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Abstract. In this paper, we propose a new lightweight hash function supporting three
different digest sizes: 80, 96 and 128 bits, providing preimage security from 64 to 120
bits, second preimage and collision security from 40 to 60 bits. LHash requires about
817 GE and 1028 GE with a serialized implementation. In faster implementations based
on function T , LHash requires 989 GE and 1200 GE with 54 and 72 cycles per block,
respectively. Furthermore, its energy consumption evaluated by energy per bit is also
remarkable. LHash allows to make trade-offs among security, speed, energy consumption
and implementation costs by adjusting parameters. The design of LHash employs a
kind of Feistel-PG structure in the internal permutation, and this structure can utilize
permutation layers on nibbles to improve the diffusion speed. The adaptability of LHash
in different environments is good, since different versions of LHash share the same basic
computing module. The low-area implementation comes from the hardware-friendly S-
box and linear diffusion layer. We evaluate the resistance of LHash against known attacks
and confirm that LHash provides a good security margin.
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1 Introduction

RFID products have been widely implemented and deployed in many aspects in our
daily life, e.g. automated production, access control, electronic toll collection, parking
management, identification and cargo tracking. The need for security in RFID and
sensor networks is dramatically increasing, which requires secure yet efficiently imple-
mentable cryptographic primitives including secret-key ciphers and hash functions. In
such constrained environments, the area and power consumption of a primitive usu-
ally comes to the fore, and standard algorithms are often prohibitively expensive to
implement. Hence, lightweight cryptography has become a hot topic. A number of
lightweight cryptographic algorithms are proposed, such as stream cipher Trivium [11]
and Grain [16], block cipher PRESENT [5], HIGHT [18], LBlock [35], LED [15],
Piccolo [31] and PRINCE [7]. Recently, some significant works on lightweight hash
functions have also been performed. In [6], the proposed lightweight hash function is
constructed from block cipher PRESENT in Hirosei’s double-block mode [17]. The
ARMADILLO [2] hash function proposed at CHES 2010 was found to be insecure.
Then a new version of ARMADILLO (version 3) [33] was proposed at CARDIS 2012.
QUARK [1] uses sponge structure [3] and internal permutation similar to feedback shift
registers used in Grain. PHOTON [14] proposed at CRYPTO 2011 and Spongent [4]
proposed at CHES 2011 also use sponge structure, but different internal permutations,
which are based on AES-like and PRESENT-like structures, respectively. Moreover,
Kavun et al [20] presented a lightweight implementation of Keccak at RFIDSec 2010.

In this paper, we propose a new lightweight hash function LHash with digest sizes
from 80 to 128 bits. LHash is based on extended sponge functions framework, which al-
lows trade-offs among security, speed, energy consumption and implementation cost by
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adjusting parameters. The internal permutation is designed using a structure, named
as Feistel-PG, which is an extended variant of improved generalized Feistel. Feistel-PG
has faster diffusion, shorter impossible differential paths and integral distinguishers
than similar structures. The S-box and MDS linear layer used in the internal permuta-
tion are designed to be hardware-friendly. Both of them have very compact hardware
implementation. The MDS linear layer has an iterated implementation, which is simi-
lar to and even more compact than the linear layer used in PHOTON. We present that
LHash achieves remarkably compact implementation in hardware. In our smallest im-
plementation, the area requirements are 817 and 1028 GE with 666 and 882 cycles per
block, respectively. Meanwhile, its efficiency on energy consumption evaluated by the
metric of energy per bit proposed in [31] is the smallest class among current lightweight
hash functions in literature. Especially, for the competitors with similar preimage and
collision resistance levels, it also compete well in terms of area and throughput trade-
off as shown in Figure 7. Comparative results regarding the hardware efficiency for
lightweight hash functions are summarized in Table 1. Regarding security, the internal
permutation of LHash provides a good security margin against all kinds of attacks,
including differential attack, impossible differential attack, zero-sum distinguisher, re-
bound attack etc. Since LHash is built on the internal permutation using extended
sponge structure, we believe that the security bounds claimed can be reached.

