
Secure Floating-Point Arithmetic and Private
Satellite Collision Analysis

Liina Kamm1,2 and Jan Willemson1

1 Cybernetica AS??, Mäealuse 2/1, 12618 Tallinn, Estonia
{liina,janwil}@cyber.ee

2 University of Tartu, Institute of Computer Science, Liivi 2, 50409 Tartu, Estonia

Abstract. In this paper we show that it is possible and, indeed, feasible
to use secure multiparty computation for calculating the probability of a
collision between two satellites. For this purpose, we first describe basic
floating-point arithmetic operators (addition and multiplication) for mul-
tiparty computations. The operators are implemented on the Sharemind
secure multiparty computation engine. We discuss the implementation
details, provide methods for evaluating example elementary functions
(inverse, square root, exponentiation of e, error function). Using these
primitives, we implement a satellite conjunction analysis algorithm and
give benchmark results for the primitives as well as the conjunction anal-
ysis itself.

1 Introduction

The Earth is orbited by nearly 7,000 spacecraft3, orbital debris larger than 10
centimeters are routinely tracked and their number exceeds 21,000 4. It is under-
standable that countries do not want to reveal orbital information about their
more strategic satellites. On the other hand, satellites are a big investment and
it is in every satellite owner’s interest to keep their property intact. Currently,
approximate information about the whereabouts and orbits of satellites is avail-
able. These data can be analysed to predict collisions and hopefully react to the
more critical results.

However, in 2009, two communications satellites belonging to the US and
Russia collided in orbit [22]. Based on the publicly available orbital information,
the satellites were not supposed to come closer than half a kilometer to each
other at the time of the collision. As there are many orbital objects and satellite
?? This research was, in part, funded by the U.S. Government. The views and conclu-

sions contained in this document are those of the authors and should not be inter-
preted as representing the official policies, either expressed or implied, of the U.S.
Government. Distribution Statement A (Approved for Public Release, Distribution
Unlimited)

3 NSSDC Master Catalog, NASA. http://nssdc.gsfc.nasa.gov/nmc/, last accessed
December 16, 2013

4 Orbital Debris Program Office, NASA. http://orbitaldebris.jsc.nasa.gov/
faqs.html, last accessed December 16, 2013

operators, an all-to-all collaboration between parties is infeasible. However, pub-
lic data is precise enough to perform a pre-filter and exclude all pairs of objects
that cannot collide at least within a given period of time (e.g., 5 days). Once the
satellite pairs with a sufficiently high collision risk have been found, the satellite
operators should exchange more detailed information and determine if a collision
is imminent and decide if the trajectory of either object should be modified.

We show that secure multiparty computation (SMC) can be used as a possi-
ble solution for this problem. We propose a secure method that several satellite
operators can jointly use for determining if the orbital objects operated by them
will collide with each other. Secure multiparty computation allows satellite op-
erators to secret share data about their satellites so that no party can see the
individual values, but collision analysis can still be conducted. The solution pro-
vides cryptographic guarantees for the confidentiality of the input trajectories.

To be able to implement the collision analysis algorithm in a privacy pre-
serving way, we first provide floating point arithmetic for general multiparty
computations and present an implementation of floating point operations in an
SMC setting based on secret sharing. We build the basic arithmetic primitives
(addition and multiplication), develop example elementary functions (inverse,
square root, exponentiation of e, error function), and present benchmarks for
the implementations. As a concrete instantiation of the underlying SMC engine,
we have chosen Sharemind [7], as it provides both excellent performance and
convenient development tools [17]. However, all the algorithms developed are
applicable for general SMC platforms in which the necessary technical routines
are implemented. Using these available resources, we finally implemented one
possible collision probability computation algorithm and we give the benchmark
results for this implementation.

2 Preliminaries

2.1 Secure Multiparty Computation

In this subsection, we give an overview of secure multiparty computation.
Secure multiparty computation (SMC) with n parties P1, . . . , Pn is defined as

the computation of a function f(x1, . . . , xn) = (y1, . . . , yn) so that the result is
correct and the input values of all the parties are kept private. Every party Pi will
provide an input value xi and learn only the result value yi. For some functions
f and some input values it might be possible to deduce other parties’ inputs
from the result, but in the case of data aggregation algorithms, it is generally
not possible to learn the inputs of other parties from the result.

In this paper we concentrate on SMC methods based on secret sharing—also
called share computing techniques. Share computing uses secret sharing for the
storage of data.

Definition 1. Let s be the secret value. An algorithm S defines a k-out-of-
n threshold secret sharing scheme, if it computes S(s) = (s1, . . . , sn) and the
following conditions hold [27]:

1. Correctness: s is uniquely determined by any k shares from {s1, . . . , sn}
and there exists an algorithm S′ that efficiently computes s from these k
shares.

2. Privacy: having access to any k−1 shares from {s1, . . . , sn} gives no infor-
mation about the value of s, i.e., the probability distribution of k − 1 shares
is independent of s.

We use [[s]] to denote the shared value, i.e., the tuple (s1, . . . , sn).
The data storage process with three SMC parties is illustrated in Figure 1.

Data are collected from data donors and sent to the three SMC parties called
miners. A data donor distributes the data into n shares using secret sharing and
sends one share of each value to a single miner. This separation of nodes into
input nodes (donors) and SMC nodes (miners) is useful, as it does not force
every party in the information system to run SMC protocols. This reduces the
complexity of participating in the computation and makes the technology more
accessible.

...Donors

Miners

Shares of

inputs

Fig. 1. The input nodes connect to all SMC nodes and store their data using secret
sharing.

After the data has been stored, the SMC nodes can perform computations
on the shared data. Notice that none of the SMC nodes can reconstruct the
input values thanks to the properties of secret sharing. We need to preserve
this security guarantee during computations. This is achieved by using secure
multiparty computation protocols that specify which messages the SMC nodes
should exchange in order to compute new shares of a value that corresponds to
the result of an operation with the input data.

Figure 2 shows the overall structure of secure multiparty computations. As-
sume, that the SMC nodes have shares of input values u and v and want to
compute w = u � v for some operation �. They run the SMC protocol for op-
eration � which gives each SMC node one share of the result value w. Note

Input

SMC protocol execution
Output

u, v u1, v1 u2, v2 u3, v3

w1 w2 w3w = u� v

Fig. 2. The SMC nodes can run SMC protocols to compute useful results from secret-
shared data.

that the protocols do not leak information about the input values u and v. For
details and examples on how this can be achieved, see the classical works on
SMC [29,5,13,9].

After computations have been finished, the results are published to the client
of the computation. The SMC nodes send the shares of the result values to
the client node that reconstructs the real result from the shares, see Figure 3.
Note that it is important not to publish the results when they could still leak
information about the inputs. The algorithms running in the SMC nodes must
be audited to ensure that they do not publish private inputs. However, note that
even if some nodes publish their result shares too early, they cannot leak data
unless their number exceeds the threshold k.

Data user

Miners

Fig. 3. Results are published after the computation is complete.

Several secure multiparty computation frameworks have implementations
[21,15,28,14]. While the majority of implementations are research-oriented, it
is expected that more practical systems will be created as the technology ma-
tures.

2.2 The Sharemind Platform

Sharemind [7] is an implementation of privacy-preserving computation tech-
nology based on secure multiparty computation. In the most recent version of
Sharemind, the users can choose which underlying secure multiparty computa-
tion method suits them best. For each available method, some basic operations
(e.g addition, multiplication) have been implemented. More complex operations
(e.g division) often rely on these basic operations. If the basic operations are
universally composable, it is possible to use them to implement the complex
operations without additional effort. Knowing this, we can design protocols for
these complex operations without having a specific secure multiparty compu-
tation method in mind. Hence, the operations can be used with any kind of
underlying method as long as it supports the basic operations that we need for
the protocol. Some complex protocols, on the other hand, require us to know
what the underlying schemas are and must, therefore, be redesigned for each
underlying SMC method.

The default protocol suite in Sharemind relies on the three party additive
secret sharing scheme working on n-bit integers, n ∈ {8, 16, 32, 64}, i.e., each
value x is split into three shares x1, x2, x3 so that x1 + x2 + x3 = x mod 2n and
[[x]] = (x1, x2, x3). In this article, this is the underlying scheme we use for testing
the protocols and for benchmarking results. This is also the scheme for which
we have implemented targeted optimisations that are dependent on the format
in which the data are stored.

The default protocol suite of Sharemind has formal security proofs in the
passive security model allowing one corrupt miner. This ensures that the secu-
rity of inputs is guaranteed as long as the miner servers do not deviate from the
protocols and do not disclose the contents of their private database. The pro-
tocols are also proven to be universally composable, meaning that we can run
them sequentially or in parallel without losing the privacy guarantees. For more
details on the security model of Sharemind, please refer to the PhD thesis [6].
Note that since then, the primitive protocols of Sharemind have been updated
to be more efficient [8].

3 Collaborative satellite collision probability analysis

3.1 Motivation and state of the art

The first confirmed and well-studied collision between a satellite and another
orbital object was the collision of the French reconnaissance satellite Cerise with
a fragment of an Ariane rocket body in 1996 [24].

