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Abstract. In this paper we propose an efficient and compact processor for a
ring-LWE based encryption scheme. We present three optimizations for the Num-
ber Theoretic Transform (NTT) used for polynomial multiplication: we avoid pre-
processing in the negative wrapped convolution by merging it with the main algo-
rithm, we reduce the fixed computation cost of the twiddle factors and propose an
advanced memory access scheme. These optimization techniques reduce both the
cycle and memory requirements. Finally, we also propose an optimization of the
ring-LWE encryption system that reduces the number of NTT operations from
five to four resulting in a 20% speed-up. We use these computational optimiza-
tions along with several architectural optimizations to design an instruction-set
ring-LWE cryptoprocessor. For dimension 256, our processor performs encryp-
tion/decryption operations in 20/9 µs on a Virtex 6 FPGA and only requires
1349 LUTs, 860 FFs, 1 DSP-MULT and 2 BRAMs. Similarly for dimension 512,
the processor takes 48/21 µs for performing encryption/decryption operations
and only requires 1536 LUTs, 953 FFs, 1 DSP-MULT and 3 BRAMs. Our pro-
cessors are therefore more than three times smaller than the current state of the
art hardware implementations, whilst running somewhat faster.
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1 Introduction

Lattice-based cryptography is considered a prime candidate for quantum-secure public
key cryptography due to its wide applicability [27] and its security proofs that are
based on worst-case hardness of well known lattice problems. The learning with errors

(LWE) problem [26] and its ring variant known as ring-LWE [17] have been used as
a solid foundation for several cryptographic schemes. The significant progress in the
theory of lattice-based cryptography [19, 20, 25] has recently been followed by practical
implementations [1, 7, 9, 22, 23, 28].

The ring-LWE based cryptosystems operate in a polynomial ring Rq = Zq[x]/〈f(x)〉,
where one typically chooses f(x) = xn + 1 with n a power of two, and q a prime with
q ≡ 1 mod 2n. An implementation thus requires the basic operations in such a ring
Rq, with multiplication taking up the bulk of the resources both in area and time. An
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efficient polynomial multiplier architecture therefore is a pre-requisite for the deployment
of ring-LWE based cryptography in real world systems.

The most important hardware implementations of polynomial multipliers for the
rings Rq are [1, 9, 22, 23]. In [9], a fully parallel butterfly structure is used for the poly-
nomial multiplier resulting in a huge area consumption. For instance, even for medium
security, their ring-LWE cryptoprocessor does not fit on the largest FPGA of the Virtex
6 family. In [22], a sequential polynomial multiplier architecture is designed to use the
FPGA resources in an efficient way. The multiplier uses a dedicated ROM to store all
the twiddle factors which are required during the NTT computation. In [23] the authors
integrated the polynomial multiplier [22] in a complete ring-LWE based encryption sys-
tem and propose several system level optimizations such as a better message encoding
scheme and compression technique for the ciphertext. The work [1] tries to reduce the
area of the polynomial multiplier by computing the twiddle factors whenever required,
but as we will show, this could be improved substantially by re-arranging the loops in-
side the NTT computation. Furthermore, the paper does not include an implementation
of a complete ring-LWE cryptoprocessor.

Our contributions: In this paper we present a complete ring-LWE based encryption
processor that uses the Number Theoretic Transform (NTT) algorithm for polynomial
multiplication. The architecture is designed to have small area and memory requirement,
but is also optimized to keep the number of cycles small. In particular, we make the
following contributions:

1. During the NTT computation, the intermediate coefficients are multiplied by the
twiddle factors that are computed using repeated multiplications. In [22] a pre-
computed table (ROM) is used to avoid this fixed computation cost. The more
compact implementation in [1] does not use ROM and computes the twiddle factors
by performing repeated multiplications. In this paper we reduce the number of
multiplications by re-arranging the nested loops in the NTT computation.

2. The implementations [1, 22] use negative wrapped convolution to reduce the number
of evaluations in both the forward and backward NTT computations. However, the
use of the negative wrapped convolution has a pre- and post-computation overhead.
In this paper we basically avoid the pre-computation which reduces the cost of the
forward NTT.

3. The intermediate coefficients are stored in memory (RAM) during the NTT compu-
tation. Access to the RAM is a bottleneck for speeding-up the NTT computation.
In the implementations [1, 22], FPGA-RAM slices are placed in parallel to avoid
this bottleneck. In this paper we propose an efficient memory access scheme which
reduces the number of RAM accesses, optimizes the number of block RAMs and
still achieves maximum utilization of the computational blocks.

4. The Knuth-Yao sampler [28] is slow due to the costly bit scanning operation. We
reduce the cycle count using fast table lookup operations. We also optimize the area
of the Knuth-Yao [28] sampler by reducing the width of the ROM. For the standard
deviation 3.33 the area-optimized sampler consumes only 32 slices and is thus more
compact and faster than the Bernoulli sampler in [24].

5. The proposed optimization techniques are applied to design a compact architecture
for the NTT computation. We also implement pipelines in the architecture targeting
high-speed applications. The pipeline technique derives an optimal pipeline depth
for the architecture to achieve the fastest computation time.
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6. Finally, we optimize one of the most popular ring-LWE encryption schemes by re-
ducing the number of NTT computations from five to four, thereby achieving a
nearly 20% reduction in the computation cost.

The above optimizations result in a very compact architecture that is three times
smaller than the current state of the art implementation [23] and even runs somewhat
faster.

The remainder of the paper is organized as follows: In Section 2 we provide a brief
mathematical background on ring-LWE and the NTT. Section 3 contains our opti-
mization techniques of the NTT and Section 4 presents the actual architecture of our
optimized NTT algorithm. A pipelined architecture is given in Section 5. In Section 6,
we propose an optimization of an existing ring-LWE encryption scheme and propose an
efficient architecture for the complete ring-LWE encryption system. Finally, Section 7
reports on the experimental results of this implementation.

