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Abstract

In a public-key encryption scheme, if a sender is not concerned about the security of a message and
is unwilling to generate costly randomness, the security of the encrypted message can be compromised.
In this work, we characterize such lazy parties, who are regraded as honest parties, but are unwilling to
perform a costly task when they are not concerned about the security. Specifically, we consider a rather
simple setting in which the costly task is to generate randomness used in algorithms, and parties can
choose either perfect randomness or a fixed string. We model lazy parties as rational players who behave
rationally to maximize their utilities, and define a security game between the parties and an adversary.
Since a standard secure encryption scheme does not work in the setting, we provide constructions of
secure encryption schemes in various settings.

1 Introduction

As a motivating example, consider the following situation. Alice is a teacher of a course “Introduction to
Cryptography.” She promised to inform the students of their grades by using public-key encryption. Each
student prepared his/her public key, and sent it to Alice. Since there are many students taking the course,
it is very costly to encrypt the grades of all the students. However, because she promised to use public-key
encryption, she decided to encrypt the grades. To encrypt messages, she needs to generate randomness.
Generating randomness is also a costly task. While the grades are personal information for the students
and thus they want them to be securely transmitted, the grades are not personal information for Alice. The
security of the grades is not her concern. She noticed that, even if she generated imperfect randomness for
encryption, no one may detect it. Consequently, she used imperfect randomness for encryption.

The above situation resulted in an undesirable consequence. This example demonstrates that, if a party
in a cryptographic protocol is not concerned about the security and is unwilling to do a costly task, then
the security of the protocol may be compromised. The insecurity is caused by the laziness of the party.
However, the security should be preserved even if such parties exist.

1.1 This Work

We introduce the notion of lazy parties, who may compromise the security of cryptographic protocols. They
are characterized such that (1) they are not concerned about the security of the protocol in a certain situation,
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and (2) they behave in an honest-looking way and are unwilling to do a costly task. As the first step toward
understanding the behavior of lazy parties, we consider the following rather simple setting in public-key
encryption schemes. The sender and the receiver have their own valuable messages. They want to transmit
a message securely if it is valuable to them. However, since both the sender and the receiver are lazy, the
sender is not willing to do a costly task if a message is not valuable to him, and the receiver vice versa.
The costly task we consider is to generate randomness used in algorithms. For simplicity, we assume that
players can choose either good randomness or bad randomness. We assume that the good randomness is a
truly random string, and the bad randomness if a fixed string. Our goal is to design public-key encryption
schemes in which valuable messages of the sender or the receiver can be transmitted securely by the lazy
sender and receiver who may use bad randomness in algorithms.

Formalizing the Problem The security of public-key encryption with lazy parties are formalized as fol-
lows. First, a security game between a sender, a receiver, and an adversary is defined. The game is a variant
of the usual chosen plaintext attack (CPA) game of public-key encryption. In the game, we see the sender
and the receiver as rational players. The sender and the receiver have their utility functions, the values
of which are determined by the outcome of the game, and they play the game to maximize their utilities.
Roughly speaking, an encryption scheme is secure for lazy parties if there is a pair of prescribed strategies
of the sender and the receiver for the game, the game is conducted in a secure way if they follow the pre-
scribed pair of strategies, and the pair of strategies is a good equilibrium solution. The solution concepts we
consider in this work are the Nash equilibrium and the strict Nash equilibrium, which is stronger than the
Nash equilibrium.

Impossibility Results We show that to achieve the security for lazy parties with a Nash equilibrium so-
lution in our setting, the sender must generate a secret key, and the encryption phase requires at least two
rounds. Neither of them is satisfied in the usual public-key encryption. Therefore, we need to consider
encryption schemes in which the sender generates a secret key in the key generation phase, and the sender
and the receiver interact at least two times in encrypting a message.

Constructions The security for lazy parties varies according to what information each player knows. We
consider several situations according to the information each player knows, and present a secure encryption
scheme for lazy parties in each situation.

The first situation is a basic one: the receiver does not know whether a message to be encrypted is
valuable to him or not, and the sender knows the value of the message for him. We propose a two-round
encryption scheme that is secure for lazy parties with a strict Nash equilibrium solution. The idea is simple.
First, the receiver generates a random string, encrypts it by the public key of the sender, and sends it to the
sender. Next, the sender recovers the random string from the ciphertext and uses it to encrypt a message by
the one-time pad. Since the receiver does not know whether a message to be encrypted is valuable to him or
not, the receiver will generate good randomness.

The next situation is one in which the receiver may know whether a message to be encrypted is valuable
to him or not. This captures a real-life situation; If we use encryption, in many cases, it is realized not only
by the sender but also the receiver that what kind of message will be sent. Under this situation, the above
two-round scheme seems no longer secure since the receiver would generate bad randomness if a message
to be encrypted is not valuable to him. We show that for any pair of strategies the above two-round scheme
cannot achieve the security with a Nash equilibrium solution. Thus we propose a three-round encryption
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scheme that is secure in the setting. The encryption phase is conducted as follows. First, the sender and the
receiver perform a key-agreement protocol to share a random string between them so that the shared string
will be uniformly random if at least one of them chooses good one in the key-agreement protocol. Then, the
sender uses the shared string as randomness in the encryption algorithm. Finally, after recovering a message,
the receiver encrypts the message by the sender’s public key and makes it public. At first glance, the final
step of making the encrypted message public seems redundant, but our scheme does not achieve the security
without this step. Our three-round scheme is secure for lazy parties with a strict Nash equilibrium solution.

We generalize the above situation such that both the sender and the receiver may know that a message to
be encrypted is valuable to them. The difference from the previous situation is that the sender may be able
to know the value of the message for the receiver, and the receiver vice versa. In this situation, we realized
that the above three-round scheme has two different pairs of strategies that achieve the security with a strict
Nash equilibrium. There is a situation such that one pair yields a higher utility to the sender, and the other
pair yields a higher utility to the receiver. Moreover, if the sender follows a strategy that yields a higher
utility to him and the receiver also does so, they will conduct an encryption protocol in an insecure way,
which is worse for both of them. Thus, we propose a simple way to avoid such a consequence.

Finally, we consider constructing a non-interactive encryption scheme that is secure for lazy parties. We
avoid the impossibility result of existing non-interactive schemes by adding some reasonable assumption
to lazy parties. The assumption is that players do not want to reveal their secret key to adversaries. Then
we employ a signcryption scheme for an encryption scheme. A signcryption scheme is a cryptographic
primitive that achieves both public-key encryption and signature simultaneously, and thus the sender also
has a secret key. Some signcryption schemes (e.g., Zheng’s scheme [30]) have the key-exposure property,
which means that the sender’s secret key can be efficiently recovered from a ciphertext and its random string.
This property seems to be undesirable in a standard setting. However, we show that if a signcryption scheme
with the key-exposure property is employed as a public-key encryption scheme, it is secure for lazy parties
with a strict Nash equilibrium solution.