Table 1. Comparison of LHash with existing lightweight hash functions

Parameters Bounds
Area Cycle

Throughput FOM

Algorithm
n b c r r’ Pre

2nd
Col [GE] [clks]

[kbps] [nb/clk/GE2] Energy/bit∗

Pre long 96-bit long 96-bit

LHash

80 96 80 16 16 64 40 40
817 666 2.40 1.44 35.96 21.59 34008

989 54 29.63 17.78 302.9 181.75 3338

96 96 80 16 16 80 40 40
817 666 2.40 1.31 35.96 19.63 34008

989 54 29.63 16.16 302.9 165.2 3338

128 128 112 16 32 96 56 56
1028 882 1.81 1.21 17.13 11.44 56669

1200 72 22.22 14.81 154.3 102.89 5400

128 128 120 8 8 120 60 60
1028 882 0.91 0.40 8.61 3.81 113337

1200 72 11.1 4.94 77.15 34.29 10800

PHOTON

80 100 80 20 16 64 40 40
865 708 2.82 1.51 37.73 20.12 30621

1168 132 15.15 8.08 111.13 59.27 7709

128 144 128 16 16 112 64 64
1122 996 1.61 0.69 12.78 5.48 69845

1708 156 10.26 4.40 35.15 15.06 16653

Spongent

80 88 80 8 8 80 40 40
738 990 0.81 0.42 14.84 7.74 91328

1127 45 17.78 9.28 139.97 73.03 6339

128 136 128 8 8 120 64 64
1060 2380 0.34 0.14 2.99 1.28 315350

1687 70 11.43 14.90 40.16 17.21 14761

U-Quark 128 136 128 8 8 120 64 64
1379 544 1.47 0.61 7.73 3.20 93772

2392 68 11.76 4.87 20.56 8.51 20332

H-PRESENT-128 128 - 128 64 - 128 64 64 2330 559 11.45 5.72 21.09 10.54 20351

4256 32 200 100 110.41 55.21 2128

Keccak-f[100]+ 80 100 80 20 20 60 40 40 1250 800 2.50 1.50 16.00 9.60 50000

Keccak-f[200] 128 200 128 72 72 64 64 64 2520 900 8.00 3.56 12.6 5.60 31500

Keccak-f[400] 128 400 256 144 144 128 128 64 5090 1000 14.40 9.60 5.56 3.71 35347

∗: Energy/bit = (Area[GE]×required cycles for one block process)/block size[bit]. [31]
+: Implementation data is estimated based on the same serialized architecture in [20].



This paper is organized as follows. Specification of LHash is given in Section 2.
Section 3 describes the design rationale. Sections 4 and 5 provide results on security
and implementation evaluations, respectively. Finally, we conclude in Section 6.

2 Specification of LHash

2.1 Notations

In the specification of LHash, we use the following notations:
− M : The original message
− n: The digest size
− b: The block size of internal permutation
− F96, F128: The 96(128)-bit internal permutation
− Ci: The i-th round constant
− Pb: Nibble permutation on b/2 bits state
− s: 4× 4 S-box
− S: Concatenation of four S-boxes
− T : Non-linear function on 16-bit word
− Gb: Concatenation of b/32 function T
− A: 4× 4 MDS linear transformation on 16-bit word
−

⊕
: Bitwise exclusive-OR operation

− ×2,×4: Constant multiplications on finite field F2[x]/x
4 + x+ 1

2.2 Domain Extender

In LHash, we choose the extended sponge function [3] as illustrated in Figure 1. The
message is padded and split into r-bit blocks, each of which is XORed to part of the
state and enter the permutation. After the message blocks are all processed, output
r′ bits of the state as a digest block and continue iterating the permutation until the
output digest size is reached.

S0 F F

r bits

c bits

m0 m1

F F

mk!1

r' bits

F
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F

h1

Fig. 1. Extended sponge function

In Figure 1, mi is the i-th message block split from the padded message and hi is
the i-th digest block. F stands for a fixed internal permutation. r is the length of input
message blocks and c is the size of the capacity. Then b = r+ c is the size of the fixed



permutation and r′ is the output size for each output digest block. S0 is the initial value
for the iteration. For different versions, the initial values are different. We set initial
values as the concatenation of 8-bit binary expressions of the four parameters n, b, r and
r′ and fill zeros in the higher bits if the size is not enough, i.e. S0 = 0||...||0||n||b||r||r′.

The padding works as follows. If the length of the original message is len, then the
padding rule is to append one bit of “1” and x bits of “0”, where x is the smallest
non-negative integer such that x+ 1 + len ≡ 0 mod r.

As shown in Table 2, four versions of LHash are constructed based on two permu-
tations F96 and F128 with sizes of 96 and 128 bits. The parameters and security bounds
can be found in Table 2. We refer to its various parameterizations as LHash-n/b/r/r′

for different digest sizes n, block sizes b, absorbing sizes r and squeezing sizes r′.