The first accidental collision between two intact satellites happened on Febru-
ary 10th, 2009 when the US communications satellite Iridium 33 collided with
a decommissioned Russian communications satellite Kosmos 2251 [22]. The two
orbital planes intersected at a nearly right angle, resulting in a collision veloc-
ity of more than 11 km/s. Not only did the US lose their working satellite, the
collision left two distinct debris clouds floating in Earth’s orbit. Even though
the number of tracked debris is already high, an even larger amount is expected
in case of a body-to-body hit. Preliminary assessments indicate that the orbital
lifetimes of many of the debris are likely to be tens of years, and as the debris
gradually form a shell about the Earth, further collisions with new satellites may
happen.

This event was the fourth known accidental collision between two catalogued
objects and produced more than 1000 pieces of debris [18]. The previous collisions
were between a spacecraft and a smaller piece of debris and did not produce more
than four pieces of new debris each.

The US Space Surveillance Network (part of the US Strategic Command)
is maintaining a catalogue of orbital objects, like satellites and space debris,
since the launch of early satellites like the Sputnik. Some of the information
is available on the Space-Track.org5 web page for registered users. However,
publicly available orbital data is often imprecise. For example, an analysis based
on the publicly available orbital data determined that the Iridium 33 and Kosmos
2251 would come no closer to each other than half a kilometer at the time of the
collision. This was not among the top predicted close approaches for that report
nor was it the top predicted close approach for any of the Iridium satellites for
the coming week [18].

This, however, was not a fault in the analysis software but rather the quality
of the data. As a result of how the orbital data are generated, they are of low
fidelity, and are, therefore, of limited value during analysis. If more precise data
were acquired directly from satellite operators and governments, and the collision
analysis process were agreed upon, these kinds of collisions could be avoided [19].

3.2 Underlying math

Algorithm 1 describes how to compute the probability of collision between two
spherical objects and is based on [2,3,26]. As input, the satellite operators give
the velocity vectors v ∈ R3, covariance matrices C ∈ R3×3, position vectors p ∈
R3, and radii R ∈ R of two space objects. First, on line 2, we define an orthogonal
coordinate system in terms of the velocity vectors and their difference. The
resulting j-k plane is called the conjunction plane. We consider space objects as
spheres but as all the uncertainty in the problem is restricted to the conjunction
plane, we can project this sphere onto the conjunction plane (line 4) and treat
the problem as 2-dimensional [2].

Next, we diagonalise the matrix C to choose a basis for the conjunction plane
where the basis vectors are aligned with the principal axes of the ellipse (lines 5-

5 Space-Track.org, https://www.space-track.org, last accessed December 16, 2013

ALGORITHM 1: Collision analysis using public data

Input: Velocity vectors va,vb ∈ R3, covariance matrices Ca,Cb ∈ R3×3, position
vectors pa,pb ∈ R3, radii Ra, Rb ∈ R

Output: Probability p of a collision between the two described objects a and b
1 Set vr ← vb − va

2 Set i← vr
|vr| , j ←

vb×va

|vb×va| and k← i× j

3 Set Q← [j k]

4 Set C← QT (Ca +Cb)Q
5 Set (u,v)← Eigenvectors(C)
6 Set (σ2

x, σ
2
y)← Eigenvalues(C)

7 Set σx ←
√
σ2
x and σy ←

√
σ2
y

8 Set u← u
|u| and v ← v

|v|
9 Set U← [u v]

10 Set

[
xm
ym

]
← UTQT (pb − pa)

11 Set R← Ra +Rb
12

Set p← 1

2πσxσy

∫ R

−R

∫ √R2−x2

−
√
R2−x2

exp

[
−1
2

[(
x− xm
σx

)2

+

(
y − ym
σy

)2
]]

dydx

13 return p

9). We go on to project the centre of the hardbody (pb−pa) onto the encounter
plane and then put it in the eigenvector basis (line 10) to gain the coordinates
(xm, ym). Finally, the probability of collision is computed on line 12 [3].

Vector and matrix operations To implement the analysis given in Algo-
rithm 1, we need to compute the unit vector, dot product and the cross product
for vectors of length 3. Furthermore, we need matrix multiplication for two-
dimensional matrices and, also, the computation of the eigensystem for 3 × 3
matrices. These operations require multiplication, addition, division and the
computation of square root.

Computing integrals In addition to common vector and matrix operations,
Algorithm 1 also contains the two-dimensional probability equation for the com-
bined spherical object (line 12)

p← 1

2πσxσy

∫ R

−R

∫ √R2−x2

−
√
R2−x2

exp

[
−1
2

[(
x− xm
σx

)2

+

(
y − ym
σy

)2
]]

dydx ,

where R is the combined radius of the bodies, (xm, ym) is the centre of the
hardbody in the encounter plane, and σx and σy are the lengths of the semi-
principle axes. Similarly to the article [3], we use Simpson’s one-third rule for

numerical integration of this double integral. As a result, we get the following
equation:

p ≈ ∆x

3
√
8πσx

[
f(0) + f(R) +

n∑
i=1

4f((2i− 1)∆x) +

n−1∑
i=1

2f(2i∆x)

]
,

where ∆x = R
2n and the integrand is

f(x) =

[
erf

(
ym +

√
R2 − x2√
2σy

)
+ erf

(
−ym +

√
R2 − x2√

2σy

)]
×[

exp

(−(x+ xm)2

2σ2
x

)
+ exp

(−(−x+ xm)2

2σ2
x

)]
.

For further details, see [3]. To compute the collision probability, we require mul-
tiplication, addition, division, square root, exponentiation of e and the compu-
tation of the error function.

3.3 Privacy-preserving solution using secure multiparty
computation

The locations and orbits of communications satellites are sensitive information
and governments or private companies might not be willing to reveal these data.
One possible solution is to use a trusted third party who will gather all the data
and perform the analysis. This, however, still requires the satellite owners to
reveal their information to an outside party. While this could be done within
one country, it is doubtful that different governments are willing to disclose the
orbits of their satellites to a single third party that is inevitably connected with
at least one country.

We propose using secure multiparty computation instead of a trusted third
party. Figure 4 describes the general idea of our solution. The satellite operators
choose three independent parties as the data hosts. These organisations will
either host the secure computation system themselves or outsource it to a secure
hosting provider. The hosts must be chosen such that the probability of collusion
between them is negligible. Next, the operators secret share their data and upload
the shares to the three hosts. Collision analysis is performed in collaboration
between the tree hosting parties and the satellite operators can query the results
of the analysis.

4 Secure floating point operations

4.1 Related work

Integer data domains are not well suited for scientific and engineering computa-
tions, where rational and real numbers allow achieving a much greater precision.

Host 1 Host 2

Host 3

Satellite operator

Input data and
query results

Secure computation
protocols

Satellite operator

Satellite operator

Satellite operator

Fig. 4. Privacy-preserving collision analysis using secure multiparty computation.

Catrina et al. took the first steps in adapting real number arithmetic to se-
cure multi-party computation by developing secure fixed point arithmetic and
applying it to linear programming [12,10,11]. In 2011, Franz and Katzenbeisser
proposed a solution for the implementation of floating point arithmetic for secure
signal processing [16]. However, their approach relies on two-party computations
working over garbled circuits, and they do not provide the actual implementation
nor any benchmarking results. In 2012, Aliasgari et al. designed and evaluated
floating point computation techniques and protocols for square root, logarithm
and exponentiation in a standard linear secret sharing framework [4].

4.2 Representation of Floating Point Numbers

The most widely used standard for floating point arithmetic is IEEE 754 [1]. To
reach our goal of implementing the arithmetic, we will also make use of Donald
Knuth’s more generic presentation given in Section 4.2 of the book [20], and
ideas used in FPGA implementations [23].

The majority of the available approaches split the representation of a floating
point number N into several parts.

– Radix (base) b (usually 2 or 10).
– Sign s (e.g., having the value 0 or 1 corresponding to signs plus and minus,

respectively).
– Significand f representing the significant digits of N . This number is as-

sumed to belong to a fixed interval like [1, 2) or [1/b, 1).
– Exponent e showing the number of places the radix point of the significand

needs to be shifted in order to produce the number N .

– Bias (excess) q is a fixed number used to make the representation of e non-
negative; hence one would actually use E such that e = E − q for storing
the exponent. For example, for IEEE 754 double precision arithmetic it is
defined that q = 1023, e ∈ [−1022, 1023] and E ∈ [1, 2046]. The value E = 0
is reserved for representing N = 0 and some other very small values. The
value E = 2047 is reserved for special quantities like infinity and Not a
Number (NaN) occurring as a result of illegal operations (e.g. 0/0 or

√
−1).

Using these notations, we have a generic representation for floating point
numbers

N = (−1)s · f · bE−q .

The IEEE 754 standard is clearly targeted towards explicitly available data,
where the computing entity has access to all the bits of the representation. This
allows for several optimisations, e.g., putting the sign, significand and exponent
together into one machine word, or leaving the leading digit of the significand
out of the representation, as it can be assumed to be 1 and, hence, carries
no information. Before real computations on such numbers can start, a special
procedure called unpacking is required, accompanied by its counterpart packing
to restore the representation after the computation is over.

In case of a secret-shared representation, however, access to the bits is non-
trivial and involves a lot of computation for bit extraction [7,8]. An alternative
would be storing the values shared bitwise, but this would render the underlying
processor arithmetic unusable and we would need to reimplement all the basic
arithmetic operations on these shares. At this point we do not rule this possi-
bility out completely, but this approach needs good justification before actual
implementation.

