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Abstract

We present a general construction of a rational secret-sharing protocol that converts any
rational secret-sharing protocol to a protocol with an expected constant-round reconstruction.
Our construction can be applied to protocols for synchronous channels, and preserves a strict
Nash equilibrium of the original protocol. Combining with an existing protocol, we obtain the
first expected constant-round protocol that achieves a strict Nash equilibrium with the optimal
coalition resilience ⌈n2 ⌉ − 1, where n is the number of players.

Our construction can be extended to a construction that preserves the immunity to unex-
pectedly behaving players. Then, for any constantm ≥ 1, we obtain an expected constant-round
protocol that achieves a Nash equilibrium with the optimal coalition resilience ⌈n2 ⌉ −m − 1 in
the presence of m unexpectedly behaving players. The same protocol also achieves a strict Nash
equilibrium with coalition resilience 1. We show that our protocol with immunity achieves the
optimal coalition resilience among constant-round protocols with immunity with respect to both
Nash and strict Nash equilibria.

1 Introduction

Much attention has been paid to the interplay between game theory and cryptography. (For surveys,
see [12, 20, 5, 10, 15].) One important research problem is to design cryptographic protocols for
rational players in a game-theoretic sense. Traditionally, most cryptographic protocols have been
designed for participants who are either honest or malicious. There is, however, no guarantee for
non-malicious players to behave honestly in real-life situations. It is desirable that cryptographic
protocols work for rational players.

Halpern and Teague [11] initiated the study of secret sharing for rational players, which is called
rational secret sharing. The payoff function is characterized such that rational players prefer to
learn the secret and prefer fewer players to learn the secret. Assuming this payoff function, it does
not seem that conventional secret-sharing schemes work well. They showed that it is impossible to
construct a protocol that terminates in a fixed number of rounds, and proposed an expected constant
round protocol that is in a Nash equilibrium surviving iterated elimination of weakly dominated
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strategies [11]. Since their work, rational secret-sharing protocols have been studied with various
solution concepts, communication channels, and characteristics of players [9, 1, 17, 13, 14, 21, 19,
2, 7, 22] together with several impossibility results [11, 14, 2].

Some previous protocols on rational secret sharing [11, 9, 1, 17, 13, 14, 7] are essentially based
on the same underlying idea: The protocol consists of real rounds and fake rounds. Players can
learn the secret only in real rounds and cannot learn any information in fake rounds. Since the
probability of being a real round is sufficiently small and the protocol halts if some player was silent
in fake rounds, the best action players can take is to reveal their shares in every round. As long
as relying on this general idea, it seems difficult to construct (expected) constant-round protocols
since the players must perform in fake rounds to learn the secret. Indeed, the round complexity
of the protocols in [11, 9, 13, 14, 7] is O(1/β), where β is a sufficiently small value depending on
the payoff values. Since Shamir’s original secret-sharing scheme [25] takes only one round to learn
the secret, it is desirable that the round complexity be an expected small constant. Among the
previous work, only the protocols in [1, 21, 19, 2] achieve expected constant-round reconstruction.
(See Table 1 for the comparison with the existing protocols).

In reconstructing the secret, several rational secret-sharing protocols [11, 9, 1, 17, 13] require the
involvement of the dealer or, to eliminate the on-line dealer, using general multi-party computation.
Also, many rational secret-sharing protocols [11, 9, 1, 17, 13, 14, 2] require a simultaneous broadcast
channel, which is a relatively strong assumption of the communication channel. Thus, it is desirable
to design constant-round rational secret-sharing protocols with low computational cost without the
on-line dealer or simultaneous channels.

1.1 Our Results

We present a general construction of a rational secret-sharing protocol. Our construction employs an
existing rational secret-sharing protocol as a sub-protocol in a black-box manner. In the protocol
obtained by our construction, players can reconstruct the secret in expected three rounds. The
communication channel we assume is a synchronous broadcast channel, which is used in [13, 14, 2, 7]
and strictly weaker than a simultaneous broadcast channel, which is broadly used in previous
work [11, 9, 1, 17, 13, 14, 2]. Our construction works well in both of information-theoretic and
computational settings.

Strong solution concepts. For any 3 ≤ t ≤ n, our construction yields a t-out-of-n secret-
sharing protocol that achieves a strict Nash equilibrium if so is the sub-protocol. A strict Nash
equilibrium, of which an information-theoretic version was introduced in [14] and a computational
version was in [7], is a preferable solution concept in rational secret sharing. A lot of rational secret-
sharing protocols achieve a concept of Nash equilibrium that survives iterated deletions of weakly
dominated strategies [11, 1, 17, 9, 2]. However, Kol and Naor [14] showed that this concept is not
enough for distinguishing good protocols from bad protocols, and suggested strict Nash equilibrium
as a stronger solution concept. While a Nash equilibrium only guarantees that deviations do not
increase the payoff, a strict Nash equilibrium guarantees that any deviation strictly decreases the
payoff.

We also prove that a strict Nash equilibrium implies another preferable equilibrium called a
Nash equilibrium that is stable with respect to trembles, which was studied in [7, 16]. Intuitively,
the stability with respect to trembles guarantees that even if a player believes that the other
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Table 1: Comparison with the Existing Rational Secret Sharing Protocols.

# of Solution Coalition
Protocols Channels Other assumptions rounds concepts resilience

[11] SBC private channel, MPC O(1/β) IEWDS NA
[9] SBC MPC O(1/β) IEWDS n− 1
[1] SBC MPC 2 IEWDS ⌈n2 ⌉ − 1
[17] SBC MPC O(1/β) IEWDS ⌈n2 ⌉ − 2
[13] SBC MPC, M/M Enc O(1/β) IEWDS NA
[14] SBC O(1/β) strict NE 1
[21] NSBC honest players 2 w.h.p. THPE NA
[19] envelope VTP 6 U-IEWDS NA
[2] SBC RSS of [9] O(1) IEWDS ⌈n2 ⌉ − 1
[7] P2P VRF or TDP O(1/β) strict NE n− 1

This work NSBC RSS of [7] 3 w.h.p. strict NE ⌈n2 ⌉ − 1

In the table, β is a sufficiently small constant that depends on the players’ payoffs,
and the actual value of β may differ in each protocol. The following abbreviations
are used. SBC: simultaneous broadcast channel. NSBC: non-simultaneous broad-
cast channel. MPC: multiparty computation. M/M Enc: meaningful/meaningless
encryption. VTP: verifiable trusted party. VRF: verifiable random functions. TDP:
trapdoor permutations. IEWDS: NE that survives iterated elimination of weakly
dominated strategies. U-IEWDS: strategy that uniquely survives iterated elimina-
tion of weakly dominated strategies. THPE: trembling-hand perfect equilibrium.

players might follow any strategy other than the prescribed one with small probability, there is no
better strategy for the player than the prescribed one. Our implication shows that a strict Nash
equilibrium is a relatively strong solution concept that captures the stability against any small
deviations of players.

Optimal coalition resilience. Since a plain Nash equilibrium only guarantees the stability
against deviations by a single player, a coalition-resilient Nash equilibrium, in which multiple players
may deviate, is studied [1, 13, 2, 7]. Informally, a (strict) Nash equilibrium is called r-resilient if
it is a (strict) Nash equilibrium even if deviations by a coalition of r players are considered. Our
construction preserves the coalition resilience of the underlying sub-protocol. In our construction, if
the sub-protocol achieves an r-resilient strict Nash equilibrium for any r ≤ ⌈ t2⌉−1, then the resulting
protocol also achieves an r-resilient strict Nash equilibrium. The resilience ⌈ t2⌉ − 1 is optimal for
constant-round t-out-of-n protocols. The optimality can be shown by a similar argument to that
of Asharov and Lindell [2] who showed that the resilience ⌈n2 ⌉ − 1 is optimal for constant-round
n-out-of-n protocols.

By plugging the protocol of Fuchsbauer, Katz, and Naccache [7] into our construction, we
obtain an expected constant-round t-out-of-n secret-sharing protocol that achieves a strict Nash
equilibrium with the optimal coalition resilience ⌈ t2⌉ − 1. Note that the protocol of [7] achieves a
coalition resilience t− 1, and the expected round complexity is O(1/β) for some small β depending
on the payoff values. As far as we know, there was no (expected) constant-round protocol that
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achieves a strict Nash equilibrium in non-simultaneous channels.

Immunity to unexpectedly behaving players. Furthermore, we also provide a general con-
struction that preserves the immunity to “unexpectedly behaving” (or malicious) players. Infor-
mally, a protocol is called m-immune if no unexpected behavior of m players affects the payoffs of
the other players. The immunity has been studied in [1, 17], and guarantees certain robustness of
protocols. In particular, the immunity is a desirable property for protocols conducted by “rational”
players since such protocols rely on the rationality of players, but it seems difficult to understand
the rationality of every player precisely. When a protocol does not have any immunity, the protocol
may not work well at all even if only a single player behaves unexpectedly. Indeed, several existing
protocols including our protocol described above do not work in the presence of such a player.

For any constant m, we give a non-constant round protocol that achieves an (n−m−1)-resilient
Nash equilibrium with m-immunity. The protocol is a variant of the protocol of [7]. By applying
our general construction to this protocol, we obtain a constant-round protocol that achieves an
(⌈n2 ⌉ −m − 1)-resilient Nash equilibrium with m-immunity. The same protocol also achieves a 1-
resilient strict Nash equilibrium. Our general construction with immunity requires symmetric-key
encryption and pseudorandom functions, and thus fits the computational setting.

We also discuss the optimality of our protocols with immunity regarding the coalition resilience.
We show that constant-round protocols with m-immunity cannot achieve an (⌈n2 ⌉ − m)-resilient
Nash equilibrium, and protocols with immunity cannot achieve a 2-resilient strict Nash equilibrium.
Thus, our protocol with immunity achieves an optimal coalition resilience with respect to both Nash
and strict Nash equilibrium.

Other interesting features. In the protocols obtained by our construction, the players can
learn the secret without using the shares of the sub-protocol with high probability. As far as we
know, this property is novel among rational secret-sharing protocols. In this sense, our protocol is
not obtained by a simple combination of the protocols of [2] and [7]. Because of this property, even
if the reconstruction of the sub-protocol needs heavy computation, our construction converts such
a protocol to a protocol with efficient reconstruction. In the resulting protocol, the shares of the
sub-protocol are used as a “hedge” against the failure in the previous rounds. We believe that this
idea of our construction could be applied to other rational cryptographic protocols.