Table 2. Suggested parameters and security bounds of LHash

n b c r r′ collision 2nd preimage preimage

80 96 80 16 16 240 240 264

96 96 80 16 16 240 240 280

128 128 112 16 32 256 256 296

128 128 120 8 8 260 260 2120

2.3 Internal Permutation

The internal permutations F96 and F128 are constructed using an 18-round Feistel
structure. The round transformations are shown in Figure 2. The permutation works
as follows.

First split the b-bit input (b=96 or 128) into two halves X1||X0.
Then for i = 2, 3, ..., 19, calculate

Xi = Gb(Pb(Xi−1 ⊕ Ci−1))⊕Xi−2

At last, X19||X18 is the output of the permutation.
Here the transformation Gb is the concatenation of b/32 function T which is the

non-linear transformation on 16-bit word. The details of function T will be introduced
in the following paragraphs. Pb is a simple permutation on b/8 nibbles, as defined in
Table 3.

P128

T

T

T

T
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P96

T

T

T

Ci
48 bits 64 bits

Fig. 2. Round transformations for internal permutation F96 and F128



Table 3. Nibble permutation P96 and P128

i 0 1 2 3 4 5 6 7 8 9 10 11

P96(i) 6 0 9 11 1 4 10 3 5 7 2 8

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P128(i) 3 6 9 12 7 10 13 0 11 14 1 4 15 8 5 2

Table 4. S-box used in LHash

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

s(x) 14 9 15 0 13 4 10 11 1 2 8 3 7 6 12 5

The function T is defined as

T (x3, x2, x1, x0) = A(S(x3, x2, x1, x0))

where S is the concatenation of four S-boxes:

S(x3, x2, x1, x0) = s(x3)||s(x2)||s(x1)||s(x0).

The definition of the 4-bit S-box is shown in Table 4.
The linear layer A is an 4 × 4 MDS transformation on 16-bit word, and it is

calculated as four iterations of the linear transformationB as shown below, i.e. A = B4.
In this figure ×2 and ×4 are constant multiplications on finite field F2[x]/x

4 + x+ 1.

4 2

4 bits

Fig. 3. Linear transformation B

The round constants Ci are used in both F96 and F128. In each round, Ci is XORed
to the most significant 16 bits of the state. The round constants are generated by
a 5-bit LFSR. The initial state is zero: x4 = x3 = x2 = x1 = x0 = 0, for i > 4,
xi = xi−3 ⊕ xi−5 ⊕ 1. Let ai = xi||xi+1||xi+2||xi+3, a

′
i = xi||xi+1||xi+2||xi+3, bi =

xi+1||xi+2||xi+3||xi+4 and b′i = xi+1||xi+2||xi+3||xi+4. Then Ci = ai||bi||a′i||b′i. xi+3

stands for the complement of the bit xi+3. The values of Ci are listed in Table 5.

3 Design Rational

3.1 Extended Sponge Function and the Choice of Paramenters

In most of the known RFID protocols, a hash function is required for privacy. In such
cases, only the first preimage resistance is needed. Thus the second preimage bound
can be sacrificed to have a more compact hardware implementation. LHash is based on
extended sponge functions framework, which allows trade-offs among security, speed,
energy consumption and implementation costs by adjusting parameters. Compared to
the traditional construction based on block ciphers, the advantages are:



Table 5. Round constants

round 0 1 2 3 4 5 6 7 8

Ci 0012 0113 1301 3725 7E6C ECFE C9DB 9280 2436

round 9 10 11 12 13 14 15 16 17

Ci 485A 8193 1200 2537 5A48 A5B7 5B49 B7A5 7F6D

– Sponge function is based on fixed permutation. The cost of key expansion in block
ciphers can be avoided. For encryption, the same secret key are used multiple times.
As a result, the key expansion is done once and the subkeys can be stored and used
again and again. But for block cipher based hash, we need to do the key expansion
for every new message block.

– Avoiding feeding forward operation and saving storage. The cost of storage is high
in lightweight computing environment. Thus for lightweight hash, we need to use
as less storage as possible. In block cipher based hash, the feeding forward mode
is necessary, thus the plaintext/key needs to be stored after the encryption is fin-
ished. If we need optimal resistance of second preimage attack, the capacity in
sponge function needs to be of twice the size as the digest length and the storage
requirement is similar to the block cipher based hash. But for sponge function,
we can sacrifice the second preimage resistance by adjusting the parameters and
reduce the storage requirement to about the same as the digest size.

– The security reduction of Sponge function has been proved. Thus we only need
to analyze the security of the internal permutation. If the internal permutation
doesn’t have any flaw, we can have confidence in the security of the hash based on
it in sponge mode.

