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Abstract In this paper we introduce new primitives to authenticate computation on data expressed
as elements in (cryptographic) groups. As for the case of homomorphic authenticators, our primitives
allow to verify the correctness of the computation without having to know of the original data set. More
precisely, our contributions are two-fold.
First, we introduce the notion of linearly homomorphic authenticated encryption with public verifiability
and show how to instantiate this primitive (in the random oracle model) to support Paillier’s ciphertexts.
This immediately yields a very simple and efficient (publicly) verifiable computation mechanism for
encrypted (outsourced) data based on Paillier’s cryptosystem.
As a second result, we show how to construct linearly homomorphic signature schemes to sign elements
in bilinear groups (LHSG for short). Such type of signatures are very similar to (linearly homomorphic)
structure preserving ones, but they allow for more flexibility, as the signature is explicitly allowed
to contain components which are not group elements. In this sense our contributions are as follows.
First we show a very simple construction of LHSG that is secure against weak random message attack
(RMA). Next we give evidence that RMA secure LHSG are interesting on their own right by showing
applications in the context of on-line/off-line homomorphic and network coding signatures. This notably
provides what seems to be the first instantiations of homomorphic signatures achieving on-line/off-line
efficiency trade-offs. Finally, we present a generic transform that converts RMA-secure LHSG into ones
that achieve full security guarantees.

1 Introduction

Homomorphic signatures allow to validate computation over authenticated data. More precisely,
a signer holding a dataset {mi}i=1,...,t can produce corresponding signatures σi = Sign(sk,mi)
and store the signed dataset can on a remote server. Later the server can (publicly) compute m =
f(m1, . . . ,mt) together with a (succinct) valid signature σ on it. A keynote feature of homomorphic
signature is that the validity of σ can be verified without needing to know the original messages
m1, . . . ,mn. Because of this flexibility homomorphic signatures have been investigated in several
settings and flavors. Examples include homomorphic signatures for linear and polynomial functions
[16,15], redactable signatures [40], transitive signatures and more [46,49]. In spite of this popularity,
very few realizations of the primitive encompass the very natural case where the computation one
wants to authenticate involves elements belonging to typical cryptographic groups (such as, for
instance, groups of points over certain classes of elliptic curves, or groups of residues modulo a
composite integer).

Our Contribution. In this paper we put forward new tools that allow to authenticate computa-
tion on elements in (cryptographic) groups. In this sense our contributions are two-fold. First, we
define a new primitive that we call Linearly Homomorphic Authenticated Encryption with Public
Verifiability (LAEPuV for short). Informally, this primitive allows to authenticate computation
on (outsourced) encrypted data, with the additional benefit that the correctness of the computa-
tion can be publicly verified. The natural application of this primitive is the increasingly relevant
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scenario where a user wants to store (encrypted) data on the cloud in a way such that she can
later delegate the cloud to perform computation on this data. Similarly to homomorphic signa-
tures, LAEPuV allows to verify the correctness of the computation without needing to download
the original ciphertexts locally.

We show an (efficient) realization of the primitive (in the random oracle model) supporting
Paillier’s ciphertexts. At an intuitive level our construction works by combining Paillier’s encryp-
tion scheme with some appropriate additively homomorphic signature scheme. Slightly more in
detail, the idea is as follows. One first decrypts a “masking” of the ciphertext C and then signs
the masked plaintext using the linearly homomorphic signature. Thus we use the homomorphic
signature to authenticate computations on ciphertexts by basically authenticating (similar) com-
putations on the masked plaintexts. The additional advantage of this approach is that it allows to
authenticate computation on Paillier’s ciphertexts while preserving the possibility to re-randomize
the ciphertexts. This means, in particular, that our scheme allows to authenticate computation also
on randomized versions of the original ciphertexts1.

This result allows to implement a very simple and efficient (publicly) verifiable computation
mechanism for encrypted (outsourced) data based on Paillier’s cryptosystem [47]. Previous (effi-
cient) solutions for this problem rely on linearly homomorphic structure preserving signatures [45]
and, as such, only supported cryptosystems defined over pairing-friendly groups. Since, no (linearly
homomorphic) encryption scheme supporting exponentially large message spaces is known to exist
in such groups, our construction appears to be the first one achieving this level of flexibility.

