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Abstract. Research papers on new secure multi-party computation pro-
tocols rarely confirm the need for the developed protocol with its end
users. One challenge in the way of such validation is that it is hard to
explain the benefits of secure multi-party computation to non-experts.
We present a method that we used to explain the application models of
secure multi-party computation to a diverse group of end users in several
professional areas. In these interviews, we learned that the potential users
were curious about the possibility of using secure multi-party computa-
tion to share and statistically analyse private data. However, they also
had concerns on how the new technology will change the data analysis
processes. Inspired by this, we implemented a secure multi-party com-
putation prototype that calculates statistical functions in the same way
as popular data analysis packages like R, SAS, SPSS and Stata. Finally,
we validated the practical feasibility of this application by conducting an
experimental study that combined tax records with education records.

1 Introduction

Secure multi-party computation (SMC) has been researched and developed for
several decades. For years, SMC was rightfully considered too inefficient for
practical use. However, in recent years, several fast implementations have been
developed [2, 8]. Still, this powerful secure data manipulation tool has not become
as popular in practice as one would hope. People have managed without such a
technology for a long time and have replaced it with social solutions like non-
disclosure agreements and hoped that their shared data is kept safe by their
partners. Alternatively, they have legally been forbidden to do shared analysis.

Furthermore, SMC is not effective in every setting and knowledge about its
capabilities is still relatively uncommon. The goal of our research is to develop
usable and efficient SMC applications that meet the needs of the potential end
users and, through communicating those solutions, raise general awareness of
SMC in order to support sharing data without the fear of abuse.



At first, we directed our attention to the potential end users of SMC. We
interviewed several stakeholders from a variety of fields to find out whether data
holders see a need for this technology. As previous research has indicated, a
serious obstacle in user-driven innovation and involving users in the early stages
of development work is the problem of explaining such a complex technology to
the end-user who is rarely an expert [15, 23].

In order to overcome the communication challenge, we decided to describe
SMC visually. Our aim was to make it understandable and accurate, without
focusing on the mathematics behind SMC. Hence, in the models we designed
to assist the interview process, SMC is essentially a black box and different
stakeholders are shown to communicate with this box. Each of these stakeholders
has a set of roles that determines what that party is doing in the model.

We prepared 12 visual deployment models of SMC applications and used
them to interview 25 people from across different fields. We asked them whether
they can see a need for this technology in their field and what kind of social or
cultural obstacles they see in implementing such technology. We also asked them
to propose other fields that, in their opinion, could benefit from SMC.

The two most mentioned usage areas were statistical analysis and optimisa-
tion of supply and demand. We reviewed existing literature and saw that research
on cryptographically secure statistical analysis has largely been focused on pro-
tocols for a particular function. We decided to find our whether general SMC
can be efficient enough to support large-scale statistical data analysis.

Related work. To our knowledge, this is the first time that a study of this size
has been conducted to determine the real-world need for SMC. However, there
have been several efforts for implementing statistical functions.

Cryptographic primitives for evaluating statistical functions like mean, vari-
ance, frequency analysis and regression were proposed in [7, 9]. Early implemen-
tations of filtered sums and scalar products are described in [26]. Solutions based
on secret sharing include a protocol for mean value proposed in [20, 19].

In 2004, Feigenbaum et al. proposed to use SMC for analysing faculty incomes
in the annual Taulbee Survey [11]. The protocols designed for this study can be
found in [1]. In 2011, Bogdanov et al. deployed SMC for financial data analysis for
the Estonian Association of Information Technology and Telecommunications [3].
Kamm et al. have shown how to conduct secure genome-wide association studies
using secure multi-party computation [17].

Our contribution. We present a novel way for introducing SMC to non-
cryptographers and report the results of interviews we conducted with potential
end users of the technology. We analyse the responses of our interviewees and
identify their main expectations toward SMC.

As several interviewees reported a need for secure data analysis, we focus
our efforts on implementing statistical functions using SMC. We show how to
perform standard statistical procedures with SMC while preserving privacy and
without simplifying the algorithms.



We describe the secure computation of statistical measures (mean, variance,
standard deviation), frequency tables and quantiles. We show how to clean the
data and apply custom filters. We give algorithms for privacy-preserving hypoth-
esis testing using standard and paired t-tests, χ2-tests and Wilcoxon tests.