2 Background

In this section we present a brief mathematical overview of the ring-LWE problem, the
encryption scheme we will be optimizing and the NTT.

2.1 The LWE and ring-LWE Problem

The learning with errors (LWE) problem is a machine learning problem that is equivalent
to worst-case lattice problems as shown by Regev [26] in 2005. Since then, the LWE
problem has become popular as a basis for developing quantum secure lattice-based
cryptosystems.

The LWE problem is parametrized by a dimension n ≥ 1, an integer modulus q ≥ 2
and an error distribution, typically a discrete Gaussian distribution Xσ over the integers
with deviation σ and mean 0. The probability of sampling an integer z ∈ Z in the

Gaussian distribution Xσ is given by ρσ(z)/ρσ(Z) where ρσ(z) = exp
(

−z2

2σ2

)

and ρσ(Z) =
∑+∞

z=−∞ ρσ(z). Note that some authors use the parameter s =
√
2πσ to define the

Gaussian distribution or even denote the parameter s by σ to add to the confusion.
For a uniformly chosen s ∈ Z

n
q , the LWE distribution As,X over Zn

q × Zq consists of
tuples (a, t) where a is chosen uniformly from Z

n
q and t = 〈a, s〉+ e mod q ∈ Zq and e

is sampled from the error distribution X . The search version of the LWE problem asks
to find s given a polynomial number of pairs (a, t) sampled from the LWE distribution
As,X . In the decision version of the LWE problem, the solver needs to distinguish with
non-negligible advantage between a polynomial number of samples drawn from As,X

and the same number of samples drawn from Z
n
q ×Zq. For hardness proofs of the search

and decision LWE problems, interested readers are referred to [15].
The initial LWE encryption system in [26] is based on matrix operations which are

quite inefficient and result in large key sizes. To achieve computational efficiency and to
reduce the key size, an algebraic variant of the LWE called ring-LWE [17] uses special
structured ideal lattices. Such lattices correspond to ideals in rings Z[x]/〈f〉, where f
is an irreducible polynomial of degree n. For efficiency reasons, the ring is often taken
as Rq = Zq[x]/〈f〉 with f(x) = xn + 1, where n is a power of two and the prime q is
taken as q ≡ 1 mod 2n. The ring-LWE distribution on Rq ×Rq consists of tuples (a, t)
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with a ∈ Rq chosen uniformly random and t = as + e ∈ Rq, where s ∈ Rq is a fixed
secret element and e has small coefficients sampled from the discrete Gaussian above.
The resulting distribution on Rq will also be denoted Xσ.

The ring-LWE based encryption scheme that we will use was introduced in the full
version of [17] and uses a global polynomial a ∈ Rq. Key generation, encryption and
decryption are as follows:

1. KeyGen(a) : Choose two polynomials r1, r2 ∈ Rq from Xσ and compute p = r1 −
a · r2 ∈ Rq. The public key is (a, p) and the private key is r2. The polynomial r1 is
simply noise and is no longer required after key generation.

2. Enc(a, p,m) : The message m is first encoded to m̄ ∈ Rq. Three polynomials
e1, e2, e3 ∈ Rq are sampled from Xσ. The ciphertext then consists of two polynomials
c1 = a · e1 + e2 and c2 = p · e1 + e3 + m̄ ∈ Rq.

3. Dec(c1, c2, r2) : Compute m′ = c1 · r2 + c2 ∈ Rq and recover the original message m
from m′ using a decoder.

One of the simplest encoding functions maps a binary message m to the polynomial
m̄ ∈ Rq such that its i-th coefficient is (q−1)/2 iff the i-th bit of m is 1 and 0 otherwise.
The corresponding decoding function then simply reduces the coefficients m′i of m

′ in
the interval (−q/2, q/2] and decodes to 1 when |m′i| > q/4 and 0 otherwise.

2.2 Parameter sets

To enable fair comparison with the state of the art [23], we have chosen to instantiate
the cryptoprocessor for the same parameter sets (n, q, s) (recall s =

√
2πσ), namely

P1 = (256, 7681, 11.32) and P2 = (512, 12289, 12.18). Note that the choice of primes
is not optimal for fast modular reduction. To estimate the security level offered by
these two parameter sets we follow the security analysis in [16] and [14] which improves
upon [15, 29]. Apart from the dimension n, the hardness of the ring-LWE problem mainly
depends on the ratio q/σ, where clearly the problem becomes easier for larger ratios.
Although neither parameter set was analyzed in [16], parameter set P1 is similar to the
set (256, 4093, 8.35) from [16] which requires 2105 seconds to break, or still over 2128

elementary operations. For paramater set P2 we expect it to offer a high security level
consistent with AES-256 (following [9]).

We limit the Gaussian sampler in our implementation to 12σ to obtain a negligible
statistical distance (< 2−90) from the true discrete Gaussian distribution. Although one
can normally sample the secret r2 ∈ Rq also from the distribution Xσ, we restrict r2 to
have binary coefficients.

