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Abstract. In this paper we address the problem of authenticated query processing in outsourced
databases. An authenticated query processing mechanism allows a client to verify the validity of the
query responses that it gets from an un-trusted and remote server, who stores the client’s database
on its behalf. We introduce a general framework called RDAS for the problem of authenticated
query processing, and define the security goals for this task in line with concrete provable security.
We propose several schemes which enable a client to verify both the completeness and correctness
of the query responses of a server. All the schemes follow the proposed framework and are provably
secure in terms of the proposed security definition. The novelty of the proposed schemes is that
they use bitmap indexes as a main component for providing authentication. Bitmap indexes have
recently seen lot of applications for accelerated query processing and many commercial databases
implement such indexes. Bitmaps have not been previously used for a security goal. We show that
the proposed schemes can match in both functionality and efficiency compared to the existing
schemes. We also implement the schemes on a real database and provide extensive experimental
studies on the schemes.1

1 Introduction

Cloud computing holds the promise of revolutionizing the manner in which enterprises manage,
distribute, and share information. The data owner (client) can out-source almost all its infor-
mation processing tasks to a “cloud”. The cloud can be seen as a collection of servers (we shall
sometimes refer to it as the server) which caters the data storage, processing and maintenance
needs of the client. Needless to say this new concept of computing has already brought significant
savings in terms of costs for the data owner.

Among others, an important service provided by a cloud is Database as a Service (DAS). In this
service the client delegates the duty of storage and maintenance of his/her data to a third party
(an un-trusted server). This model has gained lot of popularity in the recent times. The DAS
model allows the client to perform operations like create, modify and retrieve from databases
in a remote location [9]. These operations are performed by the server on behalf of the client.
However, delegating the duty of storage and maintenance of data to a third party brings in some
new security challenges.

The two main security goals of cryptography are privacy and authentication. These security
issues are relevant to the outsourced data also. The client who keeps the data with an untrusted
server has two main concerns. The first one being that the data may be sensitive and the client
may not want to reveal the data to the server and the second one is the data whose storage and
maintenance has been delegated to the server would be used by the client. The typical usage
of the data would be that the client should be able to query the database and the answers to

1 An abridged version of this work appears as:
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the client’s queries would be provided by the server. It is natural for the client to be concerned
about a malicious server who does not provide correct answers to the client queries. In this work
we are interested in this problem. We aim to devise a scheme in which the client would be able
to verify whether the server is responding correctly to its queries.

The problem of interest is of data authentication, and there are well known cryptographic
solutions to the basic data authentication problem. In the symmetric key setting this has been
addressed by the use of message authentication codes and in the asymmetric key setting signature
schemes provide this functionality.

We are interested in the problem of authenticated query processing in the context of relational
databases. We consider the scenario where a client delegates a relational database to an un-
trusted server. When the client queries its outsourced data, it expects in return a set of records
(query reply) satisfying the query’s predicates. As the server is not trusted, so it must be capable
of proving the correctness of its responses. In other words, a malicious server may attempt to
insert fake records into the database, modify existing records or simply skip some of them from
the query response. Hence there must exist a mechanism, which can protect the client from
such malicious server behavior. We describe the intricacies of the problem with the help of an
example. Consider the relational database of employees data shown in Table 1.

EmpId Name Gender Level

TRW Tom M L2

MST Mary F L1

JOH John M L2

LCT Lucy F L1

ASY Anne F L1

RZT Rosy F L2

Table 1. Relation R1 (This relation would serve as a running example).

We consider that this relation has been delegated by a client to a server, and the client poses
the following query

SELECT * FROM R1 WHERE Gender = ’M’ OR Level = ’L2’.

The correct response to this query is the set Res consisting of three tuples

Res = {(TRW, Tom, M, L2), (JOH, John, M, L2), (RZT, Rosy, F, L2)}.

In answering the query the server can act maliciously in various ways. In the context of authen-
tication, we are concerned with two properties of the response namely correctness and complete-
ness. Correctness and completeness denote two different malicious activities of the server, we
explain these notions with an example below:

1. Incorrect result: The server responds with three tuples, but changes the tuple (TRW, Tom, M, L2),
with (TRW, Tom, F, L2). Moreover, it can be the case that the server responds with Res ∪
{(BRW, Bob, M, L2)}, i.e., it responds with an extra tuple which is not a part of the original
relation.

2. Incomplete result: The server may not respond with the complete result, i.e., it can delete
some valid results from the response, i.e., instead of responding with Res it responds with
Res− {(TRW, Tom, M, L2)}.



It is to be noted that incomplete results are also incorrect, but we differentiate the two scenarios
(as it has been previously done in the literature) by the fact that in an incorrect result the
server inserts something which is not in the database, and in case of an incomplete answer the
answer is correct but is not complete, in the sense that the server drops some valid tuples from
the correct response. A client must be able to verify both correctness and completeness of a
response.

The problem of correctness can be easily handled in the symmetric setting by adding a message
authentication code to each tuple. A secure message authentication code is difficult to forge, and
thus this property would not allow the server to add fake entries in its response. The completeness
problem is more difficult and its solution is achieved through more involved schemes.

The problem of query completeness has been largely addressed by some interesting use of au-
thenticated data structures. The basic idea involved is to store the information already present in
the relation in a different form using some special data structures. This redundancy along with
some special structural properties of the used data structures help in verifying completeness.

A large part of the literature uses tree based authentication structures like the Merkeley hash
tree [17] or its variants. Some notable works in this direction are reported in [17, 14, 5, 7, 18, 23,
25, 36]. These techniques involve using a special data structure along with some cryptographic
authentication mechanism like hash functions and/or signatures schemes. The tree based struc-
tures yield reasonable communication and verification costs. But, in general they require huge
storage at server side, moreover the query completeness problem is largely addressed with re-
spect to range queries and such queries may not be relevant in certain scenarios, say in case
of databases with discrete attributes which do not have any natural metric relationship among
them.

Signature schemes have also been used in a novel manner for solving the problem. One line of
research has focussed on aggregated signatures [20–22, 26, 29]. Signature aggregation helps in
reducing the communication cost to some extent and in some cases can function with constant
extra communication overhead. A related line of research uses chain signatures. If one uses chain
signatures as in [21], the use of specialized data structures may no longer be required.

Though there has been considerable amount of work on authenticated query processing on
relational databases, but it has been acknowledged (for example in [37]) that the problem of
query authentication largely remains open. An unified cryptographic treatment of the problem
is missing in the literature. In most existing schemes cryptographic objects have been used in an
ad-hoc manner, and the security guarantees that the existing schemes provide are not very clear.
In this work we initiate a formal cryptographic study of the problem of query authentication
in a distinct direction. We propose a new scheme which does not use any specialized data
structure to address the completeness problem. Our solution involves usage of bitmap indices
for this purpose. Bitmap indices have gained lot of popularity in the current days for their use
in accelerated query processing [2, 32], and many commercially available databases like Oracle,
IBM DB2, Sybase IQ now implement some form of bitmap index scheme in addition to the more
traditional B-tree based schemes, thus it may be easy to incorporate a bitmap based scheme
in a modern database without significant extra cost. To our knowledge, bitmaps have not been
used till date for a security goal.

In addition to bitmap indices we use a secure message authentication code (MAC) as the only
cryptographic object. We show that by the use of these simple objects one can design a query
authentication scheme which allows verification of both correctness and completeness of query
results. As the basic cryptographic object is a symmetric key primitive, thus our scheme does
not provide public verifiability. Moreover, in this work, we restrict ourself to static databases
only. We see private verifiability of our scheme more as a design goal than a limitation, as



we believe that there exist scenarios where public verifiability may not be required, and in
such scenarios it is better not to use the heavy machinery of public key signatures which uses
computationally intensive number theoretic operations, whereas computational overheads of
symmetric key message authentication schemes are minimal.

Extension of our scheme to dynamic scenarios may be possible, but in this current work we do not
further deal with such possibilities, we plan to discuss the extension of our scheme to dynamic
scenarios in a separate work. There exist many static transactional databases, say databases
related to data warehousing applications, where efficient authenticated query processing may be
required.

Next, we summarize the concrete contributions in this paper :

1. We define a generic scheme which we call as relational database authentication scheme
(RDAS) which would provide the functionality of authenticated query processing. We care-
fully define the security goals of RDAS in line with the tradition of concrete provable security.
The security definition encompasses both correctness and completeness of a query response.
Such a definition is new to the literature, and we hope that this definition would help to
evaluate security of existing schemes.

2. We propose an RDAS called RDAS1. RDAS1 is designed using message authentication codes
and bitmap indices in a novel manner. RDAS1 is capable of authenticated query processing
of simple select queries and select queries involving disjunctions of equality conditions. The
extra overhead for using RDAS1 both in terms of extra bandwidth and computation cost is
not significant. We formally prove that RDAS1 provides authentication in accordance to our
security definition.

3. Though RDAS1 is efficient and secure, a serious limitation of it is that it can only authenticate
a restricted class of queries. We propose a provably secure modification called RDAS2 which is
capable of authenticating a large class of queries but it has more storage and communication
overhead than RDAS1. Unlike in RDAS1, in RDAS2 one needs to explicitly store bitmap
indexes and also send some bitmap indexes along with the query responses. This leads to
increased storage and communication costs. We discuss methods to compress bitmaps, which
can lead to significant savings in case of RDAS2.

4. We provide extensions of both RDAS1 and RDAS2 using the functionality of aggregate MACs.
We call these schemes as RDAS1-agg and RDAS2-agg. These schemes are more efficient in
terms of communication costs compared to the basic schemes.

5. We provide extensive experimental results on all the schemes on a real database, and provide
hard experimental data on various performance measures. Our experiments suggests that the
RDAS framework can be a viable option for practical authenticated query processing.

2 Preliminaries and Notations

Relations. In what follows, by R(A) we would denote a relation over a set of attributes A. If
A = {a1, a2, · · · an}, we shall sometimes write R(a1, a2, · · · , an) instead of R(A). We will assume
that each attribute has a set of permitted values, i.e., the domain of the attribute. Given an
attribute a, Dom(a) would represent its domain. We are mainly concerned with attributes whose
domains are finite, note that for a static database each attribute always has a finite domain. By
cardinality of an attribute we shall mean the cardinality of the domain of the attribute. We will
denote the cardinality of an attribute a by Card(a) = |Dom(a)|.

A tuple t in a relation over a set of attributes is a function that associates with each attribute a
value in its specific domain. Specifically if A = {a1, a2, · · · an} and R(A) be a relation then the



jth tuple of relation R(A) would be denoted by tRj and for ai ∈ A by tRj [ai] we shall denote the

value of attribute ai in the jth tuple in R. For B ⊆ A, tRj [B] will denote the set of values of the

attributes in B in the jth tuple. We shall sometimes omit the subscripts and superscripts from
tRj and denote the tuple by t if the concerned relation is clear from the context and the tuple
number is irrelevant.