1.2 Related Work

Halpern and Pass [19] have introduced Bayesian machine games in which players’ utilities can depend on
the computational costs of their strategies. We could use the framework of Halpern and Pass to define
a security of public-key encryption schemes for lazy parties since the utilities of lazy parties depend on
their computational cost. We did not use their framework since their framework seems too general for our
purpose.

There have been many studies on rational cryptography [23, 12, 18], in which rational players are
considered in designing cryptographic protocols. Much study has been devoted to rational secret shar-
ing [20, 1, 14, 24, 25, 27, 28, 3]. There are studies on other cryptographic primitives such as fair two-party
computation [2, 16], leader election [15], byzantine agreement [17], oblivious transfer [21], and commit-
ment schemes [22]. Our work also can be seen as a study of rational cryptography. As far as we know, this
is the first study of rational behavior in public-key encryption schemes.

In cryptography, there are several characterizations of parties who are neither honest nor malicious [8, 9,
4]. In particular, the deviations of honest-looking parties were studied in [8, 9]. All types of honest-looking
parties defined in [8, 9] deviate from the protocol in a way that is computationally indistinguishable from
the view of external or internal parties. This means that any efficient statistical test cannot tell the difference
between honest parties and honest-looking parties. In this study, we look at honest-looking parties who
may deviate from the protocol by using a fixed string instead of a truly random string. Since the difference
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between fixed strings and truly random strings can be told by a simple statistical test, the deviations of lazy
parties are bolder than honest-looking parties in [8, 9]. Note that all the characterization in [8, 9] appeared
in the context of general multiparty computation, not in public-key encryption.

A problem of public-key encryption with lazy parties is that lazy parties might not use good randomness
in algorithms. There are many studies on the security of cryptographic tasks when only weak randomness
is available. If there are only high min-entropy sources, not including truly random one, many impossibility
results are known [26, 11, 6, 10]. Bellare et al. [5] introduced hedged public-key encryption, which achieves
the usual CPA security if good randomness is used, and achieves a weaker security if bad randomness is
used. In this work, we consider only two types of randomness sources, truly random ones and fixed ones.
We achieve the security by a mechanism such that lazy parties choose to use good randomness for their
purpose.

1.3 Future Work

Possible future work will extend the framework of this work to more general settings. For example, in this
work, lazy players can choose either truly random (full entropy) strings or fixed (zero entropy) strings as
the randomness in algorithms. Since it seems more realistic for players to be able to choose random strings
from general entropy sources, extending the framework to such a general setting and defining a reasonable
security on that setting are interesting for future work.

Another possible future work is to explore cryptographic protocols that may be compromised in the
presence of lazy parties. This work demonstrates that public-key encryption is a primitive in which lazy
participants can compromise the security of other participants. The same thing might happen in other prim-
itives. Although we consider only generating good randomness as a costly task, it is possible to consider
another thing as cost, such as time for computation and delay in the protocol.

1.4 Organization

In Section 2, we introduce the CPA game for lazy parties, define utility functions of lazy parties, and provide
a definition of CPA security for lazy parties. Some impossibility results for achieving the security for lazy
parties are presented in Section 3. Our secure encryption schemes in various situations are presented in
Section 4.

1.5 Notations

A function ϵ(·) is called negligible if for any constant c, ϵ(n) < 1/nc for every sufficiently large n. For
two families of random variables X = {Xn}n∈N and Y = {Yn}n∈N, we say that X and Y are computationally
indistinguishable, denoted by X ≈c Y , if for every probabilistic polynomial-time (PPT) distinguisher D,
there is a negligible function ϵ(·) such that |Pr[D(Xn) = 1] − Pr[D(Yn) = 1]| ≤ ϵ(n) for every sufficiently
large n. For a probabilistic algorithm A, the output of A when the input is x is denoted by A(x), and denoted
by A(x; r) when the random string r used in A is represented explicitly.

2 Lazy Parties in Public-Key Encryption

We assume that both a sender and a receiver are lazy parties. Each party has a set of valuable messages,
and wants a message to be sent securely if it is valuable to that party. If a message to be encrypted is not
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valuable to a party, he is not concerned about the security of the message, and does not want to use good
randomness in the computation. In this paper, we consider only two types of randomness, good randomness
and bad randomness. Good randomness is a truly random string but costly. Bad randomness is generated
with zero cost, but is some fixed string.

The security is formalized as follows. Lazy parties are considered as rational players who have some
utility functions and behave rationally to maximize their utilities. We define a security game between a lazy
sender, a lazy receiver, and an adversary. Then, we say that an encryption scheme is secure if there is a pair
of prescribed strategies of the sender and the receiver for the game, the game is conducted in a secure way
if they follow the strategies, and the pair of strategies is a good equilibrium solution.

Public-key encryption is defined as an interactive protocol between a sender and a receiver. The reason
is that we cannot achieve the security if the sender does not have a secret key or the encryption phase is
conducted in one round, which will be described in Section 3. In the key generation phase, both the sender
and the receiver generate their own public key and secret key, then each public key is distributed to the
other player. In the encryption phase, the players conduct an interactive protocol in which the sender has
a message as an input. After the encryption phase, the receiver can recover the message by running the
decryption algorithm. This definition is much more general than the usual public-key encryption, in which
only the receiver generates a public key and a secret key, and the encryption phase is just sending a ciphertext
from the sender to the receiver.

Definition 1 (Public-key encryption scheme). An n-round public-key encryption scheme Π is the tuple
({Genw}w∈{S ,R}, {Enci}i∈{1,...,n},Dec) such that

• Key generation: For each w ∈ {S ,R}, on input 1k, Genw outputs (pkw, skw). LetM denote the message
space.

• Encryption: For a message m ∈ M, set stS = (pkS , pkR, skS ,m), stR = (pkS , pkR, skR), and c0 = ⊥.
Let w ∈ {S ,R} be the first sender, and w̄ ∈ {S ,R} \ {w} the second sender. For each round i ∈
{1, . . . , n}, when i is odd, Enci(ci−1, stw) outputs (ci, st′w), and stw is updated to st′w, and when i is even,
Enci(ci−1, stw̄) outputs (ci, st′w̄), and stw̄ is updated to st′w̄.

• Decryption: After the encryption phase, on input stR, Dec outputs m̂.

• Correctness: For any message m ∈ M, after the encryption phase, Dec(stR) = m.

