− β) log2

1− β
α

)
,

for small p, q.

The equality may hold true only for the Neymann-Pearson Test [21], which

is the optimal test, i.e., given a fixed level this test maximizes the power. This

test is described by the Fundamental Neymann-Pearson Lemma [21].



12 Goutam Paul, Souvik Ray

Lemma 3 (Neymann-Pearson Lemma) Suppose we have X := (X1, . . . , Xn) ∼
Dn, where Dn is an unknown discrete distribution. We are to test the hypothe-

sis H0 : Dn = Pn versus the alternative H1 : Dn = Qn. Suppose S be the set of

all possible values that Xi’s can take. Then take any arbitrary constant k and

consider any test function φ : S −→ [0, 1] satisfying the following conditions:

φ(x) = 0, if
Pn[(x1, . . . , xn)]

Qn[(x1, . . . , xn)]
> k,

= 1, if
Pn[(x1, . . . , xn)]

Qn[(x1, . . . , xn)]
< k.

Define α = EH0 [φ(X)], and β = 1−EH1 [φ(X)]. Then for any other test (may

be randomized) for the above hypothesis with error probabilities α′ and β′, we

have

α′ ≤ α⇒ β ≤ β′.

In other words the test satisfying the conditions stated is the most powerful

level α test.

In our context, Pn is the distribution of n i.i.d. Bernoulli trials with success

probability p(1 + q), and Qn is the same with success probability p. Here false

positive means that the test sequence is actually from the stream cipher, but

we decide it to be random and false negative means that the test sequence

is actually random, but we decide it to be from the stream cipher. Here, the

Neymann-Pearson Test reduces to be the test discussed in Theorem 2 for

large sample (the test statistic is the same for both the tests but the cut-off

points differ, as we have used the normal approximation to find the critical

values in Theorem 2). Though Fundamental Neymann-Pearson Lemma gives

us the optimum test for level α [9], the exact values of the optimum error

probabilities for this test is difficult to find in general case. So, in that case we

use some approximation techniques, two of which are discussed in Theorem 2

and Theorem 3. If we allow both the error rates taken to be equal as in

Theorem 3, i.e. α = β, the distinguishing complexity bound reduces to

n ≥
(

1

pq2

)
· (1− 2α) log2

1− α
α

.

Thus, for a given false positive or negative rate α (= β), one needs roughly

O(1/pq2) many samples to perform the distinguishing test. In particular, n ≥
1/pq2 signifies α ≈ 0.2227, i.e., a success probability of approximately 0.7773.

Since 0.7773 > 0.5 is a reasonably good success probability, O(1/pq2) many

samples are considered enough to reliably apply the distinguisher.

For a discussion on the distinguisher algorithm, see Remark 2.
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2.4 Asymptotic Approach I: Chernoff-Stein Lemma

Another method to find the expression for the error probabilities for the opti-

mum test is to use the asymptotic analysis given by Chernoff-Stein Lemma [10].

This approach has been used by [24] to mount distinguishing attack on the

stream-cipher HC-128 [25].

Lemma 4 (Chernoff-Stein Lemma) Suppose we have X1, . . . , Xn
i.i.d.∼ D,

where D is unknown. We are to test the hypothesis H0 : D = P versus the

alternative H1 : D = Q, where P and Q are two known distributions. Suppose

χ be the set of all possible values that Xi’s can take. Suppose,Pn and Qn

are the joint distributions of (X1, . . . , Xn) under the null and the alternative

respectively. Let us fix 0 < α < 0.5. Define,

βn,α := min {β|R ⊂ χn, Pn[R] < α, β = 1−Qn[R]} ,

In other words, βn,α is the least false negative error probability attainable for

level α non-randomized tests. Then

lim
n→∞

log2 βn,α
n

= −DKL(P ||Q).

Proof Proof is given at the Appendix B.

The above lemma states that, whatever be the pre-specified false positive

error, asymptotically the best possible false negative error is 2−nDKL(P ||Q).

Suppose now that we fix the false positive error at α and want false negative er-

ror to be β. Then the approximate sample size we need is n ≈ − log2(β)/DKL(P ||Q).

Therefore, combining Lemma 1 and Lemma 4, we have the following result on

the data complexity.

Theorem 4 For n independent occurrences of the event e with probabilities p

and p(1 + q) in two different distributions, the sample complexity of a distin-

guisher with false positive and negative rates α and β is given by

n > − 1

pq2
log2(β),

for small p, q, and small β.

Remark 1 Note that, in Theorem 4, β is required to be small, as Lemma 4 is an

asymptotic result. So the best possible false negative rate is well approximated

for large n and consequently for small β.

For a discussion on the distinguisher algorithm, see Remark 2.
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2.5 Asymptotic Approach II: Chernoff Information

Apart from Chernoff-Stein Lemma, another way to approximate the error

probabilities asymptotically is the Chernoff Information [10]. This approach

has been used in [11] to mount distinguishing attacks on SOBER-t16 and

t32 stream ciphers. The method is developed from a Bayesian perspective

rather than the classical hypothesis testing perspective which gives rise to the

Chernoff-Stein Lemma.

Recall the set-up in Lemma 4. Consider a rejection region R ⊂ χn such

that

Pr(R|H0) = αn, Pr(Rc|H1) = βn,

i.e, αn, βn are Type-1 and Type-2 error probabilities respectively. Suppose

now that the hypotheses have some prior probabilities attached on them, H0

has prior probability π0 and H1 has π1. So, the overall probability of error

becomes,

P en := π0αn + π1βn.

Our target is to choose R such that P en is minimized. The following result

quantifies this best achievable error rate in terms of the sample size.

Lemma 5 Suppose we have X1, . . . , Xn
i.i.d.∼ D, where D is unknown. We are

to test the hypothesis H0 : D = P0 versus the alternative H1 : D = P1, where

P0 and P1 are two known distributions. Suppose χ be the set of all possible

values that Xi’s can take. Suppose,P0,n and P1,n are the joint distributions

of (X1, . . . , Xn) under the null and the alternative respectively. π0 and π1 be

prior probabilities on P0 and P1 respectively. For any R ⊂ χn, define

αn := Pr(R|H0) = P0,n(R), βn := Pr(Rc|H1) = P1,n(Rc),

and

P en := π0αn + π1βn.

Then,

lim
n−→∞

1

n
log2( inf

R⊂χn
P en) = −D∗,

where D∗ := DKL(Pλ∗ ||P0), with

Pλ(x) =
P 1−λ
0 (x)Pλ1 (x)∑

x∈χ P
1−λ
0 (x)Pλ1 (x)

, ∀ 0 ≤ λ ≤ 1.

and D∗ is such that

D∗ = DKL(Pλ∗ ||P0) = DKL(Pλ∗ ||P1).
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Moreover, in this case, we have

D∗ = − inf
0<λ<1

log2(
∑
x∈χ

P 1−λ
0 (x)Pλ1 (x)).

This quantity D∗ is defined as the Chernoff Information between P0 and P1

and is denoted by C(P0, P1), i.e.,

C(P0, P1) := − inf
0<λ<1

log2(
∑
x∈χ

P 1−λ
0 (x)Pλ1 (x)).

Proof of this lemma is given in [10]. Note that, the result in Lemma 5 is

independent of the prior probabilities and therefore by taking π0 = π1 =
1

2
,

we get the following result.

Corollary 1 With the same set-up as described in Theorem 5, we have

lim
n−→∞

1

n
log2( inf

R⊂χn
(αn + βn)) = C(P0, P1),

i.e.,

lim
n−→∞

1

n
log2(1− sup

R⊂χn
Advantage) = C(P0, P1).

Corollary 1 says that if we try to distinguish between distributions P and Q,

then asymptotically the best possible advantage is 1 − 2−nC(P,Q). Therefore,

we can write the following result.

Theorem 5 For n independent occurrences of the event e with probabilities p

and p(1 + q) in two different distributions, the asymptotic sample complexity

of a distinguisher with false positive and negative rates α and β is given by

n > − 1

C(Ber(p(1 + q)),Ber(p))
log2(α+ β),

for small α, β.