2.3 The Number Theoretic Transform

There are many efficient algorithms in the literature to perform polynomial multiplica-
tion and a survey of fast multiplication algorithms can be found in [2]. In this section
we review the Number Theoretic Transform (NTT) which corresponds to a Fast Fourier
Transform (FTT) where the roots of unity are taken from a finite ring instead of the
complex numbers.
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Algorithm 1: Iterative NTT

Input: Polynomial a(x) ∈ Zq [x] of degree n− 1 and n-th primitive root ωn ∈ Zq of unity
Output: Polynomial A(x) ∈ Zq [x] = NTT(a)
begin1

A← BitReverse(a);2
for m = 2 to n by m = 2m do3

ωm ← ωn/m
n ;4

ω ← 1 ;5
for j = 0 to m/2− 1 do6

for k = 0 to n− 1 by m do7
t← ω · A[k + j + m/2] ;8
u← A[k + j] ;9
A[k + j] ← u + t ;10
A[k + j + m/2]← u − t ;11

end12
ω ← ω · ωm ;13

end14

end15

end16

The FFT and NTT: Recall that the n-point FFT (with n = 2k) is an efficient

method to evaluate a polynomial a(x) =
∑n−1

j=0 ajx
j ∈ Z[x] in the n-th roots of unity

ωi
n for i = 0, . . . , n− 1 where ωn denotes a primitive n-th root of unity. More precisely,

on input the coefficients [a0, . . . , an−1] and ωn, the FFT computes FFT ([aj ], ωn) =
[a(ω0

n), a(ω
1
n), . . . , a(ω

n−1
n )] in θ(n logn) time. Due to the orthogonality relations between

the n-th roots of unity, we can compute the inverse FFT simply as 1
nFFT (·, ω−1n ).

The NTT replaces the complex roots of unity by roots of unity in a finite ring Zq.
Since we require elements of order n, q is chosen to be a prime with q ≡ 1 mod 2n. Note
furthermore that the NTT immediately leads to a fast multiplication algorithm in the
ring Sq = Zq[x]/(x

n−1): indeed, given two polynomials a, b ∈ Sq we can easily compute
their (reduced) product c = a · b ∈ Sq by computing

c = NTT−1ωn

(

NTTωn(a) ∗NTTωn(b)
)

, (1)

where ∗ denotes point-wise multiplication.
The NTT computation is usually described as recursive, but in practice we use an

in-place iterative version taken from [4] that is given in Algorithm 1. For the inverse
NTT, an additional scaling of the resulting coefficients by n−1 is performed. The factors
ω used in line 8 are called the twiddle factors.

Multiplication in Rq: Recall that we will use Rq = Zq[x]/〈f〉 with f = xn + 1 and
n = 2k. Since f(x)|x2n−1 we could use the 2n-point NTT to compute the multiplication
in Rq at the expense of three 2n-point NTT computations and a reduction by trivially
embedding the ring Rq into Sq, i.e. expanding the coefficient vector of a polynomial
a ∈ Rq by adding n extra zero coefficients. However, we can do much better by exploiting
the special relation between the roots of xn +1 and x2n− 1 using a technique known as
the negative wrapped convolution.

Indeed, using the same evaluation-interpolation strategy used above for the ordinary
NTT, we conclude that we can efficiently multiply two polynomials a, b ∈ Rq if we

can quickly evaluate them in the roots of f . These roots are simply ω2j+1
2n for j =

0, . . . , n − 1 (since the even exponents give the roots of xn − 1) and as such can be
written as ω2n ·ωj

n. These evaluations can thus be computed efficiently using a classical
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n-point NTT (instead of a 2n-point NTT) on the scaled polynomials a′(x) = a(ω2n · x)
and b′(x) = a(ω2n · x). The point-wise multiplication gives the evaluations of c(x) =
a(x)b(x) mod f(x) in the roots of f , and the classical inverse n-point NTT thus results
in the coefficients of the scaled polynomial c′(x) = c(ω2n ·x). To recover the coefficients
ci of c(x), we therefore simply have to compute ci = c′i · ω−i2n . Note that the scaling
operation by n−1 can be combined with the multiplications of c′i by ω−i2n .

3 Optimization of the NTT Computation

In this section we optimize the NTT and compare with the recent hardware implemen-
tations of polynomial multipliers [1, 22, 23]. First, the fixed cost involved in computing
the powers of ωn is reduced, then the pre-computation overhead in the forward negative-
wrapped convolution is optimized, and finally an efficient memory access scheme is pro-
posed that reduces the number of memory accesses during the NTT and also minimizes
the number of block RAMs in the hardware architecture.

3.1 Optimizing the Fixed Computation Cost

In line 13 of Algorithm 1 the computation of the twiddle factor ω ← ω ·ωm is performed
in the j-loop. This computation can be considered as a fixed cost. However in [1, 22]
the j-loop and the k-loop are interchanged, such that ω is updated in the innermost
loop which is much more frequent than in Algorithm 1. To avoid the computation of the
twiddle factors, in [22] all the twiddle factors are kept in a pre-computed look-up table
(ROM) and are accessed whenever required. As the twiddle factors are not computed
on-the-fly, the order of the two innermost loops does not result in an additional cost.
However in [1] a more compact polynomial multiplier architecture is designed without
using any look-up table and the twiddle factors are simply computed on-the-fly during
the NTT computation. Hence in [1], the interchanged loops cause substantial additional
computational overhead. In this paper our target is to design a very compact polynomial
multiplier. Hence we do not use any look-up table for the twiddle factors and follow
Algorithm 1 to avoid the extra computation of [1].

3.2 Optimizing the Forward NTT Computation Cost

Here we revisit the forward negative-wrapped convolution technique used in [1, 22, 23].
Recall that the negative-wrapped convolution corresponds to a classical n-point NTT
on the scaled polynomials a′(x) = a(ω2n · x) and b′(x) = (ω2n · x). Instead of first pre-
computing these scaled polynomials and then performing a classical NTT, it suffices to
note that we can integrate the scaling and the NTT computation. Indeed, it suffices
to change the initialization of the twiddle factors in line 5 of Algorithm 1: instead of
initializing ω to 1, we can simply set ω = ω2m. The rest of the algorithm remains exactly
the same, and no pre-computation is necessary. Note that this optimization only applies
to the NTT itself and not to the inverse NTT.