We provide a definition of the chosen plaintext attack (CPA) game for lazy parties. The game is a
variant of the usual CPA game for public-key encryption. The game is conducted as follows. The sender
S (and the receiver R) has his valuable message space MS (and MR), which is a subset of {0, 1}∗. First,
each player w ∈ {S ,R} are asked to choose good randomness or bad randomness for the key generation
algorithm. If player w chooses good randomness, a random string rgw for key generation is sampled as a
truly random string. Otherwise, rgw is generated by the adversary of this game. Then, pairs of public and
secret keys for the two parties are generated using rgw as a random string, and the public keys are distributed
to the sender, the receiver, and the adversary. Next, the adversary generates two sequences m0 and m1
of challenge messages, where mb = (mb,1, . . . ,mb,ℓ) for b ∈ {0, 1} and some polynomial ℓ. After that, the
challenger chooses b ∈ {0, 1} uniformly at random. The sender receives mb and is asked to choose good
or bad randomness for the encryption protocol. If he chooses good randomness, random strings re

i, j for
encryption is sampled as truly random strings, where re

i, j represents a random string used in the j-th round of
the encryption for the i-th message mb,i. Otherwise, strings re

i, j’s are generated by the adversary. Similarly,
the receiver is also asked to choose good or bad randomness for the encryption protocol without seeing the
challenge messages mb, and random strings re

i, j’s are generated in the same way as for the sender. Then, a
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sequence of challenge messages are encrypted using re
i, j’s as random strings. Finally, the adversary receives

a sequence of challenge ciphertexts, and outputs a guess b′ ∈ {0, 1}. The outcome of the game consists of
five values Win,ValS ,ValR,NumS , and NumR. The value Win takes 1 if the guess of the adversary is correct,
namely b = b′, and 0 otherwise. The value Valw for player w ∈ {S ,R} takes 1 if there is at least one valuable
message for player w in the sequence mb of challenge messages, and 0 otherwise. The value Numw for
player w ∈ {S ,R} represents the number of times that player w chose good randomness in the game, which
is between 0 and 2.

In the following, we provide a formal definition of the CPA game for lazy parties. For a probabilistic
algorithm A, we denote by ℓ(A) the length of random bits required in running A. We denote by Samp(A) an
algorithm that samples a random string from {0, 1}ℓ(A).

Definition 2 (CPA game for lazy parties). Let Π = ({Genw}w∈{S ,R}, {Enci}i∈{1,...,n},Dec) be a public-key en-
cryption scheme. For an adversary A, the security parameter k, valuable message spacesMS andMR, and
a pair of strategies (σS , σR), we define the following game.

Gamecpa(Π, k, A,MS ,MR, σS , σR):

1. Choice of randomness for key generation: For each w ∈ {S ,R}, compute xgw ← σw(1k,Mw), where
xgw ∈ {Good,Bad} and we assume thatMw has a polynomial-size representation. If xgw = Bad, then
given (1k, w), A outputs rgw ∈ {0, 1}ℓ(Genw(1k)). Otherwise sample rgw ← Samp(Genw(1k)).

2. Key generation: For each w ∈ {S ,R}, generate (pkw, skw)← Genw(1k; rgw). LetM be the correspond-
ing message space.

3. Challenge generation: Given (pkS , pkR), A outputs m0 = (m0,1, . . . ,m0,ℓ) and m1 = (m1,1, . . . ,m1,ℓ),
where ℓ ∈ N is a polynomial in k and mi, j ∈ M for each i ∈ {0, 1} and j ∈ {1, . . . , ℓ}. Then sample
b ∈ {0, 1} uniformly at random.

4. Choice of randomness for encryption: For each w ∈ {S ,R}, compute xe
w ← σw(pkS , pkR, skw, auxw),

where xe
w ∈ {Good,Bad}, auxS = mb, and auxR = ⊥. If xe

w = Bad, then given w, A outputs
re

i, j ∈ {0, 1}ℓ(Enc j(·)) for each i ∈ {1, . . . , ℓ} and j ∈ {1, . . . , n}. Otherwise sample re
i, j ← Samp(Enc j(·))

for each i ∈ {1, . . . , ℓ} and j ∈ {1, . . . , n}. Let w be the first sender, and w̄ the second sender, which are
determined by Π.

5. Encryption: For i ∈ {1, . . . , ℓ}, do the following. Set stS = (pkS , pkR, skS ,mb,i), stR = (pkS , pkR, skR),
and ci,0 = ⊥. For j ∈ {1, . . . , n}, when j is odd, compute (ci, j, st′w) ← Enc j(ci, j−1, stw; re

i, j) and stw is
updated to st′w, and when j is even, compute s(ci, j, st′w̄) ← Enc j(ci, j−1, stw̄; re

i, j) and stw̄ is updated to
st′w̄.

6. Guess: Given {ci, j : i ∈ {1, . . . , ℓ}, j ∈ {1, . . . , n}}, A outputs b′ ∈ {0, 1}.
7. Output (Win,ValS ,ValR,NumS ,NumR), where Win takes 1 if b′ = b, and 0 otherwise, Valw takes 1 if

mb,i ∈ Mw for some i ∈ {1, . . . , ℓ}, and 0 otherwise, and Numw represents the number of times that σw
output Good in the game.

Next, we define the utility functions of lazy sender and receiver for this game. We take the following
points into consideration: (1) If a message to be sent is valuable to player w, then player w prefers the
adversary not to correctly guess the message. Otherwise, player w does not concern about the guess of the
adversary. (2) Each player prefers to generate good randomness as few times as possible. (3) Each player
prefers to pay the cost of good randomness if a message to be sent is valuable him.

Definition 3 (Utility function for CPA game). Let (σS , σR) be a pair of strategies of the game Gamecpa.
The utility of player w ∈ {S ,R} when the outcome Out = (Win,ValS ,ValR,NumS ,NumR) happens is defined
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by

uw(Out) = (−αw) ·Win · Valw + (−βw) · Numw,

where αw, βw ∈ R are some non-negative constant. Let qw be the maximum number that Numw can take. (qw
is either 0, 1, or 2, depending on the scheme Π.) We say that the utility is non-trivial if αw/2 > qw · βw for
each w ∈ {S ,R}.

The utility when the players follow a pair of strategies (σS , σR) is defined by

Uw(σS , σR) = min
A,MS ,MR

{E[uw(Out)]},

where Out is the outcome of the game Gamecpa(Π, k, A,MS ,MR, σS , σR), and the minimum is taken over
all PPT adversaries A and valuable message spaces MS and MR. Note that Uw(σS , σR) is implicitly a
function of the security parameter k.

In the definition of the utility when players follow a pair of strategies (σS , σR), we take the minimum
over all possible adversaries and valuable message spaces. This is because we would like to evaluate a pair
of strategies (σS , σR) by considering the worst-case for possible adversaries and valuable message spaces.
In other words, we would like to say that a pair of strategies is good if it is guaranteed to yield high utility
for any adversary and players, who are associated with valuable message spaces.

Note that the non-triviality condition of the utility guarantees that players have an incentive to use good
randomness to achieve the security. If players do not use good randomness, then there is an adversary such
that Win · Valw is always 1. The best we can hope for is that the expected value of Win · Valw is 1/2 (plus
some negligible value), which increases the utility by αw/2. Since Numw takes at most qw in the game, the
inequality αw/2 > qw · βw means that achieving the security is worth paying the cost of good randomness.
Hereafter, we assume that the utility functions are non-trivial.