In order to save time on bit extraction in the course of packing and unpacking,
we will store the crucial parts of the floating point numbers (sign, significand
and exponent) in separately shared values s, e and f that have 8, 16 and 32 bits,
respectively. We also allow double precision floating point values, where the sign
and exponent are the same as for 32-bit floating point values, but the significand
is stored using 64 bits.

The (unsigned) significand f will represent the real number f = f/232. In
other words, the highest bit of f corresponds to 1/2, the second one to 1/4, etc. In
order to obtain real floating point behaviour, we require that the representation
is normalised, i.e., that the highest bit of f is always 1 (unless the number to be
represented is zero, in which case f = 0, s corresponds to the sign of the value,
and the biased exponent e = 0). Hence, for all non-zero floats we can assume
that f ∈ [1/2, 1). With our single precision floating point values, we achieve 32-
bit significand precision, which is somewhere in between IEEE single and double
precision. The double precision floating point values achieve 64-bit significand
precision, which is more than the IEEE double precision.

The sign s can have two values: 1 and 0 denoting plus and minus, respectively.
Note that we are using a convention opposite to the standard one to implement
specific optimisations. As we are using a 16-bit shared variable e to store the

ALGORITHM 2: Protocol for multiplying two n-bit (n ∈ {32, 64}) shared floating
point numbers [[N ′′]]← MultFloat([[N]], [[N ′]])

Input: Shared floating point values [[N]] and [[N ′]]
Output: Shared floating point value [[N ′′]] such that N ′′ = N ·N ′

1 Set [[s′′]]← Eq([[s]], [[s′]])
2 Set [[e′′]]← [[e+ e′]]
3 Cast the shared significands [[f]] and [[f ′]] to 2 · n bits and multiply to obtain [[f ′′]]2n
4 Truncate [[f ′′]]2n down to n bits
5 Compute the highest bit λ of f ′′ as [[λ]]← [[f ′′]]� (n−1) // Normalize the significand
6 if [[λ]] = 0 then
7 [[f ′′]]← [[f ′′]]� 1
8 [[e′′]]← [[e′′]]− 1

9 end
10 return [[N ′′]] = ([[s′′]], [[f ′′]], [[e′′]])

exponent, we do not need to limit the exponent to 11 bits like in the standard
representation. Instead we will use 15 bits (we do not use all 16 because we want
to keep the highest bit free) and we introduce a bias of 214 − 1.

In a typical implementation of floating point arithmetic, care is taken to deal
with exponent under- and overflows. In general, all kinds of exceptional cases
(including under- and overflows, division by zero,

√
−1) are very problematic to

handle with secret-shared computations, as issuing any kind of error message as
a part of control flow leaks information (e.g., the division by zero error reveals
the divisor).

We argue, that in many practical cases it is possible to analyse the format
of the data, based on knowledge about their contents. This allows the analysts
to know that the data fall within certain limits and construct their algorithms
accordingly. This makes the control flow of protocols independent of the inputs
and preserves privacy in all possible cases. For example, consider the scenario,
where the data is gathered as 32-bit integers and then the values are cast to
floating point numbers. Thus the exponent cannot exceed 32, which means that
we can multiply 29 of such values without overflowing the maximal possible
exponent 214. This approach to exceptions is basically the same as Strategy 3
used in the article [16].

4.3 Multiplication

The simplest protocol for floating point arithmetic is multiplication, as the un-
derlying representation of floating point numbers is multiplicative. The routine
for multiplying two secret-shared floating point numbers is presented in Algo-
rithm 2. In the following, we will use the notation [[N]] to denote the triple
([[s]], [[f]], [[e]]). Throughout this and several following protocols we will make use
of primitives described in [8]. Recall, that we do not check for any exponent
under- or overflows during multiplication.

The general idea of the algorithm is natural. The sign of the product is
determined as an equality bit of the arguments (line 1) and can be computed as

Eq([[s]], [[s′]]) = [[(1− s) · (1− s′)]] + [[s · s′]] =
1− [[s]]− [[s′]] + 2 · [[s · s′]] .

The exponent of the result is the sum of the exponents of the arguments (line 2)
and the significands are multiplied. However, if we simply multiplied the repre-
sentations of the significands, we would obtain a wrong result. For example, our
reference framework Sharemind uses n-bit integers (n ∈ {32, 64}) and arith-
metic modulo 2n. Hence, out of the 2n product bits, we obtain the lowest n after
implicit modular reduction. These, however, are the least significant bits for out
floating point significand representation, and we actually need the highest n bits
instead. Therefore, we need to cast our additively shared n-bit values temporar-
ily to 2n bits and truncate the product to n bits again. Both of these operations
are non-trivial, as we cannot ignore the overflow bits while casting up nor can
we just throw away the last bits when truncating, and these cases are rather
troublesome to handle obliviously.

For the casting on line 3, keep in mind that as Sharemind uses modular
arithmetic, then while casting the significand up, we need to account for the
overflow error generated by the increase of the modulus. For instance, if we are
dealing with 32-bit floats, the significand is 32 bits. When we cast it to 64 bits,
we might get an overflow of up to 2 bits. To deal with this problem, we check
obliviously whether our resulting 64 bit float is larger than 232 and 233 and
adjust the larger value accordingly.

Truncation on line 4 can be performed by deleting the lower n bits of each
share. This way we will lose the possible overflow that comes from adding the
lower bits. This will result in a rounding error, so we check whether the lower n
bits actually generate overflow. We do this similarly to the up-casting process—
by checking whether the sum of the three shares of the lower n bits is larger than
232 and 233. Then we truncate the product of the significands and obliviously add
0, 1 or 2 depending on the overflow we received as the result of the comparison.

For non-zero input values we have f, f ′ ∈ [1/2, 1), and hence f ′′ = f · f ′ ∈
[1/4, 1) (note that precise truncation also prevents us from falling out of this
interval). If the product is in the interval [1/4, 1/2), we need to normalise it. We
detect the need for normalisation by the highest bit of f ′′ which is 0 exactly if
f ∈ [1/4, 1/2). If so, we need to shift the significand one position left (line 7)
and reduce the exponent by 1 (line 8).

The Sharemind system does not hide the execution flow of protocols, so
whenever if-then statements have secret-shared values in the condition, an obliv-
ious choice is used in the implementation. For example, the statement on line 6
is implemented using the following oblivious choice:

[[f ′′]]← [[λ · f ′′]] + [[(1− λ) · (f ′′ � 1)]] ,

[[e′′]]← [[e′′]]− 1 + [[λ]] .

ALGORITHM 3: Protocol for obliviously choosing a between two shared values [[x]]
and [[y]] based on a shared condition [[c]]

Input: Shared values [[x]], [[y]] and shared condition [[c]]
Output: Shared value [[x]] if [[c]] is true (1) or [[y]] if [[c]] is false (0)

1 Set [[z]]← [[c · x]] + [[(1− c) · y]]
2 return z

A general way for obliviously choosing between two inputs is given in Algo-
rithm 3. In case of floating point numbers, we perform three oblivious choices
separately for each component s, f and e. This is faster and more precise than
multiplying floating point numbers with one and zero.

4.4 Addition

Because of the multiplicative representation of floating point numbers, addition
is more difficult to implement than multiplication and requires us to consider
more special cases.

The overall structure of the addition routine is presented in Algorithm 4.
In order to add two numbers, their decimal points need to be aligned. The size
of the required shift is determined by the difference of the exponents of the

inputs. We perform an oblivious switch of the inputs based on the bit [[e′]]
?
≥ [[e]],

so that in the following we can assume that [[e′]] ≥ [[e]] (line 1). Our reference
architecture Sharemind uses n-bit integers to store the significands, hence if
[[e′]] − [[e]] ≥ n, adding N is efficiently as good as adding 0 and we can just
output [[N ′]] (line 2). Unfortunately, in the implementation, we cannot halt the
computation here, as the control flow must be data-independent, but this check
is needed for the following routines to work correctly. Instead of returning, the
result of the private comparison is stored and an oblivious choice is performed
at the end of the protocol to make sure that the correct value is returned.

On line 5, we shift one of the significands to align the decimal points and
adjust the exponent. Moving on to the if-else statement on lines 6–22, the oper-
ation performed on the significands depends on the sign bits. If they are equal
(lines 6–13), we need to add the significands, and otherwise subtract them. When
adding the significands, the result may exceed 1, so we may need to shift it back
by one position. In order to achieve this functionality, we use temporary casting
to 2n bits similarly to the process in Algorithm 2 for multiplication.

If the sign bits differ, we need to subtract the smaller significand from the
larger one. As a result, we may end up with a value less than 1/2, in which case
we need to normalise the value (lines 15–22). The if-else statement on lines 17–20
can be computed as

[[f ′′]] = [[b · (f ′ − f)]] + [[(1− b) · (f − f ′)]] = 2 · [[b · (f ′ − f)]] + [[f]]− [[f ′]] .