Additionally, our construction can employ any protocol achieving a strict Nash equilibrium in a
black-box manner, while the existing protocols [1, 2] that need sub-protocols require a certain type
of protocols as a sub-protocol.

1.2 Our Approach

We describe the idea of our general construction. The dealer chooses conventional secret-sharing
schemes S1 and S2, and a rational secret-sharing protocol S3. The secret is shared by S1 and S3,
but with small probability, the secret for S1 is fake. The information on whether the secret of
S1 is real or fake is shared by S2. In the reconstruction, first, players are requested to reveal the
shares of S1, and then proceed to the next round only if all the players have honestly revealed the
shares. In the first round, all the players have an incentive to reveal their shares. Let t1 be the
threshold of the secret sharing scheme S1. Then, the t1-th sender in this round can reconstruct the
secret by using her own share. Nevertheless, she will reveal her share since the secret may be fake,
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and if she did not reveal, the protocol halts along with the possibility that the secret is fake. The
small probability that the secret is fake poses a “threat” to players so as to reveal their shares in
the first round. In the second round, all the players are requested to reveal the shares of S2, and
then proceed to the next round only if all the players have honestly revealed the shares and the
reconstructed secret is fake. Let t2 be the threshold of the secret sharing scheme S2. Then, the
t2-th sender in this round will learn whether the secret is real or fake by using her own share. If the
secret is fake, she reveals her share since if not, the protocol does not proceed to the next round
and she cannot learn the secret. If the secret is real, then she has no incentive to participate in
the protocol, and thus she may not reveal her share, but this action signals to the other players
that the secret is real. Therefore, every player can recognize that the reconstructed secret in the
previous round is real. If no player deviates in the first two rounds and the reconstructed secret is
fake, all the players are guaranteed to learn the secret eventually by S3. The idea of using the secret
sharing S2 as the signal indicating whether a reconstructed secret of S1 is real or fake is similar to
the idea used in [7] for achieving a strict Nash equilibrium for non-simultaneous channels.

As in [7], our protocol assumes that players have no auxiliary information about the secret.
Although this assumption may be inevitable for constructing fair protocols in the non-simultaneous
channels [2], we believe that there are settings in which this assumption is valid and that studying
this case could lead to the understanding of rational cryptographic protocols. If simultaneous
channels are assumed, our protocol works without this assumption.

1.3 Related Work

Constant-round reconstruction for rational secret sharing was achieved by Abraham, Dolev, Gonen,
and Halpern [1], Micali and shelat [19], Ong, Parkes, Rosen, and Vadhan [21], and Asharov and
Lindell [2]. The protocols in [1, 2] achieve a Nash equilibrium with a coalition resilience of ⌈n2 ⌉− 1,
and need a certain type of rational secret-sharing protocol such as [9, 1, 13, 14, 7] as a sub-protocol.
However, their protocols assume a simultaneous broadcast channel and need to perform the sub-
protocol to reconstruct the secret several times. The protocol of [19] achieves a strong solution
concept. However, their protocol requires a stronger communication channel than the others. The
protocol of [21] is quite efficient with respect to both round complexity and computational cost with
a weaker communication channel. However, a sufficient number of honest players are assumed to
exist. Regarding the solution concept, the protocol in [21] does not satisfy a strict Nash equilibrium.

A black-box construction in the literature of rational cryptography has appeared in the study on
a novel framework called rational protocol design [8], where designing protocols itself is modeled as a
game between a protocol designer and an attacker. While Garay et al. [8] show general composition
theorems in their framework, as far as we know, black-box constructions have not appeared in the
literature of rational secret sharing.

1.4 Paper Organization

In Section 2, we define the problem of rational secret sharing, and define game-theoretic notions
used in this work. Cryptographic primitives used in our protocols are given in Section 3. Our
protocols are presented in Section 4. In Section 5, we discuss the optimality of our protocols with
immunity regarding the coalition resilience. In Section 6, we show that a strict Nash equilibrium
implies the stability with respect to trembles.
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2 Rational Secret Sharing

2.1 Secret-Sharing Scheme

A t-out-of-n secret-sharing scheme consists of two phases: the sharing phase and the reconstruction
phase. In the sharing phase, the dealer holds the secret and distributes shares of the secret to n
parties called players. In the reconstruction phase, the players reconstruct the secret from their
shares. We consider the two requirements, correctness and secrecy. The correctness guarantees
that every subset of t∗ ≥ t players can reconstruct the secret if they perform the reconstruction
phase honestly. The secrecy guarantees that no subset of t∗ < t players can learn the secret beyond
what can be learned from the publicly available information.

2.2 Secret-Sharing Reconstruction Game

We assume that the players are rational. In secret-sharing schemes, the reconstruction phase can
be considered as a game for the players. Therefore, we see the reconstruction protocol as a pair of
a game and a prescribed strategy for the game. The goal is to design a protocol that will result in
the desired outcome: all the participants reconstruct the secret. We say a (rational) secret-sharing
protocol Π is t-out-of-n if, in addition to the t-out-of-n property of secret sharing, the shares
are distributed to n players, and the reconstruction protocol can be performed in the presence of
t∗ ≥ t players. We say that Π is a t-out-of-n secret-sharing “protocol” when we see it as rational
secret-sharing, and that Π is a t-out-of-n secret-sharing “scheme” when we see it as a conventional
secret-sharing scheme.

Following [7], we model a reconstruction game in a way such that a secret s is chosen uniformly
at random from the domain of secrets, and every player finally outputs some value, which the player
wants to be the same as the secret s. The advantages of modeling a game in this way are discussed
in [7]. Let N = {1, . . . , n} be the set of players in the protocol. The outcome of the game is denoted
by o = (o1, o2, ..., on), where oi is a random variable that equals 1 if the output of player i is s, and
0 otherwise. The payoff of each player is determined by the outcome of the game.

The tuple of strategies σ = (σ1, . . . , σn) is called a strategy profile for the game, where σi corre-
sponds to the strategy for player i. Let C be a subset ofN . We define σC to be the tuple of strategies
σi for i ∈ C. Following the game-theoretic notation, we define σ−i = (σ1, . . . , σi−1, σi+1, . . . , σn),
and σ−C = σN\C . For two strategy profiles σ and σ′ = (σ′

1, . . . , σ
′
n), we write (σ′

i, σ−i) =
(σ1, . . . , σi−1, σ

′
i, σi+1, . . . , σn) for i ∈ N , and write (σ′

C , σ−C) as the strategy profile in which the
strategy of player i is σ′

i if i ∈ C and σi otherwise. If all actions specified in each σi can be computed
by a probabilistic polynomial-time Turing machine, the strategy profile σ is called PPT . Let ui(σ)
denote the expected payoff of player i when the players follow a strategy profile σ.

2.3 Game-Theoretic Notions

For a secret-sharing protocol Π, if the prescribed strategy σ of the reconstruction protocol Π
achieves a game-theoretic concept, say A, in the reconstruction game, we say that Π induces A.

The definitions of computational Nash equilibrium, computational strict Nash equilibrium, sta-
bility with respect to trembles, and their extension to coalition resilience follow the definitions
of [7]. Regarding the immunity to malicious players, we provide a computational definition which
is an extension of the information-theoretic definition of [1]. Hereafter, we use k as the security

6



parameter of cryptographic primitives. We say a function ϵ : N → R is negligible if for every
sufficiently large k, ϵ(k) < k−c for any constant c. A function δ : N→ R is called noticeable if δ(·)
is not negligible.

Definition 1 (Computational Nash equilibrium). A PPT strategy profile σ is a computational
Nash equilibrium if for any i ∈ N and any PPT strategy σ′

i for player i, ui(σ
′
i, σ−i) ≤ ui(σ)+ ϵ(k),

where ϵ(·) is a negligible function.

To define a strict Nash equilibrium, we use the notion of equivalent play, which was introduced
in [7]. Let σ be a prescribed strategy profile and σ′

i a strategy for player i. Define the view of player
i in the game to include the information given by the dealer to player i, the random coin of player i,
and all the messages received from player j ̸= i, but not including any messages from player j after
player i writes to her (write-once) output tape. We say the strategy σ′

i yields equivalent play with
respect to σ, denoted by σ′

i ∈eq σ, if, given the views of all the players j ̸= i in which they follow
σ−i and player i follows either σi or σ

′
i, no PPT machine can distinguish whether player i follows

σi or σ
′
i. (See [7] for the detailed definition.) We write σ′

i ̸∈eq σ if σ′
i does not yield equivalent play

with respect to σ.
A strict Nash equilibrium guarantees that if some player deviates from the prescribed protocol,

then the payoff of the player decreases by some noticeable amount.

Definition 2 (Computational strict Nash equilibrium). A PPT strategy profile σ is a compu-
tational strict Nash equilibrium if (1) σ is a computational Nash equilibrium; and (2) for any
i ∈ N and any PPT strategy σ′

i for which σ′
i ̸∈eq σ, there is a constant c > 0 such that

ui(σ) ≥ ui(σ
′
i, σ−i) + k−c for infinitely many k > 0.

The above definitions consider deviations by a single player. We also consider deviations of a
coalition of players. A coalition is a subset of the players N . We consider a coalition is a set of
players who may be coordinated by some single party. Therefore, we assume that each coalition
has one payoff function. Let C ⊂ N be a coalition and uC(·) the payoff function of C.

Definition 3 (Coalition resilience). A PPT strategy profile σ is an r-resilient computational Nash
equilibrium if for any C ⊂ N with |C| ≤ r and any PPT strategy σ′

C , uC(σ
′
C , σ−C) ≤ uC(σ)+ ϵ(k),

where ϵ(·) is a negligible function.

We also define the coalition-resilient variant of strict Nash equilibrium. For C ⊂ N , we write
σ′
C ⊂eq σ if σ′

i ∈eq σ for all i ∈ C, and σ′
C ̸⊂eq σ if σ′

i ̸∈eq σ for some i ∈ C.

Definition 4. A PPT strategy profile σ is an r-resilient computational strict Nash equilibrium if
(1) σ is an r-resilient computational Nash equilibrium; and (2) for any C ⊂ N with |C| ≤ r and any
PPT strategy σ′

C for which σ′
C ̸⊂eq σ, there is a constant c > 0 such that uC(σ) ≥ uC(σ

′
C , σ−C)+k−c

for infinitely many k > 0.