As game theoretic solution concepts, we define the Nash equilibrium and the strict Nash equilibrium.
Since any strategy that a player can follow should be computable in a polynomial time and a negligible
difference of the outcome of the game should be ignored for PPT algorithms, we consider a computational
Nash equilibrium.

Definition 4 (Computational Nash equilibrium). A pair of PPT strategies (σS , σR) of the game Gamecpa

is called a computational Nash equilibrium if for every player w ∈ {S ,R} and every pair of PPT strategies
(σ′S , σ

′
R), there is a negligible function ϵ(·) such that

Uw(σ∗S , σ
∗
R) ≤ Uw(σS , σR) + ϵ(k),

where (σ∗S , σ
∗
R) = (σ′S , σR) if w = S , (σ∗S , σ

∗
R) = (σS , σ

′
R) otherwise.

Strict Nash equilibrium is a stronger solution concept than plain Nash equilibrium, and guarantees that
if a player deviates from the strategy, then the utility of the player decreases by a non-negligible amount.
The definition is based on that of [13], which appeared in the context of rational secret sharing.

Definition 5 (Equivalent strategy). Let (σS , σR) be a pair of strategies of the game Gamecpa, and σ′w any
strategy of player w ∈ {S ,R}. We say σ′w is equivalent to σw, denoted by σ′w ≈ σw, if for any PPT adversary
A and valuable message spacesMS andMR,

{Trans(1k, σw)} ≈c {Trans(1k, σ′w)},
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where Trans(1k, σw) represents the transcript of the game Gamecpa(Π, k, A,MS ,MR, σ
∗
S , σ

∗
R), which in-

cludes all values generated in the game except the internal random coin of σ′w, and (σ∗S , σ
∗
R) = (σ′S , σR) if

w = S , (σ∗S , σ
∗
R) = (σS , σ

′
R) otherwise.

Definition 6 (Computational strict Nash equilibrium). A pair of strategies (σS , σR) of the game Gamecpa is
called a computational strict Nash equilibrium if

1. (σS , σR) is a Nash equilibrium;

2. For every w ∈ {S ,R} and every PPT strategy σ′w 0 σw, there is a constant c > 0 such that
Uw(σ∗S , σ

∗
R) ≤ Uw(σS , σR) − 1/kc for infinitely many k, where (σ∗S , σ

∗
R) = (σ′S , σR) if w = S ,

(σ∗S , σ
∗
R) = (σS , σ

′
R) otherwise.

We define the security of encryption schemes for lazy parties.

Definition 7 (CPA security for lazy parties). Let Π = ({Genw}w∈{S ,R}, {Enci}i∈{1,...,n},Dec) be a public-key
encryption scheme, and (σS , σR) a pair of strategies of the game Gamecpa. We say that (Π, σS , σR) is CPA
secure with a (strict) Nash equilibrium for Gamecpa if

1. For any PPT adversary A and valuable message spacesMS ,MR, there is a negligible function ϵ(·)
such that Pr[Win · (ValS + ValR) , 0] ≤ 1/2 + ϵ(k), where Win,ValS ,ValR are components of the
outcome of the game Gamecpa(Π, k, A,MS ,MR, σS , σR).

2. The pair of strategies (σS , σR) is a computational (strict) Nash equilibrium.

In the first condition, we evaluate the value of Win · (ValS + ValR) since if ValS + ValR = 0, all the
messages chosen by the adversary are not valuable to both the sender and the receiver.

A solution of a game can be considered a prediction of how the game will be played. Thus, it is more
plausible for players to follow a scheme with a stronger solution.

Note that the usual CPA security of usual (non-interactive) public-key encryption is a special case of the
above definition. If the scheme Π consists of (GenR,Enc1,Dec), a pair of strategies (σS , σR) is such that
both σS and σR always output Good, and the second condition of the security is not considered, then the
above security is equivalent to the usual CPA security of public-key encryption. If a non-interactive scheme
Π is CPA secure in the usual sense, we say simply that Π is CPA secure.

3 Impossibility Results

In this section, we show that to achieve CPA security for lazy parties, (1) the sender must generate a secret
key and (2) the encryption phase requires at least two rounds. Neither of them is satisfied in the usual
public-key encryption.

Roughly speaking, the reason why secure schemes require the generation of a secret key for a sender
is that if the messages to be encrypted are valuable to the receiver but not to the sender, the sender does
not use good randomness and thus the adversary can correctly guess which of the challenge messages was
encrypted because she knows all the inputs to the sender.

Furthermore, even if the sender has his secret key, if the encryption phase is 1-round, there is an ad-
versary who can guess the challenge correctly. Consider an adversary who submits challenge messages
where one consists of the same two messages and the other consists of different two messages, and all the
messages are valuable to the receiver but not to the sender. Then the sender does not use good randomness,
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and thus the adversary can choose randomness for encryption. If she choose the same random strings for
two challenge messages, then although the adversary does not know the secret key of the sender, since the
encryption is 1-round, she can correctly guess which of the challenges was encrypted by checking whether
given two challenge ciphertexts are the same or not.

We show that the above two properties are necessary for achieving CPA security with a Nash equilib-
rium.

Proposition 1. For any public-key encryption scheme Π = ({Genw}w∈{S ,R}, {Enci}i∈{1,...,n},Dec) and any pair
of strategies (σS , σR), if GenS does not output skS , then (Π, σS , σR) is not CPA secure with a Nash equilib-
rium for Gamecpa.

Proof. Suppose that (Π, σS , σR) is CPA secure with a Nash equilibrium. Consider an adversary A who
submits challenge messages (m0,m1) such that m0 = m0, m1 = m1, m0 , m1, and m0,m1 ∈ MR \ MS .
Since any challenge message is not in MS , the best strategy of the sender for A in the encryption phase
is to choose xe

S = Bad regardless of the receiver’s strategy. Therefore, σS (pkS , pkR, skS , auxS ) = Bad
with probability at least 1 − ϵ(k), where ϵ(·) is a negligible function. Then, since A knows all the input to
the sender in the encryption phase, which consists of stS = (pkS , pkR, auxS ,mb) and the random strings
for encryption, A can correctly guess b from c1,1, . . . , c1,n. This implies that the first condition of the CPA
security does not hold. □

Proposition 2. For any 1-round public-key encryption scheme Π = ({Genw}w∈{S ,R},Enc,Dec) and any pair
of strategies (σS , σR), (Π, σS , σR) is not CPA secure with a Nash equilibrium for Gamecpa.