3.3 Optimizing the Memory Access Scheme

The NTT computation requires memory to store the input and intermediate coefficients.
When the number of coefficients is large, RAM is most suitable for hardware implemen-
tation [1, 22, 23]. In the innermost loop (lines 8-to-11) of Algorithm 1, two coefficients
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A[k+ j] and A[k+ j+m/2] are first read from memory and then arithmetic operations
(one multiplication, one addition and one subtraction) are performed. The new A[k+ j]
and A[k+ j+m/2] are then written back to memory. During one iteration of the inner-
most loop, the arithmetic circuits are thus used only once, while the memory is read or
written twice. This leads to idle cycles in the arithmetic circuits. The polynomial multi-
plier in [22] uses two parallel memory blocks to provide a continuous flow of coefficients
to the arithmetic circuits. However this approach could result in under-utilization of the
RAM blocks if the coefficient size is much smaller than the word size (for example in
the ring-LWE cryptosystem [17]). In the literature there are many papers on efficient
memory management schemes using segmentation and efficient address generation (see
[18]) for the classical FFT algorithm. Another well known approach is the constant
geometry FFT (or NTT) which always maintains a constant index difference between
the processed coefficients [21]. However the constant geometry algorithm is not in-place
and hence not suitable for resource constrained platforms. In [1] memory usage is im-
proved by keeping two coefficients A[k] and B[k] of the two input polynomials A and B
in the same memory location. We propose a memory access scheme which is designed
to minimize the number of block RAM slices and to achieve maximum utilization of
computational circuits present in the NTT architecture.

Since the two coefficients A[k + j] and A[k + j + m/2] are processed together in
Algorithm 1, we keep the two coefficients as a pair in one memory location.

Let us analyze two consecutive iterations of the m-loop (line 3 in Algorithm 1) for
m = m1 and m = m2 where m2 = 2m1. In the m1-loop, for some j1 and k1 (maintaining
the loop bounds in Algorithm 1) the coefficients (A[k1 + j1], A[k1 + j1 + m1/2]) are
processed as a pair. Then k increments to k1 +m1 and the processed coefficient pair is
(A[k1+m1+j1], A[k1+m1+j1+m1/2]). Now from Algorithm 1 we see that the coefficient
A[k1 + j1] will again be processed in the m2-loop with coefficient A[k1 + j1 + m2/2].
Since m2 = 2m1, the coefficient A[k1+j1+m2/2] is the coefficient A[k1+j1+m1] which
is updated in the m1-loop for k = k1 + m1. Hence during the m1-loop if we swap the
updated coefficients for k = k1 and k = k1 +m1 and store (A[k1 + j1], A[k1 + j1 +m1])
and (A[k1 + j1 +m1/2], A[k1+ j1 +3m1/2]) as the coefficient pairs in memory, then the
coefficients in a pair have a difference of m2/2 in their index and thus are ready for the
m2-loop. The operations during the two consecutive iterations k = k1 and k = k1 +m1

during m = m1 are shown in Algorithm 2 in lines 8-15. During the operations u1, t1, u2

and t2 are used as temporary storage registers.
A complete description of the efficient memory access scheme is given in Algorithm 2.

In this algorithm for all values of m < n, two coefficient pairs are processed in the
innermost loop and a swap of the updated coefficients is performed before writing back
to memory. For m = n, no swap operation is required as this is the final iteration of
the m-loop. The coefficient pairs generated by Algorithm 2 can be re-arranged easily
for another (say inverse) NTT operation by performing address-wise bit-reverse-swap
operation. Appendix A describes the memory access scheme using an example.

4 The NTT Processor Organization

In this section we present an architecture for performing the forward and backward NTT
using the proposed optimization techniques. Our NTT processor (Figure 1) consists of
three main components: the arithmetic unit, the memory block and the control-address
unit.
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Algorithm 2: Iterative NTT : Memory Efficient Version

Input: Polynomial a(x) ∈ Zq [x] of degree n− 1 and n-th primitive root ωn ∈ Zq of unity
Output: Polynomial A(x) ∈ Zq [x] = NTT(a)
begin1

A← BitReverse(a); /* Coefficients are stored in the memory as proper pairs */2
for m = 2 to n/2 by m = 2m do3

ωm ← m-th primitiveroot(1) ;4
ω ← squareroot(ωm) or 1 /* Depending on forward or backward NTT */ ;5
for j = 0 to m/2− 1 do6

for k = 0 to n/2− 1 by m do7
(t1, u1)← (A[k + j + m/2], A[k + j]) /* From MEMORY[k+j] */ ;8
(t2, u2)← (A[k + m + j + m/2], A[k + m + j]) /* MEMORY[k+j+m/2] */ ;9
t1 ← ω · t1 ;10
t2 ← ω · t2 ;11
(A[k + j + m/2], A[k + j])← (u1 − t1, u1 + t1) ;12
(A[k + m + j + m/2], A[k + m + j]) ← (u2 − t2, u2 + t2) ;13
MEMORY [k + j] ← (A[k + j + m],A[k + j]) ;14
MEMORY [k + j + m/2]← (A[k + j + 3m/2], A[k + j + m/2]) ;15

end16
ω ← ω · ωn ;17

end18

end19
m← n ;20
k ← 0 ;21
ω ← squareroot(ωm) or 1 /* Depending on forward or backward NTT */ ;22
for j = 0 to m/2− 1 do23

(t1, u1)← (A[j + m/2], A[j]) /* From MEMORY[j] */ ;24
t1 ← ω · t1 ;25
(A[j + m/2], A[j])← (u1 − t1, u1 + t1) ;26
MEMORY [j]← (A[j + m/2], A[j]) ;27
ω ← ω · ωm ;28

end29

end30
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The Memory Block is implemented as a simple dual port RAM. To accommodate
two coefficients, the word size is 2⌈log q⌉ where q is the prime modulus. In FPGAs, a
RAM can be implemented as a distributed or as a block RAM. When the amount of
data is large, block RAM is the ideal choice.