Note that the right shift used on line 5 of Algorithm 4 must be done oblivi-
ously as the value has to be shifted by a private number of bits. Oblivious shift

ALGORITHM 4: Protocol for adding two n-bit (n ∈ {32, 64}) shared floating point
numbers [[N ′′]]← AddFloat([[N]], [[N ′]])

Input: Shared floating point values [[N]] and [[N ′]]
Output: Shared floating point value [[N ′′]] such that N ′′ = N +N ′

1 Assume [[e′ − e]] ≥ 0 (if not, switch [[N]] and [[N ′]])
2 if [[e′ − e]] ≥ n then // N ′ is so much larger that effectively N = 0
3 return [[N ′]]
4 end
5 Set [[f]]← [[f � (e′ − e)]] and [[e′′]]← [[e′]]
6 if s = s′ then
7 [[s′′]]← [[s]]
8 Cast [[f]] and [[f ′]] to 2n bits
9 [[f ′′]]← [[f]] + [[f ′]]

10 [[b]] = [[f ′′]]� n // Let the (n+ 1)st bit of [[f ′′]] be [[b]]
11 [[f ′′]]← [[f ′′ · (1− b)]] + [[f ′′]]
12 [[f ′′]]� 1, [[e′′]]← [[e′′]] + [[b]] // Correcting the overflow
13 Cast [[f ′′]] down to n bits
14 else

15 Let [[b]]← [[f ′]]
?

≥ [[f]]
16 [[s′′]]← Eq([[s′]], [[b]])
17 if [[b]] then
18 [[f ′′]]← [[f ′]]− [[f]] // This can give a non-normalized significand!
19 else
20 [[f ′′]]← [[f]]− [[f ′]] // This can give a non-normalized significand!
21 end
22 Normalize [[N ′′]] = ([[s′′]], [[f ′′]], [[e′′]])

23 end
24 return [[N ′′]]

right can be accomplished by using Algorithm 5. First, we compute all the pos-
sible n right-shifted values in parallel. Next, we extract the bits of the shift using
the BitExtr routine from [8]. Recall that p ∈ [0, n− 1], so we obtain log2(n) bits.
Next, based on these log2(n) bits we compose a characteristic vector consisting
of n shared bits, of which most have value 0 and exactly one has value 1. The
value 1 occurs in the p-th position of the vector. Finally, the final result can be
obtained by computing the dot product between the vector of shifted values and
the characteristic vector.

Normalisation of the significand and the exponent on line 22 of Algorithm 4
can be performed by using Algorithm 6. It works with a similar principle as
Algorithm 5 and performs an oblivious selection from a vector of elements con-
taining all the possible output values. The selection vector is computed using
the MSNZB (most significant non-zero bit) routine from [8] which outputs n ad-
ditively shared bits, at most one being equal to 1 in the position corresponding
to the highest non-zero bit of the input. The vectors from which we obliviously

ALGORITHM 5: Protocol for shifting a shared value [[f]] of n bits right by a shared
number of positions [[p]]
Input: Shared values [[f]] and [[p]], where 0 ≤ p ≤ n− 1
Output: Shared value [[f � p]]

1 Compute in parallel [[fi]] = [[f]]� i, i = (0, . . . , n− 1)

2 [[p]]← BitExtr[[p]]

3 Compute the characteristic bits [[pi]] (i = 0, . . . , n− 1) based on [[p]]

4 return
∑n−1
i=0 [[fi · pi]]

ALGORITHM 6: Protocol for normalizing an n-bit shared floating point value [[N]]

Input: Shared floating point value [[N]] = ([[s]], [[f]], [[e]]), where the highest non-zero
bit of f is on p-th position from the highest bit

Output: Shared floating point value [[N ′]] = ([[s]], [[f ′]], [[e′]]) such that f ′ = f � p and
e′ = e− p. If N = 0 then N ′ = 0

1 [[g]]← MSNZB([[f]])
2 Compute in parallel [[fi]] = [[f]]� i, i = (0, . . . , n− 1)

3 [[f ′]]←
∑n−1
i=0 [[fi · gn−1−i]]

4 [[e′]]←
∑n−1
i=0 [[(e− i) · gn−1−i]]

5 return [[N ′]] = ([[s]], [[f ′]], [[e′]])

select consist of all the possible shifts of the significands (lines 2 and 3) and the
corresponding adjustments of the exponents (line 4).

5 Elementary Functions

In this section, we present algorithms for four elementary functions, namely in-
version, square root, exponentiation of e and error function. All of them are built
using Taylor series expansion and we also give a version using the Chebyshev
polynomial for inversion and the exponentiation of e. Polynomial evaluations are
sufficiently robust for our purposes. They allow us to compute the functions us-
ing only additions and multiplications, and do so in a data-independent manner.
Taylor series expansion also gives us a convenient way to have several trade-offs
between speed and precision.

5.1 Inversion

We implement division by first taking the inverse of the divisor and then mul-
tiplying the result with the dividend. We compute the inverse by using Taylor
series:

1

x
=

∞∑
n=0

(1− x)n .

ALGORITHM 7: Protocol for taking the inverse of an n-bit shared floating point
value [[N]] with precision p using Taylor series
Input: Shared floating point value [[N]] = ([[s]], [[f]], [[e]])
Output: Shared floating point value [[N ′]] such that [[N ′]] = 1

[[N]]

1 Let [[S]] = ([[sS]], [[fS]], [[eS]]) and [[S′]] = ([[sS′]], [[fS′]], [[eS′]]) be shared floats
2 Set [[sS]]← 1, [[fS]]← [[f]] and [[eS]]← 0
3 Set [[S]]← 1− [[S]]
4 Evaluate the Taylor series [[S′]]←

∑p
n=0 [[S]]

n

5 Set [[e′]]← [[eS′]]− [[e]]
6 return [[N ′]] = ([[s]], [[fS]], [[e

′]])

Algorithm 7 describes how to take the inverse of a shared n-bit float using
Taylor series. As the inverse of a value N converges best in the interval (0, 1],
we separate the significand f ∈ [12 , 1) from the given floating point number and
use the following equation:

1

f · 2e =
1

f
· 2−e . (1)

To achieve this, we compose a new floating point value [[S]] based on the sig-
nificand [[f]] on line 2. Note that we make this new float always positive for
optimisation purposes and, at the end of the protocol, we reintroduce the sign
s from the input float [[N]] (line 6). When we have evaluated the Taylor series
for inverse, we correct the exponent based on equality (1) by subtracting the
previous exponent from the exponent of the sum [[S′]] (line 5).

As Sharemind works fastest with parallelised computations, we do as much
of the Taylor series evaluation in parallel as possible. This parallelisation is
described in Algorithm 8. Variations of this algorithm can be adopted for the
specific polynomial evaluations where needed, but this algorithm gives a general
idea of how the process works. We use Algorithm 8 to parallelise polynomial
evaluation in all elementary functions we implement.

We need to compute powers of [[x]] from [[x1]] to [[xp]]. To do this in parallel,
we fill vector [[u]] with all the powers we have already computed [[x1]], . . . , [[xh]]
and the second vector [[v]] with the highest power of [[x]] we have computed [[xh]].
When we multiply these vectors element-wise, we get powers of [[x]] from [[xh+1]]
to [[x2h]] (lines 6 to 16). If the given precision p is not a power of 2, however, we
also need to do one extra parallel multiplication to get the rest of the powers
from [[xh]] to [[xp]]. This is done on lines 18 to 29. If the precision is less than 1.5
times larger than the highest power, it is not necessary to add elements to the
vector [[u]] (checked on line 20).

The if-else statements in Algorithm 8 are based on public values, so there is
no need to use oblivious choice to hide which branch is taken. The summation
of vector elements on line 35 is done in parallel as much as possible.

ALGORITHM 8: Algorithm for parallel polynomial evaluation
Input: Shared floating point value [[x]], precision p, coefficients for the polynomial

a0, . . . , ap
Output: Shared floating point value [[x′]] such that [[x′]] =

∑p
n=0 an · x

n

1 Let [[y]] = ([[y0]], . . . , [[yp]]) // For storing the powers of x
2 Set [[y0]]← 1, [[y1]]← [[x]] and [[y2]]← [[x2]]
3 Let [[u]], [[v]] and [[w]] be shared vectors of size 1
4 Set [[u0]]← [[x]], and [[w0]]← [[x2]]
5 Let h = 2 denote the highest power of x we have computed thus far
6 while 2h ≤ p do
7 Resize [[u]], [[v]], [[w]] to size h
8 for i = h/2 + 1 to h do
9 Set [[ui−1]]← [[xi]]

10 end
11 Fill [[v]] with [[xh]]

12 Multiply in parallel [[wi]]← [[ui · vi]], i = (0, . . . , h− 1) // To get [[xh+1]], . . . , [[x2h]]
13 for i = h+ 1 to 2h do
14 Set [[yi]]← [[xi]]
15 end
16 Set h← 2h

17 end
18 if 2h > p then
19 Resize [[u]] and [[v]] to size p− h
20 if (p > h+ h/2) then
21 for i = h/2 + 1 to p do
22 Set [[ui−1]]← [[x]]i

23 end
24 end
25 Fill [[v]] with [[xh]]
26 Resize [[w]] to size p− h
27 Multiply in parallel [[wi]]← [[ui · vi]], i = (0, . . . , p− h− 1) // To get

[[xh+1]], . . . , [[xp]]
28 for i = h+ 1 to p do
29 Set [[yi]]← [[xi]]
30 end
31 end
32 for i = 0 to p do
33 Set [[yi]]← [[yi · ai]] // Multiplication with the given constants
34 end
35 Set [[x′]] as the sum of the elements of [[y]]
36 return [[x′]]

As the Taylor series evaluation requires at least 32 summation terms to
achieve the precision we need, we also offer an alternative algorithm for comput-
ing inverse using the corresponding approximated Chebyshev polynomial [25].