In general, finding an explicit analytic expression for C(P,Q) is difficult. So,

numerical methods are to be employed to find the Chernoff Information for

specific problems. Approximate algebraic expressions are available [4], when

the distributions P and Q are very close, which is as follows.

Proposition 3 If the distributions P and Q are very close, then

C(P,Q) ≈ 1

8 ln 2

∑
x∈χ

(P (x)−Q(x))
2

P (x)
≈ 1

8 ln 2

∑
x∈χ

(P (x)−Q(x))
2

Q(x)
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Using Proposition 3, we can say that, if q � 1, then

C(Ber(p(1 + q)),Ber(p)) ≈ 1

8 ln 2
(
(p(1 + q)− p)2

p
+

(1− p(1 + q)− 1 + p)2

1− p

=
1

8 ln 2
p2q2(

1

p
+

1

1− p
)

=
1

8 ln 2

p

1− p
q2.

Thus, for small q, α, β, number samples needed to distinguish with error rates

α and β, is

n > −8(1− p) ln 2

pq2
log2(α+ β).

Now we make the following remark about the distinguisher algorithms

corresponding to the approaches of Section 2.3, 2.4 and 2.5.

Remark 2 It is to be noted that the optimal test based on the Neymann-

Pearson Lemma for our case is of the form:

If X < c, Infer H0 to be false.

If X > c, Infer H0 to be true.

If X = c, Infer H0 to be false with prob. p and true with prob. 1− p,

where p, c is chosen such that

Pr(X < c|H0) + pPr(X = c|H0) = α,

and X is as usual total number of occurrences of event e in the total sam-

ple. Computation of these constants involves computing a large number of

very small binomial probabilities, which in most of the cases is very difficult

to perform, even for moderately large value of n. Therefore, for determining

the threshold for the decisions we actually use the normal approximations

which take us back to the distinguishing attack discussed in section 2.2. Thus

algorithm-wise both attacks are same, but we get two different bounds to

measure the complexity. The approaches with Stein’s Lemma and Chernoff

Information also use the same algorithm, but just give different bounds on the

data complexity by considering the asymptotics.
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2.6 Comparison amongst the Above Approaches

So far we have discussed four bounds on data complexities obtained from

Theorem 1, Theorem 2, Theorem 3, Theorem 4 and Theorem 5. We now

compare these bounds for small values of p, q and small failure rate α (i.e.,

both the error rate is α). We first exclude the bound from Theorem 1 from this

comparison, as it doesn’t consider the optimum test and therefore expected to

give much larger estimate of data complexity.

We observe that the bound obtained from Theorem 2 is relatively larger

than other two bounds and the “actual complexity”(which is defined as the

minimum over the number of samples needed to distinguish between two dis-

tributions by all possible test procedures with given false positive and false

negative rates). This phenomenon occurs as Theorem 2 considers only non-

randomized tests to distinguish between the two distributions and the critical

values are derived under normal approximations.

On the other hand, the bound given by Theorem 3 is the smallest as it

considers all the randomized tests. Moreover, equality holds in this bound

only under some strict conditions which will imply the equality condition in

Jensen’s inequality. So, the actual complexity is always somewhat bigger than

this bound.

Theorem 4 and Theorem 5 also consider all non-randomized tests. However,

these bounds are derived from an asymptotic result of minimum possible false

negative error and maximum possible advantage, and hence will be greater

than the bound from Theorem 3. Theorem 5 gives a crude bound unless the

errors are very small. It is also easy to prove that the bound obtained from

Theorem 4 is larger than that from Theorem 3 for fixed false negative and

false positive error rate (both equal to α), as

α ∈
(

0,
1

2

)
⇒ (1− α)1−2α < α−2α

⇒ (1− 2α)(log2(1− α)− log2 α) < − log2 α

⇒ (1− 2α) log2

(
1− α
α

)
< − log2 α.

Thus, the bound obtained from Theorem 4 lies in between those given by

Theorem 2 and Theorem 3.

The actual complexity and the bounds obtain from Theorem 4 and Theo-

rem 5 lie between the other two bounds, and they become very close to each

other as the error rate becomes small. Now, it is natural to ask: which bound

to use for estimating the data complexity? From the context, it is clear that
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for small error rates, the bound from Theorem 4 or Theorem 5 (if the errors

are very small) should be preferred. Otherwise, it is better to use the bound

from Theorem 2, as this bound is greater than the actual complexity.

Table 2 Sample complexity and success probability for the distinguisher of RC4 based on

the bias of the second keystream byte to the value 0, with p =
1

256
, q ≈ 1, C ≈ 0.0005.

Sample Complexity (as exponents of 2) using

α = β Success Prob. (1− α)% Theorem 2 Theorem 3 Theorem 4 Theorem 5

0.3 70 8.67 6.97 8.79 10.52

0.15 85 10.63 8.80 9.45 11.76

0.1 90 11.25 9.34 9.73 12.18

0.05 95 11.97 9.93 10.11 12.70

0.01 99 12.97 10.70 10.73 13.46

Table 3 Sample complexity and success probability for the distinguisher of RC4 based

on the bias of the fourth keystream byte to the value 0, with p =
1

256
, q ≈ 0.005106232,

C ≈ 2× 10−8.

Sample Complexity (as exponents of 2) using

α = β Success Prob. (1− α)% Theorem 2 Theorem 3 Theorem 4 Theorem 5

0.3 70 23.36 22.19 24.02 25.14

0.15 85 25.33 24.04 24.68 26.37

0.1 90 25.94 24.57 24.96 26.79

0.05 95 26.66 25.16 25.34 27.31

0.01 99 27.66 25.93 25.96 28.07

In Table 2 and 3, we present estimated data complexities (as exponents of

2, i.e., the presented values are the logarithms of the data complexities w.r.t.

base 2) of two different distinguishers for RC4, using all the methods dis-

cussed above. For Table 2, the value of Chernoff Information C is numerically

computed to be approx. 0.0005, as demonstrated in Fig. 1.

A related question is to ask what is the advantage of this distinguisher. It

is clear from the context that

Advantage = Pr(Inferred H0is true|H0)− Pr(InferredH0is true|H1)

= 1− false positive error− false negative error

= 1− α− β.
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Fig. 1 Chernoff Information, DKL(Pλ||P0)(bottom-left to top-right), DKL(Pλ||P1)(top-

left to bottom-right) for the distribution of the second keystream byte of RC4.

2.7 Other Related Works

In the above discussion, we have considered distinguishing tests which mini-

mize the false negative error for a given false positive error level. The work [3]

considered another paradigm considering the tests minimizing the average of

both kind of error rates, and derived the data complexity of the optimal dis-

tinguishing test in that scenario, which is also of O(1/pq2), for small p, q.

However, we note that joint minimization of both types of errors is an un-

usual approach in hypothesis testing framework. In practical scenario, often

one would like to strictly bound a particular type of error. Thus, it is more

pragmatic to fix one error and minimize the other. Moreover, the main focus

of [3] is block cipher cryptanalysis and here we concentrate on stream ciphers.

The work [2] considers data complexity of a particular differential crypt-

analysis with a set of 2m sequences, where only one of them verifies the alter-
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native hypothesis and all others verify the null hypothesis. The scenario we

consider is completely different and hence we do not discuss the work [2] here.

Another work [8] attempted to give accurate estimates of the data com-

plexity and success probability of differential and linear cryptanalysis of block

ciphers under two different scenarios, namely, (i) when the probability of accep-

tance of a wrong key is fixed, and (ii) when the number of candidate solutions

is fixed.

A recent work [22] that has been carried out simultaneously with and in-

dependently of our current work, takes a detailed look at the error in normal

approximations and points out several limitations in applying these approxi-

mations to block cipher cryptanalysis. A more recent work [23] (by the same

authors as [22]) derives rigorous upper bounds on the data complexity (i.e., the

no. of plaintext-ciphertext pairs) required to achieve at least a pre-specified

success probability (for key recovery of a block cipher) and at least a pre-

specified advantage (if the advantage is a, then the number of false alarms is

a fraction 2−a of the number of possible values of the sub-key which is the

target of the attack). We emphasize again that our motivation is completely

different, i.e., to analyze the gap between the data complexity estimates of

distinguishing attacks and message recovery attacks in the context of stream

ciphers.