3.2 Internal Permutation

Structure. The structure of the internal permutation is as shown in Figure 5 in
Appendix II. Pn is a vector permutation whose unit size is the same as the size of sbox
and G is the concatenation of several function T ′s. This structure is a kind of Feistel-
type and combines the advantage of generalized Feistel structure. Its basic non-linear
module T is small and parallelable, which make LHash can be implemented efficiently
in both software and hardware.

Compared to traditional Feistel structure, the diffusion effect of generalized Feistel
structure is slower and hence more rounds are needed to achieve the desired secu-
rity level. In order to overcome the disadvantage, we propose an extended variant of
improved generalized Feistel structure which represented as Feistel-PG. We utilize a
permutation layer Pn on nibbles to improve the diffusion effect. The unit size of Pn is
the same as the size of the S-box and requires no extra hardware area cost. However,
the choice of Pn has impact on the security. After a lot of attempts and tests, we decide
to choose current permutations since they are the best ones we found. Assuming the
same block length and size of non-linear module T, compared to traditional gener-
alized Feistel structure such as Type-2 GFS and improved GFS [32], Feistel-PG can
achieve full diffusion [32] in less rounds which means its diffusion speed is faster, and
the attackable round number of impossible differential and integral path is fewer. The
comparison between different structures are listed in Table 6.

Moreover, compared to the usually utilized SP structure in the design of internal
permutation of hash functions, Feistel-type structure has completely different proper-



Table 6. Comparison of structures

Structure Size
Full Impossible Integral

Diffusion Differential Path

Type-2 generalized Feistel 96 7 13 12

Improved GFS 96 5 9 10

Feistel-PG 96 4 8 8

Type-2 generalized Feistel 128 9 17 16

Improved GFS 128 6 10 11

Feistel-PG 128 4 8 8

ties. Therefore, most of the hash function attack techniques suitable for the property of
SP-type structure, such as the most famous rebound attack, super-sbox techniques etc,
will be less effective. Therefore, we believe that Feistel-type internal permutation can
achieve good immunity against known attacks, and later in Section 4 we will evaluate
the security of LHash against known attacks in detail.

S-box. On the pursuit of hardware efficiency, we use 4 × 4 S-boxes s : F 4
2 → F 4

2 in
LHash. Compared with the regular 8×8 S-box, small S-box has much more advantage
in hardware implementation. For example, to implement the S-box of AES in hardware
more than 200 GE are needed. On the other hand, the S-box used in LHash requires
two AND operations, two ORs, one NOT and six XORs. The area costs for AND, OR,
NOT and XOR are 1.33 GE, 1.33 GE, 0.5 GE and 2.67 GE. Thus the S-box costs
21.84 GE in total. Furthermore, in the aspect of security, the S-box used in LHash is
complete, has no fixed points, optimal differential and linear characteristics probability
of 2−2 and algebraic degree of 3.

Linear Diffusion Layer. The diffusion of the internal permutation is achieved by
both the nibble permutation Pn and the linear layer A used in function T . Their
combination results in good security. The lower bound for the active S-boxes for 17 out
of 18 rounds of F96 and F128 are 48 and 64, respectively. Pn is the nibble permutation
with no hardware cost. A is a linear transformation on 16 bits, the branch number of
A regarding 4 nibbles is 5, which is optimal.

A follows the 4-branch generalized Feistel structure, the round function uses con-
stant multiplications ×2 and ×4 on F2[x]/x

4 + x+1. After four iterations, the branch
number of 5 can be reached. The linear transformation A has two advantages:

– Easy to invert. The reason why we consider the inversion is for compact hardware
implementation, which will be explained in the following sections. Since generalized
Feistel structure is used to implement A, we only need to change the permutation
of the round function to invert it and the round function can be reused.

– Low area cost for hardware implementation. In the generalized Feistel structure,
there are two XOR operations between 4-bit branches, which requires 8 bits of
XORs. The multiplication by 2 and 4 can be implemented using 1 and 2 bits of
XORs. The total area cost of A is 11 bits of XORs and is less than the iterated
MDS layer used in PHOTON, which requires 15 bits of XORs.

The circuits for multiplications by 2 and 4 in F2[x]/x
4+x+1 can be found in Figure 6.