We implement all algorithms on the Sharemind SMC platform. We use
these implementations to conduct a complete privacy-preserving study featuring
statistical measure computation, filtering, database transformation, linking and
statistical tests. Performance results are provided for all implemented operations.

2 End user validation methodology

2.1 Modelling SMC deployments

We define three fundamental roles in an SMC system—the input party I, the
computation party C and the result party R. Input parties collect and send data
to the SMC system. The SMC system itself is hosted by computation parties
who carry out the SMC protocols on the inputs and send results to result parties
in response of queries.

We use the following notation for modelling SMC applications. Let Ik =
(I1, . . . , Ik) be the list of input parties, Cm = (C1, . . . , Cm) be the list of com-
puting parties and Rn = (R1, . . . ,Rn) be the list of result parties. Let Π be an
SMC protocol for performing a specific task.

In the following, ICR refers to a party that fills all three roles, similarly, IC
refers to a party with roles I and C. We use superscripts (k,m, n ≥ 1) to denote
that there are several parties with the same role combination in the system.

Real world parties can have more than one of these roles assigned to them.
The set {I, C,R} has 7 non-empty subsets and there are 27 possibilities to com-
bine them. However, we want to look only at cases where all three roles are
present. This leaves us with 128 − 16 = 112 possible combinations. Not all of
these make sense in a real-world setting, but we claim that all deployments of
SMC can be expressed using these 112 combinations.

2.2 Visualisation of SMC deployment models

As our aim was to find out what stakeholders expect from SMC, we discussed
SMC with people from different areas and asked them if they had had problems
with sharing data in their field. We assumed that the interviewees did not have
a background in computer science so approaching them with the usual SMC
descriptions was out of the question.

We planned to visualise typical SMC applications to make the idea under-
standable. Fortunately, our role-based model translates easily into illustrative
diagrams. See Table 1 for examples of deployment models inspired by published
research on SMC applications.

We prepared for the interviews by designing 12 deployment models, some of
which were based on existing SMC applications and some were imaginary. We



Basic deployment model Example applications

I C Rk SMC

The classic millionaires’ problem [28]
Parties: Two—Alice and Bob (both ICR)
Overview: Millionaires Alice and Bob use SMC to
determine who is richer.

Joint genome studies [17]
Parties: Any number of biobanks (all ICR)
Overview: The biobanks use SMC to create a joint
genome database and study a larger population.

I C k SMC  R m

Studies on linked databases (this paper)
Parties: Ministry of Education, Tax Board, Population
Register (all IC) and Statistics Bureau (R).
Overview: Databases from several government agencies
are linked to perform statistical analyses and tests.

I R k SMC  C m

Outsourcing computation to the cloud [12]
Parties: Cloud customer (IR) and cloud service
providers (all C).
Overview: The customer deploys SMC on one or more
cloud servers to process her/his data.

I C Rk SMC  IR m
Collaborative network anomaly detection [6]
Parties: Network administrators (all IR) a subset of
whom is running computing servers (all ICR).
Overview: A group of network administrators uses SMC
to find anomalies in their traffic.

I  k SMC   CRn

 C m

The sugar beet auction [4]
Parties: Sugar beet growers (all I), Danisco and DKS
(both CR) and the SIMAP project (C).
Overview: The association of sugar beet growers and
their main customer use SMC to agree on a price for
buying contracts.

I  k SMC   Rn

 C m

The Taulbee survey [11]
Parties: Universities in CRA (all I), universities with
computing servers (all IC) and the CRA (R).
Overview: The CRA uses SMC to compute a report of
faculty salaries among CRA members.

Financial reporting in a consortium [3]
Parties: Members of the ITL (all I), Cybernetica, Mi-
crolink and Zone Media (all IC) and the ITL board (R).
Overview: The ITL consortium uses SMC to compute
a financial health report of its members.

Table 1: SMC deployment models and example applications



designed large colourful and easily readable figures to help us describe SMC to
stakeholders during the interviews. On these figures we did not use the ICR
syntax, but rather real-world roles that the interviewee could relate to. The de-
scription of each model included the security and trust guarantees that SMC
provides for the parties. We could not include the figures here due to size con-
straints, but they can be found in [25].