3 Data Complexity of Message Recovery Attacks using Sample

Mode Approach

Now we turn to Message Recovery Attack under the Broadcast scenario for

stream ciphers. We shall consider two approaches: one is a simple message

recovery attack exploiting the largest bias in the keystream byte distribution

and the other is maximum likelihood estimation. The first one, called Sample

Mode approach, is discussed in this section and the second one, called Bayesian

approach, will be discussed in the next section.

We consider again the single byte-bias attack. Suppose m be the mode

of the keystream distribution P. We shall assume that the distribution P
is unimodal, since the approach will fail if the distribution is multimodal.

Suppose M is the secret message and Z1, . . . , Zn
i.i.d∼ P be the keys for n

broadcasts. We observe the ciphertexts

Ci = (M + Zi) mod N, ∀ i = 1, . . . , N.
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Since m is the mode, we expect it to occur more frequently in the i.i.d.

sample Z1, . . . , Zn and hence we expect (M + m) mod N to be most fre-

quent in the ciphertext sample C1, . . . , Cn. Therefore, we estimate M by

M̂ = (Mode(C1, . . . , Cn) − m) mod N. Below we mention the algorithm for

the message recovery attack using this approach.

Algorithm: Message recovery using sample mode

Ni ← Number of occurrences of byte i in the ciphertext samples, i = 0, . . . , N − 1;

Mo← arg max0≤i≤N−1Ni;

m← Mode of the keystream distribution;

Estimate of unknown plain text byte ←Mo−m;

In this case the probability of success is

Pr(M̂ = M)

= Pr[(Mode(C1, . . . , Cn)−m) mod N = M ]

= Pr(Mode(Z1, . . . , Zn) = m).

So, computing the probability of success for this attack boils down to the prob-

lem of finding the probability of sample mode being equal to the population

mode for an i.i.d. sample of size n from distribution P. Suppose Yk be the

frequency of k in the sample Z = (Z1, . . . , Zn), ∀ k = 0, . . . , N − 1. Then

Y := (Y0, . . . , YN−1) ∼Multinomial(n; p0, . . . , pN−1);

where pi = Pr[Z1 = i], ∀ i = 0, . . . , N − 1. For simplicity of notation, we

assume m = 0 (however, the result holds for any mode). So,

Pr(Mode(Z1, . . . , Zn) = 0) = Pr(Y0 > Yk, ∀ k = 0, . . . , N − 1). (6)

By Law of Large Numbers [15], we have,

1

n
(Y0, . . . , YN−1)

P−→ (p0, . . . , pN−1);

i.e.
1

n
(Y0 − Y1, . . . , Y0 − YN−1)

P−→ (p0 − p1, . . . , p0 − pN−1). (7)

the distribution P is unimodal, we have p0 > pk, ∀ k = 1, . . . , N−1. Therefore,

using (7) we get,

Y0 − Yk
n

P−→ p0 − pk > 0 ⇒ Pr(Y0 > Yk) −→ 1, ∀ k = 1, . . . , N − 1. (8)
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Using (6) and (8), we can write,

Pr(Mode(Z1, . . . , Zn) 6= 0) = Pr(∃ 0 ≤ k ≤ N − 1 s.t. Y0 ≤ Yk)

≤
N−1∑
k=1

Pr(Y0 ≤ Yk) −→ 0.

Therefore, Pr(M̂ = M) −→ 1, which implies M̂
P−→ M , as n → ∞, i.e., the

estimator is at least consistent [9].

Again, using Central Limit Theorem [15] for multinomial distribution, we

can write

Y ∼ AN(np, n(diag(p)− ppT ));

i.e.,

n−1Y ∼ AN(p, n−1(diag(p)− ppT )),

where p := (p0, . . . , pN−1)
T

. So, for large n we have by normal approximation

Pr(Y0 > Yk, ∀ k = 0, . . . , N − 1) ≈ Pr(U0 > Uk, ∀ k = 0, . . . , N − 1); (9)

where U := (U0, . . . , UN−1)
T ∼ NN (p, 1

n (diag(p)− ppT )).

But evaluation of this probability will lead us to an expression containing

multiple integrals, and getting a closed form expression is almost impossible

in general. Therefore, we consider two different special cases in the next two

subsections and go through some further approximations.

3.1 Second Highest Probability far from Lower Ones

In this case, we consider the situation where the second highest probability in

the distribution P is distinguishably apart from the other lower probabilities

in that distribution, i.e., if p(0) ≤ p(1) ≤ . . . ≤ p(N−1) be the probabilities

p0, . . . , pN−1 in increasing order, then p(N−2) − p(N−3) 6= 0. In this case we

can have a simplified approximation for the data complexity using the following

lemma.

Lemma 6 Let µ := (µ0, . . . , µN−1)
T ∈ RN−1 with µs ≥ µi,∀ i = 0, . . . , N−1,

and Σ = ((σij))
N−1
i,j=0 be a positive semi-definite matrix. Suppose,

W := (W0, . . . ,WN−1)T ∼ NN (µ,
1

n
Σ).

Then,

P
(

max
0≤i≤(N−1)

Wi 6= Ws

)
≈ Φ(−

√
nδ),
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as n −→∞, where δ := δj = mini 6=s δi, and

δi :=
µs − µi√

σss + σii − 2σsi
, ∀ i 6= s,

provided

σss + σii − 2σsi > 0, ∀ i 6= s,

and δj < δi, ∀i 6= j.

Proof Proof is given at the Appendix C.

Using Lemma 6 we can arrive at the following theorem.

Theorem 6 If P is the distribution of the keystream bytes on the space M,

with population mode 0, and the second and third highest probabilities of P,i.e.

p(N−2) and p(N−3) are distinguishably apart, then the data complexity of the

message recovery attack with failure probability at most α, using sample mode

approach, is given by

n >

(
Φ−1(1− α)

δ

)2

, (10)

where

δk :=
p0 − pk√

p0 + pk − (p0 − pk)
2
> 0, ∀ k = 1, . . . , N − 1.

and δ := min{δk : k = 1, . . . , N − 1}.

Proof With the notations in (9), we shall use Lemma 6 with W = U ,µ = p

and Σ = diag(p) − ppT . Then δi becomes as defined in the statement of

Theorem 6. Suppose, p(N−2) = pj , where 1 ≤ j ≤ N − 1. It is easy to notice

that, pk ≤ pl implies δk ≥ δl, ∀ 1 ≤ k, l ≤ N − 1. Therefore, δk is minimum

for k = j. Also, note that the condition p(N−2) and p(n−3) are distinguishably

apart guarantees that δ = δj < δk, ∀k 6= j. Therefore, using Lemma 6 we have,

So, Pr(max0≤k≤N−1 Uk 6= U0) ≈ Φ(−
√
nδ). Hence to get success probability

at least 1− α, we should have α ≥ Φ(−
√
nδ). Hence, the sample size we need

is

n ≥
(
Φ−1(1− α)

δ

)2

.

But the above approximations performs miserably if all the probabilities

in the p.m.f. P, except the highest one, are very close to each other since then

the limit above converges very slowly. We shall consider this situation in the

next case.
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3.2 Almost-uniform Except the Highest Probability-point

Here, suppose all the probabilities in the p.m.f. P, except the highest one i.e.

p0, are equal to r. Hence, p0+(N−1)r = 1. Continuing with the notation in (9)

let us define V = (V1, . . . , VN−1)
T

:= (U0 − U1, . . . , U0 − UN−1)
T
. Therefore,

we have

V ∼ NN−1((p0 − r)1,Σ)

where 1 is the (N − 1)-dimensional column vector with all entries equal to 1,

and Σ is a positive-definite matrix of dimension (N − 1) × (N − 1) with all

diagonal entries equal to σ2, where

σ2 := V ar(U0 − U1)

= V ar(U0) + V ar(U1)− 2Cov(U0, U1)

= n−1(p0(1− p0) + r(1− r) + 2p0r)

= n−1(p0 + r − (p0 − r)2)

and all non-diagonal entries equal to ρσ2, where

ρσ2 := Cov(U0 − U1, U0 − U2)

= V ar(U0)− Cov(U0, U1)− Cov(U0, U2) + Cov(U1, U2)

= n−1(p0(1− p0) + 2p0r − r2)

= n−1(p0 − (p0 − r)2) > 0.