The Arithmetic Unit (NTT-ALU) is designed to support Algorithm 2 along with
other operations such as polynomial addition, point-wise multiplication and rearrange-
ment of the coefficients. This NTT-ALU is interfaced with the memory block and the
control-address unit. The central part of the NTT-ALU consists of a modular multiplier
and addition/subtraction circuits.

Now we describe how the different components of the NTT-ALU are used during the
butterfly steps (excluding the last loop for m = n). First, the memory location (k + j)
is fetched and then the fetched data (t1, u1) is stored in the input register pair (H1, L1).
The same also happens for the memory location (k + j +m/2) in the next cycle. The
multiplier computes ω ·H1 and the result is added to or subtracted from L1 using the
adder and subtracter circuits to compute (u1 + ωt1) and (u1 − ωt1) respectively. In the
next cycle the register pair (R1, R4) is updated with (u1−ωt1, u1+ωt1). Another clock
transition shifts the contents of (R1, R4) to (R2, R5). In this cycle the pair (R1, R4) is
updated with (u2−ωt2, u2+ωt2) as the computation involving (u2, t2) from the location
(k + j +m/2) lags by one cycle. Now the memory location (k + j) is updated with the
register pair (R4, R5) containing (u2 + ωt2, u1 + ωt1). Finally, in the next cycle the
memory location (k + j +m/2) is updated with (u2 − ωt2, u1 − ωt1) using the register
pair (R2, R3). The execution of the last m-loop is similar to the intermediate loops,
without any data swap between the output registers. The register pair (R2, R5) is used
for updating the memory locations. In Figure 1, the additional registers (H2, H3 and
L2) and multiplexers are used for supporting operations such as addition, point-wise
multiplication and rearrangement of polynomials. The Small-ROM block contains the
fixed values ωm, ω2n, their inverses and n−1. This ROM has depth of order log(n).

The Control-and-Address Unit consists of three counters for m, j and k in Algo-
rithm 2 and comparators to check the terminal conditions during the execution of any
loop. The read address is computed from m, j and k and then delayed using registers to
generate the write address. The control-and-address unit also generates the write enable
signal for the RAM and the control signals for the NTT-ALU.

5 Pipelining the NTT Processor

The maximum frequency of the NTT-ALU is determined by the critical path (red dashed
line in Figure 1) that passes through the modular multiplier and the adder (or sub-
tracter) circuits . To increase the operating frequency of the processor, we implement
efficient pipelines based on the following two observations.
Observation 1: During the execution of any m-loop in Algorithm 2, the computations
(multiplication, addition and subtraction) involving a coefficient pair have no data de-
pendency on other coefficient pairs. Such a data-flow structure is suitable for pipeline
processing as different computations can be pipelined without inserting bubbles in the
datapath.
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Assume that the modular multiplier has dm pipeline stages and that the output is
latched in a buffer. In the (dm + 1)th cycle after the initialisation of ω · t1, the buffer is
updated with the result ω · t1. Now we need to compute u1 +ω · t1 and u1−ω · t1 using
the adder and subtracter circuits. Hence we delay the data u1 by dm cycles so that it
appears as an input to the adder and subtracter circuits in the (dm + 1)th cycle. This
delay operation is performed with the help of a shift register L1, . . . , Ldm+1 as shown in
Figure 2.
Observation 2: Every increment of j in Algorithm 2 requires a new ω (line 17). If the
multiplier has dm pipeline stages, then the register-ω in Figure 1 is updated with the
new value of ω in the (dm + 2)th cycle. Since this new ω is used by the next butterfly
operations, the data dependency results in an interruption in the chain of butterfly
operations for dm + 1 cycles. In any m-loop, the total number of such interruption

cycles is (m/2− 1) · (dm + 1).
To reduce the number of interruption cycles, we use a small look-up table to store

a few twiddle factors. Let the look-up table (red dashed rectangle in Figure 2) have
l registers containing the twiddle factors (ω, . . . ωωl−1

m ). This look-up table is used to
provide the twiddle factors during the butterfly operations for say j = j′ to j = j′ +
l − 1. The next time j increments, new twiddle factors are required for the butterfly
operations. We multiply the look-up table with ωl

m to compute the next l twiddle factors
(ωωl

m, . . . ωω2l−1
m ). The multiplications are independent of each other and hence can be

processed in a pipeline. The butterfly operations are resumed after ωωl
m is loaded in

the look-up table. Thus using a small-look-up table of size l we reduce the number of
interruption cycles to (m2l − 1) · (dm+1). In our architecture we use l = 4; a larger value
of l will reduce the number of interruption cycles, but will cost additional registers.
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Optimal Pipeline Strategy for Speed : During the execution of any m-loop in
Algorithm 2, the number of butterfly operations is n/2. In the pipelined NTT-ALU,
the cycle requirement for the n/2 butterfly operations is slightly larger than n/2 due
to an initial overhead. The state machine jumps to the ω calculation state m

2l − 1 times
resulting in (m2l −1) ·(dm+1) interruption cycles. Hence the total number of cycles spent
in executing any m-loop can be approximated as shown below:

Cyclesm ≈
n

2
+ (

m

2l
− 1) · (dm + 1)

Let us assume that the delay of the critical path with no pipeline stages is Dcomb. When
the critical path is split in balanced-delay stages using pipelines, the resulting delay (Ds)
can be approximated as Dcomb

(dm+da)
, where dm and da are the number of pipeline stages in

the modular multiplier and the modular adder (subtracter) respectively. Since the delay
of the modular adder is small compared to the modular multiplier, we have da ≪ dm.
Now the computation time for the m-loop is approximated as

Tm ≈
Dcomb

(dm + da)

[n

2
+ (

m

2l
− 1) · (dm + 1)

]

≈ Ds
n

2
+ Cm .