Binary strings: The set of all binary strings would be denoted by {0, 1}∗, and the set of n bit
strings by {0, 1}n. For X1,X2 ∈ {0, 1}

∗, by X1||X2 we shall mean the concatenation of X1 and
X2; and |X1| will denote the length of X1 in bits. By padℓ(X) we will denote the operation of
padding ℓ zeros to the end of X, i.e., padℓ(L) = L||0ℓ. Also, if |X| ≤ ℓ, by cpadℓ(X) we shall
mean padℓ−|X|(X). By biti(X) we will denote the ith bit of X. Given x ∈ {0, 1}∗ the procedure
parsen(x) will break x into constituent n bit strings, i.e, parsen(x) = (x1, x2, . . . , xm), where

x = x1||x2|| . . . ||xm and |xi| = n for 1 ≤ i ≤ m− 1 and |xm| ≤ n, thus making m = ⌈ |x|
n
⌉.

We shall always consider that the domains of all attributes in the relations are subsets of {0, 1}∗,
this convention would allow us to apply transformations and functions on the values of the tuples
in a relation without describing explicit encoding schemes.

By Fq we shall mean a finite field with q elements. For our purpose we shall be interested in the
field F2n for some n. n bit strings can be represented by a polynomial which coefficients are in
F2. For example, if A ∈ {0, 1}n such that A = a0, a1, · · · , an−1 where each ai ∈ {0, 1} then A
can be represented by the polynomial A(x) =

∑n−1
i=0 aix

i. Thus the set of all n bit strings can be
treated as the field F2n where the addition is defined as the xor of the strings and multiplication
is defined as the multiplication of the two polynomials corresponding to the strings modulo a
fixed n degree irreducible polynomial τ(x).

Bitmaps: Consider a relation R(a1, . . . , am) with nTmany rows. Consider that for each attribute
ai, Dom(ai) = {vi1, v

i
2, . . . v

i
λi
}, thus Card(ai) = λi for 1 ≤ i ≤ m. We define the bitmap of an

attribute ai corresponding to its value vij in the relation R as BitMapR(ai, v
i
j) = X, where X is

a binary string, such that |X| = nT and for 1 ≤ k ≤ nT,

bitk(X) =

{

1 if tRk [ai] = vij
0 otherwise.

This would be more clear with an example. Consider the specific relation R1 on the attributes
{EmpID, Name, Gender, Level} as shown in Table 1. Dom(Gender) = {M, F} and Dom(Level) =
{L1, L2}.

From this relation we can compute the following bitmaps

BitMapR1(Gender,F) = 010111

BitMapR1(Gender,M) = 101000

BitMapR1(Level, L1) = 010110

BitMapR1(Level, L2) = 101001.

Message authentication codes: Message authentication codes provide authentication in the
symmetric key setting. It is assumed that the sender and the receiver share a common secret key
K. Given a message x, the sender uses K to generate a footprint of the message. This footprint
(commonly called a tag) is the message authentication code (MAC) for the message x. The
sender transmits the pair (x; tag) to the receiver. The receiver uses K to verify that (x, tag) is a
properly generated message-tag pair. In most cases, verification is performed by regenerating the
tag on the message x and comparing the generated tag with the one received. In what follows
we shall call the algorithm for generating the tag as a MAC, thus assuming that the size of the



tag is τ bits, we see the tag generation scheme as a function MAC : K ×M → {0, 1}τ , where
K andM are the key and message spaces respectively. In most cases we shall write MACK(x)
instead of MAC(K,x).

An attack on a MAC scheme signifies forging a message-tag pair. The types of attacks which are
important for MAC schemes can be formally described as an interaction of an adversary A and
the procedure MAC. A is given an oracle access to the MAC generation procedure MACK(.),
instantiated with a randomly generated key K, which is unknown to A. A can query MACK(.)
with messages of its choice, and for each query x it gets MACK(x) as a response. Let us assume
that A queries with the messages x1, x2, . . . , xq and gets y1, . . . , yq as the responses. In the end,
A produces a pair (x̃, ỹ), such that x̃ /∈ {x1, x2, . . . , xq}. It is said that A had committed a
successful forgery if MACK(x̃) = ỹ. We define the advantage of the adversary A in forging the
message authentication code MAC as follows:

AdvauthMAC(A) = Pr[A forges ]. (1)

The probability is taken over the random choice of the key K and the randomness of the
adversary.

3 Relational Database Authentication Scheme (RDAS): Definitions and
Basic Notions

A relational database authentication scheme (RDAS) consists of a tuple of algorithms (K,F , Φ, Ψ,V),
which are described in details in the following paragraphs.

K is the key generation algorithm and it selects one (or more) keys from a pre-specified
key space and outputs them.

F is called the authentication transform, which takes in a set of relations R and a set of
keys and outputs another set of relations R′ along with some additional data (Ms,Mc). If
the set of keys is K, we shall denote this operation as (R′,Mc,Ms)← FK(R). A client who
wants to store the set of relations R in an un-trusted server, transforms R to R′ using the
authentication transform F and a set of keys. The transform F produces some additional
data other than the set of relations R′, the additional data consists of two distinct parts Ms

and Mc. The set of relations R′ along with Ms are stored in the server and the keys and
the data Mc are retained in the client. The key generation algorithm and the authentication
transform are executed in the client side.

We call Φ as the query translator, it is a transformation which takes in a query for the rela-
tions in R and converts it into a query for relations in R′. For ease of discussion we shall refer
a query for R to be a R-query and a query for R′ to be a R′-query. Thus, given a R-query q,
Φ(q) would be a R′-query. Thus by use of the transform Φ, the client would be able to trans-
late queries meant for R to queries which can be executed on the transformed relations in R′.

Ψ is the response procedure. To execute a query q on R, the client converts the query to
Φ(q) and sends it to the server. The server executes the function Ψ , which takes in the query
Φ(q) and uses R′ and Ms. The output of Ψ is ρ, which we call as the response of the server.
The server returns its response S to the client.

The verification procedure is a keyed transform VK which runs in the client. It takes as
input the query q, a response S of the server and Mc and outputs either an answer ans for
the query q or outputs a special symbol ⊥ which signifies reject.



3.1 Correctness and security

If we fix the set of relations R, then an R-query q when executed in R would have a fixed answer
say ans(R, q). Our goal is to transform R to R′ using an RDAS in such a way that if the query
Φ(q) is sent to the server, then the answer ans should be recoverable from the server response ρ
through the procedure V, if the server follows the protocol correctly. On the other hand, if the
server is malicious, i.e., it deviates from the protocol and sends a response ρ′ distinct from the
correct response ρ then the procedure V should reject the response by outputting ⊥. In other
words, if the answer to a R-query is ans, then after running the protocol, V will either produce
ans or ⊥, it would not produce an answer ans′ distinct from ans.

In the security model, we allow the adversary to choose the primary set of relations R. Given
this choice of R, we compute (R′,Mc,Ms) ← FK(R), for a randomly selected set of keys K
which is unknown to the adversary. We give R′ and Ms to the adversary. The adversary chooses
an R-query q and the challenger provides the adversary with Φ(q), finally the adversary outputs
a response ρ, and we say that the adversary is successful if VK(ρ, q,Mc) /∈ {⊥, ans(R, q)}.

Definition 1. Let SuccA be the event that a specific adversary A is successful in the sense as
described above. We say that an RDAS is (ǫ, t)-secure if for any adversary A which runs for
time at most t Pr[SuccA] ≤ ǫ.

Some immediate observations regarding this security definition are as follows:

1. Encompasses both correctness and completeness: An important thing to note is that
the security definition covers both completeness and correctness, as RDAS is considered
secure if the verification algorithm does not accept (except with some small probability) a
wrong response.

2. Concrete security and adversarial resources: The definition follows the paradigm of
concrete security, where we specify the running time and the probability of success of an
adversary. An (ǫ, t)-secure RDAS is really secure where t is “reasonable” and ǫ is “small”. As
is common in the paradigm of “concrete security”, we do not precisely define “reasonable”
and “small”. These are interpreted in the context.

4 RDAS1: A generic scheme for select queries involving arbitrary disjunctions

We discuss a basic scheme for a secure RDAS which works only if the queries made are single
attribute select queries or select queries involving disjunctions of an arbitrary number of equality
conditions. We call this scheme as RDAS1. RDAS1 can be modified to handle certain other class of
queries, but for the sake of simplicity we just concentrate on a scheme which works on disjunction
queries. In the later sections we would discuss several extensions of RDAS1 which can handle
other types of queries and provide additional functionalities.

We describe the scheme assuming that the set of initial relations R is a singleton set consisting
of a single relation R(B), where B = {b1, b2, . . . , b|B|} is the set of attributes, and consider
A = {a1, . . . , am} ⊆ B to be a set of attributes on which queries are allowed, we shall call A the
set of allowed attributes. Note, it is possible that B = A. The procedure F converts R into two
relations Rα and Rβ, i.e, R

′ = {Rα, Rβ} and Ms is empty and Mc = nT, where nT is the number
of tuples in R. The only cryptographic object used by RDAS1 is a message authentication code
MAC : K × {0, 1}∗ → {0, 1}τ , where K is the key space. Next, we discuss the details of each of
the procedures involved in RDAS1. In what follows, we shall describe the procedures considering
a generic relation R(B), where the set of allowed attributes is A ⊆ B. Also for ease of exposition



we shall throughout consider the relation R1 as depicted in Table 1 as a concrete example, and
for simplicity, for R1 we shall consider the set of allowed attributes to be {Gender, level}.

RDAS1.K: The key space for RDAS1 is the same as the key space of the associated message
authentication code MAC. The key generation algorithm selects a key K uniformly at random
from K.

RDAS1.F : F produces two relations Rα and Rβ by the action of the key. The relation Rα is
defined on the set of attributes B ∪ {Nonce, Tag}, i.e., Rα has two more attributes than in R.
If R contains nT many tuples then Rα also contain the same number of tuples. The procedure
for populating the tuples of Rα is depicted in Figure 1. Basically, what this procedure does is
compute a MAC for each row.