Here, σ2 and ρ are the common variance and common correlation coefficient

of the elements in V. Hence, V has the equicorrelation structure and the

correlation coefficient ρ > 0. Now consider

W0, . . . ,WN−1
i.i.d.∼ N (0, 1);

and define

Sk := (p0 − r) + σ(
√
ρW0 +

√
1− ρWk), ∀ k = 1, . . . , N − 1.

Then, clearly Sk ∼ N (p0 − r, σ2), ∀ k = 1, . . . , N − 1 and Cov(Si, Sk) =

ρσ2, ∀ 1 ≤ i 6= k ≤ (N − 1) which implies

S := (S1, . . . , SN−1)T
D
= V.
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Hence, we have

Pr(U0 > Uk, ∀ k = 0, . . . , N − 1)

= Pr(Vk > 0, ∀ k = 1, . . . , N − 1)

= Pr(Sk > 0, ∀ k = 1, . . . , N − 1)

= Pr(
√
ρW0 +

√
1− ρWk > −

(p0 − r)
σ

, ∀ k = 1, . . . , N − 1)

= Pr(Wk > −
(p0 − r)
σ
√

1− ρ
−
√
ρ

√
1− ρ

W0, ∀ k = 1, . . . , N − 1)

= Pr(W(1) > T0)

where we define W(1) := min {Wk : 1 ≤ k ≤ N − 1} and

T0 :=
(p0 − r)
σ
√

1− ρ
−
√
ρ

√
1− ρ

W0 ∼ N (−
√
nγ, σ2

0)

where

γ :=
p0 − r√
nσ
√

1− ρ
=

p0 − r√
1− ρ

√
p0 + r − (p0 − r)2

, (11)

σ2
0 :=

ρ

1− ρ
. (12)

Note that, T0, being a function of W0, is independent of (W1, . . . ,WN−1),

hence of W(1). Therefore,∀ t ∈ R,

Pr(W(1) > T0|T0 = t) = Pr(W(1) > t)

= Pr(W1, . . . ,WN−1 > t)

= (1− Φ(t))
N−1

.

This lead us to

Pr(W(1) ≥ T0) = E[Pr(W(1) > T0|T0)]

= E((1− Φ(T0))
N−1

)

=

∫
R

(1− Φ(x))
N−1 1

σ0
φ

(
x+
√
nγ

σ0

)
dx.

Hence, for the data complexity of the message recovery attack in this case

using sample mode approach we have the following result.

Theorem 7 If the distribution P of the keystream bytes on the space M, has

only one mode at 0 and all remaining probabilities are equal, then the success

probability of the message recovery attack using the sample mode approach is

E((1− Φ(T0))
N−1

), where T0 ∼ N (−
√
nγ, σ2

0) and γ and σ2
0 are as defined as

in Equation (11) and (12).
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Remark 3 For general p.m.f.′s on the message space, the above integral is very

difficult to work out analytically. Hence, to proceed towards further analysis we

must pass through numerical methods to approximate the above probability.

Two possible ways are approximating the above integral by different available

numerical integration method or simulating large number of times indepen-

dently from the distribution of T0 and take the sample mean of the function

(1− Φ(·))N−1 to obtain an approximation of the above expectation [15].

4 Data Complexity of Message Recovery Attacks using Bayesian

Approach

The Bayesian method was first discussed in [1, Section 4.1], and it finally

boils down to maximum likelihood estimation. Here we shall only explore

the method for some general version of single-byte bias attack. The Bayesian

approach for multiple-byte bias attacks are defined similarly. The set up is as

follows.

Suppose,M = {0, 1, . . . , N − 1}, where N is the size of the message space.

For simplicity of language we shall call the elements of the message space as

bytes. P is the distribution of the keystream bytes of the concerned stream ci-

pher. Suppose M is the secret message-byte (or, plaintext) and Z1, . . . , Zn
i.i.d∼

P be the keys for n broadcasts. We observe the ciphertext bytes Ci = (M +

Zi) mod N, ∀i = 1, . . . , n. The observed ciphertexts are c1, . . . , cn. To make

the notations clear, Cis are random variables and cis are their particular real-

izations.

We also assume a prior distribution [9] on the message space M, say Q.

Then qx denotes the relative frequency of the message-byte x in a large mes-

sage. If enough prior information is not available, this prior distribution is

taken as uniform (i.e., a non-informative prior [9]). In Bayesian approach, we

want to maximize the posterior probability [9] of the message-byte given the ci-

phertext bytes, i.e., we want to maximize Pr(M = m|Ci = ci, ∀ i = 1, . . . , n),

over m ∈M.

Now, before going into the maximization problem, we introduce a notation

Nm,z := | {i : ci = (z +m) mod N} | =
n∑
i=1

I(ci = (z +m) mod N), (13)

∀ z ∈M, where I denotes the indicator function. Notice that Nm,z denotes the

number of occurrences of the byte z in the n keystream bytes, if the plaintext
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is m. It is easy to see that∑
z∈M

I(c = (z +m) mod N) = 1, ∀c, z,m ∈M,

which gives∑
z∈M

Nm,z =
∑
z∈M

n∑
i=1

I(ci = (z+m) mod N) =

n∑
i=1

∑
z∈M

I(ci = (z+m) mod N) = n.

Now we have the following result according to [13].

Lemma 7 Maximization of Pr(M = m|Ci = ci, ∀ i = 1, . . . , n), over m ∈M
is equivalent to maximizing

h(m) := log(qm) +
∑
z∈M

Nm,z log(pz),

over m ∈M.

Proof Note that if c1, . . . , cn are the observed ciphertexts then

Pr(M = m|Ci = ci, ∀ i = 1, . . . , n)

= Pr(Ci = ci, ∀ i = 1, . . . , n|M = m)
Pr(M = m)

Pr(Ci = ci, ∀ i = 1, . . . , n)

= Pr(Zi = zi, ∀ i = 1, . . . , n)
Pr(M = m)

Pr(Ci = ci, ∀ i = 1, . . . , n)
,

where zi := (ci−m) mod N ; ∀ i = 1, . . . , n. Now the denominator in the above

expression, Pr(Ci = ci, ∀ i = 1, . . . , n) does not involve m. Therefore, we are

to maximize only

Pr(Zi = zi, ∀ i = 1, . . . , n) Pr(M = m),

over m ∈M. As the broadcasts are independent, we have

Pr(Zi = zi,∀ i = 1, . . . , n) =

n∏
i=1

Pr(Zi = zi)

=

n∏
i=1

pzi

=
∏
z∈M

p|{i|zi=z,1≤i≤n}|z =
∏
z∈M

pNm,zz ,

as | {i|zi = z, 1 ≤ i ≤ n} | = | {i|ci = (z +m) mod N, 1 ≤ i ≤ n} | = Nm,z. There-

fore, we are to maximize

g(m) := Pr(M = m)
∏
z∈M

pNm,zz = qm
∏
z∈M

pNm,zz , (14)
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over m ∈ M. Taking log on both sides in (14) (as computationally it is easy

to work with the function after logarithm), we get

h(m) := log g(m) = log(qm) +
∑
z∈M

Nm,z log(pz). (15)

ut

So, we get the estimator for the unknown plaintext byte as

M̂ := arg max
m∈M

h(m).

For the sake of completeness, below we mention the algorithm for the message

recovery attack using this approach.

Algorithm: Message recovery using Bayesian Approach and single byte bias

Nm,z ← Number of occurrences of byte (m+ z) in the ciphertext samples, m, z ∈M;

h(m)← arg
∑
z∈MNm,z log(pz) + log(qm);

M ← arg maxm∈M h(m);

Estimate of unknown plain text byte ←M ;

If prior information is not available and we take Q to be uniform over the

message space, then our objective boils down to maximizing

h0(m) :=
∑
z∈M

Nm,z log(pz); (16)

over m ∈ M, and this objective function is nothing but the constant times

log-likelihood for the data C1, . . . , Cn
i.i.d∼ (P+m) mod N, where m ∈M acts

as the unknown parameter. So, in this case, the Bayesian estimator is also the

maximum likelihood estimator.