Proof. Suppose that (Π, σS , σR) is CPA secure with a Nash equilibrium. Consider an adversary A who
submits challenge messages (m0,m1) such that m0 = (m,m), m1 = (m,m′), m , m′, and m,m′ ∈ MR\MS .
Since any challenge message is not inMS , the best strategy of the sender for A in the encryption phase is
to choose xe

S = Bad regardless of the receiver’s strategy, which implies that σS (pkS , pkR, skS , auxS ) = Bad
with probability at least 1 − ϵ(k) for a negligible function ϵ(·). Then, A receives the pair of ciphertexts
(c1, c2) such that c1 = Enc(pkS , pkR, skS ,m; re

1) and c2 = Enc(pkS , pkR, skS ,m∗; re
2), where m∗ is either m or

m′. Since A knows pkS , pkR,m,m′, re
1, r

e
2, the only information A does not know in c1 and c2 is skS . Hence,

c1 = c2 if m∗ = m. By the correctness property of the encryption scheme, c1 , c2 if m∗ , m. Therefore,
A can correctly guess b from c1 and c2. This implies that the first condition of the CPA security does not
hold. □

4 Secure Encryption Schemes for Lazy Parties

4.1 Two-Round Encryption Scheme

We present a two-round public-key encryption scheme that is CPA secure with a strict Nash equilibrium.
The encryption phase is conducted as follows. First, the receiver generates a random string, encrypts it by
the public key of the sender, and sends it to the sender. Next, the sender encrypt a messages by the one-time
pad, in which the sender uses the random string received from the receiver. The receiver can recover the
message since he knows the random string. Our scheme is based on any CPA-secure public-key encryption
scheme Π = (Gen,Enc,Dec) in which the message space is {0, 1}µ and the length of random bits required in
Enc is µ.

The description of our two-round scheme Πtwo = (GenS , {Enci}i∈{1,2},DecR) is the following.
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• GenS (1k): Generate (pkS , skS )← Gen(1k), and output (pkS , skS ).
LetM = {0, 1}µ be the message space, where µ is a polynomial in k. Set stS = skS and st1

R = pkS .
• Enc1(st1

R): Sample r ∈ {0, 1}µ uniformly at random, compute c1 ← Enc(pkS , r), set st2
R = r, and output

(c1, st2
R).

Enc2(c1, stS ): Compute r̂ ← Dec(skS , c1) and c2 = m ⊕ r̂, and output c2.
• DecR(c2, st2

R): Compute m̂ = c2 ⊕ r and output m̂.

We define a pair of strategies (σS , σR) such that

• σS (1k,MS ) outputs Good with probability 1.
• σR(pkS , auxR) outputs Good with probability 1.

Theorem 1. If Π is CPA secure, (Πtwo, σS , σR) is CPA secure with a strict Nash equilibrium for Gamecpa.

Proof. First, we show the correctness of the schemeΠtwo. Note that c1 = Enc(pkS , r), c2 = m⊕Dec(skS , c1),
and the output of DecR is m̂ = c2 ⊕ r. It follows from the correctness of the underlying scheme Π that
m̂ = (m ⊕ Dec(skS , c1)) ⊕ r = m ⊕ r ⊕ r = m.

Next, we show that for any PPT adversary A, valuable message spacesMS andMR, after running the
game Gamecpa with a pair of strategies (σS , σR), we have Pr[Win · (ValS + ValR) , 0] ≤ 1/2 + ϵ(k) for
some negligible function ϵ(·). It is sufficient to show that Pr[Win = 1] ≤ 1/2 + ϵ(k). In the game Gamecpa

with (σS , σR), the adversary A needs to guess b from (pkS , c1, c2,m0,m1). For any m0 ∈m0,m1 ∈m1, it
follows from the security of the underling scheme Π = (Gen,Enc,Dec) that

{pkS ,Enc(pkS , r), r ⊕ m0,m0,m1}
≈c {pkS ,Enc(pkS , r′), r ⊕ m0,m0,m1}
= {pkS ,Enc(pkS , r′), r′′,m0,m1}
= {pkS ,Enc(pkS , r′), r ⊕ m1,m0,m1}
≈c {pkS ,Enc(pkS , r), r ⊕ m1,m0,m1},

where r, r′, r′′ are independently and uniformly sampled from the message space {0, 1}µ. This implies that
Pr[Win = 1] ≤ 1/2 + ϵ(k) for some negligible function ϵ(·).

Finally, we show that (σS , σR) is a strict Nash equilibrium. It is required to show that (σS , σR) is a Nash
equilibrium. Suppose that the receiver follows σR. When σS (1k,MS ) outputs Bad, which increases the
utility of the sender by βS , there is an adversary who can compute skS correctly, and thus guess b correctly.
If all the challenge messages are in MS , this reduces the utility of the sender by αS /2. Thus, when the
receiver follows σR, since any deviation from σS reduces the utility by αS /2 − βS > 0, the strategy σS

maximizes the utility of the sender. Suppose that the sender follows σS . When σR(pkS , auxR) outputs Bad,
which increases the utility of the receiver by βR, there is an adversary who computes mb = r⊕ c2 by using c2
and r = re

R. If all the challenge messages are inMR, this reduces the utility of the receiver by αR/2. Hence,
when the sender follows σS , since any deviation from σR reduces the utility by αR/2 − βR > 0, the strategy
σR maximizes the utility of the receiver. Therefore, the pair (σS , σR) is a Nash equilibrium.

To show the second condition of the strict Nash equilibrium, consider a strategy σ′S of the sender such
that σ′S 0 σS . This implies that σ′S (1k,MS ) outputs Bad with probability at least 1/kc for a constant
c. By the same argument as above, this reduces the utility of the sender by (1/kc) · (αS /2 − βS ), namely
US (σ′S , σR) ≤ US (σS , σR) − (αS /2 − βS )/kc). Consider a strategy σ′R such that σ′R 0 σR, which implies
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that σ′R(pkS , auxR) outputs Bad with probability at least 1/kc for a constant c. As above, this reduces the
utility of the receiver by (1/kc) · (αR/2−βR), namely UR(σS , σ

′
R) ≤ UR(σS , σR)− (αR/2−βR)/kc. Therefore

(σS , σR) is a strict Nash equilibrium. □

4.2 Additional Information to the Receiver

We consider a situation in which the receiver may know whether a message to be encrypted is valuable to
the receiver or not. The situation can be reflected by changing the game Gamecpa such that the adversary
can choose either “auxR = ⊥” or “auxR = ValR” in the challenge generation phase. Let Gamecpa

R denote the
modified game.

Then, the scheme presented in Section 4.1 is no longer secure. Intuitively, this is because the receiver
does not generate good randomness if a message to be encrypted is not valuable to him.

Proposition 3. For any pair of strategies (σS , σR), (Πtwo, σS , σR) is not CPA secure with a Nash equilibrium
for Gamecpa

R .