Creating Rα

1. for j = 1 to nT

2. for i = 1 to |B|

3. tRα
j [bi]← tRj [bi];

4. end for

5. tRα
j [Nonce]← j;

6. H ← tRj [b1]|| . . . ||t
R
j [bm]||j;

7. tRα
j [Tag]← MACK(H);

8. end for

Creating Rβ

1. for j = 1 to N

2. t
Rβ

j [Name]← L1
j ;

3. t
Rβ

j [SearchKey]← L2
j ;

4. t
Rβ

j [RowNo]← nT +j;

5. L← L1
j ||L

2
j ||BitMapR(L

1
j ,L

2
j )||(nT+ j);

6. t
Rβ

j [Tag1]← MACK(L);
7. end for

Fig. 1. Creating Rα and Rβ

The relation Rβ contains the attributes {Name, SearchKey, RowNo, Tag1}, irrespective of the at-
tributes in relation R. Where Dom(Name) = {a1, . . . , am}, i.e., the allowed attributes in R.
And, Dom(SearchKey) = Dom(a1)∪Dom(a1)∪ · · · ∪Dom(am). Let Ω = ∪mi=1 ({ai} × Dom(ai)),
note that the elements of Ω are ordered pairs of the form (x, y) where x ∈ Dom(Name) and
y ∈ Dom(SearchKey), and |Ω| =

∑m
i=1 Card(ai) = N . Let L be a list of the elements in Ω in an

arbitrary order. If (x, y) be the i-th element in L, then we shall denote x and y by L1i and L2i
respectively, where 1 ≤ i ≤ N . The way the relation Rβ is populated is also shown in Figure 1.
This procedure allows the client to store all possible pairs L1i ,L

2
i along with the MAC calculated

over this pair concatenated with the respective bitmap and RowNo. Note that the bitmap is not
explicitly stored in the relation Rβ. The transform F is executed in the client side, and the
resulting relations Rα and Rβ are stored in the server.

For a concrete example, if RDAS1.F has as input the relation R1 (see Table 1) and the set of
allowed attributes is {Gender, level}, then it would produce as output the relations R1α and
R1β as shown in Table 2. The relation R1α is almost the same as that of R1, except that it has
two additional attributes, Nonce and Tag. The attribute Nonce just contains the row numbers
and is thus unique for each row. The attribute Tag is the message authentication code computed
for a message which is produced by concatenating all the values of the attributes in that tuple.



Relation R1α

EmpId Name Gender Level Nonce Tag

TRW Tom M L2 1 Y1

MST Mary F L1 2 Y2

JOH John M L2 3 Y3

LCT Lucy F L1 4 Y4

ASY Anne F L1 5 Y5

RZT Rosy F L2 6 Y6

Relation R1β

Name SearchKey RowNo Tag1

Gender F 7 Y ′
7

Gender M 8 Y ′
8

Level L1 9 Y ′
9

Level L2 10 Y10
′

Table 2. Relations R1α and R1β

The relation R1β contains the attributes {Name, SearchKey, RowNo, Tag1}, where in this case,
Dom(Name) = {Gender, Level}, Dom(SearchKey) = {M,F} ∪ {L1, L2}. The tuples in R1β are
populated according to the procedure as shown in Figure 1(b), and the specific relation R1β is
shown in Table 2.

RDAS1.Φ: The transform Φ, transforms a query meant for the original relation R to a set of
queries which are meant to be executed on the relations Rα and Rβ which are stored in the
server side. RDAS1 can authenticate only certain types of queries, the allowed queries for RDAS1
are of the following form:

Q: SELECT * FROM R WHERE a1 = v1 OR a2 = v2 OR ...... OR al = vl

The allowed set of queries are thus select queries on arbitrary numbers of disjunctions on different
or repeated attributes2, which includes select queries on a single attribute of the form SELECT

* FROM R WHERE ai = v. Given as input a valid query q, Φ(q) outputs two queries one for the
relation Rα (which we call qα) and the other for Rβ (which we call qβ). For the specific query
Q, Φ(Q) will output the following queries:

Qα: SELECT * FROM Rα WHERE a1 = v1 OR a2 = v2 OR ...... OR al = vl
Qβ: SELECT * FROM Rβ WHERE (Name = a1 AND SearchKey = v2) OR ...... OR ( Name =

al AND SearchKey = vl)

Going back to the concrete example, consider the following query Q1 on the relation R1

Q1: SELECT * FROM R1 WHERE Gender = ’M’ OR Level= ’L2’

After applying the transformation Φ(Q1) , the output queries Q1α and Q1β would be the fol-
lowing:

Q1α: SELECT * FROM R1α WHERE Gender = ’M’ OR Level = ’L2’

Q1β : SELECT * FROM R1β WHERE (Name = ’Gender’ AND Searchkey =’M’) OR (Name = ’Level’

AND Searchkey =’L2’)

The reason for the specific structure of the qβ queries would be clear from the description of the
verification process and the associated example.

RDAS1.Ψ : As discussed, Ψ is the transform executed in the server to generate the response for a
set of queries produced by Φ. In RDAS1 the response of the server is constructed just by running
the queries specified by Φ on Rα and Rβ . We denote the response by S = (Sα, Sβ) where Sα

2 By a query of disjunction on repeated attributes we mean a query like : SELECT * FROM R WHERE a1 = v1 OR

a1 = v2 OR a2 = v3. Here the attribute a1 is repeated twice.



and Sβ corresponds to responses of qα and qβ respectively. Thus, for the example, the server
executes the queries Q1α and Q1β on R1α and R1β respectively and thus returns the response
S1 = (S1α, S1β) which is shown in Table 3.

Relation S1α

EmpId Name Gender Level Nonce Tag

TRW Tom M L2 1 Y1

JOH John M L2 3 Y3

RZT Rosy F L2 6 Y6

Relation S1β

Name SearchKey RowNo Tag1

Gender M 8 Y ′
8

Level L2 10 Y10
′

Table 3. Left side: Answer S1α, Right side: Answer S1β

RDAS1.V: The verification procedure receives as input the response S = (Sα, Sβ) from the server,
the original query and the keys. The response of the server consists of two parts. We denote
these two parts as two sets Sα and Sβ which are responses to the queries qα and qβ respectively.
Thus, Sα and Sβ contains tuples from the relations Rα and Rβ respectively.

The transformed queries qα and qβ are also disjunctions of conditions, for a qα query the condi-
tions are of the form ai = vi, where ai is an attribute and vi its value, and for a qβ query the
conditions are of the form Name = v AND SearchKey = w. Thus, for the description below, we
consider that Cα

1 OR Cα
2 OR . . . Cα

l is a α query where each Cα
i is an equality condition and Cβ

1

OR Cβ
2 OR . . . Cβ

l is a β query where each Cβ
i is a conjunction of two equality conditions. Note

that the number of conditions in qα and qβ would always be the same. Let SaT be a predicate
which takes as input a tuple t and a condition C (which can also be a query q) and outputs a 1
if the tuple t satisfies the condition C, otherwise outputs a zero. With these notations defined,
we are ready to describe the verification algorithm. The verification algorithm consists of three
procedures. We name the procedures as α-Verify, makeBitMap and β-Verify. The procedures are
shown in Figure 2, and they are applied sequentially in the same order as stated above.

α-Verify

1. for all tuples t ∈ Sα

2. if SaT(t, qα) = 0, return ⊥
3. ta← MACK(t[b1]|| . . . ||t[b|B|]||t[Nonce]);
4. if ta 6= t[Tag] , return ⊥;
5. end for

makeBitMap

6. for i← 1 to l

7. Xi ← 0nT;
8. end for

9. for all tuples t ∈ Sα

10. for i← 1 to l

11. if SaT(t, Ci)
12. j ← t[Nonce];
13. bitj(Xi)← 1;
14. end if

15. end for

16. end for

β-Verify

17. for i← 1 to l

18. T [i]← 0;
19. end for

20. for i← 1 to l

21. for all tuples t ∈ Sβ

22. if SaT(Cβ
i , t) = 1

23. T [i]← T [i] + 1;
24. LL← t[Name]||t[SearchKey]||Xi||t[RowNo];
25. if MACK(LL) 6= t[Tag1] return ⊥;
26. endif

27. end for

28. end for

29. for i← 1 to l

30. if T [i] 6= 1 return ⊥;
31. end for

32. return
∏

(b1,b2,··· ,b|B|)
Sα;

Fig. 2. The procedures involved in the verification process: we assume that the verification procedure has as input
the queries qα = Cα

1 OR Cα
2 OR . . . Cα

l , qβ = C
β
1 OR C

β
2 OR . . . C

β

l , and the server responses Sα and Sβ.



The verification procedure checks for both the correctness and the completeness of the server
response against the original query q. Note that the server response consists of two distinct parts
Sα and Sβ, the Sα part corresponds to the real result of the original query q and the Sβ part
assists the verification process to verify the completeness of the result in Sα. In the part α-
Verify, the verification procedure checks for the correctness of the tuples returned by the server.
As in the transformed relation Rα a message authentication code is associated with each tuple
of the original relation, hence the α-Verify part of the verification procedure checks whether the
contents of the tuples in Sα are not modified. If any of the the tuples in Sα are modified then
the computed message authentication code on the tuple will not match the attribute Tag. If the
computed value of tag does not match with the attribute Tag for any tuple then the verification
process rejects by returning ⊥. Moreover in line 2 it checks whether each tuple in Sα does satisfy
the specified query. If the verification process does not terminate in the α-Verify phase then
it means that the tuples in Sα are all valid tuples of the relation Rα and they all satisfy the
specified query qα. The other two parts of the verification process checks the completeness of
the response.

Corresponding to each condition Name = v AND SearchKey = w in the query qβ the procedure
makeBitMap constructs the corresponding bitmap BitMapRα

(v,w) using the server response Sα.
Note that if the server response Sα is correct then makeBitMap would be able to construct the
bitmaps corresponding to each condition in qβ correctly. This is possible due to the specific type
of the allowed queries. Recall that an allowed query is formed only by the disjunctions of equality
conditions. In the procedure corresponding to the l conditions in qβ, l bitmaps are constructed
which are named X1, . . . ,Xl (See the example later for more explanation).

In the procedure β-Verify the response Sβ is verified using the bitmaps X1, . . . ,Xl constructed
before. The procedure β-Verify first verifies whether Sβ contains tuples corresponding to each
condition in qβ, this is done using the counter T [i], where i runs over the conditions in qβ. Notice,

that for every condition Cβ
i the server must return only one tuple in Sβ. The other parts of the

procedure involves in verifying the tags of the tuples against the tag’s of the computed bitmaps.

To make the exposition clearer let us consider the same example we have so far considered, i.e.,
the relation R1 the queries Q1α, Q1β and the corresponding server responses of S1α and S1β
(which are shown in Table 3). Given these responses the procedure α-Verify will not terminate,
as all the tuples in S1α do satisfy the conditions in Q1α and as they are correct responses in the
sense that they are just copies of the tuples present in the relation Rα, hence the corresponding
message authentication codes will match. Given the responses in S1α, one can compute the
bitmaps BitMapRα

(Gender,M) and BitMapRα
(Level, L2). To see this, see the response S1α in

Table 3, where it says that the tuples satisfying the condition Gender=M OR Level=L2 are
the tuples with the nonce values 1, 3 and 6. Now, as the verification procedure has as input
the whole of response S1α, hence it can predict correctly that the rows with the nonce value
1 and 3 satisfies the condition Gender=M and all the tuples in S1α (i.e., with nonce values 1,
3, 6) satisfies the condition Level=L2. Thus, knowing that the total number of tuples in Rα

to be 6, and assuming that server response is complete then the bitmap can be computed as
BitMapRα

(Gender,M) = 101000. Note that the 1st and 3rd bits of this bitmap are only one, as it
corresponds to the response in S1α. Similarly one can compute BitMapRα

(Level, L2) = 101001.
This is precisely what the procedure makeBitMaps would do for the example that we consider.
The computation of the individual bitmaps BitMapRα

(Gender,M) and BitMapRα
(Level, L2) are

possible from S1α as the Q1α query is a disjunction of equality conditions, if in the contrary the
query was a conjunction of conditions then there would be no way to compute the individual
bitmaps in a straightforward way, this explains the reason for the query restriction that we
impose.