If we use the above idea for multiple-byte bias attack, the message space

M will be substituted byMk, for some k ∈ N. The basic methodology remains

same. We need a prior distribution Q(k) on Mk, as the prior distribution of

the plaintexts, and the distribution P(k) of vector of k keystream-bytes, where

we shall exploit the biases in the later distribution to mount the message

recovery attack. Let p
(k)
z and q

(k)
z denote the probabilities of a k-byte vector z

for the distributions P(k) and Q(k) respectively. The secret message is M and

Z1, . . . ,Zn
i.i.d.∼ P(k) be the keys for n broadcasts. We observe the ciphertexts,

Ci = (M+Zi) mod N, ∀ i = 1, . . . , n, where the operation mod N on a vector

means mod N at each coordinate. c1, . . . , cn be the observed ciphertexts. By

similar arguments used in Lemma 7, our objective is to maximize

h(m) = log(q(k)m ) +
∑

z∈Mk

Nm,z log(p(k)z ),
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over m ∈Mk, where

Nm,z := | {i|ci = (m+ z) mod N, 1 ≤ i ≤ n} | =
n∑
i=1

I(ci = (m+z) mod N),

The above maximization may be computationally difficult, as Mk may

contain a very large number of elements. As for example, in the case of RC4,

even if k=3 or 4, it becomes too large. So, we go for some approximation

techniques.

One of these approximation techniques is based on the assumption that if

Zi = (Zi1, . . . , Zik), then Zi1, . . . , Zik’s are independent. This approximation

is very good for the cases where the single-byte biases are dominant. Under

this assumption we have

p(k)z =

k∏
i=1

pzi ,

for all z = (z1, . . . , zk) ∈Mk. Our new objective function becomes

h(m) = log(q(k)m ) +
∑

z∈Mk

k∑
i=1

Nm,z log(pzi). (17)

To simplify (17), let us denote, cj = (cj1, . . . , cjk), ∀ j = 1, . . . , n. Define,

N (i)
m,z := | {j : cji = (z +m) mod N, 1 ≤ j ≤ n} |, ∀ m, z ∈M, 1 ≤ i ≤ k.

Notice that,

N (i)
m,z :=

n∑
j=1

I(cji = (z +m) mod N).

N
(i)
m,z actually denotes the number of occurrences of z in the i-th byte of the

keystream, if the i-th byte of the plaintext was m Then,∀m = (m1, . . . ,mk) ∈
Mk, we have

N (i)
mi,z =

∑
z∈Mk,zi=z

Nm,z ,
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because,

∑
z∈Mk,zi=z

Nm,z =
∑

z∈Mk,zi=z

n∑
j=1

I(cj = (z +m) mod N)

=
∑

z∈Mk,zi=z

n∑
j=1

k∏
l=1

I(cjl = (zl +ml) mod N)

=

n∑
j=1

∑
z∈Mk,zi=z

k∏
l=1

I(cjl = (zl +ml) mod N)

=

n∑
j=1

I(cji = (z +mi) mod N) = N (i)
mi,z.

which gives,

∑
z∈M

N (i)
mi,z log(pz) =

∑
z∈M

∑
z∈Mk,zi=z

Nm,z log(pz)

=
∑
z∈M

∑
z∈Mk,zi=z

Nm,z log(pzi)

=
∑

z∈Mk

Nm,z log(pzi)

Therefore,

h(m) = log(q(k)m ) +

k∑
i=1

∑
z∈M

N (i)
mi,z log(pz). (18)

Furthermore, if q
(k)
(m1,...,mk)

= qm1
. . . qmk (note that this is a weaker as-

sumption than uniformity of q(k)), then this multiple-byte bias attack reduces

to nothing but single-byte bias attack at k plaintext points.

Another approximation reduces multiple-byte bias attacks to double byte

bias attacks. For this, we make the Markovian assumption, i.e., for the i-th key

Zi, the random variables Zi1, . . . , Zik satisfies the Markov property. Therefore,

p(k)z = P [Zj = z]

= P [Zj1 = z1]
k∏
i=2

P [Zji = zi|Zj,i−1 = zi−1]

=

∏k
i=2 p

(2)
(zi,zi−1)∏k−1

i=2 pzi
.
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So, the objective function turns out to be

h(m) = log(q(k)m ) +

k∑
i=2

∑
z∈Mk

Nm,z log(p
(2)
(zi,zi−1)

)

−
∑

z∈Mk

k−1∑
i=2

Nm,z log(pzi)

= log(q(k)m ) +

k∑
i=2

∑
z,y∈M

N (i)
mi,mi−1,z,y log(p

(2)
(z,y))

−
k−1∑
i=2

∑
z∈M

N (i)
mi,z log(pz),

where

N
(i)
m,m∗,z,y := | {j : cji = (z +m) mod N, cj,i−1 = (y +m∗) mod N} |

=

n∑
j=1

I(cji = (z +m) mod N)I(cj,i−1 = (y +m∗) mod N);

where 2 ≤ i ≤ k, and we have used the identity which can be checked as

previous. ∑
z∈Mk

Nm,z log(p
(2)
(zj ,zj−1)

) =
∑

z,y∈M
N (i)
mi,mi−1,z,y log(p

(2)
(z,y)).

We shall now discuss about the performance of this Bayesian estimation tech-

nique. We shall concentrate only on the case where the prior distribution is

taken to be uniform and hence the procedure boils down to ML estimation.

It is to be noted that the exact calculation of the success probabilities is very

difficult in this set up. So we shall continue by doing some approximate calcu-

lations under some conditions.

4.1 Approximate Calculation of success probability

Now we shall concentrate on both unimodal and multi-modal distribution (by

multi-modal, we actually intend to mean that the highest probabilities have

negligible difference) for the keystream bytes, simultaneously. We may have

more than one sample modes for the ciphertexts (or the sample mode of the

ciphertext may not be equal to the modulo sum of actual plaintext and the

population mode of the keystream distribution, i.e., the population and sample

mode for the Z’s may differ even in the long run). But if the distributions of
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(P + m) mod N , where m ∈ M, are different for different m’s, then also the

ML estimation succeeds in long run as it not only take into account the sample

mode of the ciphertexts but also other points, and hence able to distinguish

between the distributions (P +m) mod N , for all possible m’s.

To estimate the data complexity of the ML method based attack, we shall

use Theorem 6 and Theorem 7. Recall that our ML estimate was

M̂ = arg max
m∈M

∑
z∈M

Nm,z log(pz), (19)

Then, define

tk := (log(p(0−k) mod N ), . . . , log(p((N−1)−k) mod N ))
T
,∀ k = 0, . . . N − 1,

G := [t1, . . . , tN−1]T ,

and

N := (N0,0, . . . , N0,N−1)
T
.

Now, as N(m+k) mod N,z = Nm,(z+k) mod N , it is easy to see that Equation 19

reduces to

M̂ = arg max
m∈M

tm
TN , (20)

as we have

tTmN =

N−1∑
z=0

N0,z log(p(z−m) mod N )

=

N−1∑
z=0

Nm,(z−m) mod N log(p(z−m) mod N )

=

N−1∑
z=0

Nm,z log(pz).

Note that, N0,z is equal to the number of occurrences of the byte z in the

n obtained ciphertext bytes. Suppose the unknown plaintext is m∗. Define,

qT := (p(0−m∗) mod N , . . . , p(N−1−m∗) mod N ). Then, we have

N ∼Multinomial(n; q),

and hence, by Central Limit Theorem [15],

n−1N ∼ AN (q, n−1(diag(q)− qqT )). (21)

Now, define

N0 := (tT0N , . . . , tTN−1N)T = GN = (R0, . . . , RN−1)T .
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and let tTi q = ri =
∑N−1
z=0 p(z−m∗) mod N log(p(z−i) mod N ), ∀ i = 0, . . . , N − 1.

