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Abstract

We study the complexity of secure computation in the tamper-proof hardware token model.
Our main focus is on non-interactive unconditional two-party computation using bit-OT to-
kens, but we also study computational security with stateless tokens that have more complex
functionality. Our results can be summarized as follows:

• We show that there exists a class of functions such that the number of bit-OT tokens
required to securely implement them is at least the size of the sender’s input. The same
applies for receiver’s input size (with a different class of functionalities).

• We investigate the existence of non-adaptive protocols in the hardware token model. In a
non-adaptive protocol, the queries to the tokens are fixed in advance as against an adaptive
protocol in which the queries can depend on the answers from the previously queried tokens.
In this work, we show that the existence of non-adaptive protocols in the hardware token
model imply efficient (decomposable) randomized encodings. Since, efficient decomposable
randomized encodings are believed to not exist for all efficient functions, this result can
be interpreted as an evidence to the impossibility of non-adaptive protocols for efficiently
computable functions.

• We investigate the number of calls to the hardware (which is stateless) required in hardware
based obfuscation. By Barak et al., we know that at least one call to the hardware is
required. In this work, we show that even with a constant number of calls we cannot
realize hardware based obfuscation for all efficient functionalities.

The first two results are in the information-theoretic setting while the last result is in the com-
putational setting. En route to proving our results, we make interesting connections between the
hardware token model and well studied notions such as OT hybrid model, randomized encodings
and obfuscation.
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1 Introduction

A protocol for secure two-party computation allows two mutually distrustful parties to jointly
compute a function f of their respective inputs, x and y, in a way that does not reveal anything
beyond the value f(x, y) being computed. Soon after the introduction of this powerful notion [46,
22], it was realized that most functions f(x, y) do not admit an unconditionally-secure protocol that
satisfies it, in the sense that any such protocol implicitly implies the existence (and in some case
requires extensive use [2]) of a protocol for Oblivious Transfer (OT) [10, 3, 33, 27, 39]. Moreover,
even if one was willing to settle for computational security, secure two-party computation has been
shown to suffer from severe limitations in the context of protocol composition [19, 7, 36, 37].

The above realizations have motivated the search for alternative models of computation and
communication, with the hope that such models would enable bypassing the above limitations, and
as a byproduct perhaps also give rise to more efficient protocols. One notable example is the so
called hardware token model, introduced by Katz [32]. In this model, it is assumed that one party
can generate hardware tokens that implement some efficient functionality in a way that allows the
other party only black-box access to the functionality.

The literature on hardware tokens (sometimes referred to as tamper proof tokens1) discusses a
variety of models, ranging from the use of stateful tokens (that are destroyed after being queried
for some fixed number of times) to stateless ones (that can be queried for an arbitrary number of
times), with either non-adaptive access (in which the queries to the tokens are fixed in advance) or
adaptive access (in which queries can depend on answers to previous queries). Tokens with varying
levels of complexity have also been considered, starting with simple functions such as bit-OT, and
ranging all the way to extremely complex functionalities (ones that enable the construction of
UC-secure protocols given only a single call to the token).

The use of hardware tokens opened up the possibility of realizing information-theoretically
and/or composable secure two-party protocols even in cases where this was shown to be impossible
in “plain” models of communication. Two early examples of such constructions are protocols for
UC-secure computation [32], and one-time programs [24]. More recently, a line of research initiated
by Goyal et al. [26] has focused on obtaining unconditionally-secure two-party computation using
stateful tokens that implement the bit-OT functionality. In [25], Goyal et al. went on to show how
to achieve UC-secure two party computation using stateless tokens under the condition that tokens
can be encapsulated: namely, the receiver of a token A can construct a token B that can invoke
A internally. Finally, Dottling et al. [16] have shown that it is possible to obtain information-
theoretically secure UC two-party protocols using a single token, assuming it can compute some
complex functionality.

Generally speaking, the bit-OT token model has many advantages over a model that allows more
complex tokens. First of all, the OT functionality is simple thus facilitating hardware design and
implementation. Secondly, in many cases [26], the bit-OT tokens do not depend on the functionality
that is being computed. Hence, a large number of bit-OT tokens can be produced “offline” and
subsequently used for any functionality. The main apparent shortcoming of bit-OT tokens in
comparison to their complex counterparts is that in all previous works the number of tokens used is
proportional to the size of the circuit being evaluated, rendering the resulting protocols impractical.
This state of affairs calls for the investigation of the minimal number of bit-OT token invocations
in a secure two-party computation protocol.

1There are papers which deal with the leakage of tokens’ contents. We do not consider such a setting in this work.
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In this work we aim to study the complexity of constructing secure protocols with respect to
different measures in the hardware token model. Our main focus is on non-interactive information-
theoretic two-party computation using bit-OT tokens, but we also study computational security
with stateless tokens that compute more complex functionalities. En route to proving our results,
we make interesting connections between protocols in the hardware token model and well studied
notions such as randomized encodings, obfuscation and the OT hybrid model. Such connections
have been explored before mainly in the context of obtaining feasibility results [26, 17].

The first question we address is concerned with the number of bit-OT tokens required to securely
achieve information-theoretic secure two-party computation. The work on one-time programs makes
use of bit-OT tokens in order to achieve secure two party computation in the computational setting,
and the number of tokens required in that construction is proportional to the receiver’s input size.
On the other hand, the only known construction in the information-theoretic setting [26] uses a
number of tokens that is proportional to the size of the circuit. This leads us to the following
question: is it possible to construct information theoretic two party computation protocols in
the token model, where the number of tokens is proportional to the size of the functionality’s
input? Problems of similar nature have been also studied in the (closely related) OT-hybrid model
[15, 2, 45, 41, 42, 44].

The second question we address is concerned with the number of levels of adaptivity required to
achieve unconditional two party computation. The known constructions [26] using bit-OT tokens
are highly adaptive in nature: the number of adaptive calls required is proportional to the depth
of the circuit being computed. The only existing protocols which are non-adaptive are either for
specific complexity classes ([30] for NC1) or in the computational setting [24]. An interesting
question, therefore, is whether there exist information-theoretic non adaptive protocols for all
efficient functionalities.

The works of [25, 38] give negative results on the feasibility of using stateless tokens in the
information-theoretic setting. Goyal et al. [26] have shown that it is feasible to construct proto-
cols using stateless tokens under computational assumptions. So, a natural question would be to
determine the minimum number of calls to the (stateless) token required in a computational setting.

1.1 Our Results

We exploit the relation between protocols in the hardware token model and cryptographic notions
such as randomized encodings and obfuscation to obtain lower bounds in the hardware token model.
We focus on non-interactive two-party protocols, where only one party (the sender) sends messages
and tokens to the other party (the receiver). Our results are summarized below.

Number of bit-OT tokens in the information-theoretic setting. Our first set of results
establishes lower bounds on the number of bit-OT tokens as a function of the parties’ input sizes.
Specifically:

• We show that there exists a class of functionalities such that the number of tokens required
to securely implement them is at least the size of the sender’s input. To obtain this result,
we translate a similar result in the correlated distributed randomness model by Winkler et
al. [44] to this setting.

• We provide another set of functionalities such that the number of tokens required to securely
implement them is at least the size of the receiver’s input.
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While this still leaves a huge gap between the positive result (which uses number of tokens
proportional to the size of the circuit) and our lower bound, we note that before this result, even
such lower bounds were not known to exist. Even in the case of OT-hybrid model, which is very
much related to the hardware token model (and more deeply studied), only lower bounds known
are in terms of the sender’s input size.

Non-adaptive protocols and randomized encodings. In our second main result we show
that non-adaptive protocols in the hardware token model imply efficient randomized encodings.
Even though currently known protocols [26] are highly adaptive, it was still not clear that non
adaptive protocols for all functionalities were not possible. In fact, all functions in NC1 admit non
adaptive protocols in the hardware token model [30]. To study this question, we relate the existence
of non-adaptive protocols to the existence of a “weaker” notion of randomized encodings, called
decomposable randomized encodings. Specifically, we show that if a function has a non adaptive
protocol then correspondingly, the function has an efficient decomposable randomized encoding.
The existence of efficient decomposable randomized encodings has far-reaching implications in
MPC, providing strong evidence to the impossibility of non-adaptive protocols for a large class
of functions.

Constant number of calls to stateless tokens. In our last result we show that there exists
a functionality for which there does not exist any protocol in the stateless hardware token model
making at most a constant number of calls. To this end, we introduce the notion of an obfuscation
complete oracle scheme, a variant of obfuscation tailored to the setting of hardware tokens. Goyal
et. al. [26] have shown such a scheme can be realized under computational assumptions (refer to
Section 6.2.2 in the full version). We derive a lower bound stating that a constant number of calls
to the obfuscation oracle does not suffice. This can be seen as a strengthening of the impossibility
result by Barak et al. [1] which states that at least one call to the obfuscation oracle is required.
This result can then be translated to a corresponding result in the hardware token model. This
result holds even if the hardware is a complex stateless token (and hence still relevant even in
light of our previous results) and (more importantly) against computational adversaries. Previous
known lower bounds on complex tokens were either for the case of stateful hardware [23, 24, 18] or
in the information theoretic setting [25, 38].

Our hope is that the above results will inspire future work on lower bounds in more general
settings in the hardware token model and to further explore the connection with randomized en-
codings, obfuscation and the OT-hybrid model.

1.2 Related Work

The idea of using secure hardware for cryptographic applications goes back to the work of Goldreich
and Ostrovsky [23] who studied software protection under the assumption that a ‘shielded’ CPU
is available. Chaum, Pederson, Brands, and Cramer [9, 4, 12] proposed the use of smartcards
in the context of electronic cash. More recently, the true power of tamper-proof hardware was
demonstrated in the work of Katz [32]. He showed how to construct a UC-secure [6] protocol for
any functionality with the help of stateful hardware tokens under the DDH assumption. Chandran
et al. [8] improve upon Katz’ work in several ways: they allow the adversary to transfer tokens as
well as perform re-setting attacks on them. Moran and Segev [40] consider an asymmetric model of
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computation where only one party Goliath is capable of generating tokens. Damgard et al. [13, 14]
weaken the ‘isolation’ assumption of Katz; they allow a token to communicate a fixed number of
bits to its creator.

Goyal et al. [26] construct the first unconditionally secure protocol for arbitrary functionalities
using stateful tokens. Their protocol is non-interactive and only one party obtains the output of
the computation. They also construct a general purpose obfuscation scheme from stateless tokens.
In [25], Goyal et al. provide several interesting results about the power of stateless tokens. They
show that such tokens can be used to construct statistically secure commitment protocols and
zero-knowledge proofs for NP. They also show that if one token can be encapsulated into another,
an unconditionally secure protocol exists for any functionality. Furthermore, if this encapsulation
is not possible, then statistically secure oblivious transfer cannot be realized. Dottling et al. [16]
show that information-theoretic UC-secure two party computation is achievable with the help of
just one tamper-proof device. In [18], Dottling et al. study how general resettable computation
can be realized using one (or two) stateless tokens and minimal number of rounds of interaction.