As a second contribution, we show how to construct a very simple linearly homomorphic signature
scheme to sign elements in bilinear groups (LHSG for short). Such type of signatures are very
similar to (linearly homomorphic) structure preserving ones, but they allow for more flexibility,
as the signature is explicitly allowed to contain components which are not group elements (and
thus signatures are not necessarily required to comply with the Groth-Sahai famework). More in
detail, our scheme is proved secure against random message attack (RMA)2 under a variant of the
Computational Diffie-Hellman assumption introduced by Kunz-Jacques and Pointcheval in [44].
In this sense, our construction is less general (but also conceptually simpler) than the linearly
homomorphic structure preserving signature recently given in [45]3.

Interestingly, we show that this simple tool has useful applications in the context of on-line/off-
line (homomorphic) signatures. Very informally, on-line/off-line signatures allow to split the cost
of signing in two phases. An (expensive) offline phase that can be carried out without needing to
know the message m to be signed and a much more efficient on-line phase that is done once m
becomes available.

In this sense, on-line/off-line homomorphic signature could bring similar efficiency benefits to
protocols relying on homomorphic signatures. For instance, they could be used to improve the
overall efficiency of linear network coding routing mechanisms employing homomorphic signatures
to fight pollution attacks4.

1 We stress however that this does not buy us privacy with respect to the functionality, i.e. the derived (authenticated)
ciphertexts are not necessarily indistinguishable from freshly generated (authenticated) ones.

2 Specifically, by random message security here we mean that the unforgeability guarantee holds only with respect
to adversaries that are allowed to see signatures corresponding to messages randomly chosen by the signer

3 Also, the scheme from [45] allows to sign vectors of arbitrary dimension, while ours supports vectors composed by
one single component only)

4 This is because the sender could preprocess many off-line computations at night or when the network traffic is low
and then use the efficient online signing procedure to perform better when the traffic is high.
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We show that RMA-secure LHSG naturally fit this more demanding on-line/off-line scenario.
Specifically, we prove that if one combines a RMA-secure LHSG with (vector)Σ protocols with some
specific homomorphic properties, one gets a fully fledged linearly homomorphic signature achieving
a very efficient online phase. Moreover, since the resulting signature scheme supports vectors of
arbitrary dimensions as underlying message space, our results readily generalize to the case of
network coding signatures [14]. More concretely, by combining our RMA-secure scheme together
with (a variant of) Schnorr’s identification protocol we get what seems to be the first constructions
of secure homomorphic and network coding signatures offering online/offline efficiency tradeoffs
both for the message and the file identifier.

To complete the picture, we provide an efficient and generic methodology to convert RMA-secure
LHSG into ones that achieve full security5. We stress that while similar transforms were known for
structure preserving signatures (e.g. [26]), to our knowledge this is the first such transform for the
case of linearly homomorphic signatures in general.

1.1 Other Related Work

Authenticated Encryption. Authenticated Encryption (AE) allows to simultaneously achieve
privacy and authentication. Infact AE is considered to be the standard for symmetric encryption,
and many useful applications are based on this primitive using a standard strategy called generic
composition6 [50,42,31], or using a different paradigm called encryption with redundency introduced
by An and Bellare in [8]. Bellare and Namprempre in [13] formalize definition of AE and focus on
its security aspects. More closely related to our setting is the notion of homomorphic authenticated
encryption recently proposed by Joo and Yun in [41]. With respect to ours, their definitions en-
compass a wider class of functionalities, however their proposed schemes are not practical and do
not consider public verifiability.

Linearly homomorphic signatures The concept of homomorphic signature scheme was orig-
inally introduced in 1992 by Desmedt [27], and then refined by Johnson, Molnar, Song, Wagner
in 2002 [40]. Linearly homomorphic signatures were introduced in 2009 by Boneh et al. [14] as
a way to prevent pollution attacks in network coding. Following [14] many other works further
explored the notion of homomorphic signatures by proposing new frameworks and realizations
[34,10,16,15,22,11,23,30,12,21]. In the symmetric setting constructions of homomorphic message
authentication codes have been proposed by [14,35,20].