We introduce the notion of immunity to unexpectedly behaving players. The immunity guar-
antees that even if some players behave unexpectedly (or maliciously) in the game, the behavior
does not affect the payoffs of the other players.

Definition 5 (Immunity). A PPT strategy profile σ is computationally m-immune if for any
T ⊂ N with |T | ≤ m, any PPT strategy σ′

T , and any player i /∈ T , ui(σ) ≤ ui(σ−T , σ
′
T ) + ϵ(k),

where ϵ(·) is a negligible function.
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Let {A,B,C} be a partition of N . For strategy profiles σ, ρ, ϕ, we write (σA, ρB, ϕC) as the
strategy profile in which the strategy of player i is σi if i ∈ A, ρi if i ∈ B, and ϕi if i ∈ C. We
define a combination of coalition resilience and immunity. The following is a computational version
of the definition of robustness defined in [1].

Definition 6. A PPT strategy profile σ is an (r,m)-robust computational Nash equilibrium if (1)
for any C, T ⊂ N such that C ∩ T = ∅, 1 ≤ |C| ≤ r, and 0 ≤ |T | ≤ m, any PPT strategy ρT , and
any PPT strategy σ′

C , we have uC(σN\(C∪T ), σ
′
C , ρT ) ≤ uC(σ−T , ρT )+ϵ(k), where ϵ(·) is a negligible

function, and (2) σ is computationally m-immune.

The (r,m)-robustness guarantees that even if at most m players behave maliciously, the strategy
is still an r-resilient Nash equilibrium, and that the malicious behavior does not affect the payoffs of
the other players. Note that an (r,m)-robustness implies both an r-resilient Nash equilibrium and
m-immunity. This is because an r-resilient Nash equilibrium is a special case of the first condition
that m = 0, and m-immunity appears as the second condition. We can also define an (r,m)-robust
computational strict Nash equilibrium analogously.

Finally, we present the notion of the stability with respect to trembles defined in [7]. Intuitively,
the stability with respect to trembles guarantees that even if a player believes that other players
might follow any strategy other than the prescribed one with small probability, there is no better
strategy for the player than the prescribed one. We say a PPT strategy profile ρ−i is δ-close to
σ−i if ρ−i takes σ−i with probability 1− δ and an arbitrary PPT strategy σ′

−i with probability δ.

Definition 7 (Stability with respect to trembles). A PPT strategy profile σ is an r-resilient com-
putational Nash equilibrium that is stable with respect to trembles if

1. σ is an r-resilient computational Nash equilibrium;

2. There is a noticeable function δ(·) such that for any C ⊂ N with |C| ≤ r, any PPT strategy
profile ρ−C that is δ-close to σ−C , and any PPT strategy ρC , there exists a PPT strategy
σ′
C ⊂eq σ such that uC(ρC , ρ−C) ≤ uC(σ

′
C , ρ−C) + ϵ(k), where ϵ(·) is a negligible function.

2.4 Payoff Functions of Players

The payoff function of players in reconstruction games follows the previous studies. First, players
prefer to learn the secret. Second, players prefer fewer players to learn the secret. The payoffs for
a secret-sharing reconstruction game depend only on the outcome of the game. We write ui(o) as
the payoff of player i for the outcome o. For two outcomes o and o′, we assume that (1) if oi > o′i,
then ui(o) > ui(o

′); (2) if oi = o′i and
∑

j∈N oj <
∑

j∈N o′j , then ui(o) > ui(o
′). In our analysis, we

need the following values for ui(o):

1. U+ is the payoff when player i learns the secret and no other player does.

2. U is the payoff when all the players in the reconstruction game learn the secret.

3. U− is the maximum payoff when player i does not learn the secret.

It should hold that U+ ≥ U > U−. We assume that there is a noticeable function δ1(·) such that

U ≥ U− + δ1(k), where k is the security parameter. We define Urandom = 1
|S| ·U

+ +
(
1− 1

|S|

)
·U−,

where S is the domain of secrets in the secret-sharing protocol. The value Urandom is the payoff of
a player who outputs a random guess for the secret assuming that the other parties halt without
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any output or with the wrong outputs. We also assume that there is a noticeable function δ2(·)
such that U ≥ Urandom + δ2(k). This inequality means that players have an incentive to perform
the reconstruction protocol.

Regarding the payoff of coalitions, we also follow the formalization of [7]. We assume the
coalition C outputs a single value in a game. The outcome of a game with the coalition C consists
of the outcome oi of player i ∈ N \ C and the outcome oC of the coalition C. The outcome oC
takes 1 if C outputs the secret, and 0 otherwise. Let uC(o) denote the payoff of the coalition C for
the outcome o of the game with the coalition C. Then, we define three values for uC(o):

1. U+ is the payoff when C learns the secret and no player outside C does.

2. U is the payoff when all the players in the reconstruction game learn the secret.

3. U− is the maximum payoff when C does not learn the secret.

It should hold that U+ ≥ U > U−. We also define Urandom as in the case of a single deviation.
Then, we assume that there are noticeable functions δ3(·) and δ4(·) such that U ≥ U− + δ3(k) and
U ≥ Urandom + δ4(k).

2.5 Communication Channels

We assume that players can use only a synchronous but non-simultaneous broadcast channel [13, 14].
With this channel, the protocol proceeds in rounds, and each round consists of n sub-rounds for
each player, where n is the number of players in the protocol. In each sub-round, only a single
player can send a message. We assume that if a player does not send any message (within some
predetermined time), the other players will receive the special symbol ⊥ from her.

3 Cryptographic Primitives

We give definitions of cryptographic primitives used in our protocols.

3.1 Authenticated Secret-Sharing Scheme

An authenticated secret-sharing scheme is a secret-sharing scheme with authentication, which can
be obtained by a standard technique [26, 23]. The dealer generates shares (σ̂1, σ̂2, . . . , σ̂n) of secret
s ∈ {0, 1}k by GenSS(s), where σ̂i = (σi, πi, vi). Players can reconstruct the secret if a sufficient
number of σi are collected. Each player i can verify whether a collected share (σj , πj) is valid or
not by using vi.

Definition 8. An m-out-of-n authenticated secret-sharing scheme is a tuple of probabilistic
polynomial-time algorithms (GenSS,Rec,VerSS) such that

• On input s ∈ {0, 1}ℓ and 1k, GenSS outputs (σ̂1, σ̂2, . . . , σ̂n), where σ̂i = (σi, πi, vi) and ℓ is a
polynomial in k.

• Correctness: For any M ⊂ {1, . . . , n} with |M | ≥ m, Rec({σi}i∈M ) = s. Also, for any
i, j ∈ {1, . . . , n}, VerSS(vi, (σj , πj)) = 1.

• Security: For any s, s′ ∈ {0, 1}ℓ, and M ⊂ {1, . . . , n} with |M | < m, two sets of random
variables {σi}i∈M and {σ′

i}i∈M are identically distributed, where (σ̂1, . . . , σ̂n)← GenSS(s, 1k)
and (σ̂′

1, . . . , σ̂
′
n)← GenSS(s′, 1k).
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• Authenticity: For any s ∈ {0, 1}ℓ, i ∈ {1, . . . , n}, and algorithm A,

Pr[VerSS(vi, (σ
′, π′)) = 1 ∧ σ′ /∈ {σj}j ̸=i] ≤ ϵ(k)

for every k, where (σ̂1, . . . , σ̂n)← GenSS(s, 1k), (σ′, π′)← A({σ̂j}j ̸=i), and ϵ(·) is a negligible
function.

3.2 Symmetric-Key Encryption Scheme

We need a symmetric-key encryption scheme with a standard security, called security against
chosen-plaintext attacks. Since we require the security for unbounded polynomially many messages,
we consider a computational security, and encryption algorithms need to be probabilistic. An
encryption scheme with this security can be constructed from any one-way function.

Definition 9. For a polynomial ℓ(·), an ℓ-bit symmetric-key encryption scheme is a tuple Π =
(GenSKE,Enc,Dec) of probabilistic polynomial-time algorithms such that

• On input 1k, GenSKE outputs sk.

• Correctness: For any message m ∈ {0, 1}ℓ(k), Decsk(Encsk(m)) = m.

• Security: For any polynomial-time oracle algorithm A = (A1, A2), and polynomial-time
algorithm D, there is a negligible function ϵ(·) such that, for all k ∈ N,

|Pr[D(CPA0(Π, A, k)) = 1]− Pr[D(CPA1(Π, A, k)) = 1]| ≤ ϵ(k),

where CPAb(Π, A, k) is the following experiment:

sk ← GenSKE(1k)

(m0,m1, θ1)← A
Encsk(·)
1 (1k)

c← Encsk(mb)

θ2 ← A
Encsk(·)
2 (c, θ1)

Output θ2.

3.3 Pseudorandom Function

A pseudorandom functions is a function that looks like a random function, and can be constructed
from any one-way function.

Definition 10. A family of functions F = {fsk : {0, 1}|sk| → {0, 1}|sk|}sk∈{0,1}∗ is called pseudo-
random if

• Easy to compute: For any sk ∈ {0, 1}∗ and x ∈ {0, 1}|sk|, fsk(x) can be computed by a
polynomial-time algorithm.

• Pseudorandomness: For any probabilistic polynomial-time oracle algorithm D, there is a
negligible function ϵ(·) such that for all n ∈ N,

|Pr[Dfsk(·)(1k) = 1]− Pr[DF (·)(1k) = 1]| ≤ ϵ(k),

where sk ∈ {0, 1}k is chosen uniformly at random, and F is chosen uniformly at random from
the set of all functions f : {0, 1}k → {0, 1}k.
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3.4 Verifiable Random Function

A verifiable random function is a pseudorandom function with verifiability, which was introduced
by Micali, Rabin, and Vadhan [18]. We need a verifiable random function with unique proofs. The
constructions for such stronger verifiable random functions were provided in [4] and [6].

Definition 11. A verifiable random function is a tuple of probabilistic polynomial-time algorithms
(GenVRF,Eval,Prove,VerVRF) such that

• On input 1k, GenVRF outputs (pk, sk).

• Correctness: For any x ∈ {0, 1}k, VerVRFpk(x,Evalsk(x),Provesk(x)) = 1.

• Verifiability: There does not exist a tuple (x, y, π, y′, π′) with y ̸= y′ such that
VerVRF(x, y, π) = VerVRF(x, y′, π′) = 1.