Once these bitmaps are computed by using the procedure β-Verify one can verify the correctness
of the response S1β. As one can concatenate corresponding the bitmaps computed by the proce-
dure makeBitMaps with the other attributes of the tuples in Sβ and compute the tag using the
message authentication code and thus verify if the computed tag matches the attribute Tag1.

The procedure β-Verify basically verifies the correctness of the response Sβ, this verification is
done by using the bitmaps constructed using the response Sα. The correctness of the response
Sβ implies the completeness of the response Sα. We discuss about this more in the following
section.

4.1 Security of RDAS1

In this section we show that the security of RDAS1 can be reduced to the security of MAC. In
other words, if there exists an adversary capable of breaking RDAS1 then the MAC is not secure.

We can distinguish two possibilities for breaking RDAS: infringe the correctness or violate the
completeness of the response for a fixed query. To break the correctness the opponent must make
changes in one or more tuples of Sα and still pass the verification process. This implies that the
adversary must forge the respective MACs. On the other hand, to violate the completeness, the
adversary must change the respective bitmaps in Sβ which also implies forging the respective
MACs. Now, we introduce this notion in a formal way.

Theorem 1. Consider an adversary A attacking RDAS1 in the sense of definition 1. Let A
choose a relation R with nT tuples and the relation be such that the transformed relation Rβ

contains n′ tuples. Then there exists an adversary B attacking the message authentication code
MAC such that

Pr[SuccA] ≤ Advauth
MAC(B).

Also, B asks at most nT+n′ queries to its oracle and runs for time tA+(nT+n′)(c+tMAC), where
tA is the running time of A, tMAC is the time for one MAC computation and c is a constant.

Proof. The idea of the proof is to construct an adversary B whose task is to forge the message
authentication code MAC. B will use the adversary A by acting as its challenger. The interaction
between B and A is represented in the procedure below:

Adversary BMACK(.)

1. Receive the relation R from A;
2. Send (Rα, Rβ)← RDAS1.F(R) to A;

(Use the oracle MACK(.) to construct (Rα, Rβ);
Let Q be the set of queries asked to MACK(.))

3. Receive a query q from A;
4. Send (qα, qβ)← RDAS1.Φ(q) to A
5. Receive a response ρ′ from A
6. if RDAS1.V(ρ′) 6= ⊥ AND RDAS1.V(ρ′) 6= ans(R, q);
7. (x, tag)← GenerateForgery();

8. else x
$
← {0, 1}∗ −Q, tag

$
← {0, 1}τ ;

9. return x, tag

In line 7 we mention a routine GenerateForgery() which will be defined later. The heart of
the reduction is the following claim:



Claim. If the condition of line 6 is satisfied, then B forges the MAC with probability 1.

If the above claim is valid then we have

Pr[B forges] = Pr[B forges|SuccA] Pr[SuccA] + Pr[B forges|SuccA] Pr[SuccA] (2)

= Pr[SuccA] +
1

2τ
Pr[SuccA] (3)

≥ Pr[SuccA],

as desired. Eq. (3) follows from (2) as according to our claim Pr[B forges|SuccA] = 1 and
Pr[B forges|[SuccA] =

1
2τ as the probability that the τ bit tag of a message matches with a

random τ bit string is 1
2τ .

Proof of Claim: Here we will basically describe the procedure GenerateForgery(). Note that
the response ρ′ of A consists of (S′

α, S
′
β) and as the verification procedure does not output ⊥

hence the following must be true:

1. The tuples in S′
α and S′

β satisfies the conditions in the queries qα and qβ respectively, moreover
there is only one tuple returned in Sβ corresponding to each condition in qβ (see procedures
α-Verify and β-Verify in Figure 2).

2. All the tuples in S′
α and S′

β are associated with their valid tags.

Moreover the condition in line 6 says that response produced by V is not correct. This can
happen in the following two scenarios.

Case 1: There is a tuple tup ∈ S′
α such that tup is not in Rα. Moreover, if {b1, . . . , b|B|} be

the original set of attributes, and X = tup[b1]|| . . . ||tup[b|B|]||tup[Nonce], then (X, tup[Tag])
is a valid message tag pair. Note, that this case signifies that the server response is incorrect.

Case 2: There is no tup ∈ S′
α which is not present in Rα. This case can only occur if the

response is incomplete. This signifies that A has been able to forge a tag in Rβ. To see this,
note that the procedure V constructs the bitmaps corresponding to the conditions in the qβ
query based on the information in Sα. If the result returned in Sα is incomplete then the
bitmap corresponding to some condition would be wrongly computed by V, but this wrong
bitmap corresponds to the tag returned in S′

β.

In both the above cases B can construct a forgery for the MAC in the following way:

GenerateForgery() for Case I: (X, tup[Tag]) is a valid forgery, as according to the condi-
tion in line 6, tup[Tag]) is a valid tag for X, moreover as tup is not in Rα hence B has never
asked its oracle a query of X.

GenerateForgery() for Case II: Consider an arbitrary attribute a, and its value v, which is
related to the query in question, such that the bitmap computed by V for the condition a = v
is Y ′ and Y ′ 6= Y , where Y = BitMapv(a) is the real bitmap. In this case S′

β would contain a
tuple (a, v, r, tag) where r is the row number and it must be the case thatMACK(a||v||Y ′||r) =
tag. Thus (a||v||Y ′||r, tag) is a valid forgery, as B has never asked a||v||Y ′||r to its MAC oracle.

⊓⊔



4.2 Costs and Overheads

Storage cost:Given a relation R(B) with nT tuples, let size(ti[b]) denote the size of the attribute
b in the tuple t. Then the total size of R (which we also denote by size(R)) would be given by

size(R) =

nT
∑

i=1

∑

b∈B

size(ti[b]).

If this relation R is converted into (Rα, Rβ) with the help of the authentication transform
RDAS1.F , then we would have,

size(Rα) = size(R) +

nT
∑

i=1

(size(ti[Nonce]) + size(ti[Tag])),

if we assume a tag of constant length of τ bits then we would have

size(Rα) ≤ size(R) + nT(lg nT+ τ).

Again considering the set of allowed attributes ofR as A = {a1, a2, . . . , am}, andN =
∑m

i=1 Card(ai),
we will have

size(Rβ) =
N
∑

i=1

(size(ti[Name]) + ti[SearchKey] + ti[RowNo] + size(ti[Tag1])).

If we consider sName and ssk the maximum size of the values of the attributes Name and
SearchKey, then we would have

size(Rβ) ≤ N(sName + ssk + lg(nT+N) + τ).

The total cost of storage at the server side would be size(Rα) + size(Rβ), and at the client side
would be lg(nT) as in the client we need to store the number of tuples in the original relation.

Communication Cost: Consider the query SELECT * FROM Rα WHERE a1 = v1 OR a2 = v2
OR ...... OR al = vl, let the number of tuples satisfying the query be num. Let siz be the
size of the response in a normal scenario without authentication. Then the maximum size of the
server response in case of RDAS1 would be

sizRD1 = siz+ num× (lg nT+ τ) + l × (sName + ssk + lg(nT+N) + τ), (4)

where the first two terms corresponds to the Sα response and the remaining term counts for the
Sβ response.

5 RDAS2: Selects Involving Arbitrary Boolean Connectives

RDAS1 can be modified to support SELECT queries involving all kinds of Boolean connectives
at the cost of the size of the query responses. Recall that the query restriction for RDAS1 arises
from the problem of constructing the bitmaps of all the attributes involved in the query. We
propose an extension of RDAS1 which can support queries of the form

Q: SELECT * FROM R WHERE (a1 = v1) ∆1 (a2 = v2) ∆2 ...... ∆l−1 (al = vl),
where ∆is are arbitrary Boolean connectives. An easy solution to this case would be to change
RDAS1 to a new protocol RDAS2 along the following lines:



1. The relation Rβ produced by RDAS2.F would contain explicit bitmaps corresponding to the
attributes and the values. Specifically, the attributes present inRβ should be {Name, SearchKey,

RowNo, bitmap, tag1}. Thus, for creating the relation Rβ we need to add a line t
Rβ

j [bitmap]←

BitMapR(L
1
j ,L

2
j ) after line 5 in the procedure Creating Rβ in Fig. 1.

2. The query translation procedure and the response procedure for RDAS2 remains same as
that of RDAS1.

3. The response procedure also remains the same, i.e., the server just answers the qα and qβ
queries, but as the Rβ relation now explicitly contains the bitmaps, hence the bitmaps would
also be a part of the query.

4. For the verification procedure in RDAS2 it is not required to create the bitmaps any more,
the client verifies the Sα response by the procedure α-Verify in Fig. 2, then it verifies the
tags of the individual bitmaps returned in Sβ and finally computes the result bitmap using
the returned bitmap and checks if the result bitmap matches with the result returned.

We now state the storage and communication costs for RDAS2 following the notations in Section
4.2. The size of Rα in case of RDAS2 would be the same as in RDAS1, the size of Rβ would be

size(Rβ) ≤ N(sName + ssk + lg(nT+N) + τ + nT).

The size of a server response in case of RDAS2 would be

sizRD2 = sizRD1 + l × nT (5)

where sizRD1 is the size of the response of RDAS1, as given in Eq. (4).

In case of RDAS2, though we state that the bitmaps are to be explicitly stored in the relation Rβ,
but as most commercial databases uses bitmaps indices for accelerating query processing, hence
this may not amount to extra storage in some systems. Moreover bitmaps can be compressed,
there has been substantial work on suitable encoding of bitmaps such that their sizes can be
reduced and the Boolean operations be applied on the compressed bitmaps [3, 4, 31, 34, 13].
Applying proper encoding of the bitmaps can drastically reduce both storage and communication
costs, we elaborate on this in Section 7.

5.1 Security of RDAS2

In this section we show that as in RDAS1 the security of RDAS2 depends on the strenght of the
MAC. Notice that the pairs m, tag in Sα, Sβ are the same that in RDAS1. The only difference
is that in RDAS2, the complete message t[Name]||t[SearchKey]||t[Bitmap]||t[RowNo] is stored
in Sβ. Thus, the security theorem for RDAS1 apply to RDAS2 without any change.