Recently Libert et al. [45] introduced and realized the notion of Linearly Homomorphic Structure
Preserving signatures (LHSPS for short). Structure Preserving cryptography provides a simple
and elegant methodology to compose algebraic tools within the framework of Groth Sahai proof
systems [38]. In the last years, this methodology has been widely used to design simple and modular
realizations of cryptographic protocols and primitives. These include structure preserving signatures
(SPS) [5,3,4,1,2,17,24,25,32,37,39], commitments [36,6] and encryption schemes [18].

Informally LHSPS are like ordinary SPS but they come equipped with a linearly homomorphic
property that makes them interesting even beyond their usage within the Groth Sahai framework.
In particular Libert et al. showed that LHSPS can be used to enable simple verifiable computation
mechanisms on encrypted data. More surprisingly, they observed that linearly homomorphic SPS

5 for lack of space, the description is deferred to appendix C.
6 Very informally, usign the generic composition paridigm there are 3 ways to obtain an AE sheme: Encrypt and

MAC, MAC then Encrypt, Encrypt then MAC
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(generically) yield efficient simulation sound trapdoor commitment schemes [33], which in turn
imply non malleable trapdoor commitments [28] to group elements.

On-Line/Off-Line Signatures. On-Line/Off-Line digital signature were introduced by Even,
Goldreich and Micali in [29]. In such schemes the signature process consists of two parts: a com-
putationally intensive one that can be done Off-Line (i.e. when the message to be signed is not
known) and a much more efficient online phase that is done once the message becomes available.
There are two general ways to construct on-line/off-line signatures: using one time signatures [29]
or using chameleon hash [48].
In [19] Catalano et al., unified the two approaches by showing that they can be seen as different
instantiations of the same paradigm.

2 Preliminaries and notation

We denote with Z the set of integers, with Zp the set of integers modulo p. An algorithm A is said
to be PPT if it’s modelled as a probabilistic Turing machine that runs in polynomial time in its

inputs. If S is a set, then x
$← S denotes the process of selecting one element x from S uniformly at

random. A function f is said to be negligible if for all polynomial p there exists n0 ∈ N such that
for each n > n0

|f(n)| < 1

p(n)

2.1 Computational assumptions

We recall below a few computational assumptions.
Let G be a finite (multiplicative) group of prime order p.

Definition 1 (CDH). We say that the Computational Diffie-Hellman assumption holds in G if,
given a random generator g ∈ G, there exists no PPT A that on input g, ga, gb outputs gab with

more than negligible probability. Here the probability is taken over the uniform choices of a, b
$← Zp

and the internal coin tosses of A.

The 2-out-of-3 Computational Diffie-Hellman assumption was introduced by Kunz-Jacques and
Pointcheval in [44] as a relaxation of the standard CDH assumption. It is defined as follows.

Definition 2 (2-3CDH). We say that the 2-out-of-3 Computational Diffie-Hellmann assumption
holds in G if, given a random generator g ∈ G, there exists no PPT A that on input (g, ga, gb) (for

random a, b
$← Zp) outputs h, hab (h 6= 1) with more than negligible probability.

Finally we recall the Decisional Composite Residuosity Assumption, introduced by Paillier in [47].

Definition 3 (DCRA). We say that the Decisional composite residuosity assumption (DCRA)
holds if there exists no PPT A that can distinguish between a random element from Z∗N2 and one
from the set {zN |z ∈ Z∗N2} (i.e. the set of the N -th residues modulo N2), when N is the product
of two random primes of proper size.
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3 (Publicly) Verifiable delegation of computation on outsourced cipertext.

In this section, we first describe a new primitive that we call Linearly Homomorphic Authenticated
Encryption with Public Verifiability (LAEPuV). This is done by essentially adapting the general
definition of Joo and Yun [41] of homomorphic authenticated encryption to the linear case and
adding the useful requirement of public verifiability.
Next, we describe an instantiation of this primitive supporting Paillier’s scheme as the underlying
encryption mechanism.