4 Security Evaluation

Since extended sponge function is used, the desired security of the internal permutation
is that the permutation is indistinguishable with a random permutation with no more
than 2c/2 queries. The parameter r is small for all versions of LHash. Thus for the
adversary, the controllable freedom degree is small (no more than 16 bits for each
permutation). It is difficult for the adversaries to take advantage of the vulnerability
of the internal permutation and turn it into an attack on the hash function. Based on
the reasoning above, we only propose analysis of the internal permutation. All analyses
in this section are based on the stronger assumption that the input can be completely
controlled by the adversary.

4.1 Generic Security Bounds

With the assumption that the internal permutation is ideal, the security bounds for
extended sponge function are as follows [14].

– Collision bound: min{2n/2, 2c/2}.
– Second preimage bound: min{2n, 2c/2}.
– Preimage bound: min{2min{n,b},max{2min{n,b}−r′ , 2c/2}}.

According to our analysis on the internal permutations F96 and F128, we believe the
bounds shown in Table 2 can be reached.

4.2 Differential Analysis

For differential analysis of LHash, it is highly dependent on the maximum differential
characteristic probability of the internal permutations F96 and F128. Considering the
internal permutations are built based on block cipher structure, we can adopt the
regular method of searching least number of active sboxes to evaluate the upper bound
of differential characteristic probability for F96 and F128. This method is widely used
in security evaluation of Feistel cipher against differential analysis such as Camellia
and CLEFIA.

The search program is usually a truncated differential path search with Viterbi
algorithm. Considering that the sbox is a bijective and deterministic nonlinear function,
its input and output differences can be truncated to 1-bit. Namely if its input and
output differences are not zero, then we call it an active sbox and denote it as ”1” in
the truncated differential path. Otherwise, if the input and output differences are both
zero, then we call it a passive sbox and denote it as ”0”. Notice that for a passive sbox
its differential probability DPS = 1, and for an active sbox DPS = p < 1. Therefore,
by counting the minimum number of active sboxes, we can evaluate the upper bound
of differential characteristic probability. In the truncated differential path search, we
start from input state ∆D(0), and transit toward output state ∆D(r) round by round
so as to minimize the number of active sboxes at every round as follows.

For every possible truncated differential path (∆D(i) → ∆D(i+1)), assign the right-
hand value to left-hand if the inequation is satisfied where z(∆D(i+1)) is a temporal
variable of the minimum active sbox number.

z(∆D(i+1)) > ASmin(∆D(i)) +AS(∆D(i) → ∆D(i+1))



Table 7. The guaranteed minimum number of active sboxes for F96 and F128

round 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

F96 1 2 6 10 14 18 22 24 26 29 32 36 40 42 46 48 51 54 58

F128 1 2 6 10 16 22 27 31 35 37 41 45 51 54 61 64 67 71 75

where ASmin(∆D(i)) is the total minimum active sbox number of the truncated path
from the first round to ∆D(i), and AS(∆D(i) → ∆D(i+1)) denotes the active sbox
number of truncated path (∆D(i) → ∆D(i+1)). Then the temporal variable z(∆D(i+1))
after finishing the above steps becomes ASmin(∆D(i+1)). Finally, the minimum result
of ASmin(∆D(r)) is the guaranteed minimum number of active sboxes for r-round.

After searching the guaranteed minimum number of active sboxes for internal per-
mutations F96 and F128 by computer program, the results are listed in Table 7. Since
the maximal probability for differential distribution of the sbox is 2−2, 17 rounds of
F96 and F128 cannot be distinguished from a random permutation by using differential
paths. Thus we believe LHash is secure regarding differential attack.

4.3 Rebound Attack

Rebound attack was proposed in 2009 [26], which was very effective against AES-like
structures. Till now, lots of works have been done to improve it [27, 19, 23–25, 34, 30, 28].
The original rebound attack works on AES structure itself, which cannot be directly
applied to LHash. Sasaki tried to analyze the resistance of Feistel-SP structure against
rebound attack [29]. Here we propose the preliminary rebound attack on LHash.

11-round rebound distinguishers on the internal permutations. In Figure 8,
5-round inbound paths for both F96 and F128 are given. Then the full 11-round path
can be obtained by extending the inbound rounds 3 rounds backward and 3 rounds
forward as shown in Figure 10. The attack steps are similar for F96 and F128. Therefore
we only choose the attack on F128 for the demonstration in Figure 9. The attack steps
are:

Step 1. Determine the difference of gray nibbles. Noticed that the differences in gray
nibbles are related. Once we fix the difference of the gray nibbles after the S-boxes
in the first round, the differences of all the remaining gray nibbles are fixed.

Step 2. The first inbound. Choose random difference for the blue nibbles such that
they match at the S-boxes in the first and the second rounds. We can determine
the value of the blue lines from the matches. The probability for the match is 2−16.
We expect to find 216 solutions with 216 complexity.