Theorem 2. Consider an adversary A attacking RDAS2 in the sense of definition 1. Let A
choose a relation R with nT tuples and the relation be such that the transformed relation Rβ

contains n′ tuples. Then there exists an adversary B attacking the message authentication code
MAC such that

Pr[SuccA] ≤ Pr[B forges ].

Also, B asks at most nT+n′ queries to its oracle and runs for time tA+(nT+n′)(c+tMAC), where
tA is the running time of A, tMAC is the time for one MAC computation and c is a constant.

The proof follows in the same way as the proof or Theorem 1.



6 Using Aggregated MACs

Deterministic message authentication codes can be suitably aggregated [10]. The main mo-
tivation behind aggregated MACs is to provide authenticated communications in bandwidth
constrained scenarios, say in case of a sensor network. In case of a sensor network various sensor
nodes have their own secret key which they only share with the base station. Let us see an
example of a sensor network consisting of k nodes labeled i1, . . . , ik. We assume a communica-
tion protocol, where first the node i1 sends it authenticated data (mi1 , ti1) ( consisting of the
message mi1 and the authentication tag ti1 , which is computed using mi1 and the key ki1 of the
node) to the next node i2. Node i2 aggregates its own authenticated message (mi2 , ti2) to the
received message and sends [(mi1 , ti1), (mi2 , ti2)] to i3. Thus, ultimately the base station receives
[(mi1 , ti1), . . . , (mik , tik)] from node ik. As the base station owns the key of all the nodes, hence
it can verify the authenticity of all the messages received. If we assume that the authentication
tags are n bit long irrespective of the message lengths, then this communication protocol has
an extra bandwidth overhead of O(k2n) bits. In case of sensor networks the data send by them
are generally very short, say a temperature reading etc, thus the size of the data may be much
smaller than the size of the authentication tag (if one uses a secure MAC to generate the tag,
then n would be around 128 bits). Thus a O(k2n) bit extra bandwidth overhead may not be
tolerated in a standard scenario. Aggregated MAC comes as a solution to this problem, if the
MAC used for generating the authenticated tag is ”aggregate-able”, then node i1 sends (mi1 , ti1)
to i2, i2 sends [(mi1 ,mi2), ti1⊕ ti2)] etc. And finally, node ik sends [(mi1 , . . . ,mik); ti1⊕ . . .⊕ tik)]
to the base station. This protocol only requires an extra bandwidth overhead of O(kn).

In the example above, we used ⊕ as the aggregation operator, but one can define it generically as
was done in [10]. Moreover, it was proved in [10] that if one have a secure deterministic message
authentication code then by using ⊕ as the aggregation operator one can securely aggregate
MACs, in the multiuser setting. The security model describes a successful adversary as one who
can produce a set of messages along with the user identifiers for each message and an aggregated
tag which verifies. The adversary is allowed to see the tags corresponding to messages of his/her
choice, and additionally (s)he is allowed to corrupt some users and know their keys. The final
message set produced by the adversary should contain at least one message user id pair (m, id)
such that (s)he has not seen the tag corresponding to m and has not corrupted the user id.

Aggregated MACs can reduce communication costs both in case of RDAS1 and RDAS2. Func-
tionally, using aggregated MACs would reduce the response sizes, as then the tags corresponding
to all the tuples in Sα and Sβ will not be required to be sent, but an aggregation of these would
be required. But it is to be noted that our case is fundamentally different from the above example
in that we do not have multiple users, the authentication tags are all generated using the same
key. This has an advantage, that the security reduction that can be obtained in this scenario is
tighter than that obtained in the multiuser scenario. We discuss this a bit more in Section 6.1.

We propose two variants of RDAS namely RDAS1-agg and RDAS2-agg which extends RDAS1

and RDAS2 by using the functionality of aggregated MACs. We describe these variants next.

To convert RDAS1 to RDAS1-agg we just need to apply little modifications in the server response
procedure and the verification procedure. In the response procedure, the server sends Sα and Sβ
as in RDAS1 but without the attributes Tag and Tag1, and it sends two additional strings strα
and strβ which contains the xor of the tags in Sα ad Sβ respectively. For example, consider the
responses S1α and S1β in Table 3, the response for RDAS1-agg would be projections of S1α and
S1β without the attributes Tag and Tag1 respectively. And additionally the response procedure
would return strα = Y1 ⊕ Y3 ⊕ Y6 and strβ = Y ′

8 ⊕ Y ′
10. The changes that are to be applied to

RDAS2 to obtain RDAS2-agg are exactly the same.



This aggregation of tags leads to a savings in the communication cost in both RDAS1 and RDAS2.
Following the notation of Section 4.2, the size of server response for RDAS1-agg and RDAS2-agg

would be

sizRD1-agg = sizRD1 − τ(num+ l) (6)

sizRD2-agg = sizRD2 − τ(num+ l). (7)

6.1 Security of RDAS1-agg and RDAS2-agg

For discussion of security, first we try to formalize the security definition of the aggregated
MACs. Firstly, given a MAC MAC : K ×M → {0, 1}τ we define the corresponding aggregated
MAC MAC∗ in the single user setting as follows. The MAC generation algorithm given as input
m ∈ M and a key K ∈ K outputs MACK(m). The aggregation algorithm when given two sets
of messages M1,M2 ⊂ M and two corresponding tags tag1, tag2 ∈ {0, 1}

τ outputs tag1 ⊕ tag2.
The verification algorithm when given a key K ∈ K, a set of messages M ⊂ M and a tag
tag ∈ {0, 1}τ computes

t =
⊕

m∈M

MACK(m),

and accepts if tag = t and rejects otherwise.

An adversary A attacking MAC∗ is given oracle access to MACK(), i.e., it can know the tags
corresponding to the messages of it’s choice. Let us consider that A asks q queries Q =
{x1, . . . , xq} to its oracle and gets back the corresponding tags t1, . . . , tq. Finally A produces
a set of messages Mf ⊂ M and a tag tagf . A is said to be successful in forging if there is at
least one element m ∈ Mf such that m /∈ Q and the verification algorithm of MAC∗ on input
(K,Mf , tagf ) accepts. We define the forging advantage of A as

Adv
auth-ag
MAC∗ (A) = Pr[A forges].

If MACK() is a secure MAC then so is MAC∗
K(). The following theorem states this more formally.

Theorem 3. Let A be an arbitrary adversary attacking the aggregated MAC MAC∗, and A runs
for time T and makes q queries to its oracle. Then there exists an adversary B such that

Advauth−ag
MAC∗ (A) = Advauth

MAC(B).

B in turn makes O(q) queries and runs for time O(T ).

Proof. Note B is attackingMACK , hence it hasMACK as its oracle. B runsA as follows: whenever
A asks a query m, B returns to A, MACK(m) through its oracle. Let Q be the set of queries made
by A. Finally A outputs a forgery (Mf , tagf ). If A is successful in forging then Γ = Mf \Q 6= ∅.
Fix r ∈ Γ and compute

tall =

{⊕

x∈Γ\{r} MACK(x), if Γ \ {r} 6= ∅

0 otherwise.

Note that B can compute tall using its oracle. Finally, B outputs (r, tagf ⊕ tall) as its forgery.
It is easy to see that if A successfully forges then so does B, and the runing time of B and the
number of queries asked by B are as desired. ⊓⊔

With this discussion we are ready to state the security of RDAS1-agg and RDAS2-agg.



Theorem 4. Consider an adversary A attacking Υ ∈ {RDAS1-agg, RDAS2-agg} in the sense of
definition 1. Let A choose a relation R with nT tuples and let Rβ contain n′ tuples. Then there
exists an adversary B such that

Pr[SuccA] ≤ Advauth
MAC(B).

Also, B asks at most nT+n′ queries to its oracle and runs for time tA+(nT+n′)(c+tMAC), where
tA is the running time of A, tMAC is the time for one MAC computation and c is a constant.

Proof. The proof is similar to proof of Theorem 1, with some small differences. We present the
reduction in two steps. First we construct an adversary C which attacks the aggregated MAC
MAC∗, and it runs the adversary A, such that

Pr[SuccA] ≤ Advauth−ag
MAC∗ (C). (8)

Then using Theorem 3, we have that there exists an adversary B such that

Advauth−ag
MAC∗ (B) = Advauth

MAC(C). (9)

Thus, from equations (8) and (9) the Theorem follows.

To prove equation (9) we construct an adversary C which attacks the aggregate MAC MAC∗. C
runs A (A attacks Υ ) as follows.

Adversary CMACK(.)

1. Receive the relation R from A;
2. Send (Rα, Rβ)← Υ.F(R) to A;

(Use the oracle MACK(.) to construct (Rα, Rβ);
Let Q be the set of queries asked to MACK(.))

3. Receive a query q from A;
4. Send (qα, qβ)← Υ.Φ(q) to A
5. Receive a response ρ′ from A
6. if Υ.V(ρ′) 6= ⊥ AND Υ.V(ρ′) 6= ans(R, q);
7. (x, tag)← AggregateForgery();

8. else x
$
← {0, 1}∗ −Q, tag

$
← {0, 1}τ ;

9. return {x}, tag

Description of C is almost the same as the description of adversary B as given in the proof of
Theorem 1. As in the proof of Theorem 1, we claim that if the condition in line 6 is satisfied then
C generates a forgery for MAC∗ with probability 1. We can see this by following the same line
of arguments as in the proof of Theorem 1. We explain the procedure of AggregateForgery()
briefly for Υ =RADS2-agg, the case of Υ =RADS1-agg is similar.

Let B = {b1, b2, . . . , b|B|} be the original set of attributes and let ρ′ = (S′
α, S

′
β), strα, strβ. Note

that here S′
α, S

′
β does not contain the attribute Tag and Tag1 respectively. If the condition in

line 6 is satisfied then either of the two cases must be satisfied:

– Case I: There exists at least one tuple X in Sα which does not correspond to any tuple in
Rα. Construct a set Sα as

Sα = {t[b1]|| · · · ||t[b|B|]||t[Nonce] : t ∈ S′
α}.

Then Sα, strα constitutes a valid forgery for MAC∗.



– Case II: There exists at least one tuple X in Sβ which does not correspond to any tuple in
Rβ. Construct a set Sβ as

Sβ = {t[Name]||t[SearchKey]||t[bitmap]||t[RowNumber] : t ∈ S′
β}.

Then Sβ, strβ constitutes a valid forgery for MAC∗. ⊓⊔

7 Bitmap Compression

There had been a lot of work that has shown that bitmap based indexing works effectively in
database applications. To further improve their effectiveness, compression schemes have been de-
veloped, these schemes are capable of reducing the index size without increasing query processing
time. The most frequent operations over bitmaps are bitwise logical operations [11], the specific
compression schemes developed for bitmaps also allows logical operations to be performed on
the compressed bitmaps.

RDAS2 and its variants require explicit storage of bitmaps and also the bitmaps need to be
transmitted as the part of the query response, hence bitmap compression in this context can be
very helpful. Our experiments that we present later also validates that using compressed bitmaps
not only reduces storage and communication costs but also results in considerable savings in
computation time.