Proof. Suppose that (Πtwo, σS , σR) is CPA secure with a Nash equilibrium. Consider an adversary A who
sets auxR = ValR and submits challenge messages (m0,m1) such that m0 = m0, m1 = m1, m0 , m1,
and m0,m1 ∈ MS \ MR. The best strategy of the receiver for A is to choose xe

R = Bad regardless of
the sender’s strategy. Therefore, σS (pkS , auxR) = Bad with probability at least 1 − ϵ(k), where ϵ(·) is
a negligible function. Since A knows the random string r for encryption, she can correctly guess b by
computing mb = c2 ⊕ r. This implies that the first condition of the CPA security does not hold. □

We present a three-round encryption scheme that is secure for Gamecpa
R . In the encryption phase, first,

the sender and the receiver perform a key-agreement protocol that generates a random string shared between
them. The shared string is good randomness if one of the sender and the receiver uses good randomness in
the key-agreement protocol. Then, the sender uses the shared string as randomness to encrypt a message.
Finally, after recovering a message, the receiver encrypt the message by the sender’s public key and makes
it public. As described later, the final step is necessary to achieve the security. Our scheme is based on any
CPA-secure public-key encryption scheme Π = (Gen,Enc,Dec) in which the message space is {0, 1}2µ and
the length of random bits required in Enc is µ.

The description of the encryption scheme Πthree = ({Genw}w∈{S ,R}, {Enci}i∈{1,2,3}) is the following. The
decryption algorithm does not exist in Πthree since the receiver decrypts a message in computing Enc3.

• Genw(1k) : Generate (pkw, skw)← Gen(1k), and output (pkw, skw).
LetM = {0, 1}2µ be the message space, where µ is a polynomial in k. Set st1

S = (pkS , pkR, skS ) and
st1

R = (pkS , pkR, skR).
• Enc1(st1

R): Sample r1 ∈ {0, 1}2µ uniformly at random, compute c1 ← Enc(pkS , r1), set st2
R = (st1

R, r1),
and output (c1, st2

R).
Enc2(c1, st1

S ): Sample r2 ∈ {0, 1}2µ uniformly at random and compute c2 ← Enc(pkR, r2) and r̂1 ←
Dec(skS , c1). Then rL ◦ rR = r̂1 ⊕ r2 such that |rL| = |rR| = µ, compute c3 ← Enc(pkR,m; rL), and
output ((c2, c3), st2

S ), where x ◦ y denote the concatenation of strings x and y, and st2
S = st1

S .
Enc3((c2, c3), st2

R): Compute r̂2 ← Dec(skR, c2), set r̂L ◦ r̂R = r1 ⊕ r̂2, compute m̂ ← Dec(skR, c3) and
c4 ← Enc(pkS , m̂; r̂R), and make c4 public. The decrypted message is m̂.

We define a pair of strategies (σS , σR) such that
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• σS (1k,MS ) outputs Good with probability 1. σS (pkS , pkR, skS , auxS ) outputs Good if mb,i ∈ MS

for some i ∈ {1, . . . , ℓ}, and Bad otherwise.
• σR(1k,MR) outputs Good with probability 1. σR(pkS , pkR, skR, auxR) outputs Good if auxR = ⊥ or

ValR = 1, and Bad otherwise.

At first glance, it does not seem necessary to make c4 public at the third round of the encryption phase.
However, it is necessary to do so because if not, the sender can achieve the security without using good
randomness in the key generation phase. Then, the receiver cannot achieve the security for his valuable
messages. Consider the case that a message to be sent is valuable only to the receiver. In the encryption
phase, the sender will choose bad randomness, and the receiver will choose good randomness. However,
since bad randomness was chosen in the key generation phase, the randomness chosen by the receiver will
be revealed to the adversary by observing the first-round ciphertext. Hence, the adversary can correctly
guess the message.

Theorem 2. If Π is CPA secure, (Πthree, σS , σR) is CPA secure with a strict Nash equilibrium for Gamecpa
R .

Proof. First, we show the correctness of the scheme Πthree. Note that c1 = Enc(pkS , r1), c2 =

Enc(pkS , r2), c3 = Enc(pkR,m; rL), and the decrypted message is m̂ = Dec(skS , c3). It follows from the
correctness of the underlying scheme Π that m̂ = m.

Next, we show that for any PPT adversary A, valuable message spacesMS andMR, after running the
game Gamecpa

R with a pair of strategies (σS , σR), we have Pr[Win · (ValS +ValR) , 0] ≤ 1/2+ ϵ(k) for some
negligible function ϵ(·). Without loss of generality, we assume that ValS + ValR , 0. We will show that
Pr[Win = 1] ≤ 1/2 + ϵ(k). Since ValS + ValR , 0 and the players follow (σS , σR), at least one of xe

S and xe
R

will be Good. Suppose that xe
S = Good and xe

R = Bad. When A chose m0,m1 as the challenge messages,
the view of A is

{pkS , pkR, (r1, re), c1, c2, c3, c4}
= {pkS , pkR, (r1, re),Enc(pkS , r1; re),Enc(pkR, r2),

Enc(pkR,mb; rL),Enc(pkS ,mb; rR)}
≈c {pkS , pkR, (r1, re),Enc(pkS , r1; re),Enc(pkR, r′2),

Enc(pkR,mb; rL),Enc(pkS ,mb; rR)}
≈c {pkS , pkR, (r1, re),Enc(pkS , r1; re),Enc(pkR, r′2),

Enc(pkR,m1−b; rL),Enc(pkS ,m1−b; rR)}
≈c {pkS , pkR, (r1, re),Enc(pkS , r1; re),Enc(pkR, r2),

Enc(pkR,m1−b; rL),Enc(pkS ,m1−b; rR)},

where re is the randomness used in computing c1 ← Enc1(pkS , r1), r2 and r′2 are uniformly random strings,
and rL ◦ rR = r1 ⊕ r2. The above relations follow from the security of the underlying scheme Π. Therefore,
we have that Pr[Win = 1] ≤ 1/2 + ϵ(k). The proof of the case that xe

S = Bad and xe
R = Good can be done in

a similar way.
Finally we show that the pair of strategies (σS , σR) is a strict Nash equilibrium. Suppose that the receiver

follows σR. Consider any strategy σ′S of the sender, and an adversary who set auxR = ValR and submits
challenge messages such that all of them are inMS \MR. If σ′S (1k,MS ) outputs Bad, which increases the
utility of the sender by βS , the adversary can compute skS correctly, and thus can guess b correctly from
c4 = Enc(pkS ,m). If σ′S (pkS , pkR, skS , auxS ) outputs Bad, which also increases the utility of the sender
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by βS , since the receiver chooses Bad in the encryption phase, the adversary can compute r1 ⊕ r2 correctly,
and guess b correctly from c3 = Enc(pkR,m; rL), where r1 ⊕ r2 = rL ◦ rR. Since the adversary can guess b
correctly in both cases, the utility of the sender decreases by at least αS /2 − 2βS > 0 if the sender deviated
from σS . This implies that the strategy σS maximizes the utility of the sender if the receiver follows σR.
Next, suppose that the sender follows σS . Consider any strategy σ′R of the receiver, and an adversary who
submits challenge messages such that all of them are in MR \ MS . If σ′R(1k,MR) outputs Bad, which
increases the utility of the receiver by βR, the adversary can compute skR correctly, and thus can guess b
correctly from c3 = Enc(pkR,m). If σ′R(pkS , pkR, skR, auxR) outputs Bad, which increases the utility of the
receiver by βR, since the sender chooses Bad in the encryption phase, the adversary can compute r1 ⊕ r2
correctly, and guess b correctly from c4 = Enc(pkR,m; rR), where r1 ⊕ r2 = rL ◦ rR. Since the adversary
can guess b correctly in both cases, the utility of the receiver decreases by at least αR/2 − 2βR > 0 if the
receiver deviated from σS . This implies that the strategy σR maximizes the utility of the receiver if the
sender follows σS . Therefore, (σS , σR) is a Nash equilibrium.