Step 3. The second inbound. The process is similar with the first inbound. Choose
random difference for the yellow nibbles and match at the S-boxes in round 4 and
round 5. 216 solutions are expected with 216 complexity.

Step 4. The outbound. XOR the values of the blue and the yellow lines at the third
round to get the value of the red lines. Calculate forward and backward following
the red lines. The conditions introduced by the active S-boxes can be fulfilled with
probability of 2−16.

We only need to do the inbound steps once since we can get 232 solutions for the
red lines and only 216 of them are needed. The total complexity to find a solution



to the 11-round path is 216. For a random permutation, finding a solution fulfilling
the input and output truncated differences is a limited birthday problem [13]. Though
the input and output are both full active, the difference of one half is generated by
16-bit difference and can be regarded as having 12 non-active nibbles. On the other
hand, the complexity to solve this limited birthday problem for a random permutation
is max{248/2, 248/2, 248+48−128} = 224, which is higher than the complexity using our
differential path. That is how this distinguisher works. For F96, it takes 2

12 complexity
to find one solution, which is lower than the generic case (218).

Remarks on Super-Sbox technique. Super-Sbox technique [13] exploits the in-
dependency between columns in 2 rounds of AES-like structure and improves the
attackable rounds of rebound attack. In Feistel-PG structure, there is no independent
structure like this. Therefore, we believe super-sbox technique doesn’t work on LHash.

4.4 Zero-sum Distinguisher

For a given permutation F , zero-sum distinguisher aims to find a partition of the
input values X such that

⊕
x∈X x =

⊕
x∈X F (x) = 0 with low complexity. Here

we consider another kind of distinguisher called half zero-sum distinguisher. Sup-
pose permutation F is 2n bits, we aim to find set X such that

⊕
x∈X Trunc1n(x) =⊕

x∈X Trunc2n(F (x)) = 0, where Trunc1n and Trunc2n are truncation functions with
half of the state size.

We have measured the algebraic degree of F96 and F128, using the technique pro-
posed by Boura et al. [8–10]. For F96, half of the state doesn’t reach maximal algebraic
degree of 95 after 7 rounds. Then we can propose a 15-round half zero-sum distinguisher
for F96.

Choose 20 nibbles (except the first 4 nibbles of left branch) to be active, and then
we can obtain 8 independent active nibbles after 3 rounds. When we choose one bit
from the other part of the state and fix it, the 8 nibbles will go over all the 232 values
no matter which bit value we choose besides the 8 nibbles. Then we can deduce that
the algebraic degree of half of the state after another 5 rounds is no more than 27
and the sum of these bits will be zero. Therefore, in the forward direction, we have
an 8-round half zero-sum distinguisher. Similarly, we can deduce that it is a 7-round
half zero-sum distinguisher in the backward direction when we select the same active
nibbles. Combining the forward and backward paths, we get a 15-round half zero-sum
distinguisher for F96, and the data complexity is 280. Apply the same technique on F128,
we can find a 15-round half zero-sum distinguisher with 296, which can be improved
using the algebraic bounding techniques. In the forward direction, we choose all the
nibbles on the left side(64 bits) and 63 bits on the right side as active bits. In the
forward direction, we can ensure that after 9 rounds, half of the state is balanced(with
zero-sum). In the backward direction, we can only go back for 8 rounds. As a result,
we have a 17-round half zero-sum distinguisher on F128 with 2127 data complexity.

4.5 Slide Attacks

Slide attacks are proposed for block ciphers, which take advantage of the self-similarity
in the key expansion by constructing plaintext-ciphertext pairs fulfilling the slide con-
ditions and recover the internal state or the secret key. Since hash function can be used



to construct MACs, e.g. HMAC and NMAC, and sponge function itself can be used
to construct MACs, we need to consider this type of attacks.

We have two different types of slide attacks: sliding on round transformations in-
side the internal permutation and sliding on iterations of the internal permutations,
i.e. sliding message blocks. Firstly, slide inside the internal permutation is prevented
by adding different round constants in each round. Secondly, slide attack between it-
erations of the internal permutations can be prevented if our padding rule ensures
the last message block to be always non-zero. The padding rule of LHash fulfills this
property. Thus we can conclude that slide attack doesn’t work on LHash.