2 Preliminaries

2.1 Model of computation

Hardware tokens: Hardware tokens can be divided into two broad categories – stateful and
stateless. As the name implies, stateful tokens can maintain some form of state, which might
restrict the extent to which they can be used. On the other hand, stateless tokens cannot maintain
any state, and could potentially be used an unbounded number of times. The first formal study
of hardware tokens modeled them as stateful entities [32], so that they can engage in a two-round
protocol with the receiver. Later on, starting with the work of Chandran et al. [8], stateless tokens
were also widely studied.

The token functionality models the following sequence of events: (1) a player (the creator)
‘seals’ a piece of software inside a tamper-proof token; (2) it then sends the token to another player
(the receiver), who can run the software in a black-box manner. Once the token has been sent, the
creator cannot communicate with it, unlike the setting considered in [13, 14]. We also do not allow
token encapsulation [25], a setting in which tokens can be placed inside other tokens.

Stateless tokens: The Fstatelesswrap functionality models the behavior of a stateless token. It is
parameterized by a polynomial p(.) and an implicit security parameter k. Its behavior is described
as follows:

• Create: Upon receiving (create, sid, Pi, Pj ,mid,M) from Pi, where M is a Turing machine,
do the following: (a) Send (create, sid, Pi, Pj ,mid) to Pj , and (b) Store (Pi, Pj ,mid,M).

• Execute: Upon receiving (run, sid, Pi,mid,msg) from Pj , find the unique stored tuple (Pi, Pj ,
mid,M). If no such tuple exist, do nothing. Run M(msg) for at most p(k) steps, and let out
be the response (out = ⊥ if M does not halt in p(k) steps). Send (sid, Pi,mid, out) to Pj .

Here sid and mid denote the session and machine identifier respectively.

Stateful tokens: In the class of stateful tokens, our primary interest is the One Time Memory
(OTM) token, studied first in [24]. This token implements a single Oblivious Transfer (OT) call,
and hence is also referred to as OT token. Oblivious transfer, as we know, is one of the most widely
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studied primitives in secure multi-party computation. In the
(
n
t

)
-OTk variant, sender has n strings

of k bits each, out of which a receiver can pick any t. The sender does not learn anything in this
process, and the receiver does not know what the remaining n− t strings were. The behavior of an
OTM token is similar to

(
2
1

)
-OTk.

The primary difference between the OT functionality and an OTM token is that while the
functionality forwards an acknowledgment to the sender when the receiver obtains the strings of
its choice, there is no such feedback provided by the token. Hence, one has to put extra checks in a
protocol (in the token model) to ensure that the receiver opens the tokens when it is supposed to
(see, for example, Section 3.1 in [26]). Formal definitions of FOT and FOTM are given below. We
would be dealing with OTMs where both inputs are single bits. We will refer to them as bit-OT
tokens.

Oblivious Transfer (OT): The functionality FOT is parameterized by three positive integers n,
t and k, and behaves as follows.

• On input (Pi, Pj , sid, id, (s1, s2, . . . , sn)) from party Pi, send (Pi, Pj , sid, id) to Pj and store the
tuple (Pi, Pj , sid, id, (s1, s2, . . . , sn)). Here each si is a k-bit string.

• On receiving (Pi, sid, id, l1, l2, . . . , lt) from party Pj , if a tuple (Pi, Pj , sid, id, (s1, s2, . . . , sn))
exists, return (Pi, sid, id, sl1 , sl2 , . . . , slt) to Pj , send an acknowledgment (Pj , sid, id) to Pi,
and delete the tuple (Pi, Pj , sid, id, (s1, s2, . . . , sn)). Else, do nothing. Here each lj is an
integer between 1 and n.

One Time Memory (OTM): The functionality FOTM which captures the behavior an OTM is
described as follows:

• On input (Pi, Pj , sid, id, (s0, s1)) from party Pi, send (Pi, Pj , sid, id) to Pj and store the tuple
(Pi, Pj , sid, id, (s0, s1)).

• On receiving (Pi, sid, id, c) from party Pj , if a tuple (Pi, Pj , sid, id, (s0, s1)) exists, return
(Pi, sid, id, sc) to Pj and delete the tuple (Pi, Pj , sid, id, (s0, s1)). Else, do nothing.

Non-interactivity: In this paper, we are interested in non-interactive two-party protocols (i.e.,
where only one party sends messages and tokens to the other). Some of our results, however, hold
for an interactive setting as well (whenever this is the case, we point it out). The usual setting is
as follows: Alice and Bob have inputs x ∈ Xk and y ∈ Yk respectively, and they wish to securely
compute a function f : Xk × Yk → Zk, such that only Bob receives the output f(x, y) ∈ Zk of the
computation (here, k is the security parameter). Only Alice is allowed to send messages and tokens
to Bob.

Circuit families. In this work, we assume that parties are represented by circuit families instead
of Turing machines. A circuit is an acyclic directed graph, with the gates of the circuit representing
the nodes of the graph, and the wires representing the edges in the graph. A circuit can either be
boolean or arithmetic depending on whether the gates are AND-OR or ADD-MULTIPLY gates.
We assume that the circuit can be broken down into layers such that the first layer takes the input
of the circuit and outputs to the second layer and so on. The output of the last layer is the output
of the circuit.

A circuit is typically characterized by its size and its depth. The size of the circuit is the sum
of the number of gates and the number of wires in the circuit. We define the depth of a circuit C,
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denoted by Depth(C) to be the number of layers in the circuit. There are several complexity classes
defined in terms of depth and size of circuits. One important complexity class that we will refer
in this work is the NC1 complexity class. This comprises of circuits which have depth O(log(n))
and size poly(n), where n is the input size of the circuit. Languages in P can be represented by a
circuit family whose size is polynomial in the size of the input.

2.2 Security

Definition 1 (Indistinguishability). A function f : N→ R is negligible in n if for every polynomial
p(.) and all sufficiently large n’s, it holds that f(n) < 1

p(n) . Consider two probability ensembles X :=

{Xn}n∈N and Y := {Yn}n∈N. These ensembles are computationally indistinguishable if for every
PPT algorithm A, |Pr[A(Xn, 1

n) = 1] − Pr[A(Yn, 1
n) = 1]| is negligible in n. On the other hand,

these ensembles are statistically indistinguishable if ∆(Xn, Yn) = 1
2

∑
α∈S |Pr[Xn = α]−Pr[Yn = α]|

is negligible in n, where S is the support of the ensembles. The quantity ∆(Xn, Yn) is known as the
statistical difference between Xn and Yn.

Statistical security: A protocol π for computing a two-input function f : Xk × Yk → Zk in the
hardware-token model involves Alice and Bob exchanging messages and tokens. In the (static)
semi-honest model, an adversary could corrupt one of the parties at the beginning of an execution
of π. Though the corrupted party does not deviate from the protocol, the adversary could use the
information it obtains through this party to learn more about the input of the other party. At an
intuitive level, a protocol is secure if any information the adversary could learn from the execution
can also be obtained just from the input and output (if any) of the corrupted party. Defining
security formally though requires that we introduce some notation, which we do below.

Let the random variables viewπA(x, y) = (x,RA,M,U) and viewπB(x, y) = (y,RB, M, V ) denote
the views of Alice and Bob respectively in the protocol π, when Alice has input x ∈ Xk and Bob
has input y ∈ Yk. Here RA (resp. RB) denotes the coin tosses of Alice (resp. Bob), M denotes
the messages exchanged between Alice and Bob, and U (resp. V ) denotes the messages exchanged
between Alice (resp. Bob) and the token functionality. Also, let outπB(x, y) denote the output
produced by Bob. We can now formally define security as follows.

Definition 2 (ε-secure protocol [44]). A two-party protocol π computes a function f : Xk×Yk → Zk
with ε− security in the semi-honest model if there exists two randomized functions SA and SB such
that for all sufficiently large values of k, the following two properties hold for all x ∈ Xk and y ∈ Yk:

• ∆((SA(x), f(x, y)), (viewπA(x, y), outπB(x, y))) ≤ ε(k),

• ∆(SB(y, f(x, y)), viewπB(x, y)) ≤ ε(k).

If π computes f with ε-security for a negligible function ε(k), then we simply say that π securely
computes f . Further if ε(k) = 0, π is a prefectly secure protocol for f .

Information Theory: We define some information-theoretic notions which will be useful in prov-
ing unconditional lower bounds. Entropy is a measure of the uncertainty in a random variable.
The entropy of X given Y is defined as:

H(X|Y ) = −
∑
x∈X

∑
y∈Y

Pr[X = x ∧ Y = y] logPr[X = x | Y = y].
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For the sake of convenience, we sometimes use h(p) = −p log p − (1 − p) log(1 − p) to denote the
entropy of a binary random variable which takes value 1 with probability p (0 ≤ p ≤ 1).

Mutual information is a measure of the amount of information one random variable contains
about another. The mutual information between X and Y given Z is defined as follows:

I(X;Y |Z) = H(X|Z)−H(X|Y Z).

See [11] for a detailed discussion of the notions above.

3 Lower Bounds in Input Size for Unconditional Security

In this section, we show that the number of simple tokens required to be exchanged in a two-party
unconditionally secure function evaluation protocol could depend on the input size of the parties.
We obtain two bounds discussed in detail in the sections below. Our first bound relates the number
of hardware tokens required to compute a function with the input size of the sender. (This bound
holds even when the protocol is interactive.) In particular, we show that the number of bit-OT
tokens required for oblivious transfer is at least the sender’s input size (minus one). Our second
result provides a class of functions where the number of bit-OT tokens required is at least the input
size of the receiver.

3.1 Lower bound in Sender’s input size

In this subsection we consider k to be fixed, and thus omit k from Xk, Yk and ε(k) for clarity. In [44],
Winkler and Wullschleger study unconditionally secure two-party computation in the semi-honest
model. They consider two parties Alice and Bob, with inputs x ∈ X and y ∈ Y respectively, who
wish to compute a function f : X ×Y → Z such that only Bob obtains the output f(x, y) ∈ Z (but
Alice and Bob can exchange messages back and forth). The parties have access to a functionality
G which does not take any input, but outputs a sample (u, v) from a distribution pUV . Winkler and
Wullschleger obtain several lower bounds on the information-theoretic quantities relating U and V
for a secure implementation of the function f .

Here, we would like to obtain the minimum number of bit-OT tokens required for a secure
realization of a function. The functionality which models the token behavior FOTM is an interactive
functionality: not only does FOTM give output to the parties, but also take inputs from them.
Therefore, as such the results of [44] are not applicable to our setting. However, if we let U
denote all the messages exchanged between Alice and G, and similarly let V denote the entire
message transcript between Bob and G, we claim that the following lower bound (obtained for a
non-interactive G in [44]) holds even when the functionality G is interactive. This will allow us to
apply this bound on protocols where hardware tokens are exchanged.