Then by (21) we have,

n−1N0 = Gn−1N ∼ AN ((r0, . . . , rN−1)T , n−1Σ′),

where Σ′ := G(diag(q) − qqT )GT = ((σij))i,j . Note that, by rearrangement

inequality [16], ri is maximum if i = m∗, and

rm∗ = tTm∗q =

N−1∑
k=0

p(k−m∗) mod N log(p(k−m∗) mod N ) =

N−1∑
k=0

pk log(pk),

i.e., doesn’t depend on the value of m∗. Now, we can readily recognize the set-

up perfect for applying Lemma 6, as here success probability,Pr(M̂ = m∗),

is nothing but the probability of the maximum of N0 co-ordinates occurring

in the co-ordinate with highest mean. So, keeping the idea from Lemma 6 in

mind, we define

ηk :=
rm∗ − rk√

σm∗m∗ + σkk − 2σm∗k
;∀ k 6= m∗. (22)

We would like to simplify the above expressions to get an idea what these ηk

actually signify. It is immediate that,

rk =

N−1∑
l=0

p(l−k) mod N log(p(l−m∗) mod N ) =

N−1∑
l=0

p(l+m∗−k) mod N log(pl),

and so

rm∗ − rk = tTm∗q − tTk q =

N−1∑
l=1

pl log(pl)−
N−1∑
l=0

p(l+m∗−k) mod N log(pl). (23)

From the definition of Σ′, it is also immediate that

σkl = tTk diag(q)tl − tTk qqT tl

=

N−1∑
z=0

p(z−m∗) mod N log(p(z−k) mod N ) log(p(z−l) mod N )− rkrl,

and therefore, putting these expressions together we get,

σm∗m∗ + σkk − 2σm∗k =

N−1∑
i=0

pi(log(pi)− log(p(i+m∗−k) mod N ))
2 − (r∗m − rk)2.

(24)

A close inspection of the expressions in (23) and (24) shows that both the

expressions depend only on the difference between m∗ and k, and therefore

if we replace m∗ by 0, the set of values of η will be unchanged. Hence, their

ordered sequence is fixed and known, call it η = η(1) ≤ η(2) ≤ · · · ≤ η(N−1).

Then using Lemma 6, we have the following result.
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Corollary 2 If all the η’s are defined (i.e. finite) and η(1) and η(2) are distin-

guishably apart, then the data complexity of the message recovery attack with

failure probability at most α using ML approach is given by

n >

(
Φ−1(1− α)

η

)2

, (25)

where η(1), η(2), η are as defined earlier.

Proof By taking W in Lemma 6 to be
1

n
N0, we get that

Pr(M̂ = m∗) = Pr( max
0≤i≤N−1

1

n
Ri =

1

n
Rm∗) ≈ 1− Φ(−

√
nη).

Hence, to get Pr(M̂ = m∗) at least (1− α), we must have,

n >

(
Φ−1(1− α)

η

)2

.

It is interesting to note that

rm∗ − rk =

N−1∑
l=1

pl log(pl)−
N−1∑
l=0

p(l+m∗−k) mod N log(pl)

=

N−1∑
i=1

pi log

(
pi

p(i−m∗+k) mod N

)
,

and therefore, rm∗−rk is the KL distance between P and (P−k+m∗) mod N .

Hence, the η s are like normalized KL distances between P and different (P +

l) mod N distributions.

The condition needed in the above corollary is that η(1) and η(2) are dis-

tinguishably apart. If this condition doesn’t hold true the ML method even

works, but the above approximation for message recovery attack complexity

won’t work.

However, if there are two or more m ∈ M (not necessarily modes) such

that (P+m) mod N have same distributions, then ML method fail. We take an

example for this. ConsiderM = {0, . . . , 255} and suppose that the distribution

P is such that 0 and 128 are two modes and all other probabilities are equal.

Then if the objective function is maximized in m then will also be maximized

in (m + 128) mod 256 as in this case h0(m) = h0((m + 128) mod 256). So,

ML method would fail in all cases in this example. Not only ML method, any
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estimator fails here miserably as the parameter m is not identifiable1 in this

case.

4.2 Comparison between Bayesian and Sample Mode Approach

So far we have discussed two ways for message recovery attack, one by Sample

Mode Approach and another by Bayesian Approach.

In this context we would like to point out the following result for unimodal

case of Bayesian approach.

Lemma 8 If the distribution P of the keystream bytes on the space M, has

only one mode at 0 and all remaining probabilities are equal, then the message

recovery attack using ML estimation and sample mode approach give the same

result.

Proof Here ML method maximizes

h0(m) =

N−1∑
k=1

Nm,k log r +Nm,0 log p0 = Nm,0 log p0 + (n−Nm,0) log r,

i.e., practically we are to maximize Nm,0(log p0 − log r) therefore only Nm,0

over m. Clearly, it is maximized if we take m to be equal to sample mode of

the ciphertexts and thus the two estimates coincide. ut

Note that if the mode is different from 0, then also the same result holds.

In general, as the Bayesian approach uses more information about the

keystream distribution (as it considers biases in all positions) than in the later

approach, it has always greater success probability. But on the other hand, in

the first approach, we have to maximize a complex function over a huge set,

which may turn out to be computationally inefficient sometime. Therefore, we

may follow the following rules while deciding which method to apply:

1. As discussed earlier, for unimodal keystream byte distribution, both meth-

ods gives same estimate for large sample size, and hence in that we should

go for computationally more efficient sample mode approach.

2. For small sample sizes or multi-modal distributions (with identifiable plain-

text parameter), we should go for Bayesian approach.

1 A family of probability distributions {Pθ} indexed by the parameter θ is said to be

identifiable w.r.t. θ, if

θ1 6= θ2 ⇒ Pθ1 6= Pθ2 .

Otherwise the family is said to be non-identifiable



36 Goutam Paul, Souvik Ray

3. For, non-identifiable plaintext case, both methods fail miserably, and hence

none is preferred.

Finally, we want to discuss about the adversarial advantage of the message

recovery attack. It is defined as

Adv = P (M̂ = M |keystream generated from the cipher)

−P (M̂ = M |keystream is uniform).

The first term in the above expression is the success probability, say α, and

the second term is essentially the probability of a random guess to be correct,

which is equal to
1

N
for single-byte bias attack and

1

Nk
for multiple-byte

bias attack, where k is the message size. So, if the success probability can be

estimated, methods of which is discussed so far, advantage can be computed

easily.

5 Connecting the Complexities of Distinguisher and Message

Recovery: a Case Study

We are interested in the relation between the data complexities of Distin-

guishing and Message Recovery Attack. We define the function Distinguish-

equivalent on the set of natural numbers as follows.

Definition 1 Distinguish-equivalent(n) is the number of samples needed in

the distinguishing attack to have the same success probability as that in the

message recovery attack for sample size equal to n.

To compare the data complexities in the two cases, we define another function

Multiplier on the set of natural number as follows.

Definition 2 Multiplier(n) is the ratio n
Distinguish-equivalent(n) , which indi-

cates how many times more sample is needed to recover the message than to

only distinguish from uniform distribution with same probability of success.

Due to the remark after Theorem 7, derivation of a closed-form expression of

this quantity is not possible.

Now, we illustrate our previously derived results by pursuing the attack

on RC4 stream cipher based on its second byte bias. Here N = 256 and the

distributional node is 0 with p0 ≈ 2
256 . In the other sample points, biases are

very small which makes the other probabilities (i.e., p1, . . . , p255) almost equal.

Therefore, according to Lemma 8, one may use either ML or Sample Mode

approach.
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In a broadcast attack scenario, we have same message encrypted by differ-

ent RC4 keystreams (say n times). We collect the second byte of the ciphertexts

C1, . . . , Cn and guess the secret message by Mode(C1, . . . , Cn). Our probabil-

ity of success is given by the integral or expectation stated in Theorem 7. In

this particular context

γ = 0.06286849 , σ2
0 = 2.003922.

The change in success probability for different sample size is given in Fig. 2.

The behaviour of the Multiplier function with n is shown in Fig. 3, where

the distinguishing data complexity is calculated using the result stated in

Theorem 2 and taking the both way success probabilities equal (i.e., equal

false positive and negative errors).
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Fig. 2 Success Rate for Different Sample Sizes for RC4 Second Byte

From Fig.3 we see that the Multiplier function is continuously decreasing

and decreasing very rapidly at the recovery attack sample size 2400 to 3000

(i.e., at success rate in [0.55, 0.66]. At success rate 0.7, i.e., near sample size

3250 for recovery attack, we note that we need almost 8 times more samples

in the recovery attack than that in the distinguishing attack, whereas near

success rate [0.97, 0.98], it becomes almost 1.3 to 1.35.