4.6 Other Attacks

Rotational distinguisher. Rotational distinguisher [21, 22] was proposed to analyze
ARX structures. Calculate the output of a rotational pair and check if the rotational
condition is still fulfilled. In the design based on S-boxes and MDS linear layer, rota-
tional distinguisher doesn’t work well. The using of S-boxes ensure that if the rotational
amount is not multiple of the size of the S-box, the rotational relation will be destroyed.
The only possible way to apply rotational distinguisher on LHash, is to use a rotational
amount as multiple of 4. Furthermore, the rotational pair will be destroyed by the nib-
ble permutation layers. Based on this reason, we conclude that LHash is immune to
rotational distinguisher.

Self differential attack. In a self differential attack, the difference between different
partitions of a single value is considered, instead of the difference between a pair of
values. The best collision attack on Keccak is based on this kind of attack [12]. The
self similarity property can be found in AES, if there is no constants, the similarity can
be preserved forever. In LHash, the nibble permutation can destroy the self similarity
and ensures LHash immune to this kind of attack.

5 Implementation

5.1 Hardware Implementation

We evaluate hardware implementation of LHash using the Virtual Silicon (VST) stan-
dard cell library based on UMC L180 0.18µm 1P6M logic process (UMCL18G212T3 ).
We propose two different hardware implementations: 1) minimal area (serialized) im-
plementation and 2) implementation based on function T . In the second implementa-
tion, the area cost is higher while the speed is significantly increased and the energy
consumption is significantly reduced.

Serialized implementation. In hardware implementation of AES-like structures,
such as PHOTON, the value before S-boxes don’t need to be stored. The output
values of the S-boxes can be stored in the same storage units of the inputs, i.e. the
input values are overwritten. During the calculation of the iterated MDS layer, the
intermediate values are also stored in the same place. For Feistel structure, the situation
is different. Since the value of the left branch needs to be kept for the next round, we
cannot just discard the original values before S-boxes. If the round function cannot be
calculated in one cycle, we need extra storage to store the intermediate values for the



following calculations, which is bad for compact implementations. In order to achieve
compact serialized implementation, we introduce an equivalent expression of the round
transformation. Fig. 4 shows the equivalent round transformation with one T module.
It can be expressed as follows, and the equation ensures that we don’t need to store
the intermediate output value of sbox during the calculation.

A(S(Pn(Xi−1 ⊕ Ci)))⊕Xi−2 = A(S(Pn(Xi−1 ⊕ Ci))⊕A−1(Xi−2))

16 bits

S

ci A-1

A

Fig. 4. Equivalent round transformation

First, we applied the inversion of the linear layer, i.e. A−1, to the right branch of the
state. The updated value is stored at the original storage unit. Then we calculate the
constant addition, nibble permutation, and sbox operation of the left branch nibble
by nibble and XOR the output of the sbox into the right branch storage. After all
sboxes have been processed, the linear transformation A is applied to the right branch
again and we get the value of Xi. During the calculation, no extra storage is required.
After finishing all the nonlinear T modules in one round, another operation is needed
to swap the left and right branches.

In the serialized implementation of LHash, we use a 4-bit width datapath and only
one instance of sbox. A−1 and A need to be implemented respectively. First of all,
state storage needs 96(128) bits flip-flop cells to store the data, and each bit flip-flop
requires 6 GE. Therefore, for F96 and F128 this module requires 96 × 6 = 576 GE
and 128 × 6 = 768 GE respectively, which occupies the majority of the total area
required. Then for the round transformation, six kinds of operations need to be done,
including constant addition, nibble permutation, sbox, 4-bit XOR operation, linear
transformation A−1 and A. Notice that in the design of LHash, the constants only
apply to the first 16-bit of left branch and for the other bits the constants equal to zero.
Therefore, we only need four 4-bit XOR to implement the constant addition operation
which requires about 42.72 GE. Moreover, another 32.75 GE is needed for the constant
generator(5-bit storage, one XNOR and one NOT). Then the nibble permutation can
be implemented by simple wiring and costs no area. The choice of data is controlled
by the Controller module where a Finite State Machine is used to generate the control
signals. As specified in Sect. 3.2, the modules of sbox, A−1 and A require 21.84 GE,
29.37 GE(11 bits XOR), and 29.37 GE respectively. Finally, to XOR the output of sbox
into the right branch nibble, a 4-bit XOR is needed which costs 10.68 GE. In the end of
the round transformation, the swap operation can be implemented by wiring and need
no additional area. Furthermore, an overall Controller module is needed to generate



Table 8. Software performances in cycles per byte of the LHash variants

LHash-80/96/16/16 LHash-96/96/16/16 LHash-128/128/16/32 LHash-128/128/8/8

139c/B 139c/B 156c/B 312c/B

all the control signals and logic circuits. The Controller module is realized by a Finite
State Machine and its gate varies depending on the size of internal permutation: about
74 GE for F96 and 93 GE for F128.