Most of the compression schemes applied to bitmaps are based on run length encoding (RLE)
scheme. Basic RLE works on the basis of the following simple idea. Consecutive occurrences of
identical bits are detected in a bit string, such occurrences are known as a fill. Each fill in a bit
string can be recorded with a counter representing its length and one bit indicating the actual
value. This compression scheme is lossless and very efficient.

Several variants of RLE has been developed for application to bitmap compression. In our
implementations we use a specific scheme called Enhanced Word Aligned Hybrid (EWAH).
EWAH was studied independently by Wu et al. [11] and Lemire et al. [13]. We describe the basic
scheme with an example.

EWAH divides the whole bit string X into 32 bit blocks and classify each block as either a
clean word or a dirty word. A clean word is a 32 bit fill (either of zeros or ones), a word which
is not clean is called dirty. The basic idea is to encode in such a manner that the clean words
are compressed by specifying the type of fill contained in the word and its length; and the dirty
words occur verbatim in the encoded string. We explain the basic encoding procedure with an
example in Figure 3. In the example, the original bit string is shown in the beginning followed
by the compressed string. The original string is 224 bits long and is represented in hexadecimal.
As we can see that in the input string the first two blocks are dirty words followed by four clean
words each with a fill of zeros and the last word is a dirty word. The encoded string contains
two types of 32 bit words namely marked words and verbatim words. Marked words are sort of
headers which carries information regarding the length and positions of fills and verbatim words
are verbatim copies of dirty words. The first bit of each marked word represents the type of
clean word that is to follow, the next 16 bits of a marked word encodes the length (in words) of
the clean words and the final 15 bits encodes the number of dirty words that follows the clean
words.



80 00 00 00    02 02 02 00 00 00 00 00    00 00 00 00    00 00 00 00     00 00 00 00 F3 00 8A 37

a) An example bitmap being compressed  (224 bits)

b) EWAH encoding

00 00     00 02     80 00 00 00    02 02 02 00

Marked Word Verbatim Word

00 04   00  01 F3 00 8A 37

Marked Word Verbatim Word

0 0000 0000 0000 0100

Type of Clean word (1 bit)
Number of clean words (16 bits)

Number of verbatim words (15 bits)

000 0000 0000 0001

Fig. 3. EWAH compression example.

In our example the first word of the encoded string is a marked word (this is so, for all strings)
0x00 00 00 02, which means that the marked word is followed by no clean words but two
dirty words. Next the following two dirty words are copied verbatim. Next the marked word
0x00040001 occurs, which means that this marked word would be followed by four clean words
each of zero which would be followed by one dirty word. At the end of this marked word the
dirty word is written verbatim. This procedure can be easily generalized.

Also, it is not difficult to see that as the EWAH works with a granularity of 32 bits, hence bitwise
operations can be easily performed on the compressed words and the compressed results can
be directly obtained. In [13] one can find the algorithms to perform logical operations on RLE
encoded bitmaps. These procedures can be easily extended for EWAH compression scheme.

7.1 RDAS2-cmp: RDAS2 with Compression

The changes required in RDAS2 to incorporate bitmap compression are as follows:

1. The column Rβ[bitmap] in the relation Rβ would be populated by the EWAH compressed
bitmaps. The MAC would also be computed using the compressed bitmaps.

2. The query translation procedure and the response procedure remains same as that of RDAS2
(without compression).

3. The response procedure also remains the same, i.e., the server just answers the qα and qβ
queries.

4. For the verification procedure in RDAS2 with compression it is not required to uncompress
the bitmaps, the client verifies the Sα response by the procedure α-Verify in Fig. 2, then it
verifies the tags of the individual compressed bitmaps returned in Sβ and finally computes
the result bitmap using the returned compressed bitmaps, and checks if the result bitmap
matches with the compressed bitmap obtained from the response.

The incorporation of compression in RDAS2 has no effect on the security but the storage and
communication costs would decrease based on the amount of compression achieved.

The size of Rα in case of RDAS2 with compression would be the same as in RDAS1. Let
sz cmp(tN [bitmap]) denote the size of the compressed bitmap for a given attribute and value
pair, the size of Rβ would be

size(Rβ) ≤ N(sName + ssk + lg(nT+N) + τ + sz cmp(tN [bitmap]))



The size of a server response in case of RDAS2 would be

sizRD2 = sizRD1 + l × sz cmp(tl[bitmap]), (10)

where sizRD1 is the size of the response of RDAS1, as given in Eq. (4).

Our experiments (presented later) clearly shows gains in both communication and computational
cost if compression is used.

8 Further Extensions and Improvements

In this section we discuss several other ways in which the RDAS framework can be extended.

8.1 The case of empty replies

One limitation of RDAS1 and RDAS2 is that if the server replies with an empty response in Sβ
corresponding to a query then there is no way to verify the validity of the response. For example,
in case of the relation R1, if a query

SELECT * FROM R1 WHERE Level = ’L3’

is posed, then response to this query would be empty, and there is no way to verify whether the
response is correct. It is to be noted that a server may reply an RDAS2 query which has a valid
response with an empty response and in such a scenario also RDAS1 provides no mechanism to
detect that the response is wrong.

If we assume knowledge of the client regarding the values of the attributes present in the relation
then it would be easy for it to verify whether an empty response is the correct one. We discuss
two simple ways by which RDAS1 can be extended so that empty responses can be verified. The
same steps are valid for RDAS2 also.

1. Recall that the authentication transform F returns two additional data items Mc and Ms,
which are stored in the client and server sides respectively. In RDAS1, Mc = nT the number
of tuples in the original relation, and Ms is empty. As a first solution, we suggest to augment
Mc with a list of all values corresponding to each sensitive attribute in the relation. With
this additional information, the client can easily verify whether an empty response is correct.
This functionality comes with an additional storage cost in the client side. But if we assume
that the domain of the attributes have small cardinality this storage would be much less
compared to the size of the whole relation. Moreover, with this small change in RDAS1 the
other efficiency and security claims remains unchanged.

2. As a second solution we propose to augment Ms with additional information. In particular,
we suggest to build a list Lsta, which contains all distinct values of the attribute a which
occurs in the original relation (encoded in an appropriate way). Corresponding to each such
list we compute lstTaga = MACK1(Lsta), and store (Lsta, lstTaga) for each sensitive attribute
a in Ms. Whenever the server returns an empty response corresponding to a query involving
a set of attributes S, then the server includes in its response (Lsta, lstTaga) for all a ∈ S . It
is easy to see that with this information the client can verify whether the empty response is
the correct one.

This solution has no extra overhead on the client side storage, but increases the server side
storage, which is generally not of much concern. Additionally, it increases the bandwidth
requirement for the responses of queries with empty responses. But, for other queries the
functionality of RDAS1 along with the security claims remain unchanged.



8.2 Including other query types

Efficient range query processing: Range queries can be handled by RDAS2 by posing a
range query with several selects. But this may not be efficient. An efficient way to handle
range queries would be to store range bitmaps [3, 4]. The type of bitmaps that we have used
so far are called equality bitmaps, and they are good for select queries. Using range bitmaps
one can encode range information of the attribute values and thus would be well suited for
processing range queries. Adding other bitmap encodings in our system can be done in a
straightforward way, and would increase the functionality at the cost of storage
Projection and aggregation queries: Projection and aggregation queries cannot be han-
dled directly by our protocol. But, projections and aggregations can always be done in the
client side if these functionalities are required. And this can also be added to the system,
without hampering its security properties.
Join queries: We have not discussed the functionality of join processing for our schemes.
But basic join processing (like equijoins) can again be obtained in a straightforward way by
storing extra information. In particular, join bitmaps [24, 1] can be used for this purpose.

8.3 Multiuser settings

As we have stated earlier, as we use a symmetric key primitive as the main cryptographic object,
thus our scheme is restricted to a single user setting, i.e., the data owner is the one who queries
the database. We can replace the message authentication scheme with a public key signature
scheme to extend the scheme for multiple queriers. We see no problem in doing this, but for a
multiuser setting, the security definition that we give for RDAS would no more be valid, and
one needs to extend this definition. Using signatures, the computational cost would in general
be more than that in using MACs. The functionality of aggregation can also be used (as we used
for MACs) to reduce communication costs.

8.4 Dynamic databases

We argued that there exist scenarios in which it may not be necessary to handle data updates,
for instance, the case of data warehousing applications. Thus having a scheme which is valid
only for static databases is useful. Most work in the literature on authenticated query processing
focus on static databases. The proposals for dynamic scenario are quite few [14, 29, 37]. However,
our proposal can be extended to dynamic scenarios also; this extension is not straightforward
and we would report this separately soon.

9 Experimental Results

In this section we discuss the experimental results and compare the performance of RDAS1 and
RDAS2 in various scenarios.

9.1 The Basic Building Blocks

Both RDAS1 and RDAS2 can be implemented with any secure MAC, we chose two MACs for
our implementations (a) PMAC instantiated with an AES with 128 bit key (in particular we
use the description in [30]) and (b) Polynomial evaluation MAC (which we will further call as
PolyMac).



PMAC is a block cipher based MAC where the main operations involved are block cipher calls.
The way we implement PolyMac is as follows. Let X1||X2|| . . . ||Xm = parsen(X), and let µ ∈
{0, 1}n, we define

PolyMach,k(X,µ) = (X1h⊕X2h
2 ⊕ cpadn(Xm)h

m ⊕ |X|hm+1)⊕ Ek(µ),

where X is the message and µ a non-repeating quantity associated with each message, Ek()
is a block cipher and the additions and multiplications are in the field F2n . Such polynomial
evaluation MACs are known to be secure when the quantity µ is non-repeating. For our imple-
mentations we take n = 128, and we consider the attribute Nonce in Rα and RowNo in Rβ as the
quantity µ. For PolyMac also we choose the block cipher as AES with 128 bit key.

One thing to notice is that PolyMac is not a deterministic MAC. It is a statefull MAC, the
quantity µ is a state of the algorithm and repetition of µ completely breaks down its security.
As we stated in Section 6.1 only deterministic MACs can be aggregated, thus, Theorem 3 for
aggregated MACs does not hold for PolyMac. Thus PolyMac cannot be used in RDAS1-agg and
RDAS2-agg.

For implementation of the block cipher in both MACs we use the new Intel dedicated instructions
for AES. Finite field multiplications required for the PolyMac were implemented using the
PCLMULQDQ instruction, which can perform carry-less multiplication of two 64 bit strings. These
64 bit multiplications were combined using the Karatsuba technique to obtain multiplication of
two 128 bit strings, the final reduction was performed using a technique described in [8].