Definition 4 (LAEPuV). A LAEPuV scheme is a tuple of 5 PPT algorithms (AKeyGen,
AEncrypt, ADecrypt, AVerify, AEval) such that:

– AKeyGen(1λ, k) takes as input the security parameter λ, and an upper bound k for the
number of messages encrypted in each dataset. It outputs a secret key sk and a public key
vk (used for function evaluation and verification); the public key implicitly defines a message
space M which is also a group, a file identifier space D and a ciphertext space C.

– AEncrypt(sk, fid, i,m) is a probabilistic algorithm which takes as input the secret key, an
element m ∈M, a dataset identifier fid, an index i ∈ {1, . . . , k} and outputs a ciphertext c.

– AVerify(vk, fid, c, f) takes as input the pubic key vk, a ciphertext c ∈ C, an identifier fid ∈ D
and f ∈ F . It return 1 (accepts) or 0 (rejects).

– ADecrypt(sk, fid, c, f) takes as input the secret key sk, a ciphertext c ∈ C, an identifier fid ∈ D
and f ∈ F and outputs m ∈M or ⊥ (if c is not considered valid).

– AEval(vk, f,fid, {ci}i=1...k) takes as input the public key vk, an admissible function f in its
vector form (α1, . . . , αk), an identifier fid, a set of k ciphertexts {ci}i=1...k and outputs a cipher-
text c ∈ C. Note that this algorithm should also work if less than k signatures are provided, as
long as their respective coefficients in the function f are 0, but we don’t explicitly account this
to avoid heavy notation.

The correctness conditions of our scheme are the following:

– For any (sk, vk) ← AKeyGen(1λ, k) honestly generated keypair, any m ∈ M, any dataset
identifier fid and any i ∈ {1, . . . , k}, with overwhelming probability

ADecrypt(sk, fid,AEncrypt(sk, fid, i,m), ei) = m

where ei is the i-th vector of the standard basis of Zk.
– For any (sk, vk)← AKeyGen(1λ, k) honestly generated keypair, any c ∈ C

AVerify(vk,fid, c, f) = 1 ⇐⇒ ∃m ∈M : ADecrypt(sk,fid, c, f) = m

– Let (sk, vk) ← AKeyGen(1λ, k) be an honestly generated keypair, fid any dataset identifier,
c1, . . . , ck ∈ C any tuple of ciphertexts such that mi = ADecrypt(sk, fid, ci, fi). Then, for any
admissible function f = (α1, . . . , αk) ∈ Zk, with overwhelming probability

ADecrypt(sk, fid,AEval(vk, f,fid, {ci}i=1...k),

k∑
i=0

αifi) = f(m1, . . . ,mk)

For lack of space, security definitions are given in appendix A.1
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3.1 A LAEPuV instantiation supporting Paillier’s encryption

Let (HKeyGen,HSign,HVerify,HEval) be a linearly homomorphic signature scheme for groups
of the form ZN (where N is the product of two distinct (safe) primes) unforgeable against a chosen
message attack. Moreover, let H be a family of collision resistant hash functions (whose images can
be interpreted as elements of Z∗N2). Then we can construct a LAEPuV scheme as follows.

AKeyGen(1λ, k): Choose two primes p, q of size λ/2, set N ← pq and choose a random element
g ∈ Z∗N2 of order N . Run7 HKeyGen(1λ, k,N) to obtain a signing key sk′ and a verification
key vk′. Pick an hash function H ← H. Return vk ← (vk′, g,N,H) as the public verification
key and sk = (sk′, p, q) as the secret signing key.

AEncrypt(sk,m,fid, i): Choose random β ← Z∗N2 , compute C ← gmβN mod N2. Set R ←
H(fid||i), and use the factorization of N to compute (a, b) ∈ ZN × Z∗N such that gabN = RC
mod N2. Compute σ ← HSign(sk′, fid, i, a) and return c = (C, a, b, σ).