In summary, for F96, the round transformation contains three function T’s. Each
of them requires 4 cycles for A−1, 4 cycles for the combination operation of constant
addition, S-box and 4-bit XOR, and another 4 cycles for A. After the calculation of
three function T , another 1 cycle is required to swap the left and right branches. Thus
the round transformation requires 12×3+1 = 37 cycles and F96 requires 37×18 = 666
cycles in total. The area cost of F96 is about 817 GE, including 576 GE for 96-bit
storage, 53.4 GE for five 4-bit XORs, 22 GE for the sbox, 29.37× 2 GE for both A−1

and A, 32.75 GE for the constant generator(5-bit storage, one XNOR and one NOT)
and about 74 GE for logic circuits. For F128, the round transformation contains four
T modules. It takes (12× 4 + 1)× 18 = 882 cycles to finish the calculation. The area
cost of the serialized implementation of F128 is 1028 GE, including 768 GE register
storage, 166.89 GE for the round transformation, and about 93 GE for logic circuits.

Function T based implementation. Since F96 and F128 share the same module T ,
thus we only need to implement it once. In order to finish the calculation of function
T in one cycle, we need eight 4-bit registers, constant generator and 16-bit XOR. The
function T requires about 515.17 GE, including 192 GE for eight 4-bit storage, 32.75
GE for the constant generator, 88 GE for four S-boxes, 29.37 × 4 = 117.84 GE for
A and 2.67 × 32 = 85.44 GE for 32-bit XOR. Both F96 and F128 can share the same
function T and we only need extra storage for both of them. Therefore F96 requires
515.17+384 = 899.17 GE, with additional 89.8 GE control logic circuits, and the total
area cost is about 989 GE. It takes 3× 18 = 54 cycles to finish the calculation of F96.
Similarly, F128 costs about (515.17 + 576 + 108.8) ≈ 1200 GE and 72 cycles.

5.2 Software Implementation

We give in Table 8 our software implementation performances for the LHash variants.
The processor used for the benchmarks is an Intel Core i7-3612QM @2.10GHz. We have
also benchmarked other lightweight hash function designs. QUARK reference code [1],
which is very likely to be optimized, runs at 8k, 30k and 22k cycles per byte respectively
for U-QUARK, D-QUARK and S-QUARK. The speed for PHOTON-80/20/16 and
PHOTON-128/16/16 [14] are 96 and 156 cycles per byte, respectively.

6 Conclusion

We proposed a new lightweight hash function LHash, supporting digest length of 80,
96 and 128 bits, providing from 64 to 120 bits of preimage security and from 40 to 60
bits of second preimage and collision security. The internal permutation is designed
based on structure Feistel-PG, using nibble permutations to improve the resistance to
different attacks of the structure. The component S-box and linear layer are designed



to be secure and suitable for hardware implementations. Serialized implementation of
the internal permutation in LHash requires 817 and 1028 GE. LHash has the lowest
energy consumption among existing lightweight hash functions. We offer the trade-offs
among security, speed, energy consumption and implementation cost by adjusting the
parameters. We also evaluate the security of LHash and our cryptanalytic results show
that LHash achieves enough security margin against known attacks. In the end, we
strongly encourage the security analysis of LHash and helpful comments.
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Appendix I: Test Vectors

Test vectors for LHash are shown in hexadecimal notation as follows.

Appendix II: Figures



Message
FF FE FD FC FB FA F9 F8 F7 F6 F5 F4 F3 F2 F1 F0

EF EE ED EC EB EA E9 E8 E7 E6 E5 E4 E3 E2 E1 E0

LHash-80/96/16/16 4A BD BA E1 44 7F C8 E4 5B 58

LHash-96/96/16/16 55 EC 4F FE 99 2A 32 94 F1 F7 90 61

LHash-128/128/16/32 38 E9 1A E1 8F 11 5A 0B 27 79 68 22 A9 0B 1C 5A

LHash-128/128/8/8 0A D6 35 B4 8F E3 BD 84 F9 58 7C 68 B0 CA DA E0

Pn

T

...

T

n/2 bits

Fig. 5. Feistel-PG structure

1 bit
1 bit

Fig. 6. Circuits for multiplications by 2 and 4 on F2[x]/x
4 + x+ 1
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Fig. 7. Area versus throughput trade-off of lightweight hash functions
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