9.2 Experimental Settings

All results were obtained by testing the implementations in a machine with the following specifi-
cations:

– CPU: Four-core i5-2400 Intel processor (3.1GHz).
– OS: Ubuntu 12.04.02 LTS.
– DataBase: PostgreSQL 9.1.9
– Compiler: gcc 4.7.3

We use Census-Income data set [6] to test performance of our schemes. This data contains
weighted census data extracted from the 1994 and 1995 population surveys conducted by the
U.S. Census Bureau. The number of instances in the data set is 199523. The data contains 42
demographic and employment related variables, the sum of the cardinalities of all the attributes
is 103419, and the total size of the dataset is 99.1 MB.

As explained, RDAS1 and RDAS2 work in an environment where one needs to perform computa-
tions in both the client and the server side. In our implementation all server-side computations
are done in the PostgreSQL database using the PostgreSQL tools. We implemented the client in
C, where ever possible we used the Intel SIMD instructions using Intel intrinsics. We designed
the server side code in such a way such that all computations can be handled by the default Post-
greSQL tools. This specific implementation choice makes our client much more powerful than
the server, and also leaves space for a much more optimized implementation. Such an optimized
implementation would require an implementation of all database engine functionalities, which
we think is beyond the scope of this work. But, we would like to mention that this specific design
choice also gives us the opportunity to see how good one can do by adding the authentication
functionality to an already existing database system.

The experiments were performed using the set of queries presented in Table 4. Table 4 shows the
characteristics of the queries in terms of the number of restrictions, the query type and the size



of the query response. The restrictions are all equality conditions aggregated by some Boolean
operators. Query Q1-Q5 are disjunctions of equality conditions, whereas the rest of the queries
have additional Boolean operators like AND and NOT. The last column shows the percentage
of the response size in terms of the whole database size. Note that the number of restrictions
corresponds to the number of tuples which would be included in a correct and complete Sβ
response and the response size would be same as the number of tuples in the Sα result.

Query Id Number of Query Response Size Database
Restrictions type (tuples) Percentage

Q1 10 OR 20115 10

Q2 20 OR 35452 18

Q3 30 OR 92791 46

Q4 40 OR 106065 53

Q5 50 OR 198869 99

Q6 3 OR, AND 4016 2

Q7 3 OR, AND, NOT 10354 5

Q8 4 OR, AND 24722 12

Q9 3 OR, AND 64028 32
Table 4. Summary of the different queries used for performance testing

In Table 5 we summarize the queries that can be handled by our different proposed schemes.

RDAS1 and all its variants only can manage the queries Q1-Q5, because these are queries in which
the Boolean connectives are disjunctions. On the other hand RDAS2 can handle all the queries
Q1-Q9, because it is designed to work with queries involving all kinds of Boolean connectives.

RDAS1-agg and RDAS2-agg are implemented only using PMAC as PolyMac cannot be used as
an aggregate MAC. As stated before, we implemented the aggregation at the server side with
PostgreSQL XOR function and at the client side with the Intel SIMD instruction for xor, this
of course has performance implications that we discuss later.

Only RDAS2 is implemented with compression, we name the variant as RDAS2-cmp. As in RDAS1

explicit bitmaps are neither stored nor transmitted, hence the compressed bitmap version is not
applicable in case of RDAS1. For compressing the bitmaps and applying logic operations on them
we used the Lemire library [12]. This library only implements OR, AND, XOR, operations over
compressed bitmaps. This is the reason why report only results for queries Q1-Q9 except Q7 for
RDAS2-cmp. Though using these basic operations as provided by the library one can implement
other logic operations, but we have not done this, as we feel that for a proof of concept the query
classes that we handle would be enough.

Scheme Queries

RDAS1 PolyMac Q1-Q5

RDAS1 PMAC Q1-Q5

RDAS1-agg Q1-Q5

RDAS2 PolyMac Q1-Q9

RDAS2 PMAC Q1-Q9

RDAS2-agg Q1-Q9

RDAS2-cmp PolyMac Q1-Q6 Q8-Q9

RDAS2-cmp PMAC Q1-Q6 Q8-Q9
Table 5. Summary of the different scenarios used for performance testing



9.3 Experimental results on RDAS1 and its Variants

In Table 6 we report the time required for executing the set of queries (Q1,Q2,Q3,Q4,Q5). We
report the normal time (i.e., the time for execution without any authentication) along with the
times required for RDAS1 with both PolyMac and PMAC, and for RDAS1-agg. All reported
times are in milliseconds and is the average of 250 executions of the same query. The reported
time involves all steps in the authentication procedure, i.e., time for query translation, time
required for the server to respond and the time for client side verification. In Table 6 we also
report the extra overhead of each of our schemes over the normal scheme without authentication.
The data presented in Table 6 is also presented pictorially in Figure 4.

Query Normal time RDAS1 [PolyMac] RDAS1 [PMAC] RDAS1-agg [PMAC]
Id - Avg Extra Avg Extra Avg Extra

time Overhead(%) time Overhead(%) time Overhead(%)
Q1 437.05 525.74 20.29 522.01 19.44 879.69 101.28
Q2 747.58 1062.52 42.13 1048.32 40.23 1743.47 133.22
Q3 1708.08 2668.86 56.25 2652.40 55.29 4025.26 135.66
Q4 1944.71 2895.41 48.88 2877.48 47.97 4357.16 124.05
Q5 3739.53 7568.17 102.38 7564.11 102.27 10357.86 176.98

Table 6. Execution times for OR queries with RDAS1.
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Fig. 4. RDAS1 OR queries times (milliseconds).

The results of Table 6 show that in general PMAC is marginally faster than PolyMac. Even
though the aggregated scheme is implemented with PMAC, the results shows that this scheme
is very expensive, in general it takes a bit more than the double of the normal time (time to
respond the query without authentication). This can be explained by the fact that in case of
RDAS1-agg the server and the client need to calculate the aggregated tags, this is done by
XORing all the involved tags. We will see in Table 7 that the time for responding the query
increases significantly in RDAS1-agg compared to RDAS1.

In Table 7 we present separately the following times:

1. Time required for query translation (the Φ function).
2. Time required by the server to respond to the query (the Ψ function).
3. The time required for verification (the V function).



Note that out of all the above procedures only the response procedure (Ψ) is executed in the
server, and the other two procedures runs in the client. Table 7 clearly shows that the time
required for query translation is negligible, the most of the time is spent in the server response
and the verification procedures.

The server response procedure for RDAS1-agg is significantly more than that of RDAS1. This is
because that in case of RDAS1, the server needs to aggregate the MACs before sending them.
Thus, the server needs to compute xors equal to the total number of tuples in Sα and Sβ.
And this operations are not required to be performed by the server in case of RDAS1. As the
server side is implemented using the PostgreSQL, these XORs are expensive. But the verification
procedure in case of RDAS1-agg is marginally faster than in RDAS1. Note that the number of
MAC computations in the verification process of both RDAS1 and RDAS1-agg are the same.
But, in case of RDAS1 the verification process requires to compare each computed tag with
the tag received. But in case of RDAS1-agg, individual tag verification is not required, here the
computed tags are xor-ed and the final value is compared with the aggregated tag, which is
received as a part of the query response. As stated, the verification process is implemented using
SIMD instructions, hence the aggregation does not take as much time as individual comparison
of the tags.

Query RDAS1 RDAS1-agg

Id φ ψ V [PolyMac] V [PMAC] φ ψ V [PMAC]
Q1 .0127 442.78 83.26 77.86 .0170 811.60 76.56
Q2 .0260 843.92 216.33 202.67 .0339 11558.59 201.84
Q3 .0262 1806.30 862.74 844.75 .0422 3209.64 827.17
Q4 .0262 1980.46 922.22 901.82 .0382 3489.79 884.24
Q5 .0419 3983.31 3638.79 3560.35 .0677 6868.57 3532.19

Table 7. Execution times for primitives with RDAS1-OR queries.

The communication overhead of RDAS1 and RDAS1-agg is discussed in Sections 4.2 and 6.1
respectively. Specifically Eq. (4) gives an upper bound on the response size for RDAS1 and Eq.
(6) gives the same for RDAS1-agg. In Table 8 we give the numerical values of the response size
for the specific queries used in our implementation. In Table 8, columns 2 and 3 represents
the size in tuples for Sα and Sβ respectively. The values in columns labeled sizRD1 − siz and
sizAGG−RD1 − siz represents the extra size of the response (in bytes) in case of RDAS1 and
RDAS1-agg respectively. These were calculated using equations (4) and (6) respectively. For
these calculations we assume the tag size to be 16 bytes, the size for the Nonce and RowNo as
4 bytes, and sName + ssk = 200 bytes. Table 8 clearly shows that RDAS1-agg has significantly
lower communication cost compared to RDAS1.

Query Id Size Sα Size Sβ sizRD1 − siz sizAGG−RD1 − siz
Q1 20115 10 404500 82532
Q2 35452 20 713440 145920
Q3 92791 30 1862420 377316
Q4 106065 40 2130100 432452
Q5 198869 50 3988380 805708

Table 8. Object Verification Extra-Size for RDAS1 in bytes.



9.4 Experimental results on RDAS2 and its Variants

In this section we present the results of the variants of RDAS2 in the same way as we did in
the previous section for RDAS1. In Table 9 we report the time required for executing the set
of queries (Q1-Q9) with RDAS2, RDSAS2-agg and RDAS2-cmp. In Table 10 we report the time
taken for various sub-processes involved in the query execution. In Figures 5, 6 we present the
data of Table 9 pictorically. In Table 11 we report data corresponding to the size of the response.

Query Normal RDAS2 [PolyMac] RDAS2 [PMAC] RDAS2-agg [PMAC] RDAS2-cmp [PolyMac] RDAS2-cmp [PMAC]
Id time Avg Over- Avg Over- Avg Over- Avg Over- Avg Over-

time head(%) time head(%) time head(%) time head(%) time head(%)
Q1 437.05 515.06 17.85 508.88 16.43 870.48 99.17 496.03 13.49 496.82 13.67
Q2 747.58 971.57 29.96 969.90 29.74 1671.36 123.57 963.94 28.94 959.39 28.33
Q3 1708.08 2316.89 35.64 2311.90 35.35 3719.12 117.74 2302.87 34.82 2178.18 27.52
Q4 1944.71 2504.30 28.78 2502.96 28.68 3988.83 105.11 2454.10 26.19 2284.95 17.49
Q5 3739.53 6331.86 69.32 6326.28 69.17 9130.61 144.16 6298.63 68.43 6266.40 67.57

Q6 108.64 184.93 70.22 175.72 61.75 322.71 197.04 175.67 61.70 166.92 53.64
Q7 182.37 286.44 57.06 276.79 51.77 488.53 167.87 - - - -
Q8 374.05 572.92 53.17 558.98 49.44 954.73 155.24 570.75 52.59 545.83 45.93
Q9 784.72 1179.85 50.35 1162.56 48.15 1874.71 138.90 1166.25 48.62 1142.06 45.54

Table 9. Execution times with RDAS2.