2.3 Interview process and results

Our sample of 25 people was designed with the aim to get as much diversity as
possible. The interviewees were always given a possibility to propose additional
fields outside of their own where this kind of technology could be beneficial. Not
all of our interviewees could be considered potential users, some could rather
be described as stakeholders with knowledge of a potential social barrier. For
instance, among others, we interviewed a lawyer and an ethics specialist in or-
der to understand the larger societal implications. The interviewees originated
from six different countries, they came from academia, from both public and
private sector organizations, from small and medium sized enterprises to large
multinational corporations, from local government to state level. The people we
interviewed included representatives from the financial sector, agriculture, retail,
security, mobile technologies, statistics companies and IT in general.

We sent the materials to the interviewees beforehand to let them prepare for
the interview. We also used the figures during the interview process to trigger
conversation and to assist in understanding the principles of the technology.
During the interviews, we asked whether our interviewees recognised situations
in their field of expertise where they need to share protected data with others.

Of all the possible cases brought out in the deployment models, the cases
concerning the use of databases from different data sources for performing statis-
tical analysis were most discussed. It seems that the benefits of merging different
databases for statistical analysis were easily comprehensible for the interviewees
with different professional backgrounds. On the one hand, the interviewees had
many concerns, such as SMC conflicting with the traditional ways of doing things
and problems related to the existing legal and regulatory framework. At times,
the interviewees could not distinguish between anonymisation and SMC, or un-
derstand the operational challenges of using this kind of solution in practice.
On the other hand, the interviewees also saw many potential benefits of the
possible applications of SMC. They brought out examples how SMC could be
advantageous in their professional field: for example, an expert working in the
dairy industry said that there is a need to find a way to efficiently collect and
analyse sensitive data concerning the activities of dairy companies as the studies
form government research units do not fulfil the needs of the industry. Another
example comes from biomedicine:

“For example, if I as a researcher get the data about the number of abortions
but I also want to know how much all kind of associated complications cost, I
need to get data from the national Health Insurance Fund. But I only get data
from the Health Insurance Fund if I have the data from the abortion registry



with names and national identification numbers and then I ask the medical cost
records of those people. What I think is actually a really big security risk. If it
would be possible to link them differently, so I would receive impersonalised data,
that would be really good.” (I11, Academic sector, Biomedicine)

Several interviewees also pointed out how SMC could be used on a more gen-
eral level. The idea of using different state databases for statistical analysis was
seen as highly beneficial. For instance, an official working in a state institution
that coordinates the work of the national information system stated that making
more data and information available for public use is a relevant problem.

“After the presentation I thought that the state data should be made available
for people this way: for researches, statisticians, universities. Publishing this data
has always been a topic in the state, all the data has to be public, we should put
it on the cloud or somewhere else. But do it in a secure way, I haven’t thought
about it before, but it seemed to me that there were no good solutions.” (I8, Public
sector, IT security)

Interestingly, interviewees whose work involves data processing remained
somewhat critical, mostly because of the practical issues. Although an inter-
viewee working in biomedicine saw the benefits of using different databases in
scientific research, he also foresaw possible issues that could hinder their work.
The main concern could be expressed as the necessity to “see” the data.

“But in the context of genetics, the researcher who does the calculations, he
has to see the data. He has to understand tho data, because there the future work
will be combined. You never take just means, but when you are already calculating
genotypes and their frequencies, then you have to take into account some other
factors all the time. Adjust them according to age, height, weight. And you need
to see these data. Without understanding the data, you cannot analyse them.”
(I11, Academic sector, Biomedicine)

This obviously raises the question as to what is actually meant by “seeing”
and “understanding” the data. The visibility of the data seems to be crucial,
but it does not necessarily mean that no alternative solutions or procedures are
possible. The interviewees remarked that it would be possible to do scientific
analysis without “seeing” the data but that it would make their work more com-
plicated and therefore would be met with hesitation. Hence, it may be possible
that the barrier here is the practiced and accepted way of doing things. Even now
statistics offices often respond to data requests by disclosing sample databases
that resemble the data so that researchers can script their queries.

However, the interviews also revealed that the visibility of data is necessary
to guarantee their quality. This aspect was for instance stressed by an expert
working in the Statistics Office. Similarly, the interviewee doing scientific re-
search thought it possible that the quality of their work and data suffers if they
do not have the full overview.