ALGORITHM 9: Protocol for taking the inverse of an n-bit shared floating point
value [[N]] using the Chebyshev polynomial
Input: Shared floating point value [[N]] = ([[s]], [[f]], [[e]])
Output: Shared floating point value [[N ′]] such that [[N ′]] = 1

[[N]]

1 Let [[S]] and [[S′]] be shared floats ([[sS]], [[fS]], [[eS]]) and ([[sS′]], [[fS′]], [[eS′]]),
respectively

2 Set [[sS]]← 1, [[fS]]← [[f]] and [[eS]]← 0
3 Set [[S′]]← −12.9803173971914[[S7]] + 77.6035205859554[[S6]]−

201.355944395853[[S5]] + 296.100609596203[[S4]]− 269.870620651938[[S3]] +
156.083648732173[[S2]]− 55.9375000000093[[S]] + 11.3566017177974

4 Set [[e′]]← [[eS′]]− [[e]]
5 return [[N ′]] = ([[s]], [[fS]], [[e

′]])

Algorithm 9 is similar to Algoritm 7, but instead of evaluating Taylor series, we
compute the Chebyshev polynomial using the parallelisation from Algorithm 8.

5.2 Square Root

Square root is the most complex of the elementary functions we implemented.
The Taylor series is given by the equation:

√
x =

∞∑
n=1

(−1)n−1(2n− 2)!

(1− 2n− 2)((n− 1)!)24n−1
· (x− 1)n−1 .

The convergence interval of the series for square root is (0, 2). Thus, we will
compute the square root of the significand and multiply it with a correcting
exponential term: √

f · 2e =
√
f · 2e/2 . (2)

Algorithm 10 shows how square root is computed based on equation (2). We
start by creating a float containing the absolute value of the significand [[f]] of
the original value N and go on by evaluating the Taylor series for [[f]]−1. Line 5
marks the beginning of the computation of the exponent. We first divide the
exponent by 2 by shifting the exponent right once and adding it to the exponent
[[eS]] we received as a result of the Taylor series evaluation. On line 7 we find
the lowest bit of the exponent to determine whether it is even or odd. Now,
we still have to compensate for the bit we lost during division (lines 8–14). If
the exponent is even, we do nothing, otherwise, we multiply the intermediate
result [[N ′]] by

√
2 or

√
1
2 depending on the sign of the exponent. The if-then

statements on lines 8–14 and 9–13 need to be performed obliviously, as both [[b]]
and [[e]] are secret shared values.

ALGORITHM 10: Protocol for finding the square root of a floating point number
[[N ′]]←

√
[[|N |]] with precision p

Input: Shared floating point value [[N]]
Output: Shared floating point value [[N ′]] such that N ′ =

√
|N | with precision p

1 Let [[f]] be the significand of [[|N |]]
2 Set [[x]]← [[f]]− 1
3 Let [[S]] be a shared float ([[sS]], [[fS]], [[eS]])

4 Evaluate the Taylor series [[S]]←
∑p
n=1

(−1)n−1(2n−2)!

(1−2n−2)((n−1)!)24n−1 · [[xn−1]]

5 Set [[e′]]← [[eS]] + ([[e]]� 1) // Divide [[e]] by 2
6 Set [[N ′]]← (1, [[fS]], [[e

′]])
7 Let [[b]] be the lowest bit of [[e]] // For determining whether [[e]] is odd or even
8 if [[b]] = 1 then
9 if [[e]] ≥ 0 then

10 Set [[N ′]]← [[N ′]] ·
√
2

11 else

12 Set [[N ′]]← [[N ′]] ·
√

1
2

13 end
14 end
15 return [[N ′]]

ALGORITHM 11: Protocol for raising e to the power of float value [[N]] with preci-
sion p using Taylor series
Input: Shared floating point value [[N]] = ([[s]], [[f]], [[e]])
Output: Shared floating point value [[N ′]] such that [[N ′]] = e[[N]] with precision p

1 Evaluate the Taylor series [[N ′]]←
∑p
n=0

1
n!
· [[Nn]]

2 return [[N ′]] = ([[s]], [[fS]], [[e
′]])

5.3 Exponentiation of e

Algorithm 11 describes the exponentiation of e using the Taylor series:

ex =

∞∑
n=0

1

n!
· xn .

Unfortunately, the larger [[N]] is, the more we have to increase precision p
to keep the result of the Taylor series evaluation from deviating from the real
result too much. This, however, increases the working time of the algorithm
significantly. To solve this problem, we implemented another algorithm using
the separation of the integer and fractional parts of the power [[N]] and using the
Chebyshev polynomial to approximate the result [25]. This solution is described
in Algorithm 12.

In this case, we exponentiate e using the knowledge that ex = (2log2 e)x =
2(log2 e)·x. Knowing this, we can first compute y = (log2 e) · x ≈ 1.44269504 · x

ALGORITHM 12: Protocol for exponentiating e to the power of an n-bit shared
floating point value [[N]] using the separation of integer and fractional parts of [[N]]

Input: Shared floating point value [[N]] = ([[s]], [[f]], [[e]])
Output: Shared floating point value [[N ′]] = e[[N]]

1 Set [[y]]← 1.44269504 · [[N]] // Change bases
2 Denote the integer part of [[y]] by [[[y]]] and the fractional part by [[{y}]]
3 Set [[[y]]]← [[(−1)1−s · ((f � (n− e)) + (1− s))]] // Find the integer part
4 Set [[{y}]]← [[y]]− [[[y]]] // Find the fractional part (always positive)
5 Let 2[[[y]]] = ([[s′]], [[f ′]], [[e′]])
6 Set [[s′]]← 1, [[f ′]]← 100 . . . 0, and [[e′]]← [[[y]]] + 1

7 Set 2[[{y}]] ← 0.0136839828938349[[{y}4]] + 0.0517177354601992[[{y}3]] +
0.241621322662927[[{y}2]] + 0.692969550931914[[{y}]] + 1.00000359714456

8 return [[N ′]] = 2[[[y]]] · 2[[{y}]]

(line 1) and then 2y. Notice, that 2y = 2[y]+{y} = 2[y] · 2{y}, where [y] denotes
the integer part and {y} the fractional part of y.

First we need to separate the integer part from the shared value [[y]] =
([[s]], [[f]], [[e]]). Let n be the number of bits of f . In this case, [[[|y|]]] = [[f � (n−e)]]
(line 3) is true if and only if [[e]] ≤ n. On the other hand, if [[e]] > n, then
[[y]] ≥ 2[[e]]−1 > 2n−1 would also hold and we would be trying to compute a value
that is not smaller than 22

n−1

. Hence, we consider the requirement [[e]] ≤ n to
be reasonable.

Note, however, that if we want to use the Chebyshev polynomial to compute
2{y}, we need to use two different polynomials for the positive and negative case.
We would like to avoid this if possible for optimisation, hence, we want to keep
{y} always positive. This is easily done if y is positive, but causes problems if y
is negative. So if y is negative and we want to compute the integer part of y, we
compute it in the normal way and add 1 (line 3) making its absolute value larger
than that of y. Now, when we subtract the gained integer to gain the fraction
on line 4, we always get a positive value. This allows us to only evaluate one
Chebyshev polynomial, thus giving us a slight performance improvement.

We construct the floating point value 2[[[y]]] by setting the corresponding sig-
nificand to be 100 . . . 0 and the exponent to be [[[y]]] + 1. As [[{y}]] ∈ [0, 1] holds
for the fractional part of y and we have made sure that the fraction is always
positive, we can compute 2[[{y}]] using the Chebyshev polynomial on line 7. In
this domain, these polynomials will give a result that is accurate to the fifth
decimal place. Finally, we multiply 2[[[y]]] · 2[[{y}]] to gain the result.

5.4 Error function

We implemented the error function by using the following Taylor series:

erf(x) =
2√
π

∞∑
n=0

(−1)n
n!(2n+ 1)

· x2n+1 .

ALGORITHM 13: Protocol for computing the error function for shared floating
point value [[N]] with precision p
Input: Shared floating point value [[N]] = ([[s]], [[f]], [[e]])
Output: Shared floating point value [[N ′]] such that [[N ′]] = erf([[N]]) with precision p

1 if [[e]] ≥ 3 then
2 Set N ′ ← (−1)1−[[s]]

3 else
4 Evaluate the Taylor series [[N ′]]← 2√

π

∑p
n=0

(−1)n

n!(2n+1)
· [[N2n+1]]

5 end
6 return [[N ′]]

Algorithm 13 describes how to compute the error function using Taylor series.
Note, that the Taylor series for the error function works on odd powers of x.

To use the parallelisation trick from Algorithm 8, we first compute y = x2 and
we get the following equation:

erf(x) =
2√
π

∞∑
n=0

(−1)n
n!(2n+ 1)

· x2n+1 =
2√
π
· x
∞∑

n=0

(−1)n
n!(2n+ 1)

· x2n

=
2√
π
· x
∞∑

n=0

(−1)n
n!(2n+ 1)

· yn .

From this, it is easy to see that we can evaluate the Taylor series for y and then
multiply the result by x.