Here Cm is constant (assuming da ≪ dm) for a fixed value of m. From the above equa-
tion we find that the minimum computation time can be achieved when Ds is minimum.
Hence we pipeline the datapath to achieve minimum Ds. The DSP based coefficient mul-
tiplier is optimally pipelined using the Xilinx IPCore tool, while the modular reduction
block is suitably pipelined by placing registers between the cascaded adder and sub-
tracter circuits.

6 The ring-LWE Encryption Scheme

The ring-LWE encryption scheme in [23] optimizes computation cost by keeping the fixed
polynomials in the NTT domain. The message encryption and decryption operations
require three and two NTT computations respectively. In this paper we reduce the
number of NTT operations for decryption from two to one. The proposed ring-LWE
encryption scheme is described below:

1. KeyGen(a) : Choose a polynomial r1 ∈ Rq from Xσ, choose another polynomial
r2 with binary coefficients and then compute p = r1 − a · r2 ∈ Rq. The NTT is
performed on the three polynomials a, p and r2 to generate ã, p̃ and r̃2. The public
key is (ã, p̃) and the private key is r̃2.

2. Enc(ã, p̃,m): The messagem is first encoded to m̄ ∈ Rq. Three polynomials e1, e2, e3 ∈
Rq are sampled from Xσ. The ciphertext is then computed as:

ẽ1 ← NTT (e1); ẽ2 ← NTT (e2)

(c̃1, c̃2)←
(

ã ∗ ẽ1 + ẽ2; p̃ ∗ ẽ1 +NTT (e3 + m̄)
)

3. Dec(c̃1, c̃2, r̃2) : Compute m′ as m′ = INTT (c̃1 ∗ r̃2 + c̃2) ∈ Rq and recover the
original message m from m′ using a decoder.

The scheme requires both encryption and decryption to use a common primitive root
of unity.

11
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Fig. 3. Ring-LWE Cryptoprocessor

6.1 Hardware Architecture for the Ring-LWE Encryption Scheme

Figure 3 shows a hardware architecture for the ring-LWE encryption system. The basic
building blocks used in the architecture are: the memory file, the arithmetic unit, the
discrete Gaussian sampler and the control-address generation unit. The arithmetic unit
is the NTT-ALU that we described in the previous section. Here we briefly describe the
memory file and the discrete Gaussian sampler.

The Memory File is designed to support the maximum memory requirement that
occurs during the encryption of the message. Six memory blocks M0 to M5 are available
in the memory file and are used to store ā, p̄, e1, e2, e3 and m̄ respectively. The memory
blocks have width 2⌈log q⌉ bits and depth n/2. All six memory blocks share a common
read and a write address and have a common data-input line, while their data-outputs
are selected through a multiplexer. Any of the memory blocks in the memory file can
be chosen for read and write operation. Due to the common addressing of the memory
blocks, the memory file supports one read and one write operation in every cycle.

The Discrete Gaussian Sampler is based on the compact Knuth-Yao sampler [13]
architecture proposed in [28] and have sufficiently large precision and tail-bound to
satisfy a maximum statistical distance of 2−90 to a true discrete Gaussian distribution
for both s = 11.32 and s = 12.18. Though the sampler in [28] is very compact it is
also quite slow due to sequential scanning of the probability bits. We improve the cycle
requirement of the sampler using two look-up tables. The first lookup table directly maps
eight parallel random bits into a sample value or an intermediate distance in the 8th
column of the probability matrix [28]. A successful look-up operation returns a sample
and the sign of the sample is determined by the 9th random bit. If the first look-up
operation fails, then another lookup is performed in the next 5 columns to get a sample
value or an intermediate distance in the 13th column of the probability matrix. When
the second lookup operation fails (probability<0.0016) then bit-scan based Knuth-Yao
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random walk [28] is started with the initial distance obtained from the second lookup
operation.
The Cycle Count for the encryption and decryption operations can be minimized in
the following way. During the encryption operation, first the three error polynomials e1,
e2 and e3 are generated by invoking the discrete Gaussian sampler 3n times. Next the
encoded message m̄ is added to e3 and then three consecutive forward NTT operations
are performed on e1, e2 and (e3+ m̄). Finally the ciphertext c̃1, c̃2 is obtained using two
coefficient-wise multiplications followed by two polynomial additions and two rearrange-
ment operations. The decryption operation requires one coefficient-wise multiplication,
one polynomial addition and finally one inverse NTT operation.

During the encryption operation, 3n samples are generated to construct the three
error polynomials. Our fast Knuth-Yao sampler architecture requires 805 and 1644 cycles
for the dimensions 256 and 512 respectively on average to generate the three error
polynomials. The polynomial addition and point-wise multiplication operations require
n cycles each with a small overhead. The consecutive processing of I forward NTTs
share a fixed computation cost fcfwd and require in total fcfwd + I × n

2 log(n) cycles.
Similarly I consecutive inverse NTTs are processed in fcinv+I× n

2 log(n)+I×n cycles.
One interesting point is that the fixed cost fcinv is larger than fcfwd as it includes the
computation of ωi

2n/N (Section 2.3) for i = (0 . . . n−1). This observation has been used
to optimize the overall ring-LWE based encryption scheme in Section 6. The additional
I × n cycles during the inverse NTTs are required to multiply the coefficients by the
scaling factors. The rearrangement of polynomial coefficients after an NTT operation
requires less than n cycles. From the above cycle counts for each primitive operations, we
see that the encryption and decryption operations require total fcfwd+

3
2n log(n)+10n

and fcinv +
n
2 log(n) + 3n cycles respectively along with additional overhead. Our ring-

LWE architecture has the fixed computation costs fcfwd = 667 and fcinv = 1048 cycles
for n = 256; and fcfwd = 1139 and fcinv = 1959 cycles for n = 512.