”We cannot combine different statistical works if we don’t have the identi-
fiers. To do statistics, to have good quality information, we need to have it /full
overview of data/.” (I13, Public sector, Statistics)



This quote illustrates nicely the way new technologies are understood first
and foremost in the context of existing practices and boundaries. Similarly, peo-
ple considering the importance of statistical analysis with SMC can imagine the
activities they do in their current framework. Hence, statistical analysis comes
down to finding means, comparing samples in valid ways, finding correlations
and relationships within the data. And all this preferably with a user environ-
ment that is recognisable. While, for instance, the Statistics Office employees
can write their own scripts for queries, for wider usability, future SMC systems
will need to be similar to existing tools.

2.4 Goal for practical validation

Based on the insights from the interviews, we decided to evaluate the feasibility
of a statistical analysis tool based on SMC. We designed (and later implemented)
SMC protocols that compute various statistical analysis functions. We set effi-
ciency and reusability as our two main goals as both are critical for providing a
user experience similar to that of popular statistics tools.

We decided to use an example scenario to help us select the statistical data
analysis functions to implement in our experiments. This scenario is inspired
by a problem faced by governments that have enacted data protection laws—
how to evaluate the effect of state investments without breaching the privacy of
individual citizens? More specifically, we consider a government that wants to
learn the efficiency of its investments in the education system.

One way for assessing the quality of educational institutions is to analyse
the incomes of their graduates. For a fair analysis, the Statistics Bureau has
to combine data from the Tax Office, the Ministry of Education and the Pop-
ulation Register. However, in some countries, laws prohibit the aggregation of
citizen databases into a single database. Hence, the Statistics Bureau needs to
maintain privacy throughout the analysis. First, data owners need a secure way
for providing data. Second, the data analyst has to assess the distributions and
quality of the data without seeing individual records. Third, the analyst must
combine the data from three sources to an analysis database. Finally, he or she
performs statistical tests to find the educational factors that have a significant
impact on future income.

3 A security model for the analysis of private data

3.1 Privacy expectations and definitions

When describing SMC to potential end users, we focused on its outstanding
privacy-preserving properties. Therefore, the main security goal in the proposed
applications was that the private inputs of the input parties remain hidden from
the computing parties and the result parties.

While it is tempting to define privacy so that the computing parties and result
parties learn nothing about the values of the input parties, such a definition



would be rather impractical. First, we would need to hide the sizes of all inputs
from the computing parties. There are several techniques for hiding the input
size (e.g., [13, 24]), but no generic solution exists and practical protocols often
leak the upper bound of the size.

Second, we would need to hide all branching decisions based on the private
inputs. While this can be done by always executing both branches and obliviously
choosing the right result, we can significantly save resources when we perform
some branching decisions based on published values. However, such behaviour
can partially or fully leak the inputs to the computing parties (and also to the
result parties, should they measure the running time of Π).

This directs us to a relaxed privacy definition, that allows the computing
parties to learn the sizes of inputs and make limited branching decisions based
on published values that do not directly leak private inputs. Finally, to support
practical statistical analysis tasks, we also allow the result parties to learn certain
aggregate values based on the inputs (e.g., percentiles). In a real-world setting,
we prevent the abuse of such queries using query auditing techniques, that reject
queries or query combinations that are extracting many private inputs.

Definition 1 (Relaxed privacy of a multi-party computation proce-
dure). A multi-party computation procedure Π evaluated by parties Ik, Cm,
Rn preserves the privacy of the input parties if the following conditions hold:

Source privacy During the evaluation of Π, computing parties cannot asso-
ciate a particular computation result with the input of a certain input party.

Cryptographic privacy During the evaluation of Π, computing parties learn
nothing about the intermediate values used to compute results, including the
individual values in the inputs of input parties, unless any of these values
are among the allowed output values of Π. As an additional exception, if a
computing party is also an input party, it may learn the individual values in
the input of only that one input party.

Restricted outputs During the evaluation of Π, the result parties learn noth-
ing about the intermediate values used to compute results, including the in-
dividual values in the inputs of input parties, unless any of these values are
among the allowed outputs of Π. Additionally, if a result party is also an
input party, it may learn the input of only that one input party.