Note that, in addition, we check whether the exponent is larger or smaller
than 3, which shows us whether x ∈ [−2, 2] and based on the private comparison,
we obliviously set the result as ±1 according to the original sign [[s]] (line 2). We
perform this approximation because at larger values, more cycles are needed for
a sufficiently accurate result.

6 Performance of floating point operations

6.1 Benchmark results

We implemented the secure floating point operations described in this paper
on the Sharemind 3 secure computation system. We built the implementation
using the three-party protocol suite already implemented in the Sharemind
system. Several low-level protocols were developed and optimised to simplify
the use and conversion of shared values with different bit sizes. Secure floating
point operations are programmed as compositions of low-level integer protocols.

To measure the performance of the floating point operations we deployed
the developed software on three servers connected with fast network connec-
tions. More specifically, each of the servers used contains two Intel X5670 2.93
GHz CPUs with 6 cores and 48 GB of memory. The network connections are

point-to-point 1 Gb/s connections. We note that during the experiments, peak
resource usage for each machine did not exceed 2 cores and 1 GB of RAM.
The peak network usage varied during the experiments, but did not exceed 50
Mb/s. Therefore, we believe that the performance can be improved with further
optimisations.

Integer operations on Sharemind perform more efficiently on multiple in-
puts [8]. Therefore, we also implemented floating point operations as vector
operations. Unary operations take a single input vector and binary operations
take two input vectors of an equal size. Both kinds of operations produce a vec-
tor result. We performed the benchmarks on vectors of various sizes to estimate
how much the size of the vector affects the processing efficiency.

For each operation and input size, we performed 10 iterations of the operation
and computed the average. The only exceptions to this rule were operations
based on Taylor series or Chebyshev polynomials running on the largest input
vector. Their running time was extensively long so we performed only a few tests
for each of them. In the presentation, such results are marked with an asterisk.

Tables 1 and 2 present the benchmarking results for floating point numbers
with 32-bit significands and 64-bit significands, respectively. We see that with
smaller input sizes, there is no difference in the running time of single and dou-
ble precision operations. However, for larger input vector sizes, the additional
communication starts to slow down the computation as the network channel gets
saturated.

Addition and multiplication are the primitive operations with addition being
about five times slower than multiplication. With single precision floating point
numbers, both can achieve the speed of a thousand operations per second if the
input vectors are sufficiently large. Based on the multiplication primitive we also
implemented multiplication and division by a public constant. For multiplication,
there was no gain in efficiency, because we currently simply classify the public
factor and use the private multiplication protocol.

However, for division by a public constant we can have serious performance
gains as we just invert the divisor publicly and then perform a private multi-
plication. Furthermore, as our secret floating point representation is based on
powers of two, we were able to make a really efficient protocol for multiplying
and dividing with public powers of two by simply modifying the exponent. As
this is a local operation, it requires no communication, and is, therefore, very
fast.

Although we isolated the network during benchmarking, there was enough
fluctuation caused by the flow control to slightly vary the speeds of similar oper-
ations. Although private multiplication, multiplication and division by constant
are performed using the same protocol, their speeds vary due to effects caused
by networking.

The unary operations are implemented using either Taylor series or Cheby-
shev polynomials. We benchmarked both cases where they were available. In all
such cases, Chebyshev polynomials provide better performance, because smaller

Table 1. Performance of single precision floating point operations

Input size in elements
1 10 100 1000 10000

Private x
Add 0.73 ops 7.3 ops 69 ops 540 ops 610 ops

Private y
Multiply 2.3 ops 23 ops 225 ops 1780 ops 6413 ops
Divide (TS) 0.08 ops 0.81 ops 6.8 ops 25.5 ops 38 ops∗

Divide (CP) 0.16 ops 1.6 ops 14 ops 59 ops 79 ops∗

Private x
Multiply 2.3 ops 23 ops 220 ops 1736 ops 6321 ops

Public y
Multiply by
2k

5.9 · 104 ops 6.1 · 105 ops 4.2 · 106 ops 1.1 · 107 ops 1.4 · 107 ops

Divide 2.3 ops 23 ops 221 ops 1727 ops 6313 ops
Divide by 2k 6.4 · 104 ops 6.1 · 105 ops 4.1 · 106 ops 1.2 · 107 ops 1.4 · 107 ops

Private x

Find ex (TS) 0.09 ops 0.9 ops 7.3 ops 23 ops 30 ops∗

Find ex (CP) 0.12 ops 1.2 ops 11 ops 71 ops 114 ops
Invert (TS) 0.09 ops 0.84 ops 6.8 ops 14.7 ops 35.7 ops∗

Invert (CP) 0.17 ops 1.7 ops 15.3 ops 55.2 ops 66.4 ops
Square root 0.09 ops 0.85 ops 7 ops 24 ops 32 ops∗

Error func-
tion

0.1 ops 0.97 ops 8.4 ops 30 ops 39 ops

Notes: All performance values are in operations per second (ops). Operations marked
with TS and CP use Taylor series or Chebyshev polynomials, respectively. For the
exponent function, square root, inversion and division, the number of elements in the
Taylor series is 32. For the error function, 16 elements are computed.

Table 2. Performance of double precision floating point operations

Input size in elements
1 10 100 1000 10000

Private x
Add 0.68 ops 6.8 ops 60 ops 208 ops 244 ops

Private y
Multiply 2.1 ops 21 ops 195 ops 1106 ops 2858 ops
Divide (TS) 0.08 ops 0.7 ops 3 ops 5.2 ops 12.4 ops∗

Divide (CP) 0.15 ops 1.5 ops 12 ops 23 ops 52 ops∗

Private x
Multiply 2.1 ops 21 ops 193 ops 1263 ops 2667 ops

Public y
Multiply by
2k

3.3 · 104 ops 3.2 · 105 ops 2.1 · 106 ops 8.5 · 106 ops 1.3 · 107 ops

Divide 2.1 ops 21 ops 194 ops 1223 ops 2573 ops
Divide by 2k 6.4 · 104 ops 6.1 · 105 ops 4 · 106 ops 1 · 107 ops 1.2 · 107 ops

Private x

Find ex (TS) 0.09 ops 0.8 ops 3.1 ops 4.5 ops 6.2 ops∗

Find ex (CP) 0.11 ops 1.1 ops 9.7 ops 42 ops 50 ops
Invert (TS) 0.08 ops 0.75 ops 3.6 ops 4.8 ops 10.7 ops∗

Invert (CP) 0.16 ops 1.5 ops 11.1 ops 29.5 ops 47.2 ops
Square root 0.08 ops 0.76 ops 4.6 ops 9.7 ops 10.4 ops∗

Error func-
tion

0.09 ops 0.89 ops 5.8 ops 16 ops 21 ops∗

Notes: All performance values are in operations per second (ops). Operations marked
with TS and CP use Taylor series or Chebyshev polynomials, respectively. For the
exponent function, square root, inversion and division, the number of elements in the
Taylor series is 32. For the error function, 16 elements are computed.

polynomials are evaluated to compute the function. In general, all these opera-
tions have similar performance.

As mentioned in Subsection 5.1, division between two private floating point
values is implemented by inverting the second parameter and performing a pri-
vate multiplication. As inversion is significantly slower than multiplication, the
running time of division is mostly dictated by the running time of inversion.

6.2 Difference in the precision of Taylor series and Chebyshev
polynomials

0.5 0.6 0.7 0.8 0.9 1.0

-4
e-
06

0e
+0
0

4e
-0
6

(a) Inverse

x

ab
so

lu
te

 e
rr

or
 s

iz
e

Taylor series (32 terms)
Chebyshev polynomial (8 terms)

0 5 10 15

-4
e-
06

0e
+0
0

4e
-0
6

(b) Exponentiation

x

re
la

tiv
e

er
ro

r s
iz

e

Taylor series (32 terms)
Chebyshev polynomial (5 terms)

Fig. 5. Comparison of the precision of the implemented Taylor series and Chebyshev
polynomials.

In Section 5, we give two algorithms for computing inverse and powers of e
based on Taylor series and Chebyshev polynomials. It is easy to see from Tables 1
and 2 that using the Chebyshev polynomial versions to approximate the results
gives us better performance.

Figure 5 shows the difference in the precision of these two polynomials.
Panel (a) describes the absolute error that computing the inverse using both
algorithms produces in the interval [1/2, 1]. As can be seen from the figure, the
absolute error produced by the evaluation of 32 terms of the Taylor series is far
less than 10−6. The maximum error produced by the evaluation of 8 terms of the
Chebyshev polynomial is not larger than 2.1 · 10−6. The algorithm separates the
exponent, then works on the significand, and, finally, subtracts the exponent.
This means that the absolute error of the Chebyshev polynomial will grow as
the value being inverted grows. The error of the Taylor series evaluation is so
small that it will start showing itself significantly later.

Panel (b) shows similar reasoning for exponentiation with the different poly-
nomials. As 32 elements of Taylor series for exponentiation will not be enough
to produce a precise result after x = 13 and will produce an absolute error of

more than 2 · 106 at x = 20, we give this plot in the interval [0, 15] and show the
relative error instead of the absolute error. As can be seen from the figure, the
relative error produced by evaluation of 5 terms of the Chebyshev polynomial
always stays between −2.9 · 10−6 and 3.4 · 10−6. Taylor series evaluation is more
precise until x = 13 after which the relative error increases. This point can be
pushed further by adding more terms to the Taylor series evaluation at the cost
of performance.