Theorem 1. Let f : X × Y → Z be a function such that

∀x 6= x′ ∈ X ∃y ∈ Y : f(x, y) 6= f(x′, y).

If there exists a protocol that implements f from a functionality G with ε security in the semi-honest
model, then

H(U |V ) ≥ maxy∈YH(X|f(X, y))− (3|Y| − 1)(ε log |Z|+ h(ε))− ε log |X |,

where H(U |V ) is the entropy of U given V .
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Proof. In order to prove that Theorem 1 holds with an interactive G, we observe that the proof
provided by Winkler and Wullschleger for a non-interactive G almost goes through for an interactive
one. An important fact they use in their proof is that for any protocol π, with access to a non-
interactive G, the following mutual information relation holds: I(X;V Y |UM) = 0, where M
denotes the messages exchanged in the protocol. (In other words, X − UM − V Y is a Markov
chain.) If one can show that the aforementioned relation holds even when G can take inputs from
the parties (and U and V are redefined as discussed above), the rest of the proof goes through, as
can be verified by inspection. Hence, all that is left to do is to prove that I(X;V Y |UM) = 0 is
true in the more general setting, where U and V stand for the transcripts of interactions with G.

We will need the following simple chain rule about mutual information (for a proof see [11]):

I(AA′;B|C) = I(A;B|C) + I(A′;B|AC). (1)

In particular, this implies the following:

I(A;B|CD) = I(A;BC|D)− I(A;C|D) (2)

= I(AC;B|D)− I(B;C|D) (3)

Our goal is to show that the mutual information between X and V Y conditioned on UM is
0. We prove this result with the help of induction on the steps in a protocol. At the beginning of
the protocol when no messages have been exchanged (U , V and M are empty random variables),
I(X;V Y |UM) simply becomes I(X;Y ). Since we can assume that the inputs of Alice and Bob are
chosen independently of each other, I(X;Y ) = 0. This proves the base case.

Suppose that the protocol has executed for i steps. Let the messages exchanged up to the first i
steps between Alice and Bob be denoted by M i, that between Alice and G by U i, and that between
Bob and G by V i. By the induction hypothesis, we know that I(X;V iY |U iM i) = 0. At the i+ 1th
step one of the following things can happen: Alice sends a message to Bob, or vice versa; Alice
sends a message to G, or vice versa; Bob sends a message to G, or vice versa. Accordingly, one of
the random variables above gets updated. We prove that I(X;V i+1Y |U i+1M i+1) = 0 for some of
the updates, and the rest will follow in a similar manner:

• Alice sends a message to G: In this case, V i+1 = V i and M i+1 = M i. Let the message sent
be denoted by Ui+1. Now,

I(X;V iY |U i+1M i) = I(X;V iY |U iUi+1M
i)

= I(XUi+1;V iY |U iM i)− I(V iY ;Ui+1|U iM i)

= I(X;V iY |U iM i) + I(Ui+1;V iY |XU iM i)

− I(V iY ;Ui+1|U iM i),

where the second equality follows from (3), and the third from (1). We know that I(X;V iY |
U iM i) = 0 by the induction hypothesis. Moreover, since Ui+1 is a message sent by Alice,
it is a function of X, U i and M i (and the local randomness of Alice). Therefore, V iY →
XU iM i → Ui+1, or I(Ui+1;V iY |XU iM i) = 0. Now since mutual information is a positive
quantity, I(X;V iY |U i+1M i) must be 0.
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• G sends a message to Bob: In this case, U i+1 = U i and M i+1 = M i. Let the message sent
be denoted by Vi+1. Now,

I(X;V i+1Y |U iM i) = I(X;V iVi+1Y |U iM i)

= I(X;V iY |U iM i) + I(X;Vi+1|U iM iV iY )

= I(X;V iY |U iM i) + I(XM iY ;V i+1|U iV i)

− I(V i+1;M iY |U iV i),

where the second equality follows from (1), and the third from (3). We know that I(X;V iY |
U iM i) = 0 by the induction hypothesis. Moreover, since Vi+1 is a message sent by G, it is a
function of U i and V i (and the local randomness of G if any). Therefore, XM iY → U iV i →
Vi+1, or I(XM iY ;Vi+1|U iV i) = 0. Now since mutual information is a positive quantity,
I(X;V i+1Y |U iM i) must be 0.

• Bob sends a message to Alice: In this case, U i+1 = U i and V i+1 = V i. Let the message sent
be denoted by Mi+1. Now,

I(X;V iY |U iM i+1) = I(X;V iY |U iM iMi+1)

= I(X;V iYMi+1|U iM i)− I(X;Mi+1|U iM i)

= I(X;V iY |U iM i) + I(X;M i+1|U iM iV iY )

− I(X;Mi+1|U iM i)

= I(X;M i+1|U iM iV iY )− I(X;Mi+1|U iM i)

= I(XU i;M i+1|M iV iY )− I(M i+1;U i|M iV iY )

− I(X;Mi+1|U iM i),

where the second equality follows from (2), the third from (1), the fourth by the induction, and
the fifth by (3). Since Mi+1 is a message sent by G, it is a function of M i, V i and Y (and the
local randomness of Bob). Therefore, XU i →M iV iY →Mi+1, or I(XU i;Mi+1|M iV iY ) = 0.
Now since mutual information is a positive quantity, I(X;V iY |U iM i+1) must be 0.

We can handle rest of the events in a similar fashion. This completes the proof of Theorem 1.

Theorem 1 lets us bound the number of tokens required to securely evaluate a function, as
follows. Suppose Alice and Bob exchange ` bit-OT tokens during a protocol. If Bob is the recipient
of a token, there is at most one bit of information that is hidden from Bob after he has queried
the token. On the other hand, if Bob sends a token, he does not know what Alice queried for.
Therefore given V , entropy of U can be at most ` (or H(U |V ) ≤ `). We can use this observation
along with Corollary 3 in [44] (full version) to obtain the following result.

Theorem 2. If a protocol ε-securely realizes m independent instances of
(
n
t

)
-OTk, then the number

of bit-OT tokens ` exchanged between Alice and Bob must satisfy the following lower bound:

` ≥ ((1− ε)n− t)km− (3dn/te − 1)(εmtk + h(ε)).
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We conclude this section with a particular case of the above theorem which gives a better sense
of the bound. Let us say that Alice has a string of n bits, and Bob wants to pick one of them. In
other words, Alice and Bob wish to realize an instance of

(
n
1

)
-OT1. Also, assume that they want to

do this with perfect security, i.e., ε = 0. In this case, the input size of Alice is n, but Bob’s input
size is only dlog ne. Now, we have the following corollary.

Corollary 3. In order to realize the functionality
(
n
1

)
-OT1 with perfect security, Alice and Bob

must exchange at least n− 1 tokens.

Suppose Alice is the only party who can send tokens. Then, we can understand the above result
intuitively in the following way. Alice has n bits, but she wants Bob to learn exactly one of them.
However, since she does not know which bit Bob needs, she must send her entire input (encoded
in some manner) to Bob. Suppose Alice sends ` bit-OT tokens to Bob. Since Bob accesses every
token, the ` bits it obtains from the tokens should give only one bit of information about Alice’s
input. The remaining ` positions in the tokens, which remain hidden from Bob, must contain
information about the remaining n− 1 bits of Alice’s input. Hence, ` must be at least n− 1.

One can use Protocol 1.2 in [5] to show that the bound in Corollary 3 is tight.

3.2 Lower bound in Receiver’s input size

In this section, we show that the number of bit-OT tokens required could depend on the receiver’s
input size. We begin by defining a non-replayable function family, for which we shall show that the
number of tokens required is at least the input size of the receiver.

Definition 3. Consider a function family f : Xk×Yk → Zk, k ∈ I+. We say that f is replayable if
for every distribution Dk over Xk, there exists a randomized algorithm SB and a negligible function
ν, such that on input (k, y, f(x, y)) where (x, y)← Dk ×Yk, SB outputs ⊥ with probability at most
3/4, and otherwise outputs (y′, z) such that (conditioned on not outputting ⊥) with probability at
least 1− ν(k), y′ 6= y and z = f(x, y′).

Theorem 4. Let f : Xk × Yk → Zk be a function that is not replayable. Then, in any non-
interactive protocol π that securely realizes f in the semi-honest model using bit-OT tokens, Alice
must send at least n(k) = blog |Yk|c tokens to Bob.

Proof. For simplicity, we omit the parameter k in the following. Suppose Alice sends only n−1 bit-
OT tokens to Bob in the protocol π. We shall show that f is in fact replayable, by constructing an
algorithm SB as in Definition 3, from a semi-honest adversary A that corrupts Bob in an execution
of π.

Let the input of Alice and Bob be denoted by x and y respectively, where x is chosen from
X according to the distribution D, and y is chosen uniformly at random over Y. On input x,
Alice sends tokens (Υ1, · · · ,Υn−1) and a message m to Bob. Bob runs his part of the protocol
with inputs y,m, a random tape r, and (one-time) oracle access to the tokens. Without loss of
generality, we assume that Bob queries all the n − 1 tokens. Bob’s view consists of y, m, r, and
the bits b = (b1, . . . , bn−1) received from the n − 1 tokens (Υ1, . . . ,Υn−1). Let q = (q1, . . . , qn−1)
denote the query bits that Bob uses for the n−1 tokens. For convenience, we shall denote the view
of Bob as (y,m, r, q, b) (even though q is fully determined by the rest of the view).

We define SB as follows: on input (y1, z1), it samples a view (y, r,m, q, b) for Bob in an ex-
ecution of π conditioned on y = y1 and Bob’s output being z1. Next, it samples a second view
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(y′, r′,m′, q′, b′) conditioned on (m′, q′, b′) = (m, q, b). If y′ = y, it outputs ⊥. Else, it computes
Bob’s output z′ in this execution and outputs (y′, z′).

To argue that SB meets the requirements in Definition 3, it is enough to prove that when x ∈ X
is sampled from any distribution D, y ← Y is chosen uniformly, and z = f(x, y): (1) (y′, r′,m′, q′, b′)
sampled by SB(y, z) is distributed close (up to a negligible distance) to Bob’s view in an actual
execution with inputs (x, y′), and (2) with probability at least 1

4 , y′ 6= y. Then, by the correctness of
π, with overwhelming probability, whenever SB outputs (y′, z′), it will be the case that z′ = f(x, y′),
and this will happen with probability at least 1/4.