We would now be interested in estimating the Multiplier function in terms

of some known handy function. It is very interesting to note that we find

empirically ln(n) and ln(ln(Multiplier(n))) to be highly linearly related. We
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Fig. 3 Multiplier for Different Sample size in Recovery Attack

define two functions f and g on the set of natural numbers as follows:

f(n) := ln
( n

1000

)
; g(n) := ln(ln(Multiplier(n))).

The graph of f(n) vs g(n) in Fig.4 shows empirically high linear relationship.

1.0 1.2 1.4 1.6 1.8 2.0 2.2

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

f(n)

g(
n)

Fig. 4 Graph of f(n) vs. g(n)



Title Suppressed Due to Excessive Length 39

Fig.4. shows the function g(n) is slightly convex in the region (0.9, 1.4) and

slightly concave in the region (1.8, 2.2) with respect to f(n). In the middle

region it is almost linear. So, we try to approximate the above relationship i.e.

the function g(n) in these three regions separately.

For the region (1.8, 2.2) we empirically find that h1(n) := exp

(
g(n)

2

)
is

almost linear w.r.t. f(n). We try to estimate h1(n) by a linear function of

f(n) by minimizing the distance over the range (1.8, 2.2)( where the distance

between two integrable functions f and g over the range (a, b) is defined as∫ b
a

(f(x)− g(x))
2
dx .) The function h1(n) and its estimate looks like in Fig.5

where the estimating linear function h′1(n) := 2.249515− 0.7759676f(n) is in

dotted line.
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Fig. 5 Graph of h1(n) and its estimator linear function

So, we get

g(n) ≈ 2(ln(2.249515− 0.7759676f(n));

for 1.8 ≤ f(n) ≤ 2.2 i.e. 6000 ≤ n ≤ 9000.

For the region (1.4, 1.8) we estimate the function g(n) itself by linear func-

tions by same method as described above.

The function and its estimating line g′(n) := 2.758714−1.703975f(n) looks

like Fig.6. So, we get

g(n) ≈ 2.758714− 1.703975f(n));
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Fig. 6 Graph of g(n) and its estimator linear function (in dotted line)

for 1.4 ≤ f(n) ≤ 1.8 i.e. 4000 ≤ n ≤ 6000.

For the region (0.9, 1.4) we find empirically the function h3(n) := (g(n))
3
4

to be highly linearly related with f(n). As previous we estimate by linear func-

tion by minimizing the distance and the estimating line h′3(n) := 2.393338 −
1.336852f(n) looks like in Fig.7.

So, we get

g(n) ≈ (2.393338− 1.336852f(n))
4
3 ;

for 0.9 ≤ f(n) ≤ 1.4 i.e. 2450 ≤ n ≤ 4000.

6 Conclusion

In this paper, we review different approaches towards estimating the data

complexity of distinguishing attacks on stream ciphers and analyze their inter-

relationships and applicable scenarios. We also formally analyze the data com-

plexity of message recovery attack that exploits a distinguisher and show that

in practice there is a significant gap between the two complexities. This gap

turns out to be a function of the number of samples of the distinguishing

attack. We perform a case study on RC4 stream cipher to demonstrate how

these two complexities are related.
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Fig. 7 Graph of h3(n) and its estimator linear function (in dotted line)

A Proof of Lemma 2

Proof Suppose S is the sample space and φ : S −→ [0, 1] be the test function [9] for the

concerned test with false positive rate (α) and false negative rate (β), i.e., we reject H0 with

probability φ(x), when X = x is observed. Then we have by definition

EH0
[φ(X)] =

∑
x∈S

φ(x)Pn(x) = α,

EH1
[(1− φ)(X)] =

∑
x∈S

(1− φ(x))Qn(x) = β.

Note that,

DKL(Qn||Pn) =
∑
x∈S

Qn(x) log2

Qn(x)

Pn(x)

=
∑
x∈S

Pn(x)
Qn(x)

Pn(x)
log2

Qn(x)

Pn(x)

=
∑
x∈S

Pn(x)f

(
Qn(x)

Pn(x)

)

where f : R+ → R defined as f(z) = z log2(z), ∀ z > 0. Then,
d2f(z)

dz2
= (z ln 2)−1 >

0, ∀ z > 0; which implies f is convex and continuous also. Hence, using Jensen’s Inequality,
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we have ∑
x∈S

φ(x)Pn(x)∑
x∈S φ(x)Pn(x)

f

(
Qn(x)

Pn(x)

)

≥ f

∑
x∈S

φ(x)Pn(x)∑
x∈S φ(x)Pn(x)

Qn(x)

Pn(x)


= f

(∑
x∈S φ(x)Qn(x)∑
x∈S φ(x)Pn(x)

)

= f

(
1− β
α

)
.

Hence,

∑
x∈S

φ(x)Pn(x)f

(
Qn(x)

Pn(x)

)
≥
∑
x∈S

φ(x)Pn(x)f

(
1− β
α

)

= αf

(
1− β
α

)

= (1− β) log2

(
1− β
α

)
.

Replacing φ by 1− φ and taking similar sums we get,

∑
x∈S

(1− φ(x))Pn(x)f

(
Qn(x)

Pn(x)

)
≥ β log2

β

1− α
.

Summing the above two inequalities we get

∑
x∈S

Pn(x)f

(
Qn(x)

Pn(x)

)

≥ β log2

β

1− α
+ (1− β) log2

1− β
α

,

and hence the desired result. ut

B Proof of Lemma 4

Proof This proof of Chernoff-Stein Lemma occurs in [10]. First note that,

log2

[
Pn(X1, . . . , Xn)

Q(X1, . . . , Xn)

]
=

n∑
k=1

log2

[
P (Xk)

Q(Xk)

]
,

and by Law of Large numbers

1

n

n∑
k=1

log2

[
P (Xk)

Q(Xk)

]
p−→ EP

[
log2

(
P (X1)

Q(X1)

)]
= DKL(P ||Q),
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under the null. Hence,

1

n
log2

[
Pn(X1, . . . , Xn)

Q(X1, . . . , Xn)

]
p−→ DKL(P ||Q),

which by definition gives that ∀ε, α > 0, ∃ Nε,α ∈ N such that, ∀n ≥ Nε,α, we have

Pn

[
|
1

n
log2

[
Pn(X)

Qn(X)

]
−DKL(P ||Q)| < ε

]
≥ 1− α, (26)

where D = DKL(P ||Q) and X = (X1, . . . , Xn). Now, define Aεn be the subset of χn

consisting of all x = (x1, . . . , xn) such that

Pn(x)2−n(D+ε) < Qn(x) < Pn(x)2−n(D−ε),

i.e.,

|
1

n
log2

[
Pn(x)

Qn(x)

]
−D| < ε.

Then, Equation (26) gives,

Pn(Aεn) ≥ 1− α,

∀n ≥ Nε,α. Also note that

Qn(Aεn) =
∑

x∈Aεn

Qn(x) (27)

<
∑

x∈Aεn

Pn(x)2−n(D−ε) < 2−n(D−ε), (28)

and

Qn(Aεn) =
∑

x∈Aεn

Qn(x) (29)

>
∑

x∈Aεn

Pn(x)2−n(D+ε) (30)

= 2−n(D+ε)Pn(Aεn) ≥ (1− α)2−n(D+ε), (31)

∀n ≥ Nε,δ. Now consider the test which rejects the null if and only if x /∈ Aεn. Then, by

equation (27) ∀ n ≥ Nε,α,

1− Pn(Aεn) < α and Qn(Aεn) < 2−n(D−ε),

which says that the non-randomized test with acceptance region Aεn has size less than α

and has false negative error less than 2−n(D−ε). So, by definition of βn,α, which is the least

attainable false negative error for level α non-randomized tests, we have

βn,α < 2−n(D−ε).