• Unique proofs: There does not exist a tuple (x, y, π, π′) with π ̸= π′ such that
VerVRF(x, y, π) = VerVRF(x, y, π′) = 1.

• Pseudorandomness: Eval is pseudorandom.

4 Our Protocols

For the simplicity of the explanation, we present the n-out-of-n protocol in Section 4.1. A general
t-out-of-n protocol is presented in Appendix A.1 as a generalization of the n-out-of-n protocol. In
Section 4.2, we present a construction of protocols with immunity to malicious players.

4.1 The n-out-of-n Protocol

Our protocol proceeds as described in Section 1.2. Specifically, we use (⌊n2 ⌋ + 1)-out-of-n and
⌈n2 ⌉-out-of-n secret sharing schemes as S1 and S2, respectively.

We give a sketch of the proof that our protocol achieves a strict Nash equilibrium. In our
protocol, any deviation from the protocol decreases the payoff of players as long as coalitions of size
at most ⌈n2 ⌉ − 1 are considered. Note that, in the analysis of the strict Nash equilibrium, we can
assume that the players outside a coalition follow the prescribed strategy. In the first round, since
the number of players in the coalition is at most ⌈n2 ⌉−1, at least n−(⌈

n
2 ⌉−1) = ⌊

n
2 ⌋+1 valid shares

will be revealed. Thus, all the players can learn the secret of S1 regardless of the actions of the
coalition. If some player in the coalition revealed an invalid share in the first round, the players will
not proceed to the next round (or equivalently, the protocol will halt) along with the possibility
that the reconstructed secret is fake, which decreases the payoff. In the second round, the first
⌈n2 ⌉ − 1 players (outside the coalition), who do not know whether the reconstructed secret is real
or fake, will reveal a valid share. This is because if any invalid share is revealed, the players will
not proceed to the third round and thus there remains the possibility that the real secret cannot
be reconstructed. After receiving the ⌈n2 ⌉ − 1 shares, the rest of players can verify that the secret
is real or fake by using her own share. If the secret is fake, the rest of players also reveal their valid
shares in order to go to the next round for reconstructing the real secret using the shares of S3. If
the secret is real, the rest of players may not reveal their valid shares, but this signals to the other
players that the secret is real, and thus all the players can learn the secret. However, to achieve a
strict Nash equilibrium, in which any deviation implies the decrease of the payoff, we cannot allow
any deviation when all the players can learn the secret. Thus, in the protocol, we allow players
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to be silent (or reveal invalid shares) in this round if the reconstructed secret is real. This implies
that in this round deviations occur only when the reconstructed secret is fake.

To achieve an n-out-of-n property, we employ the masking technique used in [2] at the cost
of one additional round in the reconstruction phase. In the sharing phase, the dealer chooses µ
uniformly at random and masks the secret s by taking µ⊕s. Then the above protocol is performed
in which µ ⊕ s is considered as the secret. The mask µ is shared by a conventional n-out-of-n
secret-sharing scheme S0. In the reconstruction phase, players first are requested to reveal their
shares of S0 to reconstruct µ. If some player deviates, the protocol halts and no player can learn
the secret. Note that if the n-out-of-n property is not required, namely, the only requirement is
that the secret can be reconstructed by rational players, then the above additional round can be
eliminated.

In order to check the validity of the received shares, we use authenticated secret-sharing to
share the secret. Thus, players can generate invalid shares only with a negligible probability.

We give a formal description of our protocol. The protocol employs an n-out-of-n authenticated
secret-sharing scheme S0, an (⌊n2 ⌋ + 1)-out-of-n authenticated secret-sharing scheme S1, an ⌈n2 ⌉-
out-of-n authenticated secret-sharing scheme S2, and an n-out-of-n rational secret-sharing protocol
S3. Note that, in the protocol below, we can choose the probability α to be k−c for any constant
c, where k is the security parameter.

Sharing phase. To share a secret s ∈ {0, 1}ℓ, the dealer performs the following:

• Choose µ ∈ {0, 1}ℓ uniformly at random, and generate shares (w1, . . . , wn) of S0 with the
secret µ.

• Set s′ =

{
µ⊕ s with probability 1− α,

fake with probability α,
, where fake ∈ {0, 1}ℓ is chosen uniformly at random,

and generate shares (x1, . . . , xn) of S1 with the secret s′.

• Set s′′ = 1 if s′ = µ ⊕ s in the previous step, and s′′ = 0 otherwise, and generate shares
(y1, . . . , yn) of S2 with the secret s′′.

• Generate shares (z1, . . . , zn) of S3 with the secret s.

• Send (wi, xi, yi, zi) to player i ∈ N .

Reconstruction phase. After all the players received the shares, the players perform the fol-
lowing:

• For all i ∈ N (in any order), send wi.

After all the players broadcasted their messages, if all the shares are valid, reconstruct µ from
(w1, . . . , wn) and go to the next round. Otherwise, halt and output a random string in {0, 1}ℓ.

• For all i ∈ N (in any order), send xi.

– After all the players broadcasted their messages, set N∗ to be the set of players j ∈ N
who sent the valid share. If |N∗| ≥ ⌊n2 ⌋+1, reconstruct s′ from (x1, . . . , xn). Otherwise,
set s′ to a random string in {0, 1}ℓ.

– If |N∗| = n, go to the next round. Otherwise, halt and output s′ ⊕ µ.

• For all i ∈ N (in any order), send yi. (Each player is allowed to take any action when s′′ = 1.)
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– After all the players broadcasted their messages, update N∗ to be the set of players
j ∈ N∗ who sent the valid share. If |N∗| ≥ ⌈n2 ⌉, reconstruct s

′′ from (y1, . . . , yn).

– If |N∗| = n and s′′ = 0, go to the next round. Otherwise, halt and output s′ ⊕ µ.

• Perform the reconstruction protocol of S3 by using zi to reconstruct s.

Then, halt and output s.

We have the following theorem.

Theorem 1. For any n ≥ 3, the above is an n-out-of-n secret-sharing protocol that induces an
(⌈n2 ⌉ − 1)-resilient computational strict Nash equilibrium if S3 induces an (⌈n2 ⌉ − 1)-resilient com-
putational strict Nash equilibrium. The secret is reconstructed in three rounds with probability at
least 1− k−c, and the expected number of rounds for reconstruction is 3 + τ · k−c for any constant
c, where k is the security parameter and τ is the expected number of rounds for reconstruction in
S3.

Proof: Note that α can be chosen to be k−c for any constant c. The condition n ≥ 3 comes from
the fact that we need a non-trivial coalition-resilient Nash equilibrium for S3, namely, ⌈n2 ⌉− 1 ≥ 1.

First, we claim that our protocol has the n-out-of-n property. Since the secret s is masked
by µ, which is shared by the n-out-of-n secret-sharing S0, at most n − 1 shares of {wi} reveal
no information on s. Also, at most n − 1 shares of {zi} reveal no information on s since each zi
is a share of the n-out-of-n secret sharing S3. The correctness of the protocol follows from the
correctness of the underlying schemes S0, S1, S2, and S3. If all the n players follow the protocol,
they can learn the secret in the third round with probability 1 − α, and in the later rounds with
probability α. Note that, although we allow players to take any action when the reconstructed
secret is real in the third round, this does not affect the fact that the players can learn the secret
in the third round if they follow the protocol. Therefore, the secret is reconstructed in three
rounds with probability 1− α = 1− k−c, and the expected number of rounds for reconstruction is
3(1− α) + (3 + τ)α = 3 + τ · k−c.

Next, we prove that the protocol induces an (⌈n2 ⌉− 1)-resilient computational strict Nash equi-
librium. In the analysis, we assume that, when a player is requested to send a share of authenticated
secret-sharing schemes, all the actions that the player can take are sending the valid share and be-
ing silent. This is because sending an invalid share is regarded as being silent and the probability
of successfully generating another valid share is negligible, which follows from the authenticity of
authenticated secret-sharing schemes.

Let C ⊂ N be any coalition with |C| ≤ ⌈n2 ⌉ − 1. Let σ be the prescribed strategy of the
protocol. Then it follows from the correctness of the protocol that uC(σ) = U . First, we show
that σ is a computational Nash equilibrium. Namely, for any strategy σ′

C of C, we show that
uC(σ

′
C , σ−C) ≤ U + ϵ(k) for a negligible function ϵ(·). Note that, in evaluating the value of

uC(σ
′
C , σ−C), we can assume that the players in N \ C follow the prescribed strategy σ.

In the first round, if some player in C is silent, then the players in N \ C do not proceed
to the later rounds. The shares {wi}i∈N only contain the information on µ. Also, the shares
{(xi, yi, zi)}i∈C reveal no information on s′ or s since the thresholds of S1, S2, and S3 are strictly
greater than ⌈n2 ⌉ − 1 ≥ |C|. Thus, the coalition C cannot learn the secret s. Therefore, the payoff
of C is at most max{U−, Urandom}, which is noticeably less than U .

In the second round, every player in N can reconstruct s′ regardless of the strategy of C because
the players in N \ C reveal their valid shares, and thus the number of valid shares revealed is at
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least |N \ C| ≥ n− (⌈n2 ⌉ − 1) = ⌊n2 ⌋+ 1, which is at least the threshold ⌊n2 ⌋+ 1 of S1. Note that,
at this point, the coalition C does not learn whether s′ is real or fake. This is because s and s′

are indistinguishable since both s and s′ are distributed uniformly at random, and s′′ is shared by
⌈n2 ⌉-out-of-n secret sharing. If some player in C is silent in the second round, then the players in
N \C do not proceed to the later rounds, and thus the coalition C cannot learn whether s′ is real
or fake. Still, the coalition C cannot learn the secret s from {zi}i∈C . Therefore, since s′ = fake
with probability α, the expected payoff of C is uC(σ

′
C , σ−C) ≤ (1− α) ·U + α ·max{U−, Urandom},

which is noticeably less than U since α = k−c for a constant c.
In the third round, if some player in C is deviated from the protocol, which means that s′′ = 0,

namely, s′ = fake , the players in N \ C do not proceed to the later rounds. Then, the coalition C
cannot learn the secret s since the only way to learn s is to use {zi}i∈C , but they are the shares of
the n-out-of-n secret sharing S3. Therefore, the payoff of C is uC(σ

′
C , σ−C) ≤ max{U−, Urandom},

which is noticeably less than U .
If no player in C has deviated in the first three rounds and s′ = fake, the players will go to the

reconstruction protocol of S3. Since S3 induces an (⌈n2 ⌉ − 1)-resilient computational strict Nash
equilibrium, the expected payoff of C is at most U + ϵ(k) for a negligible function ϵ(·) if players in
C deviated from the protocol of S3.