To show the second condition of the strict Nash equilibrium, consider any strategy σ′S of the sender such
that σ′S 0 σS . This implies that, if auxR = ValR and all the challenge messages are in MS \ MR, either
σ′S (1k,MS ) or σ′S (pkS , pkR, skS , auxS ) outputs Bad with probability at least 1/kc for a constant c. By the
same argument as above, this reduces the utility of the sender by (1/kc) ·(αS /2−2βS ), namely US (σ′S , σR) ≤
US (σS , σR) − (αS /2 − 2βS )/kc. Consider any strategy σ′R of the receiver such that σ′R 0 σS , which implies
that, if all the challenge messages are in MR \ MS , either σ′R(1k,MR) or σ′R(pkS , pkR, skR, auxR) outputs
Bad with probability at least 1/kc for a constant c. As above, this implies that UR(σS , σ

′
R) ≤ UR(σS , σR) −

(αR/2 − 2βR)/kc. Therefore, the pair of strategy (σS , σR) is a strict Nash equilibrium. □

4.3 Additional Information to the Sender and the Receiver

We study the case in which both the sender and the receiver may know that a message to be encrypted is
valuable to them. The situation is different from that of the previous section because the sender may be able
to know the value of a message for the receiver, and the receiver vice versa. We change the game Gamecpa

R
such that the adversary can choose either “auxS = mb” or “auxS = (mb,ValR)”, and either “auxR = ⊥”,
“auxR = ValR”, “auxR = ValS ”, or “auxR = (ValS ,ValR)” in the challenge generation phase. Let Gamecpa

S,R
denote the modified game.

Then, the scheme Πthree has two different strict Nash equilibria.

Proposition 4. There are two pairs of strategies (σS , σR) and (ρS , ρR) such that σS 0 ρS , σR 0 ρR,
and both (Πthree, σS , σR) and (Πthree, ρS , ρR) are CPA secure with a strict Nash equilibrium for Gamecpa

S,R.
Furthermore, there is a PPT adversary A and valuable message spacesMS andMR such that E[uS (Outρ)]−
E[uS (Outσ)] ≥ βS − ϵ(k) and E[uR(Outσ)] − E[uR(Outρ)] ≥ βR − ϵ(k) for every sufficiently large k, where
Outσ is the outcome of the game Gamecpa

S,R in which players follow (σS , σR), Outρ is the outcome of the
game Gamecpa

S,R in which players follow (ρS , ρR), and ϵ(·) is a negligible function.

Proof. We define (σS , σR) and (ρS , ρR) as follows.

• σS (1k,MS ) outputs Good with probability 1.
σS (pkS , pkR, skS , auxS ) outputs Good if mb,i ∈ MS for some i ∈ {1, . . . , ℓ}, and Bad otherwise.

• σR(1k,MR) outputs Good with probability 1.
σR(pkS , pkR, skR, auxR) outputs Good if

– auxR = ⊥,
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– auxR = ValS and ValS = 0,
– auxR = ValR and ValR = 1, or
– auxR = (ValS ,ValR), ValS = 0, and ValR = 1,

and Bad otherwise.
• ρS (1k,MS ) outputs Good with probability 1.
ρS (pkS , pkR, skS , auxS ) outputs Good if

– auxS =mb and mb,i ∈ MS for some i ∈ {1, . . . , ℓ}, or
– auxS = (mb,ValR), mb,i ∈ MS for some i ∈ {1, . . . , ℓ}, and ValR = 0,

and Bad otherwise.
• ρR(1k,MR) outputs Good with probability 1.
ρR(pkS , pkR, skR, auxR) outputs Good if

– auxR = ⊥,
– auxR = ValS ,
– auxR = ValR and ValR = 1, or
– auxR = (ValS ,ValR) and ValR = 1,

and Bad otherwise.

The difference between the outputs of (σS , σR) and (ρS , ρR) is only when auxS = (mb,ValR), auxR =

(ValS ,ValR), and ValS = ValR = 1. Then, only the sender uses good randomness in (σS , σR), while only
the receiver uses good randomness in (ρS , ρR). Hence we have that σS 0 ρS and σR 0 ρR. In the proof of
Theorem 2, we show that, if at least one of xe

S and xe
R is Good, Πthree satisfies the first condition of the CPA

security. Thus, we can verify that both (Πthree, σS , σR) and (Πthree, ρS , ρR) satisfy the first condition of the
CPA security.

Consider an adversary who sets auxS = (mb,ValR) and auxR = (ValS ,ValR), and submits chal-
lenge messages such that all of them are in MS ∩ MR. For this adversary, σS (pkS , pkR, skS , auxS )
outputs Good and σR(pkS , pkR, skR, auxR) outputs Bad, while ρS (pkS , pkR, skS , auxS ) outputs Bad and
ρR(pkS , pkR, skR, auxR) outputs Good. Since it follows from the above argument that the expected value of
Win · Valw is at most 1/2 + ϵ(k) for a negligible function ϵ(·), we have that E[uS (Outρ)] − E[uS (Outσ)] ≥
βS − ϵ′(k) and E[uR(Outσ)] − E[uR(Outρ)] ≥ βR − ϵ′(k) for a negligible function ϵ′(·).