Thus we have, ∀n ≥ Nε,α, ε > 0,

log2 βn,α

n
< −D + ε =⇒ lim sup

n→∞

log2 βn,α

n
≤ −D. (32)
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On the other hand, consider any other test with rejection region R, such that Pn(R) < α.

Then we have,∀n ≥ Nε,α,

Qn(Rc) ≥ Qn(Rc ∩Aεn)

=
∑

x∈Rc∩Aεn

Qn(x)

>
∑

x∈Rc∩Aεn

2−n(D+ε)Pn(x)

= 2−n(D+ε)Pn(Rc ∩Aεn)

≥ 2−n(D+ε)(Pn(Aεn)− Pn(R))

≥ 2−n(D+ε)(1− 2α)

Hence,∀n ≥ Nε,α,

βn,α = min
R,Pn(R)<α

Qn(Rc) > 2−n(D+ε)(1− 2α),

which in turn gives,

lim inf
n→∞

log2 βn,α

n
≥ −D − ε, ∀ ε > 0.

Therefore,

lim inf
n→∞

log2 βn,α

n
≥ −D. (33)

Combining Equation (32) and Equation (33) we get the desired result. ut

C Proof of Lemma 6

Proof Without loss of generality assume that s = 0. Note that

N−1∑
r=1

Pr(W0 < Wr) ≥ Pr(∃ 1 ≤ k ≤ (N − 1) s.t. W0 < Wk)

= Pr( max
0≤i≤N−1

Wi 6= W0)

≥ Pr(W0 ≤Wl), ∀ l = 1, . . . , N − 1.

∀ k = 1, . . . , N − 1, we have, Pr(W0 < Wk) = Pr(W0 −Wk < 0) and

W0 −Wk ∼ N (µ0 − µk,
1

n
(σ00 + σkk − 2σ0k)),

i.e.,

Rk :=

√
n

√
σ00 + σkk − 2σ0k

(W0 −Wk) ∼ N (
√
nδk, 1).

Hence,

Pr(W0 −Wk < 0) = Pr(Rk < 0) = Φ(−
√
nδk). (34)

Thus,

N−1∑
r=1

Φ(−
√
nδr) ≥ Pr(∃ 1 ≤ k ≤ (N − 1) s.t. W0 < Wk)

≥ Φ(−
√
nδl), ∀ l = 1, . . . , N − 1.
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which gives

N−1∑
r=1

Φ(−
√
nδr) ≥ Pr(∃ 1 ≤ k ≤ (N − 1) s.t. W0 < Wk)

≥ max
1≤l≤N−1

Φ(−
√
nδl) = Φ(−

√
nδ)

Let, Now, we shall show that the ratio of the two extremes in the inequality stated above goes

to 1 as n goes to infinity, i.e., for large n they are quite close and then we can approximate

the middle term by the right-hand extreme. The limit we get by using L’Hospital’s Rule is

as follows,

lim
n→∞

Φ(−
√
nδ)∑N−1

r=1 Φ(−
√
nδr)

= lim
n→∞

δe−
nδ2

2∑N−1
r=1 δre

−nδ
2
r

2

= 1

as δ < δk, ∀k 6= 0, j. So,

Pr( max
0≤i≤N−1

Wi 6= W0) = Pr(∃ 1 ≤ k ≤ (N − 1) s.t. W0 < Wk) ≈ Φ(−
√
nδ).

References

1. Nadhem J. AlFardan, Daniel J. Bernstein, Kenneth G. Paterson, Bertram Poettering,

and Jacob C. N. Schuldt. On the security of RC4 in TLS. In Samuel T. King, editor,

Proceedings of the 22th USENIX Security Symposium, Washington, DC, USA, August

14-16, 2013, pages 305–320. USENIX Association, 2013.

2. Jean-Philippe Aumasson, Simon Fischer, Shahram Khazaei, Willi Meier, and Christian

Rechberger. New features of latin dances: Analysis of salsa, chacha, and rumba. In

Kaisa Nyberg, editor, Fast Software Encryption, 15th International Workshop, FSE

2008, Lausanne, Switzerland, February 10-13, 2008, Revised Selected Papers, volume

5086 of Lecture Notes in Computer Science, pages 470–488. Springer, 2008.

3. Thomas Baignères, Pascal Junod, and Serge Vaudenay. How far can we go beyond

linear cryptanalysis? In Pil Joong Lee, editor, Advances in Cryptology - ASIACRYPT

2004, 10th International Conference on the Theory and Application of Cryptology and

Information Security, Jeju Island, Korea, December 5-9, 2004, Proceedings, volume

3329 of Lecture Notes in Computer Science, pages 432–450. Springer, 2004.

4. Thomas Baignères, Pouyan Sepehrdad, and Serge Vaudenay. Distinguishing distribu-

tions using chernoff information. In Swee-Huay Heng and Kaoru Kurosawa, editors,

Provable Security - 4th International Conference, ProvSec 2010, Malacca, Malaysia,

October 13-15, 2010. Proceedings, volume 6402 of Lecture Notes in Computer Science,

pages 144–165. Springer, 2010.

5. Subhadeep Banik and Takanori Isobe. Cryptanalysis of the full spritz stream cipher.

In Thomas Peyrin, editor, Fast Software Encryption - 23rd International Conference,

FSE 2016, Bochum, Germany, March 20-23, 2016, Revised Selected Papers, volume

9783 of Lecture Notes in Computer Science, pages 63–77. Springer, 2016.

6. Riddhipratim Basu, Shirshendu Ganguly, Subhamoy Maitra, and Goutam Paul. A

complete characterization of the evolution of RC4 pseudo random generation algorithm.

J. Mathematical Cryptology, 2(3):257–289, 2008.



46 Goutam Paul, Souvik Ray

7. Richard E. Blahut. Principles and Practice of Information Theory. Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, USA, 1987.
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16. G.H. Hardy, J.E. Littlewood, and G. Pólya. Inequalities. Cambridge Mathematical

Library. Cambridge University Press, 1952.

17. S. Kullback and R. A. Leibler. On information and sufficiency. Annals of Mathematical

Statistics, 22:49–86, 1951.

18. Subhamoy Maitra, Goutam Paul, Shashwat Raizada, Subhabrata Sen, and Rudradev

Sengupta. Some observations on HC-128. Des. Codes Cryptography, 59(1-3):231–245,

2011.

19. Itsik Mantin. Predicting and distinguishing attacks on RC4 keystream generator. In

Ronald Cramer, editor, Advances in Cryptology - EUROCRYPT 2005, 24th Annual

International Conference on the Theory and Applications of Cryptographic Techniques,

Aarhus, Denmark, May 22-26, 2005, Proceedings, volume 3494 of Lecture Notes in

Computer Science, pages 491–506. Springer, 2005.

20. Itsik Mantin and Adi Shamir. A practical attack on broadcast RC4. In Mitsuru Matsui,

editor, Fast Software Encryption, 8th International Workshop, FSE 2001 Yokohama,

Japan, April 2-4, 2001, Revised Papers, volume 2355 of Lecture Notes in Computer

Science, pages 152–164. Springer, 2001.

21. J. Neyman and E. S. Pearson. On the problem of the most efficient tests of statisti-

cal hypotheses. Philosophical Transactions of the Royal Society of London. Series A,

Containing Papers of a Mathematical or Physical Character, 231:pp. 289–337, 1933.

22. Subhabrata Samajder and Palash Sarkar. Another look at normal approximations in

cryptanalysis. IACR Cryptology ePrint Archive, 2015:679, 2015.

23. Subhabrata Samajder and Palash Sarkar. Rigorous upper bounds on data complexities

of block cipher cryptanalysis. IACR Cryptology ePrint Archive, 2015:916, 2015.



Title Suppressed Due to Excessive Length 47

24. Paul Stankovski, Sushmita Ruj, Martin Hell, and Thomas Johansson. Improved distin-

guishers for HC-128. Des. Codes Cryptography, 63(2):225–240, 2012.

25. Hongjun Wu. The stream cipher HC-128. In Matthew J. B. Robshaw and Olivier Billet,

editors, New Stream Cipher Designs - The eSTREAM Finalists, volume 4986 of Lecture

Notes in Computer Science, pages 39–47. Springer, 2008.