Therefore, in any case, the expected payoff is uC(σ
′
C , σ−C) ≤ U + ϵ(k) for any strategy σ′

C of
C, and thus the protocol induces an (⌈n2 ⌉ − 1)-resilient computational Nash equilibrium.

To complete the proof of the computational strict Nash equilibrium, we need to show that for
any strategy σ′

C of C such that σ′
C /∈eq σ, uC(σ

′
C , σ−C) ≤ uC(σ) − k−c′ = U − k−c′ for a constant

c′. The proof follows from the above analysis along with the fact that in the first three rounds,
each player has a unique valid share she can send. If the strategy σ′

C /∈eq σ is such that players in
C deviate from the protocol in the first three rounds, then it follows from the above analysis that
uC(σ

′
C , σ−C) ≤ U − k−c′ for some constant c′. If σ′

C is such that players in C follow the protocol
in the first three rounds, but deviate in the fourth or later rounds, since S3 induces a strict Nash
equilibrium, we have that uC(σ

′
C , σ−C) ≤ U − k−c′ for some constant c′. Therefore, the protocol

induces an (⌈n2 ⌉ − 1)-resilient computational strict Nash equilibrium.

Note that our protocol can use an information-theoretic rational secret-sharing as a sub-protocol.
Then, the resulting protocol induces an information-theoretic strict Nash equilibrium if the sub-
protocol induces a strict Nash equilibrium.

A general t-out-of-n protocol for 3 ≤ t ≤ n is constructed as a simple generalization of the
n-out-of-n protocol.

4.2 The Protocols with Immunity

We provide a general construction of a constant-round secret-sharing protocol that preserves both
(strict) Nash equilibria and immunity of underlying protocols. To have the immunity, the protocol
must proceed even if some players behave arbitrarily. At the same time, to achieve a strict Nash
equilibrium, if some player deviated in the protocol, the payoff of the player must decrease.

The idea for achieving this goal is to have the protocol satisfy the property that if some player
deviated in the protocol, the player cannot proceed to the later rounds. We implement it by
symmetric-key encryption. If player i deviated, then in the later rounds the other players will
broadcast their messages that are encrypted using symmetric-key encryption with a secret key
player i does not have. Thereby, since the encrypted messages reveal no information to player i,
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player i is essentially excluded from the protocol. More concretely, the dealer generates a secret
key skSKE

i for each player i. The set of keys {skSKE
j }j∈N\{i} is included in the share of player i.

If the other players detected a deviation of player i, they will encrypt messages by symmetric-key
encryption with the key skSKE

i in the later rounds.
In a strict Nash equilibrium, if some player deviated from the prescribed strategy, the payoff

of the player must decrease by some noticeable amount. However, if we allow players to sample
random strings, it is difficult to show that a subtle deviation from the protocol (e.g., sampling from
a high-entropy distribution instead of a uniform one) decreases the payoff. In our construction, we
need secure symmetric-key encryption for unbounded polynomially many messages, which requires
sampling random strings. To circumvent this problem, we use a pseudorandom function f for
generating random strings. When player i deviated, the other players can use fsk(r) as a random
string at round r if the secret key sk is not known to player i. This is because the string fsk(r) is
pseudorandom for players who do not know the secret key sk. More concretely, the dealer generates
secret keys skPRF

i,j for all i, j ∈ N with i ̸= j. The set of keys {skPRF
i,j }j∈N\{i} is included in all the

shares of players j ∈ N with j ̸= i. If player i deviated in the protocol, player j ̸= i uses fskPRF
i,j

(r)

for a random string at round r to encrypt a message. Since fskPRF
i,j

(r) is pseudorandom if skPRF
i,j is

not known, messages are securely exchanged among the players j ∈ N with j ̸= i without sampling
random strings.

In the presence of an unexpectedly behaving player, if the shares of players have the standard
n-out-of-n property that guarantees that any n− 1 shares leak no information on the secret, then
the players cannot reconstruct the secret if the unexpectedly behaving player does nothing in the
protocol. Therefore, in the presence of m unexpectedly behaving players, we require the (n−m)-
out-of-n property for a secret-sharing protocol instead of the n-out-of-n property.

We construct a constant-round protocol with 1-immunity based on any protocol with 1-
immunity. Our protocol employs a symmetric-key encryption scheme Π = (GenSKE,Enc,Dec),
a family of pseudorandom functions F = {fsk : {0, 1}|sk| → {0, 1}|sk|}sk∈{0,1}∗ , an (n− 1)-out-of-n
authenticated secret-sharing scheme S0, an (⌊n2 ⌋+1)-out-of-n authenticated secret-sharing scheme
S1, an ⌈n2 ⌉-out-of-n authenticated secret-sharing scheme S2, and an (n−1)-out-of-n rational secret-
sharing protocol S3.

Sharing phase

To share a secret s ∈ {0, 1}ℓ, the dealer performs the following:

• Choose µ ∈ {0, 1}ℓ uniformly at random, and generate shares (w1, . . . , wn) of S0 with the
secret µ.

• Set s′ =

{
µ⊕ s with probability 1− α,

fake with probability α,
, where fake ∈ {0, 1}ℓ is chosen uniformly at random,

and generate shares (x1, . . . , xn) of S1 with the secret s′.

• Set s′′ = 1 if s′ = µ ⊕ s in the previous step, and s′′ = 0 otherwise, and generate shares
(y1, . . . , yn) of S2 with the secret s′′.

• Generate shares (z1, . . . , zn) of S3 with the secret s.

• Generate skSKE
i ← GenSKE(1k) for each i ∈ N .

• Choose skPRF
i,j ∈ {0, 1}k uniformly at random for all i ∈ N and j ∈ N \ {i}, and set ηi =
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(skSKE
i , {skPRF

i,j }j∈N\{i}) for i ∈ N .

• Send (wi, xi, yi, zi, {ηj}j∈N\{i}) to player i ∈ N .

Reconstruction phase

After all the players received the shares, the players perform the following:

• For all i ∈ N (in any order), send wi.

– After all the players broadcasted their messages, set N∗ to be the set of players j ∈ N
who sent the valid share.

– If |N∗| ≥ n − 1, reconstruct µ from (w1, . . . , wn) and go to the next round. Otherwise,
halt and output a random string in {0, 1}ℓ.

• For all i ∈ N (in any order), if |N∗| = n, send xi. Otherwise, send c2i =
EncskSKE

i′
(xi; fskPRF

i′,i
(2)), where i′ /∈ N∗.

– After all the players broadcasted their messages, if |N∗| ̸= n, then decrypt the received
ciphertexts using the secret key skSKE

i′ . Update N∗ to be the set of players j ∈ N∗ who
sent the valid share. If |N∗| ≥ ⌊n2 ⌋+ 1, reconstruct s′ from (x1, . . . , xn). Otherwise, set
s′ to be a random string in {0, 1}ℓ.

– If |N∗| ≥ n− 1, go to the next round. Otherwise, halt and output s′ ⊕ µ.

• For all i ∈ N∗ (in any order), if |N∗| = n, send yi. Otherwise, send c3i =
EncskSKE

i′
(yi; fskPRF

i′,i
(3)). (Each player is allowed to take any action when s′′ = 1.)

– After all the players broadcasted their messages, if |N∗| ̸= n, then decrypt the received
ciphertexts. Update N∗ to be the set of players j ∈ N∗ who sent the valid share. If
|N∗| ≥ ⌈n2 ⌉, reconstruct s

′′ from (y1, . . . , yn).

– If |N∗| ≥ n− 1 and s′′ = 0, go to the next round. Otherwise, halt and output s′ ⊕ µ.

• If |N∗| = n, perform the reconstruction protocol of S3 by using zi to reconstruct s. Otherwise,
perform the reconstruction protocol of S3 in which player i′ /∈ N∗ deviates before starting
the protocol, and at each round r, send cri = EncskSKE

i′
(mr

i ; fskPRF
i′,i

(3)) instead of sending the

message mr
i .

Then, halt and output s.

Theorem 2. For any n ≥ 5, the above is an (n− 1)-out-of-n secret-sharing protocol that induces
an (⌈n2 ⌉ − 2, 1)-robust computational Nash equilibrium and a 1-resilient computational strict Nash
equilibrium if S3 induces an (⌈n2 ⌉ − 2, 1)-robust computational Nash equilibrium and a 1-resilient
computational strict Nash equilibrium, respectively. The secret is reconstructed in three rounds with
probability at least 1 − k−c, and the expected number of rounds for reconstruction is 3 + τ · k−c

for any constant c, where k is the security parameter and τ is the expected number of rounds for
reconstruction in S3.

Proof: By almost the same argument as the proof of Theorem 1, we can show the correctness and
the (n− 1)-out-of-n property in the presence of a single unexpectedly behaving player
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We prove that the protocol induces an (⌈n2 ⌉−2, 1)-robust computational Nash equilibrium if S3

induces an (⌈n2 ⌉−2, 1)-robust computational Nash equilibrium. Let σ be the prescribed strategy of
the protocol. To prove the second condition of the robustness, namely, 1-immunity, we need to show
that for any i ∈ N , any PPT strategy σ′

i, and j ∈ N \ {i}, we have that uj(σ) ≤ uj(σ−i, σ
′
i) + ϵ(k)

for a negligible function ϵ(·). Since the protocol satisfies the correctness, uj(σ) = U . It is not
difficult to see that, since S3 induces 1-immunity, the protocol does not halt even if player i takes
any PPT strategy σ′

i in the protocol. Thus, we have that uj(σ−i, σ
′
i) = U , which proves 1-immunity

of the protocol.
To prove the first condition of the robustness, we show that when player i∗ takes an arbitrary

PPT strategy ρi∗ , the payoff of any coalition C ⊆ N of size at most ⌈n2 ⌉ − 2 does not increase
under the assumption that the players in N \ (C ∪ {i∗}) follow the protocol. Namely, we show
that for any PPT strategy ρi∗ of player i∗ and any PPT strategy σ′

C of the coalition C, we have
that uC(σN\(C∪{i∗}), σ

′
C , ρi∗) ≤ uC(σ−i∗ , ρi∗) + ϵ(k) for a negligible function ϵ(·). Note that i∗ /∈ C

from the definition. Let N⋆ = N \ (C ∪ {i∗}). Without loss of generality, we assume that ρi∗ and
σ′
C are deterministic strategies. Since the protocol induces 1-immunity, the payoff uC(σ−i∗ , ρi∗)

is equal to either U or the payoff when all the players in N except player i∗ learn the secret.
Hence, uC(σ−i∗ , ρi∗) ≥ U from the definition of the payoff function. We will evaluate the value of
uC(σN⋆ , σ′

C , ρi∗). Since the protocol induces 1-immunity, the payoff uC(σN⋆ , σ′
C , ρi∗) differs from

uC(σ−i∗ , ρi∗) only when at least two players in C ∪ {i∗} deviate from the protocol in the strategy
profile (σN⋆ , σ′

C , ρi∗). Let i1 and i2 be the first and the second player in C ∪ {i∗} who deviates
from the protocol. We consider the following four cases: (1) player i2 deviates in the first round;
(2) player i2 does not deviate in the first round, but in the second round; (3) player i2 does not
deviate in the first two rounds, but in the third round; (4) player i2 does not deviate in the first
three rounds, but in the fourth or later rounds; We will show that the payoff uC(σN⋆ , σ′

C , ρi∗) is at
most uC(σ−i∗ , ρi∗) in any case. Let U ′

C = uC(σN⋆ , σ′
C , ρi∗), and UC = uC(σ−i∗ , ρi∗).