We show that (σS , σR) is a strict Nash equilibria. We follow the same reasoning as the proof of Theo-
rem 2. It is sufficient to show that, for each w ∈ {S ,R}, if player w follows a different strategy σ′w from σw,
then the utility of player w decreases by some constant value. We show that ifσ′w outputs Bad andσw outputs
Good, there exists an adversary who can guess b correctly, which decreases the utility of player w by at least
αw/2 − 2βw > 0. First, note that, for each w ∈ {S ,R}, if σ′w(1k,Mw) outputs Bad, the adversary can guess
b correctly by the same argument as the proof of Theorem 2. Suppose that σ′S (pkS , pkR, skS , auxS ) outputs
Bad and σS (pkS , pkR, skS , auxS ) outputs Good. Consider an adversary who sets auxR = ValR and submits
challenge messages such that all of them are inMS \MR. Since the receiver chooses xe

R = Bad for this adver-
sary, the adversary can guess b correctly from r1⊕r2 and c3 = Enc(pkR,m; rL), where r1⊕r2 = rL ◦rR. Next,
suppose that σ′R(pkS , pkR, skS , auxR) outputs Bad and σR(pkS , pkR, skS , auxR) outputs Good. Consider an
adversary who submits challenge messages such that all of them are inMR \MS . Since the sender chooses
xe

S = Bad for this adversary, the adversary can guess b correctly from r1 ⊕ r2 and c4 = Enc(pkR,m; rR),
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where r1 ⊕ r2 = rL ◦ rR. Therefore, by the same reasoning as the proof of Theorem 2, (σS , σR) is a strict
Nash equilibrium. By the same argument, we can show that (ρS , ρR) is also a strict Nash equilibrium. □

As shown in the proof, the difference between the outputs of (σS , σR) and (ρS , ρR) is only when auxS =

(mb,ValR), auxR = (ValS ,ValR), and ValS = ValR = 1. Then, only the sender uses good randomness
in (σS , σR), while only the receiver uses good randomness in (ρS , ρR). Therefore, the sender prefers to
following (ρS , ρR), while the receiver prefers to following (σS , σR). It is difficult to determine which pair
of strategies the players follow. If the protocol have started, but the sender and the receiver have not agreed
on which pair of strategies they follow, the outcome can be worse for both of them. If the sender follows
(ρS , ρR) and the receiver follows (σS , σR) when ValS = ValR = 1, in this case both players are to use bad
randomness in the encryption, thus the adversary can correctly guess b with probability 1. Such an outcome
should be avoided for both players.

There is a simple way of avoiding that outcome. In the encryption phase, if xe
R , Good, the receiver

uses the all-zero string as a random string. Since the sender can verify if the random string chosen by the
receiver is all-zero or not, if so, the sender will use good randomness if a message is valuable. The all-zero
string is a signal that the receiver did not use good randomness.

4.4 Signcryption with an Additional Assumption

A signcryption scheme is one of cryptographic primitives that achieves both public-key encryption and
signature simultaneously. In particular, a secret key for encryption is also used as a signing key for signature,
and a public key for encryption is also used as a verification key for signature.

We show that signcryption schemes with some property can achieve CPA security for lazy parties if we
add an assumption for players. The assumption is that players do not want to reveal their secret keys. This
is plausible since, if the secret key of some player is revealed, it is equivalent to the fact that the encrypted
messages to the player are revealed and the signatures of the player are forged.

Formally, a signcryption scheme Πsigenc consists of three PPT algorithms
({Genw}w∈{S ,R}, SigEnc,VerDec) such that

• Genw(1k): Output a signing/decryption key (secret key) skw and a verification/encryption key (public
key) pkw; LetM denote the message space.

• SigEnc(pkR, skS ,m): For a message m ∈ M, output the ciphertext c;
• VerDec(pkS , skR, c): For a ciphertext c, output ⊥ if the verification fails, and the decrypted message

m̂ otherwise.

Regarding the security, we only require the usual CPA security as a public-key encryption scheme in
which the sender also generates the secret key and the public key.

Some signcryption schemes (e.g., [30]) have the key-exposure property that, if the randomness used in
SigEnc is revealed, then the secret key of the sender is efficiently computable from the randomness. This
property seems to be undesirable in a standard setting. However, if a signcryption scheme with key-exposure
property is used as a public-key encryption scheme, it can achieve CPA security for lazy parties.

We modify the game Gamecpa such that the adversary outputs (b′, sk′S ) in the guess phase, and Secret
is included in the output of the game, where Secret takes 1 if skS = sk′S and 0 otherwise. Let Gamecpa

secret
denote the modified game.
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The utility function for the sender when the outcome Out = (Win,ValS ,ValR,NumS ,NumR,Secret)
happens is defined by

uS (Out) = (−αS ) ·Win · ValS + (−βS ) · NumS + (−γS ) · Secret,

where γS ∈ R is a non-negative constant such that γS > αS /2 + qS · βS . The condition on γS implies that
achieving Secret = 0 is the most valuable to the sender.

We define a pair of strategies (σS , σR) for the game Gamecpa
secret such that

• σS (1k,MS ) outputs Good with probability 1.
σS (pkS , skS , auxS ) outputs Good with probability 1.

• σR(1k,MR) outputs Good with probability 1.

Theorem 3. Let Πsigenc = ({Genw}w∈{S ,R}, SigEnc,VerDec) be a signcryption scheme with CPA security and
key-exposure property. Then (Πsigenc, σS , σR) is CPA secure with a strict Nash equilibrium for the game
Gamecpa

secret.

Proof. The first condition of the CPA security follows from the CPA security of Πsigenc. Hence, we show
the second condition, namely, (σS , σR) is a strict Nash equilibrium for Gamecpa

secret.
First, we show that (σS , σR) is a Nash equilibrium. Suppose that the receiver follows σR. Let σ′S be a

strategy of the sender. If σ′S (1k,MS ) outputs Bad, then an adversary chooses the random string of the key
generation algorithm, and thus can obtain the secret key skS correctly. If σ′S (pkS , pkR, skS , auxS ) outputs
Bad, then the adversary chooses th random string re of the ciphertext c = SigEnc(pkR, skS ,mb; re), and can
obtain the secret key skS by the key-exposure property of Πsigenc. In either case, the adversary can obtain
skS , and thus the utility of the sender takes some negative value. Since the utility when the sender follows
σS is non-negative, σS maximizes the utility of the sender when the receiver follows σR. Next, suppose that
the sender follows σS . Consider any strategy σ′R of the receiver and an adversary who submits challenge
messages (m0,m1) such that m0 = (m,m),m1 = (m,m′),m , m′, and m,m′ ∈ MR. If σ′R(1k,MS )
outputs Bad, the adversary can compute skR, and thus guess b correctly by computing Dec(pkS , skR, c),
which implies that the utility of the sender takes some negative value. Thus, the strategy σR maximizes the
utility of the receiver when the sender follows σS . Therefore, (σS , σR) is a Nash equilibrium.

To show the second condition of the strict Nash equilibrium, consider any strategy σ′S of the sender such
that σ′S 0 σS . This implies that either σ′S (1k,MS ) or σ′S (pkS , pkR, skS , auxS ) outputs Bad with probability
at least 1/kc for a constant c. By the same argument above, this reduces the utility of the sender by at least
(1/kc) · (γS − αS /2 − 2βS ). Next, consider any σ′R of the receiver such that σ′R 0 σR. This implies that
σ′R(1k,MS ) outputs Bad with probability at least 1/kc for a constant c. As above, this reduces the utility of
the receiver by at least (1/kc) · (αR/2 − βR). Therefore, (σS , σR) is a strict Nash equilibrium. □
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