AVerify(vk,fid, c, f): Parse c = (C, a, b, σ) and vk← (vk′, g,N,H), then check that:

HVerify(vk, fid, a, f) = 1

gabN = C

k∏
i=1

H(fid||i)fi mod N2

If both the above equations hold output 1, else output 0.
ADecrypt(sk,fid, c, f): If AVerify(vk, fid, c, f) = 0, return ⊥. Otherwise, use the factorization

of N to compute (m,β) such that gmβN = C mod N2 and return m.
AEval(vk, α, fid, c1, . . . , ck): Parse α = (α1, . . . , αk) and ci = (Ci, ai, bi, σi), set

C ←
k∏
i=i

Cαii mod N2, a←
k∑
i=i

aiαi mod N,

b←
k∏
i=i

bαii mod N2, σ ← HEval(vk′,fid, f, {σi}i=1,...,k)

and return c = (C, a, b, σ).

Remark 5. As a concrete instantiation of the previous scheme, it’s possible to use a simple variant
of the (Strong) RSA based signature of [23] as linearly homomorphic signature scheme on ZN . A
complete description of this signature is presented in appendix D.

Scheme security

Theorem 6. In the random oracle model, if the DCRA holds, (HKeyGen,HSign,HVerify,HEval)
is a linearly homomorphic signature scheme over ZN unforgeable (against a chosen message attack)
and H is a random oracle, then the scheme described above is LH-IND-CCA secure according to
definition 20.

7 Since the signature scheme must support ZN as the message space, we give it to the HKeyGen algorithm as an
additional argument. Note that (in general) this signature algorithm may not use the factorization of N as part of
its private key.
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Theorem 7. If Σ = (HKeyGen,HSign,HVerify,HEval) is a linearly homomorphic signature
scheme over ZN unforgeable (against a chosen message attack), then the scheme described above is
LH-Uf-CCA secure according to definition 21.

For lack of space we defer those proofs to appendixes B.1 and B.2

4 Linearly homomorphic signature scheme to sign elements in bilinear groups

Following [45,30,7], our definition of linearly homomorphic signature scheme to sign elements in
bilinear groups is essentially equivalent to the one of linearly homomorphic signature scheme (in its
strongest variant). To adapt it to our results, we assume that the message space is some bilinear
group M and

– We use as set of functions F the set of linear combinations of elements of the group, so each
function f ∈ F can be uniquely expressed as f(m1, . . . ,mk) =

∏k
i=1m

αi
i , and therefore can be

identified by a proper vector (α1, . . . , αk) ∈ Zk.
– We identify each dataset by a string fid ∈ {0, 1}∗, and use an additional argument i ∈ {1, . . . , n}

for the signing algorithm to specify that the signed message can be used only as the i-th
argument for each function f ∈ F .

We defer the formal definition to appendix A.2

4.1 A random message secure construction

Here we present a randomly secure instantiation for the case where n = 1, that is when the vectors
in the message space have only one component. In remark 9 we show how to to derive a fully
secure scheme using the conversion methodology described in appendix C8. Our construction uses
as underlying building block a generic signature scheme.
Let G, GT be groups of prime order p such that e : G × G → GT is a bilinear map and S =
(KeyGen,Sign,Verify) a standard signature with message spaceM. The scheme works as follows:

HKeyGen(1λ, 1, k): Choose a random generator g ∈ G and run KeyGen(1λ) to obtain a signing

key sk1 and a verification key vk1. Pick random w
$← Zp and set W ← gw. Select random group

elements h1, . . . , hk,
$← G.

Set vk ← (vk1, g,W, h1, . . . , hk) as the public verification key and sk = (sk1, w) as the secret
signing key.

HSign(sk,m,fid, i): This algorithm stores a list L of all previously returned dataset identifiers fid
(together with the related secret information r and public information σ, τ defined below) and
works according to the type of fid it is given in input):

If fid 6∈ L, then choose r
$← Zp, set σ ← gr , τ ← Sign(sk,fid, σ)

Else if fid ∈ L, then retrieve the associated r, σ, τ from memory.
Then set M ← mw, V ← (hiM)r (if a signature for the same fid and the same index i was
already issued, then abort). Finally output π ← (σ, τ, V,M) as a signature for m w.r.t. the
function ei (where ei is the i-th vector of the canonical basis of Zn).