In case (1), the players in N⋆ do not proceed to the second or later rounds. The shares {wi}i∈N
only contain the information on µ. Also, even if the coalition C could obtain the share of player
i∗, the shares {(xi, yi, zi)}i∈C∪{i∗} reveal no information on s′ or s since the thresholds of S1, S2,
and S3 are strictly greater than ⌈n2 ⌉− 1 ≥ |C ∪{i∗}|. Thus, the coalition C cannot learn the secret
s, and the payoff of C is at most max{U−, Urandom}, which is noticeably less than U .

In case (2), the players in N⋆ do not proceed to the third or later rounds. However, every
player in N (or N \ {i1} if player i1 has deviated in the first round) can reconstruct s′ since
the players in N⋆ reveal their valid shares, and thus the number of valid shares revealed is at
least |N⋆| = n − (|C| + 1) ≥ n − (⌈n2 ⌉ − 1) = ⌊n2 ⌋ + 1, which is at least the threshold of S1.
Even if the coalition C could obtain the share of player i∗, C cannot learn the secret s from
{zi}i∈C∪{i∗}. Therefore, since s′ = fake with probability α, the expected payoff of C is at most
(1− α) · UC + α ·max{U−, Urandom}, which is noticeably less than UC .

In case (3), the players in N⋆ do not proceed to the fourth or later rounds. The fact that player
i2 deviated in the third round implies that s′ = fake. Then the coalition C cannot learn s since
the only way to learn s is to use {zi}i∈C∪{i∗}, but they are the shares of the (n− 1)-out-of-n secret
sharing S3. Therefore, the payoff of C is at most max{U−, Urandom}, which is noticeably less than
U .

In case (4), the players in N (or N \ {i1} if player i1 has deviated in the first three rounds)
proceed to the fourth or later rounds, which is the reconstruction protocol of S3. Since S3 induces
an (⌈n2 ⌉−2)-resilient computational Nash equilibrium, the expected payoff of C is at most UC+ϵ(k)
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for a negligible function ϵ(·).
In any case, we have shown that the expected payoff of C is uC(σN\(C∪{i∗}), σ

′
C , ρi∗) ≤

uC(σ−i∗ , ρi∗) + ϵ(k) for a negligible function ϵ(·). Thus the protocol induces an (⌈n2 ⌉ − 2, 1)-robust
computational Nash equilibrium.

Next we prove that the protocol induces a 1-resilient computational strict Nash equilibrium if
S3 induces a 1-resilient computational strict Nash equilibrium. Since we have shown in the above
that the protocol induces a 1-resilient computational Nash equilibrium, we need to show that for
any strategy σ′

i of player i such that σ′
i /∈eq σ, ui(σ

′
i, σ−i) ≤ ui(σ)− k−c for a constant c.

First, we give an intuitive argument for this fact. If player i deviates in the first round, she
cannot understand the messages broadcasted by the other players in the later rounds since they
are encrypted by symmetric-key encryption with a key she does not know. Since the other n − 1
players can reconstruct the secret s, the payoff ui(σ

′
i, σ−i) is at most max{U−, Urandom}, which is

noticeably less than U . If player i deviated in the second round, although she can reconstruct s′,
she cannot understand the messages broadcasted by the other players in the later rounds. Since
s′ is fake with probability α, the payoff ui(σ

′
i, σ−i) is at most (1 − α) · U + α ·max{U−, Urandom},

which is noticeably less than U . If player i deviated in the third round, which implies that s′ is
fake, player i need to participate in the reconstruction protocol of S3 to reconstruct s. However,
player i cannot understand the messages exchanged in the fourth or later rounds since they are
encrypted by symmetric-key encryption. Thus, the payoff ui(σ

′
i, σ−i) is at most max{U−, Urandom},

which is noticeably less than U . If player i deviated in the fourth or later rounds, since S3 induces
a 1-resilient computational strict Nash equilibrium, the payoff ui(σ

′
i, σ−i) is noticeably less than U .

In any case, the deviation of player i decreases her payoff by a noticeable amount. This implies
that the protocol induces a 1-resilient computational strict Nash equilibrium.

Now we give a formal proof of the above argument. Although we prove only for the case that
player i deviates in the first round, we can prove the other cases similarly.

Claim 1. If a strategy σ′
i of player i is such that player i deviates in the first round, then

ui(σ
′
i, σ−i) ≤ ui(σ)− k−c for a constant c.

Proof: It is sufficient to show that if the probability that player i obtains the secret when playing
(σ′

i, σ−i) is not negligible, then the security of either the pseudorandom function (PRF) or the
symmetric encryption scheme (SKE) is broken.

Let consider two experiments E1 and E2. The first one E1 is the experiment induced by playing
the protocol with a strategy profile (σ′

i, σ−i). The second one E2 is the same as the first one except
that a truly random function is used instead of PRF. Let E∗ be the event that player i obtains the
secret. We show that |Pr[E∗|E1] − Pr[E∗|E2]| is negligible. Both in E1 and E2, messages in the
second and later rounds are encrypted by SKE using the secret key skSKE

i , which is distributed for
the players other than i. In E1, a message from player j at round r is encrypted by using fskPRF

i,j
(r)

as random bits. Note that the key skPRF
i,j is distributed to all the players other than i. Suppose

for contradiction that |Pr[E∗|E1]−Pr[E∗|E2]| is not negligible. Then, consider an adversary A for
PRF such that A simulates the experiments E1 or E2. Since A is given an oracle access, which is
either the PRF oracle or a random function oracle, A can simulates E1 or E2 by using the outputs
of the oracle as the random bits for encryption. Thus, by checking whether player i can obtain
the secret, A can distinguish the PRF oracle from the random function oracle by a non-negligible
probability, which means that A breaks the security of PRF, a contradiction.
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Next, consider the experiment E3 that is the same as E2 except that the output of the random
function is replaced with truly random bits. Since, in E2, each player j ∈ N \ {i} uses the random
function only once per round, the sequence of all the outputs of the random function in E2 is
equivalent to truly random bits. Therefore, we have that Pr[E∗|E3] = Pr[E∗|E2].

Finally, we consider the experiment E4 that is the same as E3 except that the messages that
are encrypted by SKE and broadcasted are replaced with random messages. Then, we show that
|Pr[E∗|E3] − Pr[E∗|E4]| is negligible. Suppose for contradiction that this gap is not negligible.
For j = 0, 1, 2, ..., consider the experiment Ej

34 that is the same as E3 except that the first j
messages that are encrypted by SKE and broadcasted are the same as E3 and the other messages
are the same as E4. By the hybrid argument, if |Pr[E∗|E3] − Pr[E∗|E4]| is not negligible, then
there is some j such that |Pr[E∗|Ej

34]−Pr[E∗|Ej+1
34 ]| is not negligible. Consider an adversary B for

SKE that locally simulates Ej
34 and Ej+1

34 . Specifically, B is an adversary for the chosen-plaintext
attack security, in which an adversary can choose two messages, and, given a ciphertexts, tries to
distinguish which of the two messages was encrypted. Then, B locally simulate Ej

34 and Ej+1
34 by

choosing two message such that the first one is the j-th message in E3, and the other one is a
random message, and using the given ciphertext and the oracle access to the encryption algorithm.
Since |Pr[E∗|Ej

34] − Pr[E∗|Ej+1
34 ]| is not negligible, B can break the security of SKE by checking

whether player i can obtain the secret, which is a contradiction.
In E4, all the messages that are encrypted by SKE and broadcasted are random messages.

Thus, player i can learn nothing about the secret from these messages, and we have that Pr[E∗|E4]
is negligible.

By the above arguments, we have that Pr[E∗|E1] is negligible. That is, the probability that
player i obtains the secret when playing (σ′

i, σ−i) is negligible. Therefore, ui(σ
′
i, σ−i) is at most

max{U−, Urandom}+ ϵ(k)U+ for a negligible function ϵ(·), which is noticeably less than U = σi(σ),
and thus the statement follows.

We can extend the construction of Theorem 2 to preserve higher immunity. Specifically, we pro-
vide a construction of an (n−m)-out-of-n secret-sharing protocol that preserves an (⌈n2 ⌉−m−1,m)-
robust computational Nash equilibrium and a 1-resilient computational strict Nash equilibrium,
where m is any constant independent of k such that 1 ≤ m ≤ ⌈n2 ⌉ − 1. See Appendix A.2 for the
details.

We can also provide a protocol that satisfies the property of S3 in the above protocols. The
protocol is a variant of the protocol given in [7], and is constructed based on the same idea of using
symmetric-key encryption and pseudorandom functions. See Appendix A.3 for the details.

5 Optimality of the Immune Protocols Regarding Coalition Re-
silience

Our robust protocols presented in Section 4.2 achieve the optimal coalition resilience. Specifically,
we show that, for constant-round (r,m)-robust protocols, the coalition resilience r = ⌈n2 ⌉ −m− 1
is optimal. Also, if a protocol achieves a strict Nash equilibrium, 1-immunity is optimal.