As expected, Figure 5 indicates that using the Taylor series evaluation gives
us a more precise result but, in larger algorithms, it can be a bottleneck. We
propose that the choice of the algorithm be done based on the requirements of the
problem being solved—if precision is important, Taylor series evaluation should
be used, if speed is important, Chebyshev polynomials are the wiser choice. If
the problem requires both speed and precision, it is possible to add terms to
the Chebyshev polynomial to make it more precise. In addition, as the error in
exponentiation using Taylor series evaluation becomes significant when x grows,
Chebyshev polynomials should be used if it is expected that x will exceed 10.
Another option is to raise the number of terms in Taylor series but this will, in
turn, increase the running time of the algorithm.

6.3 Benefits of parallelisation

The benchmarking results confirm that our implementation of secure floating
point operations is more efficient on many simultaneous inputs. The amortised
cost of processing a single input or a pair of inputs is reduced as the input size
grows. We performed an additional round of experiments to measure the extent
of this behaviour. We ran the addition and multiplication operations with a
wider range of steps to determine the optimal number of parallel additions and
multiplications. We fitted the results with two linear regressions and plotted
the result. The resulting plot for single-precision floating point operations is in
Figure 6. The corresponding plot for double-precision numbers is in Figure 7.

Note that the running time of the secure computation protocols grows very
little until a certain point, when it starts growing nearly linearly in the size of
the inputs. At this point, the secure computation protocols saturate the network
link and are working at their maximum efficiency. Addition is a more complex
operation with more communication and therefore we can perform less additions
before the network link becomes saturated. Addition takes even more commu-
nication with double-precision numbers so it is predictable that the saturation
point occurs earlier than for single-precision values. Multiplication uses signifi-
cantly less network communication, so its behaviour is roughly similar with both
single- and double-precision numbers.

Based on these observations, we decided to use vector operations in our col-
lision probability computation for both primitives and the main algorithm. To
validate this direction, we measured the performance of the matrix product func-
tion with several sequential executions versus one or more parallel executions.
In the sequential case, a number of matrix multiplications were performed one
after the other. In the parallel case, they were performed simultaneously, using

Number of parallel operations

R
un

ni
ng

−
tim

e
in

 m
ill

is
ec

on
ds

103

104

105

● ● ● ● ● ● ● ● ●●● ● ● ● ● ● ● ●●●

●

●
●

● ● ● ●
●

●

● ●

●

●

●
●

●
●

●

100 101 102 103 104 105

Single precision
● Multiplication

Addition

Fig. 6. The efficiency of single-precision addition and multiplication in relation to input
size.

Number of parallel operations

R
un

ni
ng

−
tim

e
in

 m
ill

is
ec

on
ds

103

104

105

● ● ● ● ● ● ● ● ●●●
● ● ● ● ● ● ●●●

●

●
●

●
●

●
●

●●

●

●

●
●

● ● ●
●

●

100 101 102 103 104 105

Double precision
● Multiplication

Addition

Fig. 7. The efficiency of double-precision addition and multiplication in relation to
input size.

the efficiency of vector operations as much as possible. The results are given in
Table 3.

Table 3. Sequential and parallel performance of the matrix product function

Number of matrix multiplications
1 10 100 1000

3× 3 Sequential 3.2 sec 31.9 sec 318.5 sec 3212.3 sec
matrix Parallel 3.2 sec 3.3 sec 5.2 sec 45.7 sec
5× 5 Sequential 4.6 sec 46.3 sec 466 sec 4641.4 sec
matrix Parallel 4.6 sec 5.1 sec 20.4 sec 91.9 sec
10× 10 Sequential 6.4 sec 65.9 sec 674.6 sec 6624.2 sec
matrix Parallel 6.6 sec 15.7 sec 152 sec 1189.2 sec
Notes: Matrix multiplication was performed using single-precision operations.
For each matrix size, 10 iterations were performed and the average of the results
was computed. Durations are given in seconds.

We see that, for a single input, there is no significant difference between the
running time of the sequential and parallel version. This is logical, as there is
nothing to vectorise. However, as the number of multiplications grows, paral-
lel execution becomes dramatically more efficient. However, when the network
saturates, the performance of the parallel case also become more linear in the
number of inputs, as illustrated by the 10× 10 case. Even then, the parallel case
is much faster than the sequential case. This justifies our decision to use vec-
torisation to the highest possible degree. We note that this increase in efficiency
comes at the cost of needing more memory. However, we can control the size of
our inputs and balance vectorisation and memory use.

7 Implementation of collision analysis

7.1 Reusable components

We implemented the collision analysis described in Algorithm 1 for Sharemind
in its language SecreC. This allows us to easily do parallel operations on vectors
as it has syntax for element-wise operations on vectors. We first implemented
the algorithm and its component methods for one satellite pair using as much
parallelisation as possible and then went on to parallelise the solution further
for n satellite pairs.

One of the most important values of our code is its reusability. The vector and
matrix operations we have implemented can later be used in other algorithms
similarly to the modular design of software solutions that is the norm in the
industry. This makes it convenient to implement other algorithms that make use

of vector and matrix operations. In addition, the operations have already been
parallelised so future developers will not have to put time into this step of the
coding process in SecreC.

7.2 Vector and matrix operations

We implemented and parallelised a number of vector and matrix operations:

– Vector length, unit vector and dot product for vectors of any size;
– Cross product for vectors of size 3;
– Matrix product for two-dimensional matrices; and
– Eigensystem computation for 3× 3 matrices.

We implemented simple and parallel methods for computing the unit vector
and dot product for vectors of any length. We also implemented the cross product
for vectors of length 3 as we are working in three-dimensional space.

Similarly, we implemented simple and parallel methods for matrix multipli-
cation for two-dimensional matrices. We also provide a slight optimisation for
the case of diagonal matrices as the covariance matrices we work with are diag-
onal. This does not provide a very large speedup in the case of one satellite pair
but if many pairs are analysed in parallel, then the benefit is worth the imple-
mentation of such a conditional method. We also implemented the eigensystem
computation for 3× 3 matrices.

template <domain D : additive3pp>
D float64 dotProduct (D float64[[1]] x, D float64[[1]] y){

D float64[[1]] product = x * y;
return sum (product);

}

Fig. 8. Simple code for dot product

Dot product Let us take a closer look at the code of the dot product. We
use this example to show the difference between the normal and the parallelised
versions of the algorithm. Figure 8 shows the code for a simple dot product of two
vectors [[x]] and [[y]]. Firstly, the vectors [[x]] and [[y]] are multiplied element-wise
and then the elements of the resulting vector [[product]] are summed together.

The method from Figure 9 gets as input two matrices [[x]] and [[y]]. We assume
that these matrices are vectors that contain the data of several vectors and we
assume that they have the same dimensions. The function shape returns a vector
the length of which is determined by the dimension of the array it receives as
input. In our case the variable xShape is a vector of length 2. Let the dimensions
of [[x]] and [[y]] be m and n, then xShape = (m,n), where n is the number of

template <domain D : additive3pp>
D float64[[1]] dotProduct (D float64[[2]] x, D float64[[2]] y){

uint[[1]] xShape = shape (x);
D float64[[2]] product = x * y;

D float64[[1]] result (xShape[0]);
D float64[[1]] productVector = reshape (product, size (product));
result = sum (productVector, xShape[0]);
return result;

}

Fig. 9. Parallelised code for dot product

elements in the vectors and m is the number of vectors. As the result, we expect
a vector of m dot products. It is easy to see, that the dimensions of the input
and output values of the parallel version are higher by one as compared to the
simple version.

We start the parallel dot product computation similarly to the simple version—
we multiply the matrices together element-wise. The SecreC language allows
us to do this easily by using the multiplication sign on two arrays of the same
dimensions. As the result, we receive the matrix [[product]] that has the same di-
mensions as the input matrices. To use the function sum that allows us to sum
together vector elements, we first reshape the matrix [[product]] to a vector.
This is another array manipulation method which SecreC provides us. Finally,
we use the method that lets us sum vector elements together. However, in the
parallel case, we use a different version of the method sum that lets us sum
elements together by groups, giving us xShape[0] = m sums as a result. The
second parameter of the method sum must be a factor of the size of the vector,
the elements of which are being summed.

The benefit in using the parallel version of the method is in the multiplication
and summing sub methods. If we computed the dot product for each satellite pair
as a cycle, we would get the products within one pair [[x1 ·y1]], [[x2 ·y2]], [[x3 ·y3]]
in parallel but would not be able to use the parallelisation for computing many
pairs at once. As the multiplication and summation of floating point values is
quite time consuming, parallelisation is essential.

7.3 Benchmark results

Finally, we measured the performance of the full privacy-preserving collision
analysis implementation. We performed two kinds of experiments. First, we mea-
sured the running time of the algorithm on various input sizes to know if it is
feasible in practice and if there are efficiency gains in evaluating many satellite
pairs in parallel. Second, we profiled the execution of a single instance of collision
analysis to study, what the bottleneck operations in its execution are.

The running time measurements are given in Table 4. We differentiated the
results based on the precision of the floating point operations and the kind of
approximation used for complex operations.