The first claim follows by the security guarantee and the nature of a token-based protocol.
Consider the experiment of sampling (x, y) and then sampling Bob’s view (y, r,m, q, b) conditioned
on input being y and output being z = f(x, y). Firstly, this is only negligibly different from sampling
Bob’s view from an actual execution of π with inputs x and y, since by the correctness guarantee,
the output of Bob will indeed be f(x, y) with high probability. Now, sampling (x, y, r,m, q, b) in
the actual execution can be reinterpreted as follows: first sample (m, q, b), and then conditioned
on (m, q, b), sample x and (y, r) independent of each other. This is because, by the nature of the
protocol, conditioned on (m, q, b), Bob’s view in this experiment is independent of x. Now, (y′, r′)
is also sampled conditioned on (m, q, b) in the same manner (without resampling x), and hence
(x, y′, r′,m, q, b) is distributed as in an execution of π with inputs (x, y′).

To show that SB outputs ⊥ with probability at most 3
4 , we rely on the fact that the number of

distinct inputs y for Bob is 2n, but the number of distinct queries the Bob can make to the tokens
q is at most 2n−1. Below, we fix an (m, b) pair sampled by SB, and argue that Pr[y = y′] ≤ 3

4
(where the probabilities are all conditioned on (m, b)).

For each value of q ∈ {0, 1}n−1 that has a non-zero probability of being sampled by SB, we
associate a value Y (q) ∈ {0, 1}n as Y (q) = argmaxy Pr[y|q], where the probability is over the choice
of y ← Y and the random tape r for Bob. If more than one value of y attains the maximum, Y (q)
is taken as the lexicographically smallest one. Let Y∗ = {y|∃q s.t. y = Y (q)}. Then, |Y∗| ≤ |Y|/2,
or equivalently (since the distribution over Y is uniform), Pr[y 6∈ Y∗] ≥ 1

2 .
Let Q∗ = {q|Pr[Y (q)|q] > 1

2}. Further, let β = min{Pr[Y (q)|q]|q ∈ Q∗}. Note that β > 1
2 . We

claim that α := Pr[q ∈ Q∗] ≤ 1
2 . This is because

1

2
≤ Pr[y 6∈ Y∗] =

∑
y 6∈Y∗,q∈Q∗

Pr[y, q] +
∑

y 6∈Y∗,q 6∈Q∗
Pr[y, q]

≤
∑
q∈Q∗

(1− β) Pr[q] +
∑
q 6∈Q∗

β Pr[q] = α(1− β) + β(1− α)

Since β > 1
2 , if α > 1

2 then α(1− β) + β(1− α) < 1
2 , which is a contradiction. Hence α ≤ 1

2 . Now,

Pr[y = y′] ≤ αPr[y = y′|q ∈ Q∗] + (1− α) Pr[y = y′|q 6∈ Q∗]

≤ α+ (1− α)
1

2
≤ 3

4
.

We give a concrete example of a function family that is not replayable. Let Xk = {1, 2, . . . , k}
be the set of first k positive integers. Let Yk = {S ⊆ Xk : |S| = k/2 ∧ 1 ∈ S}. Define
f : Xk×Yk → {0, 1} as follows: for all k, x ∈ Xk and y ∈ Yk, f(x, S) = 1 if x ∈ S, and 0 otherwise.
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Fix a value of k. Suppose a simulator SB is given S and f(X,S) as inputs, where X,S denote
random variables uniformly distributed over Xk and Yk respectively. From this input, SB knows
that X could take one of k/2 possible values. Any S′ 6= S intersects S′ or its complement in at
most k/2−1 positions. Hence, SB can guess the value of f(X,S′) with probability at most 1−2/k.
This implies that if SB outputs (S′, Z) with probability 1/4, with a non-negligible probability
Z 6= f(X,S′).

Note that the number of bits required to represent an element of Xk is only dlog ke, but that
required to represent an element of Yk is n(k) = dlog 1

2

(
k
k/2

)
e, which is at least a polynomial in k.

Since f is not replayable, it follows from Theorem 4 that in any protocol that realizes f , Alice must
send at least n(k) tokens to Bob.

4 Negative Result for Non-Adaptive Protocols

4.1 Setting

In this section, we explore the connection between the randomized encodings of functions and the
protocols for the corresponding functionalities 2 in the bit-OT (oblivious transfer) token model.
We deal with only protocols which are non-adaptive, non-interactive and are perfectly secure. The
notions of non-interactivity (Section 2.1) and perfect security (Definition 2 in Section 2.2) have
already been dealt with in the preliminaries. We will only explain the notion of non-adaptivity. A
protocol in the bit-OT token model is said to be non-adaptive if the queries to the tokens are fixed
in advance. This is in contrast with the adaptive case where the answers from one token can used
to generate the query to the next token.

Such (non-adaptive and non-interactive) protocols have been considered in the literature and
one-time programs [24, 26] is one such example, although one-time programs deal with malicious
receivers. Henceforth, when the context is clear we will refer to “perfectly secure non-adaptive
non-interactive protocols” as just “non-adaptive protocols”.

We show that the existence of non-adaptive protocols for a function in the bit-OT token model
implies an efficient (polynomial sized) decomposable randomized encoding for that function. This
is done by establishing an equivalence relation between decomposable randomized encodings and a
specific type of non-adaptive protocols in the bit-OT token model. Then, we show that a function-
ality having any non-adaptive protocol also has this specific type of protocol thereby showing the
existence of a DRE for this functionality. Since decomposable randomized encodings are believed
to not exist for all functions in P [21, 43, 20, 31], this gives a strong evidence to the fact that there
cannot exist non-adaptive protocols in the bit-OT token model for all functions in P.

4.2 Randomized Encodings

We begin this section by describing the necessary background required to understand randomized
encodings [29]. A randomized encoding for a function f consists of two procedures - encode and
decode. The encode procedure takes an input circuit for f , x which is to the input to f along
with randomness r and outputs f̂(x; r). The decode procedure takes as input f̂(x; r) and outputs
f(x). There are two properties that the encode and decode procedures need to satisfy for them to

2Here, we abuse the notation and interchangeably use functions and functionalities.
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qualify to be a valid randomized encoding. The first property is (perfect) correctness which says
that the decode algorithm always outputs f(x) when input f̂(x; r). The second property, namely
(perfect) privacy, says that there exists a simulator such that the output distribution of the encode
algorithm on input x is identical to the output distribution of the simulator on input f(x).

We deal with a specific type of randomized encodings termed as decomposable randomized
encodings [34, 21, 28, 30, 35] which are defined as follows.

Definition 4. An (efficient) Decomposable Randomized Encoding, denoted by DRE, consists of
three PPT algorithms (RE.Encode,RE.ChooseInpWires,RE.Decode):

1. RE.Encode: takes as input a circuit C and outputs (C̃, state) ,where state = ((s0
1, s

1
1), . . . , (s0

m, s
1
m))

and m is the input size of the circuit.

2. RE.ChooseInpWires: takes as input (state, x) and outputs x̃, where x is of length m and x̃ =
(sx11 , . . . , s

xm
m ) and xi is the ith bit of x.

3. RE.Decode: takes as input (C̃, x̃) and outputs out.

A decomposable randomized encoding needs to satisfy the following properties.

(Correctness):- Let RE.Encode on input C output (C̃, state). Let RE.ChooseInpWires on input
(state, x) output x̃. Then, RE.Decode(C̃, x̃) always outputs C(x).
(Perfect privacy):- There exists a PPT simulator Sim such that the following two distributions
are identical.

•
{

(C̃, x̃)
}

, where (C̃, state) is the output of RE.Encode on input C and x̃ is the output of

ChooseInpWires on input (state, x).

•
{

(C̃Sim, x̃Sim)
}

, where (C̃Sim, x̃Sim) is the output of the simulator Sim on input C(x).

In the above definition, ε-privacy can also be considered instead of perfect privacy where the
distributions are ε far from each other for some negligible ε. In this section, we only deal with
DRE with perfect privacy. It can be verified that a decomposable randomized encoding is also
a randomized encoding. There are efficient decomposable randomized encodings known for all
functions in NC1 [34, 30]. However, it is believed that there does not exist efficient decomposable
randomized encodings for all functions in P. The existence of efficient decomposable randomized
encodings for all efficiently computable functions has interesting implications, namely, multiparty
computation protocols in the PSM (Private Simultaneous Message) model [21], constant-round
two-party computation protocol in the OT-hybrid model [43, 20] and multiparty computation with
correlated randomness [31].

We now proceed to relate the existence of non-adaptive protocols for a functionality to the
existence of randomized encodings, and more specifically DRE, for the corresponding function.
But first, we give an overview of our approach and then we describe the technical details.

4.3 Overview

We first make a simple observation which is the starting point to establish the connection between
randomized encodings and non-adaptive protocols in the bit-OT token model. Consider the answer
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obtained by the receiver of the non-adaptive protocol after querying the tokens. This answer can
be viewed as a decomposable randomized encoding. The message contained in the bit-OT tokens
along with the software sent by the sender corresponds to the output of the encode procedure. The
choose-input-wires procedure corresponds to the algorithm the receiver executes before querying
the bit-OT tokens. The decode procedure corresponds to the decoding of the answer from the
tokens done by the receiver to obtain the output of the functionality. Further, these procedures
satisfy the correctness and the privacy properties. The correctness of the decoding of the output
follows directly from the correctness of the protocol. The privacy of the decomposable randomized
encoding follows from the fact that the answer obtained from the tokens can be simulated which
in turn follows from the privacy of the protocol. At this point it may seem that this observation
directly gives us a decomposable randomized encoding from a non-adaptive protocol. However,
there are two main issues. Firstly, the output of the encode procedure given by the protocol can
depend on the input of the function while in the case of DRE, the encode procedure is independent
of the input of the function. Secondly, the choose-inputs-procedure given by the protocol might
involve a complex preprocessing on the receiver’s input before it queries the tokens. This is in
contrast to the choose-inputs-procedure of a DRE where no preprocessing is done on the input of
the function.

We overcome these issues in a series of steps to obtain a DRE for a function from a non-adaptive
protocol for that function. In the first step, we split the sender’s algorithm into two parts - the first
part does computation solely on the randomness and independent of the input while the second part
does preprocessing on both its input as well as the randomness. We call protocols which have the
sender defined this way to be SplitState protocols. We observe that every function that has a non-
adaptive protocol also has a SplitState protocol. In the next step, we try to reduce the complexity
of the preprocessing done on both the sender’s as well as the receiver’s inputs. The preprocessing
refers to the computation done on the inputs before the hardware tokens are evaluated. We call
protocols which have no preprocessing on its inputs to be simplified protocols. Our goal is then
to show that if a protocol has a SplitState protocol then it also has a simplified protcol. At the
heart of this result lies the observation that all NC1 protocols have simplified protocols. We use the
simplified protocols for NC1 to recursively reduce the complexity of the preprocessing algorithm in
a SplitState protocol to finally obtain a simplified protocol. Finally, by using an equivalence relation
established between simplified protocols and efficient DRE, we establish the result that a function
having a non-adaptive protocol also has an efficient DRE. We now proceed to the technical details.