First, we show that an (r,m)-robust protocol must have an (r +m)-coalition resilience.
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Theorem 3. If a secret-sharing protocol Π induces an (r,m)-robust computational Nash equilib-
rium, then Π induces an (r +m)-resilient computational Nash equilibrium.

Proof: Let σ be the prescribed strategy of Π that induces an (r,m)-robust computational Nash
equilibrium. Let C be a coalition with |C| ≤ r, and T ⊂ N \ C a set of players who behaves
unexpectedly with |T | ≤ m. It follows from the first condition of the (r,m)-robustness that
uC(σN\(C∪T ), σ

′
C , ρT ) ≤ uC(σ−T , ρT ) + ϵ(k) for any PPT strategies σ′

C and ρT , where σ is the
prescribed strategy of Π and ϵ(·) is a negligible function. The second condition of the (r,m) ro-
bustness implies that uC(σ−T , ρT ) ≤ uC(σ) + ϵ′(k), where ϵ′(·) is a negligible function. From these
relations, we have that for any PPT strategy σ′

C∪T , uC(σN\(C∪T ), σ
′
C∪T ) ≤ uC(σ) + δ(k) for a

negligible function δ(·). Then it follows from the definition of the payoff function for coalitions
that uC∪T (σN\(C∪T ), σ

′
C∪T ) ≤ uC∪T (σ) + δ(k), which implies that Π induces an (r + m)-resilient

computational Nash equilibrium.

The next corollary immediately follows from the above theorem and the impossibility result of
an ⌈n2 ⌉-resilient computational Nash equilibrium with constant-round reconstruction [2].

Corollary 1. If a secret-sharing protocol in which the expected number of rounds for reconstruction
is a constant (independent of the payoff of players) induces an (r,m)-robust computational Nash
equilibrium, then r +m ≤ ⌈n2 ⌉ − 1.

The above corollary implies that for an (r,m)-robust protocol with constant-round reconstruc-
tion, the coalition resilience r = ⌈n2 ⌉ −m− 1 is optimal.

Let Π∗ be the protocol presented in Section A.2, which is an extension of the protocol of
Theorem 2. Since Π∗ achieves an (⌈n2 ⌉ −m − 1,m)-robust computational Nash equilibrium for a
constant m, the coalition resilience of Π∗ is optimal among protocols that achieve m-immunity.
Note that a construction of protocols for m that depends on k remains open.

Next we show that it is difficult to achieve strict Nash equilibrium and high immunity simulta-
neously.

Theorem 4. Let Π be a secret sharing protocol for n ≥ 3 players. If Π induces an (r,m)-robust
computational strict Nash equilibrium with r ≥ 1, then m = 0. If Π induces an r-resilient compu-
tational strict Nash equilibrium and computational 1-immunity, then r ≤ 1.

Proof: Assume for the contradiction that the prescribed strategy σ of Π is 1-immune. Suppose
that player 1 takes any strategy σ′

1 such that σ′
1 ̸∈eq σ. Since σ is 1-immune, the payoff of player 2

when the players take the strategy (σ′
1, σ−1) is u2(σ

′
1, σ−1) ≥ u2(σ)− ϵ(k), where ϵ(·) is a negligible

function, which implies that player 2 can reconstruct the secret with probability at least 1− ϵ′(k)
for a negligible function ϵ′(·). Consider the strategy ρ2 of player 2 such that player 2 follows σ2,
and if the secret is reconstructed, then she broadcasts the secret. When the players follow the
strategy (σ′

1, ρ2, σ−{1,2}), since player 1 can learn the secret with the same probability that player
2 can learn with, the payoff of player 1, namely, u1(σ

′
1, ρ2, σ−{1,2}), is at least U − ϵ′′(k) for a

negligible function ϵ′′(·). Thus, u1(σ
′
1, ρ2, σ−{1,2}) ≥ u1(σ) − ϵ′′(k), which implies that σ does not

satisfy the first condition of (1, 1)-robust strict Nash equilibrium. Hence, the first statement follows.
Furthermore, for the coalition C = {1, 2} we have uC(σ

′
1, ρ2, σ−C) ≥ uC(σ) − ϵ′′(k), which follows

from the definition of payoff functions of coalitions. Since (σ′
1, ρ2) ̸∈eq σ, this implies that σ does

not induce a 2-resilient strict Nash equilibrium. Thus, the second statement follows.
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The first statement of Theorem 4 asserts that Π cannot achieve a computational strict Nash
equilibrium in the presence of a malicious player. The second statement of Theorem 4 asserts that
if Π achieves immunity, then the coalition resilience of strict Nash equilibrium must be at most 1.

Since Π∗ induces m-immunity for a constant m ≥ 1, it follows from Theorem 4 that 1-resilient
computational strict Nash equilibrium is the maximum coalition resilience that we can hope for
Π∗.

6 Strict Nash Equilibrium and Stability With Respect to Trem-
bles

In this section, we show that a strict Nash equilibrium implies a Nash equilibrium that is stable
with respect to trembles. This means that strict Nash equilibrium is a strong solution concept that
captures stability against any small deviation of other players. Intuitively, the reason for this fact
is that any deviation with a noticeable probability yields a noticeable payoff loss by the strictness
of the equilibrium, but the maximum payoff that can be recovered by the deviation is also bounded
by some noticeable amount.

Theorem 5. If a secret-sharing protocol induces an r-resilient computational strict Nash equilib-
rium, then it also induces an r-resilient computational Nash equilibrium that is stable with respect
to trembles.

Proof: Let σ be a prescribed strategy of a secret-sharing protocol that induces an r-resilient
computational strict Nash equilibrium. Let C ⊂ N be any coalition with |C| ≤ r and ρ−C any
PPT strategy for players in N \ C that is δ-close to σ−C for some noticeable function δ(·). We
assume that ρ−C takes σ−C with probability 1 − δ and ρ̂−C with probability δ. Let ρC be any
PPT strategy for the players in C. We show that there exists a PPT strategy σ′

C ⊂eq σ such that
UC(ρC , ρ−C) ≤ UC(σ

′
C , ρ−C) + ϵ(k) for some negligible function ϵ(·). Specifically, we show it by

letting σ′
C = σC .

When ρ−C = σ−C , which occurs with probability 1− δ, since σ is an r-resilient computational
strict Nash equilibrium, we have

uC(ρC , ρ−C)− uC(σ
′
C , ρ−C) = uC(ρC , σ−C)− uC(σC , σ−C) ≤ −k−c1 ,

where c1 is some constant. When ρ−C = ρ̂−C , which occurs with probability δ, the maximum
payoff C can increase by changing the strategy from σC to ρC is at most U+ − U−. Thus,

uC(ρC , ρ−C)− uC(σC , ρ−C)

= (1− δ)(uC(ρC , σ−C)− uC(σC , σ−C)) + δ(uC(ρC , ρ̂−C)− uC(σC , ρ̂−C))

≤ −kc1 + δ(U+ − U−) ≤ 0

The last inequality follows if we take δ = k−c3 for sufficiently large c3. Therefore, the statement
follows.
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A Other Protocols

A.1 The t-out-of-n Protocol

A general t-out-of-n protocol for 3 ≤ t ≤ n is constructed as a simple generalization of the n-out-
of-n protocol. We employ a t-out-of-n authenticated secret-sharing scheme S0, a (⌊ t2⌋+1)-out-of-n
authenticated secret-sharing scheme S1, a ⌈ t2⌉-out-of-n authenticated secret-sharing scheme S2,
and a t-out-of-n rational secret-sharing protocol S3. The resulting protocol is an “exactly” t-
out-of-n secret-sharing protocol, which works under the assumption that exactly t players exist
in the reconstruction phase. We also assume that the coalition is a subset of the players in the
reconstruction phase.

Since the sharing phase protocol is the same as the n-out-of-n case, we describe the reconstruc-
tion phase protocol.

Reconstruction phase

Let M ⊆ N be the set of players in the reconstruction, where |M | = t. The players perform the
following:

• For all i ∈ N (in any order), send wi.

After all the players broadcasted their messages, if all the shares are valid, reconstruct µ from
{wj}j∈M and go to the next round. Otherwise, halt and output a random string in {0, 1}ℓ.

• For all i ∈M (in any order), send xi.

– After all the players broadcasted their messages, set M∗ to be the set of players j ∈M
who sent the valid share. If |M∗| ≥ ⌊ t2⌋ + 1, reconstruct s′ from {xi}j∈M∗ . Otherwise,
set s′ to be a random string in {0, 1}ℓ.

– If |M∗| = t, go to the next round. Otherwise, halt and output s′ ⊕ µ.

• For all i ∈M (in any order), send yi. (Each player is allowed to take any action when s′′ = 1.)

– After all the players broadcasted their messages, update M∗ to be the set of players
j ∈M∗ who sent the valid share. If |M∗| ≥ ⌈ t2⌉, then reconstruct s′′ from {yi}j∈M∗ .

– If |M∗| = t and s′′ = 0, go to the next round. Otherwise, halt and output s′ ⊕ µ.

• Perform the reconstruction protocol of S3 by using zi to reconstruct s.

Then, halt and output s.

Theorem 6. For any n ≥ 3, the above is an exactly t-out-of-n secret-sharing protocol that induces
a (⌈ t2⌉−1)-resilient computational strict Nash equilibrium if S3 induces a (⌈ t2⌉−1)-resilient compu-
tational strict Nash equilibrium. The secret is reconstructed in three rounds with probability at least
1−k−c, and the expected number of rounds for reconstruction is at most 3+τ ·k−c for any constant
c, where k is the security parameter and τ is the expected number of rounds for reconstruction in
S3.

The proof is quite similar to that of Theorem 1.
We can also provide a general t-out-of-n protocol based on the same idea of [7]. Let Πt,n denote

an exactly t-out-of-n protocol. In the general t-out-of-n protocol, the dealer prepares the shares of
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Πt,n,Πt+1,n, . . . ,Πn,n. Then, in the reconstruction, the players perform the reconstruction protocol
of Πt∗,n if there are t∗ players in the reconstruction. It follows from Theorem 6 that the resulting
t-out-of-n protocol achieves a (⌈ t2⌉ − 1)-resilient computational strict Nash equilibrium.