8 More precisely the scheme proposed in remark 9 is a slightly optimized version of what one would get by naively
converting our random message secure scheme. See remark 9 for details.
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HVerify(vk, π,m, fid, f): Parse the signature π as (σ, τ, V,M) and f as (f1, . . . , fk). Then check
that:

Verify(vk, τ, (fid, σ)) = 1

e(M, g) = e(m,W )

e(V, g) = e(
k∏
i=1

hfii M,σ)

If all the above equations hold output 1, else output 0.
HEval (vk, α, π1, . . . , πk): Parse α as (α1, . . . , αk) and πi as (σi, τi, Vi,Mi), ∀i = 1, . . . , k. Then,

compute V ←
∏k
i=1 V

αi
i , M ←

∏k
i=1M

αi
i and output π = (σ1, τ1, V,M) (or ⊥ if the σi are not

all equal).

The security of the scheme follows from the following theorem (whose proof is deferred to
appendix B.3)

Theorem 8. If the 2-3CDH assumption holds and S is a signature scheme unforgeable under
adaptive chosen message attack then the scheme described above is a LHSG scheme secure against
a random message attack according to definition 23.

Remark 9. Combining the LHSG described above and theorem 29 we can easily construct an
LHSG secure under CMA. Moreover in this particular case it’s possible to have just one sig-
nature on the fid by computing τ = Sign(sk, (fid, σ1, σ2)) instead of τ1 = Sign(sk, (fid, σ1))
and τ2 = Sign(sk, (fid, σ2)) (and therefore using a signature scheme where the message space is
M = {0, 1}∗ ×G2). The security proof for this modified scheme is easily adapted from the general
one and is therefore omitted.

Remark 10. If the practical application allows the fid to be a group element and not simply a
string, we can replace the signature S with a Structure preserving Signature satisfying the same
hypothesis of theorem 8 to obtain the first example of a linearly homomorphic structure preserving
signature scheme (LHSPS) where all parts of the signature are actually elements of the group (as
opposed to [45], where the fid is inherently used as a bit string). In addition, if the identifier can be
chosen at random by the signer and not by the adversary, we can even define σ to be the identifier
itself and thus further improve efficiency. In practical instantiation it’s possible to use the SPS of
[4].

5 Applications to On-Line/Off-Line Homomorphic Signatures

In this section, we show a general construction to build an (efficient) on-line/off-line homomor-
phic (and network coding) signature scheme by combining a LHSG unforgeable against a random
message attack (like the one described in section 4.1) with a certain class of sigma protocols. The
intuitive idea is that in order to sign a certain message m, one can choose a Σ-Protocol whose
challenge space contains m, then sign the first message of the Σ-Protocol with a standard signature
(this can be done off-line) and use its knowledge of the witness of the protocol to later compute
the response (third message) of the protocol associated to the challenge m. This is secure because,
if an adversary was able to produce a second signature with respect to the same first message, by
the special soundness of the Σ-Protocol, he would be able to recover the witness itself. We show
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how, if both the signature scheme and the Σ-Protocol have specific homomorphic properties, this
construction can be extended to build (linearly) homomorphic signatures as well.
Informally the properties we require from the underlying sigma protocol are: (1) it is linearly ho-
momorphic, (2) its challenge space can be seen as a vector space and (3) the third message of
the protocol can be computed in a very efficient way (as it is used in the online phase of the re-
sulting scheme). First, we adapt the definition of linearly homomorphic signature (LHSG) to the
On-line/Off-line case. Then, we precisely define the properties required by the sigma protocol, and
as a last step we will describe and prove the security of our construction.

5.1 Linearly Homomorphic On-line/Off-line signatures

First, we remark that the only difference between a LHSG and a LHOOS is in the signing algorithm.
When signingm the latter can use some data prepared in advance (by running a dedicated algorithm
OffSign) to speed up the signature process. The definitions of unforgeability are therefore analogous
to the ones of traditional LHSG schemes and are omitted to avoid repetition9.

Definition 11 (LHOOS). A Linearly Homomorphic On-line/Off-line signature scheme is a tuple
of PPT algorithms (KeyGen, OffSign, OnSign, Verify, Eval) such that:

– KeyGen(1λ, n, k) takes as input the security parameter λ, an integer n denoting the length of
vectors to be signed and an upper bound k for the number of messages signed in each dataset.
It outputs a secret signing key sk and a public verification key vk; the public key implicitly
defines a message space that can be seen as a vector space of the form M = Fn (where F is a
field), a file identifier space D and a signature space Σ.