4.4 Equivalence of RE and simplified protocols

We now show the equivalence of randomized encodings and simplified protocols in the bit-OT token
model.

SplitState protocols. Consider the protocol Π in the bit-OT token model. We say that Π is a
SplitState protocol if the sender and the receiver algorithms in SplitState protocol are defined as fol-
lows. The sender in Π consists of the tuple of algorithms (Π.InpFreePP, Π.Preprocsen, Π.EvalHTsen).
It takes as input x with randomness Rsen and executes the following steps.

- It first executes Π.InpFreePP on input Rsen to obtain the tokens (htokenssen, htokensrec) and
Software.

- It then executes Π.Preprocsen on input (x,Rsen) to obtain x′.

14



- It then executes Π.EvalHTsen on input (x′, htokenssen). The procedure Π.EvalHTsen evaluates
the ith token in htokenssen with the ith bit of x′ to obtain x̃i. The value x̃ is basically the
concatenation of all x̃i.

- The sender then outputs (htokensrec,Software, x̃).

Notice that the third step in the above sender’s procedure involves the sender evaluating the
tokens htokenssen. This seems to be an unnecessary step since the sender himself generates the
tokens. Later we will see that modeling the sender this way simplifies our presentation of the proof
significantly.

The receiver, on the other hand, consists of the algorithms (Π.Preprocrec, Π.EvalHTrec, Π.Output).
It takes as input y, randomness Rrec along with (htokensrec, Software, x̃) which it receives from the
sender and does the following.

- It executes Π.Preprocrec on input (y,Rrec, Software, x̃) to obtain (q, state).

- It then executes Π.EvalHTrec by querying the tokens htokensrec on input q to obtain ỹ. The
ith token in htokensrec is queried by the ith bit of q to obtain the ith bit of ỹ.

- Finally, Π.Output is run on input (state, ỹ) to obtain z which is output by the receiver.

This completes the description of Π. The following lemma shows that there exists a SplitState
protocol for a functionality if the functionality has a non-adaptive protocol.

Lemma 5. Suppose a functionality f has a non-interactive and a non-adaptive protocol in the
bit-OT token model. Then, there exists a SplitState protocol for the functionality f .

Proof. Consider a non-adaptive protocol Π for a functionality f in the hardware token model.
Without loss of generality, assume that it can be expressed as follows. The sender algorithm of
Π, on input (x,Rsen), executes Π.GenSwTok to obtain (sware, htokens), where the length of sware
is lS and the number of tokens is lT . It then sends (sware, htokens) across to the receiver. The
receiver consists of (Π.Preprocess,Π.Evaluate,Π.Output). It executes Π.Preprocess on input sware
along with its input y and randomness Rrec to obtain query q. It then executes Evaluate on input q
to obtain ans. Finally, Π.Output runs on input ans along with (y,Rrec, sware) to obtain the output
of the functionality. For simplicity we modify Π.GenSwTok such that instead of outputting htokens
it outputs the string contained in htokens which is defined to be the concatenation of all the bits
contained in htokens.

We construct a SplitState protocol Π′ for f from Π. The sender of Π′ consists of a tuple of
algorithms (Π′.InpFreePP,Π′.Preprocsen,Π

′.EvalHTsen) which are defined as follows.

- Π′.InpFreePP: On input Rsen, it executes as follows. It first constructs three types of tokens
described below.

– It constructs lS tokens with each token containing 0 and 1 in the first and the second
positions respectively. Recall that lS is the size of the software output by Π.GenSwTok.

Denote this set of tokens by htokens
(1)
sen.

– It then chooses 2lT random bits r1, . . . , r2lT from Rsen. Recall that lT is the number of
tokens output by Π.GenSwTok. It generates 2lT tokens are generated with the ith token

containing (ri ⊕ 0, ri ⊕ 1). Denote this set of tokens by htokens
(2)
sen.
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– It then constructs a set of lT tokens with the first token containing (r1, r2), the second
containing (r3, r4) and so on. Denote this set of tokens by htokensrec.

The output of this algorithm is (htokens
(1)
sen, htokens

(2)
sen, htokensrec). Note that this algorithm

does not output any software.

- Π′.Preprocsen: On input (x,Rsen) it executes as follows. The Π′.Preprocsen first executes
Π.GenSwTok(x,Rsen) to obtain (sware, s), where s is the string contained in htokens. The
output of Π′.Preprocsen is (sware, s).

- Π′.EvalHTsen: On input ((sware, s), htokens
(1)
sen, htokens

(2)
sen), it does the following. It queries

htokens
(1)
sen on input sware to obtain z̃1. It then queries htokens

(2)
sen on input s to obtain z̃2.

The sender on input x and randomness Rsen first executes Π′.InpFreePP on input (x,Rsen) to

obtain (htokens
(1)
sen, htokens

(2)
sen, htokensrec). It then executes Π′.Preprocsen on input (x,Rsen) to obtain

(sware, s). Finaly Π′.EvalHT is executed on input ((sware, s), htokens
(1)
sen, htokens

(2)
sen) to obtain x̃1 and

x̃2. The sender sends to the receiver (z̃1, z̃2) as the software and htokensrec as the hardware.
The receiver of Π′ more or less behaves the same way as the receiver of Π. The receiver of Π′

on input (y,Rrec) and upon receiving (Software, htokens) from the sender, does the following.

- Parse Software as (z̃1, z̃2).

- It runs Π.Preprocess on input (y,Rrec, z̃1) to obtain q.

- Query the tokens htokens on input q to obtain ans. Compute ãns such that the ith bit of ãns
is the XOR of the ith bit of ans and the ith bit of z̃2.

- It then executes Π.Output on input ãns to obtain the output of the functionality.

The proof of security of Π′ can be more or less argued directly from the proof of security of Π. The
main idea is that the simulator instead of giving the answers ans (as in the case of Π), first outputs
a random string R as part of software. When the receiver submits its query it computes ans, using
the simulator of Π, and then outputs ãns , where the ith bit of ãns is ansi ⊕ Ri, where ansi is the
ith bit of ans. The rest of the details of the simulator of Π′ is the same as the simulator of Π.

Whenever we say that a functionality has a protocol in the bit-OT token model we assume that it
is a SplitState protocol. In the class of SplitState protocols, we further consider a special class of
protocols which we term as simplified protocols.

Simplified protocols. These are SplitState protocols which have a trivial preprocessing algorithm
on the sender’s as well as receiver’s inputs. In more detail, a protocol is said to be a simplified
protocol if it is a SplitState protocol, and the sender’s preprocessing algorithm Preprocsen as well as
the receiver’s preprocessing algorithm Preprocrec can be implemented by depth-0 circuits. Recall
that depth-0 circuits which solely consists of wires and no gates. We now explore the relation
between the simplified protocols and decomposable randomized encodings. We show, for every
functionality, the equivalence of DRE and simplified protocols in the bit-OT token model.

Theorem 6. There exists an efficient decomposable randomized encoding for a functionality f iff
there exists a simplified protocol for f in the bit-OT token model.
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Proof. Consider a function f that takes as input of the form (x, y) whose total length is m, where
x is of length mx and y is of length my. Suppose there exists a decomposable randomized encoding
for f , we construct a simplified protocol for f as follows. Let DRE for f consists of the following
algorihtms (RE.Encode,RE.ChooseInpWires,RE.Decode). The sender of the simplified protocol, on
input (x,Rsen), executes the following algorithms in order.

• InpFreePP: On input randomness Rsen it first executes RE.Encode on input (x,Rsen) to obtain
f̃ and state. Suppose that state = ((s0

1, s
1
1), . . . , (s0

m, s
1
m)). As a simplification, we assume that

all sbi ’s are bits. The argument can be extended when sbi are strings. It composes the tokens
as follows. The ith token contains the pair of bits (s0

i , s
1
i ). Denote these tokens as htokens.

The tokens htokens can be further split into sender’s tokens and receiver’s tokens. The first
mx tokens of htokens is denoted by htokenssen (sender’s tokens) and the rest of the my tokens
is denoted by htokensrec (receiver’s tokens). InpFreePP outputs (f̃ , htokenssen, htokensrec).

• Preprocsen: On input x and randomness Rsen it outputs x.

• EvalHTsen: On input x from Preprocsen and htokenssen it does the following. It evaluates the
ith token in htokenssen using the ith bit of x. Let x̃ be a concatenation of all the answers from
the tokens. The output of this step is x̃.

The output of the sender is (Software = (f̃ , x̃), htokensrec). We now proceed to describe the receiver.
The receiver on input (y,Rrec) along with (Software = (f̃ , x̃), htokensrec) which it receives from the
sender, it does the following. It first executes Preprocrec which on input (y,Rrec) outputs y. It then
executes EvalHTrec which evaluates the ith token of htokensrec on input the ith bit of y to obtain
the ith bit of ỹ. The receiver then executes the Output algorithm which is described as follows.
It takes as input (ỹ, Rrec, f̃ , x̃) and executes RE.Decode(f̃ , x̃, ỹ) to obtain z which is output by the
receiver. Firstly, it can be seen that this is a simplified protocol. Further, the correctness and
privacy properties of DRE respectively implies correctness and the security of the protocol.

We now prove the other direction. Suppose there exists a simplified protocol for f then we show
that there exists a decomposable randomized encoding, denoted by RE = (Encode, ChooseInpWires,
Decode), for f as follows. We first make modifications to the simplified protocol that makes the
presentation of RE easier. The InpFreePP procedure is modified such that instead of outputting
the tokens htokenssen and htokensrec, outputs the string contained in them. We further use the fact
that Preprocsen and Preprocrec are depth-0 circuits to modify them such that Preprocsen, on input
(x,Rsen), outputs x and Preprocsen on input (y,Rrec) outputs y. We now describe the RE procedure.

The RE.Encode procedure takes as input f (here we don’t distinguish between a functionality and
the circuit implementing it) and then executes InpFreePP(f,Rsen) to obtain f̃ and state (recall that
InpFreePP is modified such that it outputs the string contained in the tokens instead of outputting
the tokens.). That is, the (2i − 1)th as well as the 2ith bits in the string state are precisely the
bits contained in the ith token (Again, we are making a simplification here. This argument can
be generalised if (2i − 1)th as well as the 2ith positions in state contains strings and not bits.).
Further, the RE.Decode algorithm takes as input f̃ along with x̃ as well as ỹ and then it executes
the Decode algorithm (of the receiver). The output of RE.Decode is essentially the output of the
Decode algorithm of the receiver. It follows from the security of the simplified protocol that RE is
a valid decomposable randomized encoding (and hence, a randomized encoding).

Ishai et al. [30] show that there exists decomposable randomized encodings for all functions in NC1.
From this result and Theorem 6, the following corollary is immediate.
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Corollary 7. There exists a simplified protocol for all functions in NC1.