A.2 The Protocol with Higher Immunity

We present a constant-round protocol with m-immunity based on any protocol with m-immunity
for any constant m ≥ 1 that is independent of the security parameter k. The idea is a simple
generalization of the 1-immune protocol presented in Section 4.2. If some set T of players with
|T | ≤ m deviated in the protocol, then in the later rounds, the other players will broadcast their
messages that are encrypted using symmetric-key encryption with a secret key that the players in T
do not have. To implement this idea, we prepare 2m keys for the deviations of any set of at most m
players. Therefore, this protocol works if m is a constant independent of k. Our protocol employs
a symmetric-key encryption scheme Π = (GenSKE,Enc,Dec), a family of pseudorandom functions
F = {fsk : {0, 1}|sk| → {0, 1}|sk|}sk∈{0,1}∗ , an (n−m)-out-of-n authenticated secret-sharing scheme
S0, an (⌊n2 ⌋ + 1)-out-of-n authenticated secret-sharing scheme S1, an ⌈n2 ⌉-out-of-n authenticated
secret-sharing scheme S2, and an (n−m)-out-of-n rational secret-sharing protocol S3.

Sharing phase

To share a secret s ∈ {0, 1}ℓ, the dealer performs the following:

• Choose µ ∈ {0, 1}ℓ uniformly at random, and generate shares (w1, . . . , wn) of S0 with the
secret µ.

• Set s′ =

{
µ⊕ s with probability 1− α,

fake with probability α,
, where fake ∈ {0, 1}ℓ is chosen uniformly at random,

and generate shares (x1, . . . , xn) of S1 with the secret s′.

• Set s′′ = 1 if s′ = µ ⊕ s in the previous step, and s′′ = 0 otherwise, and generate shares
(y1, . . . , yn) of S2 with the secret s′′.

• Generate shares (z1, . . . , zn) of S3 with the secret s.

• Generate a secret key skSET ← GenSKE(1k) for each T ∈ Pm(N), where Pm(N) is the family
of all subsets of N of size at most m.

• Choose skPRF
T,j ∈ {0, 1}k uniformly at random for all T ∈ Pm(N) and j ∈ N \ T , and set

ηT = (skSET , {skPRF
T,j }j∈N\T ) for T ∈ Pm(N).

• Send (xi, yi, zi, {ηT }T∈Pm(N),i/∈T ) to player i ∈ N .

Reconstruction phase

After all the players received the shares, the players perform the following:

• For all i ∈ N (in any order), send wi.

– After all the players broadcasted their messages, set N∗ to be the set of players j ∈ N
who sent the valid share, and set T ∗ = N \N∗.

– If |N∗| ≥ n−m, reconstruct µ from (w1, . . . , wn) and go to the next round. Otherwise,
halt and output a random string in {0, 1}ℓ.
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• For all i ∈ N∗ (in any order), if |N∗| = n, send xi. Otherwise, send c2i =
EncskSKE

T∗
(xi; fskPRF

T∗,i
(2)).

– After all the players broadcasted their messages, if |N∗| ̸= n, then decrypt the received
ciphertexts using the secret key skSKE

T ∗ . Update N∗ to be the set of players j ∈ N∗

who sent the valid share, and T ∗ to be N \N∗. If |N∗| ≥ ⌊n2 ⌋ + 1, reconstruct s′ from
(x1, . . . , xn). Otherwise, set s′ to be a random string in {0, 1}ℓ.

– If |N∗| ≥ n−m, go to the next round. Otherwise, halt and output s′ ⊕ µ.

• For all i ∈ N∗ (in any order), if |N∗| = n, send yi. Otherwise, send c3i =
EncskSKE

T∗
(yi; fskPRF

T∗,i
(3)). (Each player is allowed to take any action when s′′ = 1.)

– After all the players broadcasted their messages, if |N∗| ̸= n, then decrypt the received
ciphertexts. Update N∗ to be the set of players j ∈ N∗ who sent the valid share, and
T ∗ to be N \N∗. If |N∗| ≥ ⌈n2 ⌉, then reconstruct s′′ from (y1, . . . , yn).

– If |N∗| ≥ n−m and s′′ = 0, go to the next round. Otherwise, halt and output s′ ⊕ µ.

• If |N∗| = n, perform the reconstruction protocol of S3 by using zi to reconstruct s. Otherwise,
perform the reconstruction protocol of S3 in which the players in T ∗ deviate before starting
the protocol, and at each round r, send cri = EncskSKE

T∗
(mr

i ; fskPRF
T∗,i

(3)) instead of sending the

message mr
i .

Then, halt and output s.

Theorem 7. For any n ≥ 5 and any constant m ≥ 1 (independent of k), the above is an (n −
m)-out-of-n secret-sharing protocol that induces an (⌈n2 ⌉ − m − 1,m)-robust computational Nash
equilibrium and a 1-resilient computational strict Nash equilibrium if S3 induces an (⌈n2 ⌉−m−1,m)-
robust computational Nash equilibrium and a 1-resilient computational strict Nash equilibrium,
respectively. The secret is reconstructed in three rounds with probability at least 1 − k−c, and the
expected number of rounds for reconstruction is at most 3 + τ · k−c for any constant c, where k is
the security parameter and τ is the expected number of rounds for reconstruction in S3.

The proof is similar to that of Theorem 2.

A.3 The Protocol with Immunity Based on the Protocol of [7]

We present a protocol that satisfies the property of S3 in Theorems 2 and 7. The protocol
is based on the protocol of [7]. The idea for achieving immunity is almost the same as the
protocols presented in Sections 4.2 and A.2. The protocol uses as building blocks two verifi-
able random functions (GenVRF,Eval,Prove,VerVRF) and (GenVRF′,Eval′,Prove′,VerVRF′), a sym-
metric encryption scheme Π = (GenSKE,Enc,Dec), and a family of pseudorandom functions
F = {fsk : {0, 1}|sk| → {0, 1}|sk|}sk∈{0,1}∗ .

Sharing phase

To share a secret s ∈ {0, 1}ℓ, the dealer performs the following:

• Generate a secret key skSET ← GenSKE(1k) for each T ∈ Pm(N).
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• Choose skPRF
T,j ∈ {0, 1}k uniformly at random for all T ∈ Pm(N) and j ∈ N \ T , and set

ηT = (skSET , {skPRF
T,j }j∈N\T ) for T ∈ Pm(N).

• Choose r∗ ∈ N according to a geometric distribution with parameter β.

• Generate (pki, ski)← GenVRF(1k) and (pk′i, sk
′
i)← GenVRF′(1k) for i ∈ N .

• Choose random polynomials G and H of degree n−m− 1 such that G(0) = s and H(0) = 0,
where G(i) ∈ {0, 1}ℓ and H(i) ∈ {0, 1}k for i ∈ N .

• Send ({ηT }T∈Pm(N),i/∈T , ski, sk
′
i) to player i ∈ N , and the following to all players:

– {(pki, pk′i)}i∈N
– {gi = G(i)⊕ Evalski(r

∗)}i∈N
– {hi = H(i)⊕ Eval′sk′i

(r∗ + 1)}i∈N

Reconstruction phase

After all the players received the shares, setN∗ = N and T ∗ = ∅. Each player i chooses s
(0)
i ∈ {0, 1}ℓ

uniformly at random. In each round r = 1, . . . , player i performs the following:

• Compute

v
(r)
i = (π

(r)
i , ρ

(r)
i ,Proveski(r),Prove

′
sk′i

(r)),

where π
(r)
i = Evalski(r) and ρ

(r)
i = Eval′sk′i

(r). If |N∗| = n, send v
(r)
i . Otherwise, send

cri = EncskSE
T∗
(v

(r)
i ; fskPRF

T∗,i
(r)). (Each player is allowed to take any action when H(r)(0) = 0,

where H(r) is defined below.)

• After all the players broadcasted their messages, if |N∗| ̸= n, then decrypt the received
ciphertexts. Update N∗ to be the set of players j ∈ N∗ who sent the correct proof, and T ∗

to be N \N∗.

– If |N∗| < n −m − 1, then halt and output s
(r−1)
i . Otherwise, set h

(r)
j = hj ⊕ ρ

(r)
j for

j ∈ N∗, and interpolate a polynomial H(r) of degree n − m − 1 through the points

{h(r)j }j∈N∗ .

– If H(r)(0) = 0, then halt and output s
(r−1)
i . Otherwise, set g

(r)
j = gj ⊕ π

(r)
j for j ∈ N∗,

interpolate a polynomial G(r) of degree n −m − 1 through the points {g(r)j }j∈N∗ , and

set s
(r)
i = G(r)(0).

Note that a variant of the “exactly” (n −m − 1)-out-of-n protocol of [7] is used in the above
protocol. The parameter β is chosen to be a sufficiently small value that depends on m and the
payoff of players.

Theorem 8. For any n ≥ 3 and any constant m ≥ 1 (independent of k and the payoff), the above is
a secret-sharing protocol that induces an (n−m−1,m)-robust computational Nash equilibrium and a
1-resilient computational strict Nash equilibrium. The expected number of rounds for reconstruction
is O(β−1) where β is a sufficiently small value depending on m and the payoff of players.

Proof: First we prove that the protocol induces an (n − m − 1,m)-robust computational Nash
equilibrium. Since the protocol does not halt as long as at most m players deviate, it satisfies the
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second condition of the robustness, namely, m-immunity. To prove the first condition, we show
that even if players in T with |T | ≤ m take any strategy, the payoff of any coalition C ⊆ N with
|C| ≤ n −m − 1 does not increase under the assumption that the players in N \ (C ∪ T ) follow
the protocol. The case that the payoff of C is strictly larger than U is that C learns the secret,
but players in N \ C do not. This situation can be achieved only if the coalition C successfully
predicts the “real” round r∗. The coalition has at most m+1 trials to predict r∗ since the protocol
induces m-immunity. Since r∗ is chosen according to a geometric distribution, the probability of
being the real round is the same in any round before the real one. Therefore, the expected payoff
of C greater than that of the protocol without immunity (namely, the original protocol of [7]) is at
most m ·U+. Hence, if we choose β to satisfy that U > β · (m+1) ·U++(1−β) ·U− (the condition
on β in the protocol of [7] is the case m = 0), then the expected payoff of C does not increase. We
can choose such β if m is a constant independent of the payoff.

Next we prove that the protocol induces a 1-resilient computational strict Nash equilibrium. If
a player deviated, the player cannot understand the message exchanged in the later rounds since
they are encrypted, and thus the player cannot learn the secret. (A formal proof follows in a similar
way to Claim 1.) Therefore, a single deviation decreases the payoff by a noticeable amount.
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