Output privacy The outputs of Π do not leak significant parts of the private
inputs.

3.2 Implementing private data analysis procedures with SMC

We now describe general guidelines for designing privacy-preserving algorithms
that satisfy Definition 1.

For source privacy, we require that computing parties cannot associate an
intermediate value with an individual input party that contributed to this value.
For instance, we may learn the smallest value among the private inputs, but we
will not know which input party provided it. This can be achieved by starting
the protocol by obliviously shuffling the data [22].



Cryptographic privacy is achieved by using SMC protocols that collect and
store inputs in a protected (e.g., encrypted, secret-shared) form. This prevents
the computing parties from recovering private inputs on their own. Furthermore,
the protection mechanism must be maintained for private values throughout the
algorithm execution. The computing parties must not remove the protection
mechanism to perform computations. Examples of suitable techniques include
homomorphic secret sharing, homomorphic encryption and garbled circuits.

Restricting outputs is quite straightforward. First, the computing parties
must publish to other parties only the result values that Π allows to publish.
Everything else must remain protected. Trivially, it follows that the computing
parties must run only the procedures to which the computational parties have
agreed. Furthermore, the computing parties must reject all queries from the
result parties that the computing parties have not agreed to among themselves.

Output privacy is the most complex privacy goal, requiring a more creative
approach. The most complex part in algorithm design is to control the leakage
of input value bits through published outputs. There are many measures for
this leakage, including input entropy estimation and differential privacy [10].
Regardless of the approach, the algorithm designer must analyse the potential
impact of publishing the results of certain computations. In some cases, such an
analysis is straightforward. For example, publishing the results of aggregations
like sum and mean is a negligible leak unless there are only a few values.

Typically, directly publishing a value from the private inputs should not be
allowed. However, there are exceptions to this rule. For example, descriptive
values, such as the minimal value in a private input, are used by statisticians
to evaluate data quality. The main concern of data analysts in our interviews
was that if we take away their access to individual data values, we need to give
them a way to get an overview of the data in return. That is the reason why our
privacy model allows the publishing of descriptive statistics.

4 Privacy-preserving algorithms for statistical analysis

4.1 Data import and filtering

We present a suite of privacy-preserving algorithms for statistical data analysis
that are private according to Definition 1. The algorithms described are not
dependent on any particular protection method. However, we assume that the
protection method provides privacy-preserving primitive operations required by
the algorithm. We describe one example implementation in Section 5.

When collecting data from several input parties, a common data model has
to be agreed upon and key values for linking data from different parties have to
be identified. For efficiency, it is often useful to preprocess and clean data at the
input parties before sending it to computing parties. This will not compromise
data privacy as the data will be processed by the input party itself. We now look
at how to filter and clean data once it has been sent to the computing parties.

In the following, let [[x]] denote a private value x, let [[a]] denote a private value
vector a, and let binary operations between vectors be point-wise operations.



Encoding missing values. Sometimes, single values are missing from the im-
ported dataset. There are two options for dealing with this situation: we can use
a special value in the data domain for missing values; or add an extra attribute
for each attribute to store this information. Only one shared bit of extra data
needs to be held per entry. Let the availability mask [[available(a)]] of vector [[a]]
contain 0 if the corresponding value in the attribute [[a]] is missing and 1 other-
wise. The overall count of records in storage is public. If missing elements exist,
that value does not reflect the number of available elements and it is not possi-
ble to make sure which elements are available by looking at the data. However,
the count of available elements can be computed by summing the values in the
availability mask.

Evaluating filters and isolating filtered data. To filter data based on a
condition, we compare each element in the the corresponding private attribute
vector [[a]] to the filter value in a privacy-preserving manner and obtain a private
vector of comparison results. This mask vector [[m]] contains 1 if the condition
holds and 0 otherwise. If there are several conditions in a filter, the resulting
mask vectors are multiplied to combine the filters. Such filters do not leak which
records correspond to the conditions. To learn the number of filtered records we
find the sum of elements in the mask vector.

Most of our algorithms are designed so that filter information is taken into
account during computations. However, in some cases, it is necessary to build a
subset vector containing only the filtered data.