4.5 Main Theorem

We now state the following theorem that shows that every function that has a non-adaptive protocol
in the bit-OT token model also has a simplified protocol. Essentially this theorem says the following.
Let there be a non-adaptive protocol in the bit-OT token model for a function. Then, no matter
how complex the preprocessing algorithm is in this protocol, we can transform this into another
protocol which has a trivial preprocessing on its inputs. Since a function having a non-adaptive
protocol also has a SplitState protocol from 5, we will instead consider SplitState protocols in the
below theorem.

Theorem 8. Suppose there exists a SplitState protocol for f in the bit-OT token model having
O(p(k)) number of tokens, for some polynomial p. Then, there exists a simplified protocol for f in
the bit-OT token model having O(p(k)) number of tokens.

Proof. Consider the set S of all SplitState protocols for f each having O(p(k)) number of tokens.
In this set S, consider the protocol Π′sen having the least depth complexity of Preprocsen. That is,
protocol Π′sen is such that the following quantity is satisfied.

Depth(Π′sen.Preprocsen) = min
Π∈S

{
Depth(Π.Preprocsen)

}
We claim that the Π′sen.Preprocsen is a depth-0 circuit. If it is not a depth-0 circuit, then we
arrive at a contradiction. We transform Π′sen into Π′′sen, and show that Depth(Π′sen.Preprocsen) <
Depth(Π′′sen.Preprocsen). This would contradict the fact that the depth of Π′sen.Preprocsen is the
least among all the protocols in S. To acheive the transformation, we first break Π′sen.Preprocsen
into two circuits Π′sen.Preproc

up
sen and Π′sen.Preproc

low
sen such that, Π′sen.Preprocsen will first execute

Π′sen.Preproc
low
sen and its output is fed into Π′sen.Preproc

up
sen whose output determines the output of

Π′sen.Preprocsen. Further, Π′sen.Preproc
up
sen consists of a single layer of the circuit and hence has

depth 1 (If Π′sen.Preprocsen was just one layer to begin with then Π′sen.Preproc
low
sen would be a

depth-0 circuit.). Then we define a functionality which executes the algorithms Π′sen.Preproc
up
sen

and Π′sen.EvalHTsen. We observe that this functionality can be realized by an NC1 circuit. Then,
we proceed to replace the procedures Π′sen.EvalHTsen and Π′sen.Preproc

up
sen by the sender algorithm of

a simplified protocol defined for this functionality, the existence of which follows from Corollary 7.
The Preprocsen of the resulting protocol just consists of Π′sen.Preproc

low
sen and this would contradict

the choice of Π′sen. We now proceed to the technical details.

The sender algorithm of Π′sen can be written as (Π′sen.InpFreePP, Π′sen.Preprocsen, Π′sen.EvalHTsen)
and the receiver of Π′sen can be written as (Π′sen.Preprocrec, Π′sen.EvalHTrec, Π′sen.Output). The de-
scription of these algorithms are given in Section 4. Consider the following functionality, denoted
by fNC1 .

f sen
NC1(s, tempx;⊥):- On input (s, tempx) from the sender, it first executes Π′sen.Preproc

up
sen(tempx) to

obtain x′. It then parses s as ((s0
1, s

1
1), . . . , (s0

m, s
1
m)), where the size of x′ is m. It then computes

x̃ = (s
x′1
1 , . . . , s

x′m
m ), where x′i is the ith bit of x′. Finally, output x̃. This functionality does not take

any input from the receiver.
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InpFreePP Preprocsen

EvalHTrec
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Preprocrec
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Software

x~

(y,Rrec,Software,x) ~

y’

~y

f(x,y)

htokensrec

low

Preprocsen

up

(y,Rrec,
SoftwareNC1,x)~

Figure 1: This represents the protocol Π′sen and the shaded area denotes the functionality f sen
NC1 .

Observe that f sen
NC1 is a NC1 circuit and has a simplified protocol from Corollary 7. Let us call

this protocol Πsen
NC1 . Since, the receiver’s input is ⊥, the sender algorithm in this protocol does not

output any tokens 3. We use Π′sen and Πsen
NC1 to obtain Π′′sen. The protocol Π′′sen is described as follows.

Before we describe the sender algorithm of Π′′sen, we modify the sender of Π′sen such that, the
algorithm Π′sen.InpFreePP instead of outputting htokensrec he just outputs s, which is nothing but
the string contained in htokenssen. The sender algorithm of Π′′sen on input (x,Rsen), does the
following.

• It first executes Π′sen.InpFreePP(Rsen) to obtain (Software, s, htokensrec), where s, as described
before is the string obtained by concatenating all the bits in htokenssen.

• It then executes Πsen.Preproc
low
sen on input (x,Rsen) to obtain tempx.

• It then executes the sender algorithm of Πsen
NC1 with input (s, tempx). Let the output of this

algorithm be SoftwareNC
1

.

• Send (Software,SoftwareNC
1

, htokensrec) across to the receiver (recall that the sender of Πsen
NC1

does not output any tokens.).

The receiver on input (y,Rrec) along with (Software,SoftwareNC
1

, htokensrec) which it receives from
the sender, does the following.

3From the Corollary 7 and Ishai et al. [30], the simplified protocols defined for NC1 functionalities are such that
the sender does not send any tokens to the receiver if the receiver does not have any input.
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• It executes the receiver algorithm of Πsen
NC1 on input SoftwareNC

1

as well as its internal ran-
domness to obtain x̃. Note that the receiver of Πsen

NC1 does not have its own input.

• It then executes the receiver algorithm of Π′sen on input (y,Rrec,Software, x̃, htokensrec). Let
the output of this algorithm be out.

• Output out.

We show, in Figure 2, how we replace EvalHTsen and Preprocupsen in Π′sen by the protocol Πsen
NC1 to

obtain the protocol Π′′sen. We give the final decription of Π′′sen in Figure 3 where we expand out the
sender and the receiver algorithms of Πsen

NC1 .

Sender (x,Rsen)
 

Receiver (y,Rrec)
 

sender of    

InpFreePP

EvalHTrec

Output

Preprocrec

Rsen
(x,Rsen)

tempx
s

htokensrec

Software y’

~y

f(x,y)

htokensrec

low

sen

NC1

receiver of NC1

sen

SoftwareNC1

(y,Rrec,
SoftwareNC1)

string 
contained in
htokenssen 

(y,Rrec,
Software)

~x

Preprocsen

SoftwareNC1

Figure 2: In this figure, the shaded area in Figure 1 is replaced by the protocol Πsen
NC1 .

We first claim that the protocol Π′′sen satisfies the correctness property. This follows directly from
the correctness of the protocols Π′sen and Πsen

NC1 . The security of the above protocol is proved in the
following lemma.

Lemma 9. Assuming that the protocol Π′sen and Πsen
NC1 is secure, the protocol Π′′sen is secure.

Proof Sketch. To prove this, we need to construct a simulator SimΠ′′sen , such that the output of
the simulator is indistinguishable from the output of the sender of Π′′sen. To do this we use the
simulators of the protocols Π′sen and Πsen

NC1 which are denoted by SimΠ′sen and SimΠsen
NC1

respectively.
The simulator SimΠ′′sen on input out, which is the output of the functionality f , along with

y′ which is the query made by the receiver to the OT tokens does the following. It first exe-
cutes SimΠ′sen(out, y

′) to obtain (Software, x̃, ỹ). Then, SimΠsen
NC1

on input x̃ is executed to obtain

SoftwareNC1

. The output of SimΠ′′sen is (Software,SoftwareNC
1

,ỹ). By standard hybrid arguments, it

20



Sender (x,Rsen)
 

Receiver (y,Rrec)
 

EvalHTsen

InpFreePP Preprocsen

EvalHTrec

Output

Preprocrec
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SoftwareNC1

NC1

InpFreePPNC1

NC1

Output
NC1

(y,Rrec,
SoftwareNC1)

Figure 3: This figure depicts the protocol Π′′sen after expanding out the procedures in the sender

and the receiver algorithms of Πsen
NC1 . The algorithms InpFreePPNC1 , EvalHTNC1

sen (which are shaded)
are part of the sender of Πsen

NC1 . Since, Πsen
NC1 is a simplified protocol, its Preprocsen of Πsen

NC1 is a

depth-0 circuit. Further, the procedure OutputNC
1

(shaded) is part of the receiver of Πsen
NC1 . Since

the sender of the protocol Πsen
NC1 does not output any tokens the receiver of Πsen

NC1 consists of just
the algorithm OutputNC1 .

can be shown that the output of the simulator SimΠ′′sen is indistinguishable from the output of the
sender of Π′′sen.

The above lemma proves that Π′′sen is a secure protocol for f . We claim that the number of tokens
in Π′′sen is O(p(k)). This follows directly from the fact that the number of tokens output by the
sender of Π′sen is the same as the number of tokens output by Π′′sen. And hence, the number of
tokens output by the sender of Π′′sen is O(p(k)). Further, the the depth of Preprocsen of Π′′sen is
strictly smaller than the depth of Π′sen.Preprocsen. This contradicts the choice of Π′sen and so, the
Preprocsen algorithm of Π′sen is a depth-0 circuit.

Now, consider a set of protocols, S′ ⊂ S such that the Preprocsen algorithms of all the protocols
in S′ are implementable by depth-0 circuits. From the above arguments, we know that there is
at least one such protocol in this set. We claim that there exists one such protocol in S whose
Preprocrec algorithm is implementable by a depth-0 circuit. The argument for this is similar to
the argument for the previous case. Hence, we will highlight only those places where the argu-
ment changes. Consider a protocol in S′, denoted by Π′rec such that the depth of Π′rec.Preprocrec
is at most the depth of Preprocrec of any protocol in S′. We then transform Π′rec into another
protocol Π′′rec such that the depth of Π′′rec.Preprocrec is strictly less than the depth of Π′rec.Preprocrec
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which contradicts the choice of Π′rec. The transformation is as follows. We split Π′rec.Preprocrec into
Π′rec.Preproc

up
rec and Π′rec.Preproc

low
rec . Also, Π′rec.Preproc

up
rec consists of a single layer of gates. Now

consider the following functionality.

f rec
NC1(str; tempy): On input (str; tempy), where str is the sender’s input and tempy is the receiver’s

input, execute Preprocuprec on input tempy to obtain y′. Then, parse str as ((str01, str
1
1), . . . , (str0l , str

1
l )),

where l denotes the length of y′. Let ỹ be (str
y′1
1 , . . . , str

y′l
l ), where y′i is the ith bit of y′. Output ỹ.