7 Experimental Results

We have implemented the proposed ring-LWE cryptosystem on the Xilinx Virtex 6
FPGA for the parameter sets (n, q, s) : (256,7681,11.32) and (512,12289,12.18). The
area and performance results are obtained from the Xilinx ISE12.2 tool after place and
route analysis and are shown in Table 1. In the table we also compare our results with
other reported hardware implementations of the ring-LWE encryption scheme.

Our implementations are both fast and small thanks to the proposed computational
optimizations and resource efficient design style. The cycle counts shown in the table do
not include the cycles for data loading or reading operations. Our Knuth-Yao samplers
have less than 2−90 statistical distances from the corresponding true discrete Gaussian
distributions and consume around 164 LUTs and have delay less than 2.5ns (with opti-
mization goal for speed). Such a small delay makes the sampler suitable for integration
in the pipelined ring-LWE processor under a single clock domain. We use nine parallel
true random bit generators [8, 6] to generate the random bits for the sampler. The set
of true random bit generators consumes 378 LUTs and 9 FFs.

The first hardware implementation of the ring-LWE encryption scheme in [9] uses
a heavily parallel architecture to minimize the number of clock cycles for the NTT
computation. Due to the many parallel computational blocks, the architecture is very
large (0.29 million LUTs and 0.14 million FFs for n = 256) and does not even fit on
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Implementation Parameters Device LUTs/FFs/ Freq Cycles/Time(µs)

Algorithm DSPs/BRAM18 (MHz) Encryption Decryption

Our RLWE (256,7681,11.32) V6LX75T 1349/860/1/2 313 6.3k/20.1 2.8k/9.1

Our RLWE (512,12289,12.18) 1536/953/1/3 278 13.3k/47.9 5.8k/21

RLWE [23] (256,7681,11.32) V6LX75T 4549/3624/1/12 262 6.8k/26.2 4.4k/16.8

RLWE (512,12289,12.18) V6LX75T 5595/4760/1/14 251 13.7k/54.8 8.8k/35.4

RLWE-Enc[24] (256,4096,8.35) S6LX9 317/238/95/1 144 136k/946 -

RLWE-Dec 112/87/32/1 189 - 66k/351

ECC[3] Binary-233 V5LX85T 18097/-/5644/0 156 1.9k/12.3 1.9k/12.3

NTRU[12] NTRU-251 XCV1600E 27292/5160/14352/0 62.3 -/1.54 -/1.41

Table 1. Performance and Comparison

the largest FPGA of the Virtex 6 family. Performance results such as cycle count and
frequency are not reported in their paper. The architecture uses a Gaussian distributed
array for sampling of the error coefficients up to a tail-bound of ±2s.

The implementation in [23] is small and fast due to its resource-efficient design
style. A high operating frequency is achieved using pipelines in the architecture. The
architecture uses a ROM that keeps all the twiddle factors required during the NTT
operation. This approach reduces the fixed computation cost (fc) but consumes block
RAM slices in FPGAs. Additionally, the parallel RAM blocks in the NTT processor
result in a larger memory requirement compared to our design. The discrete Gaussian
sampler is based on the inversion sampling method [5] and has a maximum statistical
distance of 2−22 to a true discrete Gaussian distribution. Since the inversion sampling
requires many random bits to output a sample value, an AES core is used as a pseudo-
random number generator. The AES core itself consumes an additional 803 LUTs and
341 FFs compared to our true random number generator. Another reason behind the
larger area consumption of [23] compared to our architecture is due to the fact that the
architecture supports different parameter sets at synthesis time. Our ring-LWE processor
is also designed to achieve scalability for various parameter sets. In our architecture the
control block remains the same; while only the data-width and the modular reduction
block changes for different parameter sets. Hence our architecture is also configurable
by generating the HDL codes for various parameter sets using a C program.

Although our architecture does not use a dedicated ROM for storing the twiddle fac-
tors, it still achieves slightly smaller cycle count and faster computation time compared
to [23]. The encryption scheme in [23] computes one forward and two inverse NTTs;
while our encryption scheme computes only forward NTTs and hence does not require
the 4n cycles for the scaling operation. Additionally our negative convolution method
is free from the precomputation that takes n cycles in [23]. Hence we save 5n cycles in
total during the NTT operations in an encryption operation. Since the fixed computa-
tion cost fcfwd is smaller than 5n, we gain in cycle count for the encryption operation.
The decryption operation in our case is trivially faster than [23] as only one NTT is
performed. We also reduce the area and memory requirement significantly compared to
[9, 23]. This reduction is achieved by our resource-efficient design decisions such as 1)
absence of a dedicated ROM for the twiddle factors, 2) an efficient RAM access and
storage scheme, 3) use of one modular multiplier, 4) use of a smaller and faster (low-
delay) discrete Gaussian sampler, and finally 5) the resource sharing between different
computations.
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A very recent paper [24] proposes ring-LWE encryption and decryption architectures
targeting small area at the cost of performance. The implementation uses a quadratic-
complexity multiplier instead of a complicated NTT based polynomial multiplier. Addi-
tionally the special modulus also saves some amount of area as the modular reduction is
free of cost. However if we consider a similar quadratic-complexity multiplication based
architecture in the dimension n = 512, then the cycle requirement will be nearly 40
times compared to our NTT-based ring-LWE processor. Our target was to use FPGA
resources more efficiently without affecting the performance and to achieve similar speed
as [23]. The paper [24] also designs a compact Bernoulli sampler that consumes 37 slices
for the standard deviation 3.33 and is thus smaller in area compared to the Knuth-Yao
sampler in [28]. The Bernoulli sampler requires on average 96 random bits and 144 cy-
cles to output a sample. In the contrast the Knuth-Yao sampler [28] requires on average
5 random bits and 17 cycles per sample and is thus faster than the Bernoulli sampler.
In this paper we have reduced the area consumption of the Knuth-Yao sampler [28] by
reducing the width of the ROM and the scan-register from 32 bits to 12 bits and by
simplifying the control unit. These area optimizations do not affect the cycle require-
ment of the sampler, but result in an area of only 32 slices for the overall sampler. The
area optimized Knuth-Yao sampler is both smaller and faster compared to the Bernoulli
sampler in [24].