For obliviously cutting the dataset based on a given filter, first the value
and mask vector pairs are obliviously shuffled, retaining the correspondence of
the elements. Next, the mask vector is declassified and values for which the
mask vector contains 0 are removed from the value vector. The obtained cut
vector is then returned to the user. This process leaks the number of values that
correspond to the filters that the mask vector represents. This makes cutting
trivially safe to use, when the number of records in the filter would be published
anyway. Oblivious shuffling ensures that no other information about the private
input vector and mask vector is leaked [22]. Therefore, all algorithms that use
oblivious cut provide source privacy.

4.2 Data quality assurance and visibility

Quantiles and outlier detection. Datasets often contain errors or extreme
values that should be excluded from the analysis. Although there are many
elaborate outlier detection algorithms like [5], outliers are often detected using
quantiles. As no one method for computing quantiles has been widely agreed
upon in the statistics community, we use algorithm Q7 from [16], because it is
the default choice in our reference statistical analysis package GNU R. Let p
be the percentile we want to find and let [[a]] be a vector of values sorted in
ascending order. Then the quantile is computed using the following function:

Q7(p, [[a]]) = (1− γ) · [[a]][j] + γ · [[a]][j + 1] ,



where j = b(n−1)pc+ 1, n is the size of vector [[a]], and γ = np−b(n−1)pc−p.
Once we have the index of the quantile value, we can use oblivious versions of
vector lookup or sorting to learn the quantile value from the input vector.

We do not need to publish the quantile to use it for outlier filtering. Let q0
and q1 be the 5% and 95% quantiles of an attribute [[a]]. It is common to mark
all values smaller than q0 and larger than q1 as outliers. The corresponding
mask vector is computed by comparing all elements of [[a]] to Q7(0.05, [[a]]) and
Q7(0.95, [[a]]), and then multiplying the resulting index vectors. This way, data
can be filtered to exclude the outlier data from further analysis. It is possible to
combine the mask vector with the availability mask [[available(a)]] and cache it as
an updated availability mask to reduce the filtering load. Later, this mask can
be used with the data attributes as they are passed to the statistical functions.

Descriptive statistics. As discussed in Section 2.3, one of the data analysts’
main concerns was that they will lose the ability to see individual values before
analysing them. However, such access is not always needed and it is sufficient to
have a range of descriptive statistics about the data attributes that help discover
anomalies.

We claim, that given access to these aggregate values and the possibility to
filter out outliers, we can ensure data quality without compromising the privacy
of individual data owners. Indeed, the aggregated values of individual attributes
leak information about inputs. However, the leakage is small and strictly limited
to previously agreed aggregate values.

The most common aggregate for individual attributes is the five-number
summary—a descriptive statistic that includes the minimum, lower quartile, me-
dian, upper quartile and maximum of an attribute. We compute the five-number
summary of a data vector using the previously discussed quantile formula. Based
on the five-number summary and quantiles, box-plots can be drawn that give a
visual overview of the data and effectively draw attention to outliers.

It is also important to see the distribution of a data attribute. For categorical
attributes, this can be done by computing the frequency of the occurrences of
different values. For numerical attributes, we must split the range into bins
specified by breaks and compute the corresponding frequencies. The resulting
frequency table can be visualised as a histogram. The algorithm publishes the
number of bins and the number of values in each bin.

4.3 Linking multiple tables

After collecting input values and compiling filters for the outliers, we can link
the input databases to form the final analysis database. There are various ways
for linking databases in a privacy-preserving manner. As a minimum, we desire
linking algorithms that do not publish private input values and only disclose the
sizes of the input and output databases. Such algorithms are known to exist [21].



4.4 Statistical testing

The principles of statistical testing. Many statistical analysis tasks con-
clude with the comparison of different populations. For instance, we might want
to know whether the average income of graduates of a particular university is
significantly higher than that of other universities. In such cases, we first extract
two groups—the case and control populations. In our example, the case popu-
lation corresponds to graduates of the particular university in question and the
control group is formed of persons from other universities. Note that a simple
comparison of corresponding means is sufficient as the variability of income in
the subpopulations might be much higher than the difference between means.