Table 4. Collision analysis performance

Number of satellite pairs
1 2 4 8 16

Single TS 258 (258) sec 350 (175) sec 488 (122) sec 792 (99) sec 1348 (84) sec
precision CP 204 (204) sec 255 (128) sec 355 (89) sec 557 (70) sec 967 (60) sec
Double TS 337 (337) sec 447 (223) sec 724 (181) sec 1127 (141) sec 2064 (129) sec
precision CP 246 (246) sec 340 (170) sec 450 (113) sec 724 (91) sec 1272 (80) sec
Notes: Three iterations were performed for each experiment. First, we give the total
running time and then the running time per satellite pair in parentheses. We computed
40 iterations in the integral approximation. TS means that only Taylor series were used
for elementary functions. CP means that operations based on Chebyshev polynomials
were used where available.

The running time for a single collision probability computation is 4-5 minutes
and it is reduced 1-2 minutes with parallel executions. Consider a scenario, where
we compute collision probabilities once a week and we want to get the results
in a day. We could then compute the collision analysis on at least 250 satellite
pairs in about 8 hours. Given that we can balance the computation load to
multiple secure computation clusters, we can scale the system to process a much
larger number of satellites. Also, we can use the less precise public trajectories
as a preliminary filter and use the precise secure collision estimation only on the
satellite pairs for which the collision probability is above a certain threshold.

We used the built-in profiling features of Sharemind to analyse the break-
down of the execution time. We computed the collision probability of a single
satellite pair and measured the duration of each floating point operation in the
execution. The results are given in Figures 10 and 11. Addition also includes
the running time of subtraction, because they are implemented using the same
protocol. Multiplication also includes division by a public value for the same
reason.

When we compute collision probabilities using operations based on Taylor
series, we see that division and square root are the most expensive operations,
followed by the exponent function and addition. Using Chebyshev polynomials
greatly reduces the importance of division and the exponent function, leaving
square root as the most time-consuming operation in the algorithm.

8 Conclusions and further work

In this paper we showed how to perform satellite collision analysis in a secure
multiparty setting. For this purpose, we first presented routines for implementing

Addi$on'
13.98%'

Mul$plica$on'
8.92%'

Division'
27.94%'

Error'func$on'
6.93%'

Exponent'func$on'
11.18%'

Square'root'
23.16%'

Other'
7.89%'

0%' 10%' 20%' 30%' 40%' 50%' 60%' 70%' 80%' 90%' 100%'

Running'$me'

Fig. 10. Breakdown of secure floating point operation runtime in collision analysis with
Taylor series.

Addi$on'
25.90%'

Mul$plica$on'
10.30%'

Division'
14.20%'

Error'func$on'
7.69%'

Exponent'func$on'
4.59%'

Square'root'
33.01%'

Other'
4.31%'

0%' 10%' 20%' 30%' 40%' 50%' 60%' 70%' 80%' 90%' 100%'

Running'$me'

Fig. 11. Breakdown of secure floating point operation runtime in collision analysis with
Chebyshev polynomials.

floating point arithmetic operations on top of a secure multiparty computation
engine. The general approach is generic, but in order to obtain the efficient
real implementation, platform-specific design decisions have been made. In the
current paper, we based our decisions on the architecture of Sharemind which
served as a basic platform for our benchmarks. We also showed how to implement
several elementary functions and benchmarked their performance. However, by
replacing the specific optimisations with generic algorithms or other specific op-
timisations, these floating point algorithms can be ported to other secure com-
putation systems. We concluded by implementing the algorithm for computing
the probability of satellite collision and benchmarked the performance of this
implementation.

The largest impact of this work is the conclusion that it is possible and
feasible to perform satellite collision analysis in a privacy preserving manner.

Acknowledgements

The authors would like to thank the RAND Corporation for research in the
area of collision probability computation and Galois Inc for the use of their
prototype that works on public data. The authors also thank Nigel Smart for
suggesting the use of Chebyshev polynomials, Dan Bogdanov for his help with

benchmarking and Sven Laur for coming up with a neat trick for slightly speeding
up exponentiation.

References

1. 754-2008 IEEE Standard for Floating-Point Arithmetic, 2008.
2. Maruthi R. Akella and Kyle T. Alfriend. Probability of collision between space

objects. Journal of Guidance, Control and Dynamics, 23(5):769–772, 2000.
3. Salvatore Alfano. A numerical implementation of spherical object collision proba-

bility. Journal of the Astronautical Sciences, 53(1):103, 2005.
4. Mehrdad Aliasgari, Marina Blanton, Yihua Zhang, and Aaron Steele. Secure com-

putation on floating point numbers. Cryptology ePrint Archive, Report 2012/405,
2012. http://eprint.iacr.org/.

5. Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems
for non-cryptographic fault-tolerant distributed computation. In STOC ’88: Pro-
ceedings of the twentieth annual ACM symposium on Theory of computing, pages
1–10, 1988.

6. Dan Bogdanov. Sharemind: programmable secure computations with practical ap-
plications. PhD thesis, University of Tartu, 2013.

7. Dan Bogdanov, Sven Laur, and Jan Willemson. Sharemind: A framework for fast
privacy-preserving computations. In Computer Security - ESORICS 2008, 13th
European Symposium on Research in Computer Security, Málaga, Spain, October
6-8, 2008. Proceedings, volume 5283 of LNCS, pages 192–206. Springer, 2008.

8. Dan Bogdanov, Margus Niitsoo, Tomas Toft, and Jan Willemson. High-
performance secure multi-party computation for data mining applications. In-
ternational Journal of Information Security, 11(6):403–418, 2012.

9. Ran Canetti. Security and composition of multiparty cryptographic protocols.
Journal of Cryptology, 13(1):143–202, 2000.

10. Octavian Catrina and Sebastiaan De Hoogh. Improved primitives for secure mul-
tiparty integer computation. In Proceedings of the 7th international conference on
Security and cryptography for networks, SCN’10, pages 182–199, Berlin, Heidel-
berg, 2010. Springer-Verlag.

11. Octavian Catrina and Sebastiaan De Hoogh. Secure multiparty linear programming
using fixed-point arithmetic. In Proceedings of the 15th European conference on
Research in computer security, ESORICS’10, pages 134–150, Berlin, Heidelberg,
2010. Springer-Verlag.

12. Octavian Catrina and Amitabh Saxena. Secure computation with fixed-point num-
bers. In Proceedings of the 14th international conference on Financial Cryptography
and Data Security, FC’10, pages 35–50, Berlin, Heidelberg, 2010. Springer-Verlag.

13. David Chaum, Claude Crépeau, and Ivan Damgård. Multiparty unconditionally
secure protocols. In STOC ’88: Proceedings of the twentieth annual ACM sympo-
sium on Theory of computing, pages 11–19, 1988.

14. Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty
computation from somewhat homomorphic encryption. In Reihaneh Safavi-Naini
and Ran Canetti, editors, CRYPTO, volume 7417 of Lecture Notes in Computer
Science, pages 643–662. Springer, 2012.

15. Sharemind development team. The Sharemind framework. http://sharemind.
cyber.ee, 2007.

16. Martin Franz and Stefan Katzenbeisser. Processing encrypted floating point sig-
nals. In Proceedings of the thirteenth ACM multimedia workshop on Multimedia
and security, MM&Sec ’11, pages 103–108, New York, NY, USA, 2011. ACM.

17. Roman Jagomägis. SecreC: a Privacy-Aware Programming Language with Appli-
cations in Data Mining. Master’s thesis, Institute of Computer Science, University
of Tartu, 2010.

18. Thomas Sean Kelso. Initial Analysis of Iridium 33-Cosmos 2251 Collision. Tech-
nical report, Center for Space Standards & Innovation, 2009.

19. Thomas Sean Kelso, David A. Vallado, Joseph Chan, and Bjorn Buckwalter. Im-
proved Conjunction Analysis via Collaborative Space Situational Awareness. Tech-
nical report, 2008.

20. Donald E. Knuth. The Art of Computer Programming, volume 2. Addison-Wesley,
3rd edition, 1998.

21. Dahlia Malkhi, Noam Nisan, Benny Pinkas, and Yaron Sella. Fairplay — a se-
cure two-party computation system. In Proceedings of the 13th USENIX Security
Symposium (2004), pp. 287-302., 2004.

22. NASA. Satellite Collision Leaves Significant Debris Clouds. Orbital Debris Quar-
terly News, 13(2):1–2, April 2009.

23. Stavros Paschalakis and Peter Lee. Double Precision Floating-Point Arithmetic on
FPGAs. In 2003 IEEE International Conference on Field-Programmable Technol-
ogy (FPT), 2003, pages 352–358. IEEE, 2003.

24. Timothy P. Payne. First "confirmed" Natural Collision Between Two Cataloged
Satellites. In Proceedings of the Second European Conference on Space Debris,
volume ESA-SP 393, pages 597–600. ESA, 1997.

25. Boris A. Popov and Genadiy S. Tesler. Вычисление функций на ЭВМ - справоч-
ник. Naukova dumka, 1984.

26. RAND Corporation. Placeholder for the algorithm for conjunction analysis by
RAND if they publish it. Technical report, RAND Corporation, 2013.

27. Adi Shamir. How to share a secret. Commun. ACM, 22:612–613, November 1979.
28. VIFF development team. The virtual ideal functionality framework. http://viff.

dk, 2007.
29. Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In

Proc. of FOCS ’82, pages 160–164, 1982.