Sender (x,Rsen)
 

Receiver (y,Rrec)
 

EvalHTsen

InpFreePP

EvalHTrec

Output

Preprocrec

Rsen

(x,Rsen)

htokenssen

htokensrec

Software

x~

(y,Rrec,Software,x)~

y’

~y

f(x,y)

htokensrec

Preprocrec

low 

up 

(y,Rrec,
SoftwareNC1,x)~

Figure 4: This represents the protocol Π′rec and the shaded area denotes the functionality f rec
NC1 .

Since, f rec
NC1 is a NC1 circuit, from Corollary 7 there exists a simplified protocol for f rec

NC1 , denoted
by Πrec

NC1 . We use Π′rec and Πrec
NC1 to obtain Π′′rec. The protocol Π′′rec is described as follows.

Before we describe the sender of Π′′rec, we modify the sender of Π′rec such that the Π′rec.InpFreePP,
instead of outputting htokensrec outputs a string s which is the concatenation of the bits in htokensrec.
The sender algorithm of Π′′rec on input (x,Rsen), does the following.

• It first executes Π′rec.InpFreePP(Rsen) to obtain (Software, htokenssen, s).

• It then executes Π′rec.Preprocsen(Rsen) (which is a depth-0 circuit) on input (x,Rsen) to obtain
x′.

• It then executes Π′rec.EvalHTsen on input htokenssen and x′ to obtain x̃.

• It then executes the sender algorithm of Πrec
NC1 with input s. Let the output of this algorithm

be (SoftwareNC
1

, htokensNC
1

rec ).
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• Send (Software, x̃,SoftwareNC
1

, htokensNC
1

rec ) across to the receiver.

The receiver on input (Software, x̃,SoftwareNC
1

, htokensNC
1

rec ), does the following.

• It executes Preproclowrec of Π′rec on input (y,Rrec, Software, x̃) to obtain tempy.

• It then executes the receiver algorithm of Πrec
NC1 on input (tempy, Rrec, SoftwareNC

1

, x̃NC1
,

htokensNC
1

rec ) to obtain ỹ.

• Finally, the Output algorithm of Π′rec is executed to obtain out, which is output by the receiver.

In Figure 5, we show how we replace EvalHTrec and Preprocuprec in Π′ by the protocol Πrec
NC1 to

obtain the protocol Π′′rec. The final description of Π′′rec is given in Figure 6 where have expanded
out the sender and the receiver algorithms of Πrec

NC1 .

Sender (x,Rsen)
 

Receiver (y,Rrec)
 

sender of    

InpFreePP

Output

Rsen

(x,Rsen)

s
htokensrec

Software

(y,Rrec,Software,x)

~y

f(x,y)

(SoftwareNC1

,htokensrec

 ,Rrec) 
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NC1

receiver of 
NC1

rec

SoftwareNC1

(y,Rrec,
Software,x )

NC1string 
contained 
in
htokensrec 

Preprocrec
low 

EvalHTsen

htokenssen x~

~

~

tempy

Figure 5: In this figure, the shaded area in Figure 4 is replaced by the protocol Πrec
NC1 .

As before, the correctness follows immediately. The following lemma proves the security of the
above protocol.

Lemma 10. Assuming that the protocol Π′rec and Πrec
NC1 is secure, the protocol Π′′rec is secure.

Proof Sketch. To prove this, we need to construct a simulator SimΠ′′rec , such that the output of
the simulator is indistinguishable from the output of the sender of Π′′rec. To do this we use the
simulators of the protocols Π′rec and Πrec

NC1 which are denoted by SimΠ′rec and SimΠrec
NC1

respectively.

Before we construct the simulator, we first recall that the query to the tokens in Π′′rec is the
output of Preprocuprec. The simulator SimΠ′′rec on input out, which is the output of the functionality f ,
along with tempy which is the query made by the receiver of Π′′rec to the tokens does the following.
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Figure 6: This figure depicts the protocol Π′′rec, after expanding out the procedures in the sender
and the receiver algorithms of Πrec

NC1 . The algorithm InpFreePPNC1 (shaded) is part of the sender of
Πrec

NC1 . Since, Πrec
NC1 is a simplified protocol, its Preprocrec algorithm is a depth-0 circuit. Further,

the procedures EvalHTNC1

rec and OutputNC
1

(shaded) are part of the receiver of Πrec
NC1 .

It first executes Π′rec.Preproc
up
rec on input tempy to obtain y′. It then executes SimΠ′rec(out, y

′) to

obtain (Software, x̃, ỹNC
1
). Then, SimΠrec

NC1
is run on input (tempy, ỹ

NC1
) to obtain (SoftwareNC

1

, ỹ).

The output of SimΠ′′rec is (Software, x̃,SoftwareNC
1

, ỹNC
1
). By standard hybrid arguments, it can be

shown that the output of the simulator SimΠ′′rec is indistinguishable from the output of the sender
of Π′′rec.

The above lemma proves that Π′′rec is a secure protocol for f . Further, the number of tokens in
Π′′rec is O(p(k)). To see this, we observe that the number of the tokens in the simplified protocol
for a NC1 functionality F obtained from Corollary 7 [30] is 2d|F |, where |F | is the size of the
circuit implementing F and d denotes the depth of the circuit. Since, f rec

NC1 can be implemented

by a constant depth circuit with size O(p(k)), the number of tokens in ΠNC1

rec , and hence Π′′rec, is
O(p(k)). Further, note that the depth of Preprocrec of Π′′rec is strictly smaller than the depth of
Π′rec.Preprocrec. This contradicts the choice of Π′rec, thus showing that Preprocrec algorithm of Π′rec
is a depth-0 circuit. Moreover, the Preprocsen algorithm of Π′rec is also a depth-0 circuit, which
proves that Π′rec is a simplified protocol.

We now show that the existence of a non-adaptive protocol for a function implies the existence
of a decomposable randomized encoding for that function. Suppose there exists a non-interactive
and a non-adaptive protocol for f in the bit-OT token model. Then, from Theorem 8 it follows
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that there exists a simplified protocol for f . Further, from Theorem 6, it follows that there exists
a DRE, and hence an efficient randomized encoding for f . Summarising, we have the following.

Theorem 11. If there exists a non-interactive and a non-adaptive protocol in the bit-OT token
model for a function f then there exists an efficient decomposable randomized encoding for f .

5 Lower Bound for Obfuscation Complete Oracle Schemes

In this section, we study the notion of an obfuscation complete oracle scheme. Roughly speaking,
an obfuscation complete oracle scheme consists of an oracle generation algorithm whose execution
results in: (a) a secret obfuscation complete circuit (whose size is only dependent on the security
parameter), and, (b) a public obfuscation function. We call an oracle implementing the function-
ality of the secret obfuscation complete circuit an obfuscation complete (OC) oracle. The public
obfuscation function can be applied on any desired (polynomial size) circuit to produce an obfus-
cated oracle circuit. This oracle circuit would make calls to the OC oracle during its execution.
The OC oracle implements a fixed functionality and cannot keep any state specific to the execution
of any obfuscated program. Informally, our security requirement is that for every polynomial size
circuit C, whatever can be computed given access to the obfuscated oracle circuit for C and the
OC oracle, can also be computed just given access to an oracle implementing the functionality of
C. An obfuscation complete oracle scheme is formally defined as follows.

Definition 5. A secure obfuscation complete oracle scheme consists of a randomized algorithm
OracleGen called the oracle generation algorithm such that an execution OracleGen(1κ) (where κ
denotes the security parameter) results in a tuple (T,OT ). The string T is the description of the
circuit called the secret obfuscation complete circuit while OT is a function (or the description of
a Turing machine) called the public obfuscation function.4 The tuple (T,OT ) has the following
properties:

1. Preserve Functionality. The application of the function OT (·) to a circuit C results in an
obfuscated oracle circuit OT (C) (which during execution might make calls to the oracle T
implementing the functionality T ). We require the obfuscated oracle circuit OT (C) to have
the same functionality as the circuit C. In other words, ∀C,∀x, we must have:

OT (C) = C(x)

2. Polynomial Slowdown. There exist polynomials p(·, ·) and q(·) such that for sufficiently
large κ and |C|, we have:

|OT (C)| ≤ p(|C|, κ), and, |T | ≤ q(κ)

Observe that the size of the circuit T is dependent only on the security parameter.

3. Virtual Black Box. For every PPT adversary A, there exists a PPT simulator Sim and a
negligible function negl(·) such that for every PPT distinguisher D, for every circuit C and
for every polynomial size auxiliary input z:

4The modeling of T as a circuit rather than a Turing machine is to reflect the fact that given the security
parameter, the size and the running time of T is fixed and it handles inputs of fixed size (so that T can, for example,
be implemented in a small tamper proof hardware token).
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Pr[D(AT (OT (C), z), z) = 1]− Pr[D(SimC(1|C|, T, z), z) = 1] ≤ negl(κ)

In other words, we require the output distribution of the adversary A and that of the simulator
Sim to be computationally indistinguishable.

By replacing the above virtual black box definition by the “predicate” virtual black box def-
inition used by Barak et al. (see [1] for more details), we obtain a relaxed security notion for
obfuscation complete oracles schemes. This relaxed version will be used for our lower bounds.

5.1 Lower Bounds

In Section 6.2.2 [26] (full version), Goyal et al. construct an obfuscation complete oracle scheme
in the Fstatelesswrap -hybrid model5. In their scheme, if the size of original circuit is |C|, then the
obfuscated oracle circuit makes O(|C| · log(|C|)) calls to the OC oracle, which is embedded inside a
stateless token. Thus, a natural question is: “Do there exist obfuscation complete oracles schemes
for which the above query complexity is lower?” Towards that end, we show a lower bound which
rules out obfuscation complete oracles schemes where this query complexity is a constant.

5.1.1 Turing machines

We start by proving the lower bound result for the case of Turing machines. While this case is
significantly simpler, it would already illustrate the fundamental limitations of OC Oracle schemes
with low query complexity. For an OC scheme, denote by Q(|M |) the number of queries the
obfuscated Oracle Turing machine OT (M) makes to the Oracle T . We now have the following
theorem.

Theorem 12. For every constant q, there does not exist any obfuscation complete oracle scheme
such that for every Turing machine M , query complexity Q(|M |) ≤ q.

Proof. We prove the above theorem by contradiction. Assume that there exists such an OC Oracle
scheme would query complexity Q(|M |) ≤ q. Let the size of response to a query to the Oracle
T be bounded by p(k). Hence, observe that the information “flowing” from the Oracle T to the
obfuscated Oracle TM OT (M) is bounded by q · p(k). We will show that this communication
between the Oracle and the obfuscated TM is not sufficient for successful simulation. Let f1 :
{0, 1}≤poly(k) → {0, 1}q·p(k)+k and f2 : {0, 1}≤poly(k) → {0, 1}poly(k) denote functions drawn from a
pseudorandom function ensemble. Now define a functionality Ff1,f2,s(., .) as follows. For b ∈ {1, 2},
we have Ff1,f2,s(b, x) = fb(x). For b = 3 (referred to as mode 3), we interpret the input x as the
description of an Oracle TM M and a sequence of q strings a1, . . . , aq. The function outputs ⊥ if
there exists an i s.t. |ai| > p(k). Otherwise, run the machine M(1, f2(M)). When the machine
makes the ith Oracle query, supply ai as the response (irrespective of what the query is). Now,
if M(1, f2(M)) = f1(f2(M)), output s, else output ⊥. To summarize, check if the Oracle TM
behaves like the PRF f1 on a random point (determined by applying PRF f2 on the description of
the machine) and if so, output the secret s. (The function Ff1,f2,s(., .) is actually uncomputable.