Query RDAS2 RDAS2-agg[PMAC] RDAS2-cmp

Id φ ψ V [PolyMac] V [PMAC] φ ψ V φ ψ V [PolyMac] V [PMAC]
Q1 0.0117 457.20 55.62 55.09 0.2367 806.88 60.51 0.0128 451.98 54.87 54.79
Q2 0.0227 857.55 109.95 108.99 0.2033 1534.68 120.56 0.0255 841.26 114.26 115.11
Q3 0.0280 1815.84 500.97 498.63 0.1583 3177.27 513.94 0.0304 1805.03 498.38 499.64
Q4 0.0254 1995.49 514.39 513.00 0.1618 3451.78 523.04 0.0291 1949.91 512.31 511.50
Q5 0.0413 3962.19 2368.64 2355.91 0.2354 6875.67 2400.21 0.0442 3970.33 2369.98 2362.77

Q6 .0048 163.83 20.19 14.90 0.1663 301.95 20.07 0.0052 152.19 14.37 13.59
Q7 .0057 252.35 33.49 27.88 0.1662 451.71 33.90 - - - -
Q8 .0085 497.18 70.75 61.29 0.2183 878.69 69.25 0.0097 490.65 60.42 60.34
Q9 .0061 1026.55 146.92 136.15 0.1671 1725.26 145.86 0.0065 1008.72 134.41 135.49

Table 10. Execution times for primitives with RDAS2.

Query Id Size Sα Size Sβ sizRD2 − siz sizAGG−RD2 − siz sizCMP−RD2 − siz
Q1 20115 10 653910 331942 524520
Q2 35452 20 1212260 644740 796649
Q3 92791 30 2610650 1125546 1933237
Q4 106065 40 3127740 1430092 2187503
Q5 198869 50 5235430 2052758 4086144
Q6 4016 3 155803 91531 129932
Q7 10354 3 282563 116883 277908
Q8 24722 4 569923 199500 562899
Q9 64028 3 1356043 331579 1338472

Table 11. Object Verification Extra-Size in bytes.

From the Tables we can infer the following:
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1. RDAS2-cmp has the best performance in terms of time for all queries, and RDAS2-agg has the
worst performance. The reason for good performance of RDAS2-cmp is probably due to the
fact that as compression reduces the size of the bitmaps, hence operations on them can be
performed much more efficiently. The performance of RDAS2-agg can be further improved
by optimizing the server. Table 10 clearly shows that for RDAS2-agg most of the time is
consumed by the query response procedure (Ψ).

2. All versions of RDAS2 performs better than the corresponding versions of RDAS1. This is
because in all versions of RDAS1 the verification process has to create the bitmaps from the
responses. This can take up some time. But in case of RDAS2, the bitmaps are already there
as part of the response.

3. From Table 11, we can see that RDAS2-agg have the best performance in terms of commu-
nication cost, followed by RDAS2-cmp and RDAS2. But all versions of RDAS2 have more
communication cost compared to the corresponding versions of RDAS1.

10 Discussions and Comparisons

As stated earlier there are other schemes available in the literature which achieves the func-
tionality of authenticated query processing. The main novelty of our scheme is in the use of
bitmaps and ability to work on queries other than range queries, moreover we try to analyze
security in formal terms and also link the security of the scheme with the security of the message
authentication code.

In this section we aim to provide a comparison of our scheme with the other existing schemes,
and also point out the limitations in our scheme. Providing an experimental comparison of our
scheme with the existing ones is beyond the scope of this work. Some authors (for example
[37]) compare the storage and communication cost of the protocols in asymptotic terms, which
also do not reveal the complete picture. Here we would point out some of the differences of our
framework in comparison to the others with respect to functionality and costs.

As stated earlier, most existing schemes use an additional authenticated data structure to ensure
completeness. The additional data structure is usually a tree, in its barest form a Merkle hash
tree is used [5, 16]. In some cases variants of B+ trees have also been used as the additional data
structure [14, 27, 26]. The other significant direction is use of signatures. By signing the individual
tuples with a secure signature scheme, as was done in [20, 27] one can ensure correctness but
not completeness. To attain completeness only with signatures a method in [21] was proposed,



where chains of signatures are constructed based on a specific sort order of the attribute values.
Such types of signatures allow verification of completeness for range queries, without the use
of additional data structures. Signature aggregation has also been used to reduce the size of
the responses [20, 19, 21, 26]. In what follows we summarize some of the salient features of the
previous works available in the literature and compare and contrast it with the RDAS framework.

Type of queries: In the literature, all basic schemes are designed to handle mostly range queries
on numerical attributes. In most cases, to handle additional query types, drastic changes in the
basic schemes are required. For most tree based schemes, even handling tuples with repeated
values of attributes needs special treatment [21, 26]. In some tree based schemes join processing
is achieved in rather a straight forward way [26, 35, 14, 29], which leads to significant increase in
the size of the query responses and also the stored data in the server side. In [28] a special tree
structure called authenticated aggregation B tree was specifically designed to handle aggregation
queries, other tree based schemes cannot handle aggregation queries as a part of the scheme.

The signature based schemes like in [21, 26] which uses chain signatures are mainly designed for
range queries and are not efficient for other types of queries. It has been claimed in [26] that
joins can be handled, but here too the computational costs and the size of the responses would
be prohibitively large.

RDAS2 can handle selects involving arbitrary Boolean operations. These query types can be
modified to handle range queries, without any extra overhead. In the recent years other efficient
bitmap encodings, like the range encodings [3, 4] have been proposed. Such bitmap encoding can
provide functionality of range queries in a more efficient way. Such extensions are straightforward
and can be easily implemented. Projections and aggregations cannot be handled directly by the
protocol, but they can be implemented in the client side without any difficulties. Moreover,
simple join queries can also be accommodated if some additional information is stored through
join bitmaps [24, 1]. Hence the spectrum of query types that can be handled by the RDAS
framework is comparable to the existing schemes.

In the following discussion we will denote the number of rows in a database by n and the number
of attributes by m. By nq we shall mean the number of tuples included in a correct and complete
response of a query q, and lq will denote the number of bitmaps involved in a query q.

Storage Costs: Tree based schemes need to store a tree for each attribute. Asymptotically, a
tree based scheme (such as the one described in [14, 26]) requires O(mn) extra storage. Whereas
in case of RDAS1 we require O(n+N) storage, where N is the cardinality of all the attributes
present. We know that N ≤ mn, but in most scenarios N is smaller than mn, and in certain
scenarios N << mn. In case of the basic RDAS2, we require O(n+Nn) storage as we require to
store the bitmaps also corresponding to each attribute and its value. Assuming N = O(mn), we
have the asymptotic storage requirement for RDAS2 as O(mn2), but the constants involved in
this are much smaller than in the case of tree based solutions, and this is an extreme overestimate
for databases with low cardinality attributes. Moreover, in case of RDAS2 the bitmaps can be
compressed. It is difficult to give a proper estimate of the amount of compression that can be
achieved in general. But, it is clear that when the attribute cardinalities increases, the bitmaps
become more sparse (in the sense that they would have lower Hamming weights), which would
allow better compression. In case N = mn, each bitmap would have only one 1 and rest zeros,
and can be encoded in constant length irrespective of the number of rows in the database. Thus,
it is expected that with increase in N the encoded size of the bitmaps decreases. In general
terms, it has been said (for example in [33]) that the sizes of the compressed bitmap indices are
relatively small compared with the typical B-tree indices. This is true even for attributes with
very high cardinalities.



The schemes based on signature chains or aggregate signatures like [29, 21] also uses = O(mn)
storage.

Query execution costs: The tree based schemes (as [14]) do not have any extra computational
overhead in query execution. This is also true for the basic RDAS1 and RDAS2. In case of
RDAS2− agg, for query execution the tags are to be aggregated which requires a number of xor
operations which grows linearly with the response size. But in tree based schemes, answering
a query requires traversing the tree to find the relevant node, and for multiple attributes this
need to be done in multiple trees, and there exists no trivial way to combine the trees involving
different attributes. In RDAS, query execution is simpler, moreover the bitmaps stored in case
of RDAS2 can even act as indexes and thus make query execution further efficient. In case of
schemes using signature chains [29, 21], the signatures are also pre computed, hence additional
computation in query execution is not required. But schemes which uses aggregated signatures
signatures are required to be aggregated for responding queries. In such a scenario, the server
needs to aggregate O(nq) signatures. It is to be noted that aggregating signatures is much more
costly than aggregating MACs. For example if RSA signatures are used then to aggregate two
signatures one requires a modular multiplication modulo the RSA modulus (which should be at
least 1024 bits long).

Query Verification costs: The schemes based on trees structures ([14]) requires to compute
O(mnq) hashes plus one signature to verify a query. In the case of [26], O(mnq) signatures are
required to be computed, which are very expensive. On the other hand, RDAS1 and RDAS2

requires the computation of O(nq + lq · n) tags, where lq is the number of bitmaps involved in
the query. RDAS2 only differs from RDAS1 in that it is necessary to build the involved bitmaps.
In case of schemes using signature chains ([21, 29]) the cost is similar to the tree approach.

Communication costs: In RDAS1 and RDAS2, the extra communication cost is O(nq +n · lq).
Once more the difference between RDAS1 and RDAS2 it is that in RDAS2 the communication
costs grows because bitmaps are also sent as part of the response. The extra cost can be reduced
by compression as in RDAS2-cmp. In case of RDAS1-agg the extra overhead is constant, since
just two aggregated tags are sent irrespective of the response size. Finally in RDAS2-agg the
object verification size has a bound of O(n · lq) where lq is the number of bitmaps involved in
the query. The schemes based on trees ([14]) has as communication cost of O(log n) hashes that
need to be sent. The scheme in [26] has a constant communication cost, as only an aggregate
signature is sent here irrespective of the response size. The schemes described in [29, 21] needs
to send O(mnq) hashes plus one aggregated signature.

11 Conclusion

We presented RDAS a generic framework for authenticated query processing and provided the
syntax and security definition of a RDAS. We also provided two concrete constructions RDAS1
and RDAS2 which uses bitmap indices and message authentication codes in a novel way. We
discussed several ways in which the basic schemes can be extended to accommodate various
functionalities. In particular we described the use of aggregate message authentication codes
and compressed bitmaps. We reported extensive experimental data on our schemes, our results
suggests that RDAS can be a viable option for authenticated query processing in real life.

A serious limitation of the proposed schemes is that they do not allow database updates. We
are currently working on this problem, to extend this framework for dynamic databases.
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based services. In Gustavo Alonso, José A. Blakeley, and Arbee L. P. Chen, editors, ICDE, pages 1082–1091.
IEEE, 2008.

37. Qingji Zheng, Shouhuai Xu, and Giuseppe Ateniese. Efficient query integrity for outsourced dynamic
databases. In Ting Yu, Srdjan Capkun, and Seny Kamara, editors, CCSW, pages 71–82. ACM, 2012.