Statistical tests are specific algorithms, which formally quantify the signif-
icance of the difference between means. These test algorithms return the test
statistic value that has to be combined with the sizes of the compared popula-
tions to determine the significance of the difference. While we could also imple-
ment a privacy-preserving lookup to determine this significand and prevent the
publication of the statistic value, statisticians are used to including the statistic
values and group sizes in their reports.

The construction of case and control populations. We first need to pri-
vately form case and control groups before starting the tests. One option is to
select the subjects into one group and assume all the rest are in group two, e.g.,
students who go to city schools and everyone else. Alternatively, we can choose
subjects into both groups, e.g., men who are older than 35 and went to a city
school and men who are older than 35 who did not go to a city school. These
selection categories yield either one or two mask vectors. In the former case, we
compute the second mask vector by flipping all the bits in the existing mask
vector. Hence, we can always consider the version where case and control groups
are determined by two mask vectors.

In the following, let [[a]] be the value vector we are testing and let [[m1]] and
[[m2]] be mask vectors for case and control groups, respectively. Then [[ni]] =
sum([[mi]]) is the count of subjects in the corresponding population.

The tests need to compute the mean, standard deviation or variance of a
a population. We do this by evaluating the standard formulae using SMC. For
improved precision, these metrics should be computed using real numbers.

Student’s t-tests. The two-sample Student’s t-test is the simplest statistical
tests that allows us to determine whether the difference of group means is signif-
icant or not compared to variability in groups. There are two common flavours
of this test [18] depending on whether the variability of the populations is equal.

In some cases, there is a direct one-to-one dependence between case and
control group elements. For example, the data consists of measurements from
the same subject (e.g., income before and after graduation), or from two differ-
ent subjects that have been heuristically paired together (e.g., a parent and a
child). In that case, a paired t-test [18] is more appropriate to detect whether a
significant change has taken place.



The algorithm for computing both t-tests is a straightforward evaluation
of the respective formulae using SMC, preferably with privacy-preserving real
number operations. Both algorithms only publish the statistic value and the
population sizes.

Wilcoxon rank sum test and signed rank test. T-tests are formally ap-
plicable only if the distribution of attribute values in case and control groups
follows the normal distribution. If this assumption does not hold, it is appro-
priate to use non-parametric Wilcoxon tests. The Wilcoxon rank sum test [14]
works on the assumption that the distribution of data in one group significantly
differs from that in the other.

A privacy-preserving version of the rank sum test follows the standard al-
gorithm, but we need to use several tricks to achieve output privacy. First, we
need a more complex version of the cutting procedure to filter the database, the
cases and controls using the same filter. Second, to rank the values, we sort the
filtered values together with their associated masks by the value column.

Similarly to Student’s paired t-test, the Wilcoxon signed-rank test [27] is a
paired difference test. Often, Pratt’s correction [14] is used for when the values
are equal and their difference is 0. In a privacy-preserving version of this algo-
rithm, we again need to cut several columns at once. We also need to obliviously
separate absolute values and signs from the signed inputs values and later sort
these two vectors by the sign vector.

The computation of both tests is simplified by the fact that most operations
are done on signed integers and secure real number operations are not required
before computing the final z-score statistic. Both algorithms only publish the
statistic value and the population sizes.

The χ2-tests for consistency. If the attribute values are discrete such as
income categories then it is impossible to apply t-tests or their non-parametric
counterparts and we have to analyse frequencies of certain values in the dataset.
The corresponding statistical test is known as χ2-test.

The privacy-preserving version of the χ2-test is implemented simply by eval-
uating the algorithm using SMC operations. The algorithm can be optimised,
if the number of classes is small, e.g., two. The algorithm publishes only the
statistic value and the population sizes.

5 Practical results

5.1 An experimental statistical study using SMC

We demonstrate our privacy-preserving statistics capability by designing, imple-
menting and conducting an experimental study. In the scenario, we use a table
of subjects and their demographic information from the Population Register, a
table specifying whether a subject attended a city school from the Ministry of



Education, and a table of taxed income payments for the same subjects from
the Tax Office. We used artificially generated data in our experiments.

For our implementation, we chose the Sharemind SMC platform, because
it supports operations needed in our implementation, including integer, boolean
and floating point arithmetic, table join and sorting. We implemented the sta-
tistical algorithms using the SecreC programming language. We uploaded data
using a data importer application developed using the Sharemind controller
library. Details of our implementation are given in Appendix A.