– OffSign(sk) takes as input the secret key and outputs some information I.
– OnSign(sk,fid, I,m, i) takes as input the secret key, an element m ∈ M, an index i ∈
{1, . . . , k}, a dataset identifier fid and an instance of I output by OffSign. This algorithm
must ensure that all the signatures issued for the same fid are computed using the same infor-
mation I (i.e. by associating each fid with one specific I and storing these couples on a table).
It outputs a signature σ.

– Verify (vk, σ,m,fid, f) takes as input the public key vk, a signature σ ∈ Σ, a message m ∈M,
a dataset identifier fid ∈ D and a function f ∈ Zk; it outputs 1 (accept) or 0 (reject).

– Eval(vk,fid, f, {σi}i=1...k) takes as input the public key vk, a dataset identifier fid, an admissible
function f in its vector form (α1, . . . , αk), a set of k signatures {σi}i=1...k and outputs a signature
σ ∈ Σ. Note that this algorithm should also work if less than k signatures are provided, as long
as their respective coefficients in the function f are 0, but we don’t to explicitly account this
to avoid heavy notation.

The correctness conditions of our scheme are the following:

– Let (sk, vk) ← KeyGen(1λ, n, k) be an honestly generated keypair, m ∈ M, fid any dataset
identifier and i ∈ 1, . . . , k. If σ ← Sign(sk, fid,OffSign(sk),m, i), then with overwhelming
probability

Verify(vk, σ,m, fid, ei) = 1,

where ei is the ith vector of the standard basis of Zk.
9 We stress, however, that those definitions are stronger than the ones traditionally introduced for network coding

(i.e. the adversary is more powerful and there are more types of forgeries), and therefore our efficient instantiation
perfectly integrates in that framework.
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– Let (sk, vk) ← KeyGen(1λ, n, k) be an honestly generated keypair, m1, . . . ,mk ∈ M any
tuple of messages signed (or derived from messages originally signed) w.r.t the same fid (and
therefore using the same offline information I), and let σ1, . . . , σk ∈ Σ, f1, . . . , fk ∈ F such
that for all i ∈ {1, . . . , k}, Verify(vk, σi,mi,fid, fi) = 1. Then, for any admissible function
f = (α1, . . . , αk) ∈ Zk, with overwhelming probability

Verify(vk,Eval(vk,fid, f, {σi}i=1...k), f(m1, . . . ,mk), fid,

k∑
i=0

αifi) = 1

Remark 12. As for the case of LHSG, relaxing the requirements for the fid (i.e. assuming that it can
be chosen offline independently of the message or that it can even be completely random) typically
improves efficiency. See remark 17 for an example of how this idea applies to our instantiation.

5.2 Vector and Homomorphic Σ-protocols

Briefly speaking, a Σ-Protocol can be described as a tuple of four algorithms (Σ-Setup, Σ-Com,
Σ-Resp, Σ-Verify), where the first one generates a statement/witness couple, Σ-Com and Σ-Resp
generate the first and third message of the protocol, and Σ-Verify is used by the verifier to decide
on the validity of the proof (a more formal and detailed description is given in appendix A.4). This
notion can be extended to the vector case10. For this purpose we adapt the notion of Homomorphic
Identification Protocol originally introduced in [9] to the Sigma protocol framework.

Given a language L and an integer n ∈ N, we can consider the language Ln = {(x1, . . . , xn) | xi ∈
L ∀i = 1, . . . , n}. A natural witness for a tuple (vector) in this language is the tuple of the witnesses
of each of its components for the language L. As before we can consider the relation Rn associated
to Ln, where (x,w) = (x1, . . . , xn, w1, . . . , wn) ∈ Rn if (x1, . . . , xn) is part of Ln and wi is a witness
for xi. A vector Σ-Protocol for Rn is a three rounds protocol defined similarly as above with the
relaxation that the special soundness property is required to hold in a weaker form. Namely, we
require the existence of an efficient extractor algorithm Σn-Ext such that ∀x ∈ Ln, ∀ R, c, s, c′, s′
such that (c, s) 6= (c′, s′), Σn-Verify(x, R, c, s) = 1 and Σn-Verify(x, R, c′, s′) = 1, outputs
(x,w)← Σn-Ext(x, R, c, s, c′, s′) where x is one of the components of x and (x,w) ∈ R.
Another important requirement for our construction to work is the following property.