We also compare our results with other cryptosystems such as ECC and NTRU. The
ECC processor [3] over the NIST recommended binary field GF (2233) requires 12.3 µs to
compute one scalar multiplication and is faster than our ring-LWE processor. However
the ECC processor is designed to achieve high speed and hence consumes very large
area compared to our ring-LWE processor. The NTRU scheme [12] is much faster than
our ring-LWE processor due to its less complicated arithmetic. However the parameters
chosen for the implementation in [12] have security around 64 bits [11]. Though secure
parameter sets for the NTRU based encryption have been proposed in [10], no hardware
implementation for the secure parameter sets is available in the literature.

8 Conclusion

This paper proposed several optimizations for implementing a ring-LWE based encryp-
tion system. The first set of optimizations improved the NTT by reducing the com-
putation cost of the twiddle factors, avoiding the pre-computation during the forward
NTT, and deriving an efficient memory access scheme that increases the utilization of
the arithmetic components and the memory blocks. A further optimization reduced the
number of NTTs required in the encryption scheme from five to four. The proposed op-
timizations are implemented in an efficient cryptoprocessor for the ring-LWE encryption
system that not only is three times smaller in area and memory than any other reported
implementations, but also even faster. These features make the architecture suitable for
resource constrained platforms. Furthermore, the paper investigated architectural accel-
eration to meet the high speed requirement for real-time applications and proposes an
optimal pipeline strategy that results in a very fast computation time whilst using mini-
mum area and memory. Although the paper focuses on implementation of the ring-LWE
based encryption system, we finally remark that the proposed optimization techniques
for the NTT computation are applicable for other lattice based cryptosystems where
similar polynomial multiplications are performed.
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Appendix A

Table 2 shows the memory contents during the execution of Algorithm 2 for n = 16.
The column-heading represents (m, j, k) during the iterations. The end loop in line 19
of Algorithm 2 for m = 16 performs no swap and is shown in the table using ⋆ symbol.

Appendix B

Our ring-LWE cryptoprocessor has one instruction-register, one iteration-register, one
read-memory-index-queue and one write-memory-index-queue (Figure 4). The read and
write memory-index-queues are loaded with the memory indexes. Since our ring-LWE
cryptoprocessor has six memory blocks M0 to M5, the indexes are in the range 0 to 5.
The instruction is stored in the Instruction register and the number (I) of consecutive
NTT operations is kept in the Iteration register. The following instructions are supported
by the processor.
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Address Initial (2,0,0) (2,0,6) (4,0,0) (4,0,4) (4,1,4) (8,3,0) (16,7,0)⋆

0 A1 A0 A2 A0 A2 A0 A4 A0 A4 A0 A4 A0 A8 A0 A8 A0

1 A3 A2 A3 A1 A3 A1 A5 A1 A9 A1 A9 A1

2 A5 A4 A6 A4 A6 A2 A6 A2 A6 A2 A10 A2 A10 A2

3 A7 A6 A7 A5 A7 A3 A11 A3 A11 A3

4 A9 A8 A10 A8 A12 A8 A12 A8 A12 A4 A12 A4

5 A11 A10 A11 A9 A13 A9 A13 A5 A13 A5

6 A13 A12 A14 A12 A14 A10 A14 A10 A14 A6 A14 A6

7 A15 A14 A15 A13 A15 A11 A15 A7 A15 A7

Table 2. Memory content during the steps in a 16-point NTT
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Fig. 4. Instruction Execution Hardware

1. LOAD : A memory block indexed by WtQ0 is loaded with n coefficients. Since two
coefficients are processed in a cycle, the instruction takes n/2 + ǫ cycles.

2. ENCODE-LOAD : A memory block indexed by WtQ0 is loaded with an encoded
message. The input message bits are first encoded using the encoder and then loaded
in the memory block as proper coefficient-pairs. This instruction requires n+ǫ cycles.

3. GAUSSIAN-LOAD : A memory block indexed by WtQ0 is loaded with n samples.
The cycle count for this operation depends on the standard deviation and n.

4. FNTT/INTT : Is used to perform inplace forward or inverse NTT. The number of
consecutive NTTs is stored in the iteration-register and the indexes of the memory
blocks are kept in the read-memory-index-queue

5. ADD/CMULT : Two memory blocks indexed by RdQ0 and RdQ1 are added or
coefficient-wise multiplied. The result is stored in the memory block indexed by
WtQ0. These two instructions require n+ ǫ cycles.

6. REARRANGE : Performs rearrangement of coefficient pairs in a memory block
indexed by RdQ0. This instruction requires less than n cycles.

7. READ : The contents of a memory block indexed by RdQ0 are read. This instruction
requires n/2 + ǫ cycles.
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