Sharemind provides cryptographic security against an honest-but-curious
adversary. This is enough for performing statistical analysis on private databases
held by organizations united by a common cause (e.g., government agencies,
hospitals, companies). While our implementation is built on and optimised for
Sharemind, our algorithms can be adapted to other secure computation systems
with similar capabilities.

5.2 Performance measurements

We conducted the experiments on a Sharemind installation running on three
computers with 3 GHz 6-core Intel CPUs with 8 GB RAM per core (a total of
48 GB RAM). While monitoring the experimental scenario, we did not notice
memory usage above 500 MB per machine. The computers were connected using
gigabit ethernet network interfaces.

Table 2 contains the operations, input sizes and running times for our exper-
imental scenario. We see that most operations in our experimental study take
under a minute to complete. The most notable exceptions is the group median
computation, as median computation has to be applied to the payments of 2000
subjects. This time can be reduced by vectorising the median invocations or
conduct this aggregation before the data is converted into secret-shared form.

To check scalability, we performed some tests on ten times larger data vectors.
We found that increasing input data size 10 times increases running time about
5 times. Only histogram computation is actually slower, because it uses a more
detailed frequency table for larger databases.

The improved efficiency per input data element is explained by the use
of vectorised operations of the Sharemind framework. The operations in the
Sharemind framework are more efficient when many are performed in parallel
using the SIMD (single instruction, multiple data) model.

6 Conclusion

In this paper we presented an easy-to-visualise model for explaining the capa-
bilities and deployment of SMC to end users. These models helped us conduct a
series of interviews with potential stakeholders of SMC to learn how SMC could
be valuable to them.

Based on the end user needs gathered from the interviews we identified the
need for an SMC-based statistical analysis toolkit. We designed and implemented



Step 1: Data import

Operation Record count Time

Data import from offsite computer
2 000 3 s

53 977 24 s

Step 2: Descriptive statistics

Operation Record count Time

5-number summary (publish filter size)
2000 21 s

20000 97 s

5-number summary (hide filter size)
2000 27 s

20000 107 s

Frequency table
2000 16 s

20000 222 s

Step 3: Grouping and linking

Operation Record count Time

Median of incomes by subject 53 977 3 h 46 min

Linking two tables by a key column 2000×5 and 2000×3 28 s

Linking two tables by a key column 2000×7 and 2000×2 29 s

Step 4: Statistical tests

Operation Record count Time

Student’s t-test, equal variance
2000 167 s

20000 765 s

Student’s t-test, different variance 2000 157 s

paired t-test, known mean 2000 and 2000 98 s

paired t-test, unknown mean 2000 and 2000 102 s

χ2-test, 2 classes
2000 9 s

20000 10 s

χ2-test, n-class version, 2 classes 2000 20 s

χ2-test, n-class version, 5 classes 2000 23 s

Wilcoxon rank sum 2000 34 s

Wilcoxon signed-rank 2000 and 2000 38 s

Table 2: Running times of privacy-preserving statistics (in seconds)

privacy-preserving versions of several statistical functions. As a result, were able
to conduct a full-scale experimental statistical study so that confidential data
were always processed using SMC.

The strengths of our solution are generality, precision and practicality. First,
we show that secure multi-party computation is flexible enough for implementing
complex applications. Second, our use of secure floating point operations makes
our implementation more precise. Third, we use the same algorithms as popular
statistical toolkits like GNU R without simplifying the underlying mathematics.
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A Implementation details

A.1 Data model and data flow

The data model and transformations are shown in Figure 1. All attributes that
are marked as having a mask, actually represent two attributes—one with the
value and another with the availability flag. After linking is complete, we use
the CompleteSubject table to test statistical hypotheses.

A.2 Overview of implemented operations

Figure 2 shows an overview of the SMC functionality that was used to run
our experiments. It also shows how the algorithms implemented using SMC
depend on each other. Our statistical functionality is built on the arithmetical,
comparison and oblivious vector operations provided by Sharemind (two top
functionality groups in Figure 2). However, our protocols can be ported to any
SMC framework that provides the same set of features.
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Fig. 1: The data model and table transformations in our experiment
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Fig. 2: Overview of operations implemented for our experiments