5They actually construct a secure protocol for stateless oblivious reactive functionalities. However, it is easy to
see that the same protocol gives us an obfuscation complete oracle scheme.
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However, similar to [1], we can truncate the execution after poly(k) steps and output 0 if M does
not halt.) Denote the obfuscated Oracle TM for this function as OT (Ff1,f2,s).

Consider the real world when the adversary is given access to description of the Oracle TM
M ′ = OT (Ff1,f2,s) and is allowed to query the Oracle T . In this case, the adversary can recover s
as follows. First recover d = M ′(2,M ′) (by simply running the obfuscated Oracle TM M ′ on its own
description string with the help of the Oracle T ). Now the adversary executes M ′(1, d) and stores
responses of T to all the queries made by M ′(1, d). Call the responses a1, . . . , aq. Finally, prepare
a string x containing the description of M ′ along with the strings a1, . . . , aq and execute M ′(3, x).
M ′ will in turn execute M ′(1, d) using a1, . . . , aq and, by construction, will get f1(f2(M ′)). Thus,
the adversary will receive s as output. Hence, we have constructed a real word adversary A such
that:

Pr[AT (OT (Ff1,f2,0)) = 1]− Pr[AT (OT (Ff1,f2,1)) = 1] = 1 (4)

Now consider the ideal world where the adversary S only has Oracle access to the functionality
Ff1,f2,s. For simplicity, we first consider the hybrid ideal world where the functions f1 and f2

are truly random (that is, for each input, there exists a truly random string which is given as
the output). Without loss of generality, we assume that S does not query Ff1,f2,s multiple times
with the same input. Consider a query (2,M) to the functionality Ff1,f2,s. Then it is easy to
see that, except with negligible probability, S has not issued the query (1, f2(M)) so far (where
the probability is taken over the choice of truly random function f2). Now when M(1, f2(M))
is executed, depending upon how the Oracle queries are answered, the total number of possible
outputs is 2q·p(k). Lets call this output set So. The probability (taken over the choice of f1) that

f1(f2(M)) ∈ So can be bounded by 1
2k

( = |So|
2|f1(f2(M))| ) which is negligible. Thus, when S queries

with (3,M ||a1|| . . . ||aq), except with negligible probability, it will get ⊥ as the output no matter
what a1, . . . , aq are. By a straightforward union bound, it can be seen that except with negligible
probability, all the queries of S in mode 3 will result in ⊥ as the output (as opposed to s). By
relying on the pseudorandomness of f1 and f2, this will also be true not only in the hybrid ideal
world but also in the actual ideal world. Hence we have shown that for all ideal world adversaries
S,

Pr[SFf1,f2,0(1k) = 1]− Pr[SFf1,f2,1(1k) = 1] ≤ negl(k) (5)

Combining equations 4 and 5, we get a contradiction with the relaxed virtual black box property
(see the predicate based virtual black box property in [1]) of the OC Oracle scheme.

5.1.2 Circuits

In extending the impossibility result to the case of circuits, the basic problem is that since the input
length of the circuit is fixed, it may not be possible to execute a circuit on its own description.
To overcome this problem, [1] suggested a functionality “implementing homomorphic encryption”.
This allowed the functionality to let the user (or adversary) evaluate a circuit “gate by gate” (as
opposed to feeding the entire circuit at once) and still test certain properties of the user circuit.
These techniques do not directly generalize to our setting. This is because in our setting, the Oracle
queries made by the adversary’s circuit will have to be seen and answered by the adversary. This
might leak the input on which the circuit is being “tested” by the functionality. Thus, once the
adversary knows the input and hence the “right output”, he might, for example, try to change the
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circuit or tamper with intermediate encrypted wire values to convince the functionality that the
circuit is giving the right output. We use the techniques developed in Section 6.2.2 [26] to overcome
these problems. Note that these problems do not arise in the setting of Barak et al [1] since there
the adversary never gets to see the input on which his circuit is being tested (and hence cannot
pass the test even if he can freely force the circuit to give any output of his choice at any time).
We now state and prove our impossibility results for circuits.

Theorem 13. For every constant q, there does not exist any obfuscation complete oracle scheme
such that for every circuit C, query complexity Q(|C|) ≤ q.
Proof. We only provide a sketch of the proof (details follow from the ideas in Theorem 12, and
Sections 6.2.2 and 6.2.3 in the full version of [26]). Again, assume that there exists such an OC
Oracle scheme with query complexity Q(|C|) ≤ q. Let the size of response to a query to the Oracle
T be bounded by p(k) s.t. the information flowing from the Oracle T to the obfuscated Oracle
circuit OT (C) is bounded by q · p(k). Let f1 : {0, 1}≤poly(k) → {0, 1}q·p(k)+k, f2 : {0, 1}≤poly(k) →
{0, 1}poly(k) and f3 : {0, 1}≤poly(k) → {0, 1}poly(k) denote functions drawn from a pseudorandom
function ensemble. Now define a functionality Ff1,f2,f3,k,s(., .) as follows. For b ∈ {1, 2}, we have
Ff1,f2,f3,k,s(b, x) = fb(x). In mode 3 (i.e., b = 3), as before, the function enables a user to feed in
an Oracle circuit, get it tested on a random input and if the output is correct, get the secret s.
This is done by enabling various types of queries in this mode. Below, we describe how a user can
get an Oracle circuit C of his choice tested by the functionality (and describe queries handled by
the functionality in mode 3 as we go along). Without loss of generality, we assume that C consists
only of fan-in two NAND gates and oracle gates.

• User starts with an Oracle circuit C : {0, 1}m → {0, 1}n. Uniquely number each wire in
C such that the m input wires are assigned numbers from 1 to m and n output wires are
assigned numbers from m+ 1 to m+ n. Each non-Oracle gate in C is uniquely identified by
a tuple (a, b, c) where a and b are the index numbers of the input wires and c is the index
number of the output wire. Sort these tuples in the increasing order of c and create a hash
chain as:

Hi = H(Hi−1, a, b, c),

where H is a collision resistant hash function (CRHF) and H0 is an all zero string of ap-
propriate length. Assuming there are g non-Oracle gates in C, the result will be Hg. Note
that w.l.g., each Oracle gate in C has fan out p(k). Denote the index numbers of the out-

put wires of the ith Oracle gate by w1
i , . . . , w

p(k)
i . Query the functionality Ff1,f2,f3,k,s with

(2, Hg||m||n||(|C|) ||w1
1|| . . . ||w

p(k)
q ) to get d = f2(Hg||m||n||(|C|)||w1

1|| . . . ||w
p(k)
q ). The user

now executes the Oracle circuit C on input (1, d) and stores responses of T to all the queries
made by C(1, d). Call the responses a1, . . . , aq.

• The user now queries to functionality in mode 3 withHg,m, n, |C|, {w1
i , . . . , w

p(k)
i }i∈[q], a1, . . . , aq.

The basic idea is that given these values, the user is committed to the value on each wire in

the Oracle circuit C. Ff1,f2,f3,k,s sets EID = f3(Hg||m||n||(|C|)||w1
1|| . . . ||w

p(k)
i ||a1|| . . . ||aq).

Let EMk(m) denote the authenticated encryption of the message m with the secret key k
(using, e.g., encrypting then including a MAC of the ciphertext). Similar in spirit to the
construction in Section 6.2.2 in [26], the functionality Ff1,f2,f3,k,s gives out an authenticated

encryption for each of the input wires. That is, for i ∈ [m], output EMk(w
j
i , EID, ai[j]) where

ai[j] is the jth bit of the string ai.
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• Very similar to the construction in Section 6.2.2 in [26], the user now queries the functionality
to “unwind” the hash chain Hg to obtain EMk(a, b, c, EID). For a gate represented by the
tuple (a, b, c). For each query, the functionality ensures that the index number of the output
wire c is strictly lower than that of the one in the previous link of the hash chain (this
can be done in the natural way by including index numbers of the previous output wires
in the intermediate authenticated encryptions). Also, the functionality ensures that for all
i ∈ [q], j ∈ [p(k)], c 6= wji . These checks are to avoid assigning multiple values to the same
wire in the circuit C.

• User now evaluates the circuit gate by gate for all non-Oracle gates by issuing a query of
the form EMk(a,EID, va), EMk(b, EID, vb) and EMk(a, b, c, EID). The functionality checks
the consistency of the execution identity EID and outputs EMk(c, EID, vc) where vc = va
NAND vb.

• User can finally get the secret s by querying with the “header information” and the encrypted

values on the output wires. More precisely, user queries withHg,m, n, |C|, {w1
i , . . . , w

p(k)
i }i∈[q],

a1, . . . , aq, EMk(m+ 1, EID, vm+1), . . . , EMk(m+n,EID, vm+n). The functionality first ver-
ifies that the execution identity in all of the encrypted output wires is correct and then
recovers v = vm+1|| . . . ||vm+n. The functionality then checks if v = f1(f2(Hg,m, n, |C|,
{w1

i , . . . , w
p(k)
i }i∈[q])) and outputs s if so. Output ⊥ if any of these checks fail.

Indeed, as for the case of Turing machines, it is easy to see that an adversary A in the real
world can recover s. Hence,

Pr[AT (OT (Ff1,f2,f3,k,0)) = 1]− Pr[AT (OT (Ff1,f2,f3,k,1)) = 1] = 1 (6)

In the the ideal world, consider the query Hg,m, n, |C|, {w1
i , . . . , w

p(k)
i }i∈[q], a1, . . . , aq. Given

this information, it can be shown that the adversary S is essentially “committed” to the values on
all the wires in the circuit C (more precisely, an analog of Lemma 23 in [26] is true in this setting).
Similar to the case of Turing machines, let So be the set of all possible output of the Oracle circuit
C (recall that the output is determined by how the Oracle queries are answered). Thus, again the

probability that f1(f2(Hg,m, n, |C|, {w1
i , . . . , w

p(k)
i }i∈[q])) ∈ So is bounded by 1

2k
. This shows that

for all S,

Pr[SFf1,f2,f3,k,0(1k) = 1]− Pr[SFf1,f2,f3,k,1(1k) = 1] ≤ negl(k) (7)

Combining equations 6 and 7, we get a contradiction with the relaxed virtual black box property
of the OC Oracle scheme.
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