Definition 13. A Σ-Protocol Σ = (Σ-Setup,Σ-Com,Σ-Resp,Σ-Verify) for a relation R is
called group homomorphic if

– The outputs of the Σ-Com algorithm and the challenge space of the protocol can be seen as
elements of two groups (G1, ◦1) and (G2, ◦2) respectively

– There exists a PPT algorithm Combine such that, for all (x,w) ∈ R and all α ∈ Zn, if
transcripts {(Ri, ci, si)}i=1,...,n are such that Σ-Verify(x,Ri, ci, si) = 1 for all i, then

Σ-Verify (x,Rα1
1 ◦1 · · · ◦1 R

αn
n , cα1

1 ◦2 · · · ◦2 c
αn
n ,Combine(x, α, {(Ri, ci, si)}i=1,...,n)) = 1

Although it is given for the standard case, this property can easily be extended to vector Σ-
Protocols: in particular, the group G2 can be seen as the group of vectors of elements taken from
another group G.

10 The intuition is that it should be more efficient to run a vector Σ-Protocol once than a standard Σ-Protocol
multiple times in parallel)
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To sum up, we define a class of vector Σ-Protocols having all the properties required by our
construction:

Definition 14 (1-n (vector) Σ-Protocol). Let (G1, ◦1), (G2, ◦2) be two computational groups.
A 1-n vector sigma protocol consists of four PPT algorithm Σn = (Σn-Setup,Σn-Com,Σn-Resp,
Σn-Verify) defined as follows:

Σn-Setup(1λ, n,Rn)→ (x,w) . It takes as input a security parameter λ, a vector size n and a rela-
tionRn over a language Ln. It returns a vector of statements and witnesses (x1, . . . , xn, w1, . . . , wn).
The challenge space is required to be ChSp⊆ Gn

2 .
Σn-Com(x)→ (R, r) . It’s a PPT algorithm run by the prover to get the first message R to send

to the verifier and some private state to be stored. We require that R ∈ G1.
Σn-Resp(x,w, r, c)→ s . It’s a deterministic algorithm run by the prover to compute the last

message of the protocol. It takes as input the statements and witnesses (x,w) the challenge
string c ∈ChSp (sent as second message of the protocol) and some state information r. It
outputs the third message of the protocol, s.

Σn-Verify(x, R, c, s)→ {0, 1} . It’s the verification algorithm that on input the message R, the
challenger c ∈ChSp and a response s it outputs 1 (accept) or 0 (reject).

We require this protocol to be group homomorphic and to satisfy the completeness and special
honest verifier zero knowledge properties. Moreover, the protocol must guarantee either the vector
special soundness outlined above or a stronger soundness property that we define below.

Roughly speaking, this property requires that the extractor, upon receiving the witnesses for
all but one statements of the vector x, has to come up with a witness for the remaining one.

Definition 15 (Strong (Vector) Special Soundness). Let Σ = (Σ-Setup,Σ-Com,Σ-Resp,
Σ-Verify) be a 1-n Σ-Protocol for a relation Rn. We say that Σ has the Strong Special Soundness
property if there exist an efficient extractor algorithm Σn-Ext such that ∀x ∈ Ln, ∀j∗ ∈ {1, . . . , n},
∀ R, c, s, c′, s′ such that cj∗ 6= c′j∗ , Σn-Verify(x, R, c, s) = 1 and Σn-Verify(x, R, c′, s′) = 1,
outputs wj∗ ← Σn-Ext(x, R, c, s, c′, s′, {wj}j 6=j∗) such that (xj∗ , wj∗) ∈ R.

In appendix A.5 we show that a simple variant of the well known identification protocol by
Schnorr is a 1-n Σ-Protocol (with Strong Vector Special Soundness).

5.3 A Linearly Homomorphic On-Line/Off-Line Signature

Suppose S = (KeyGen,Sign,Verify,Eval) is a randomly secure LHSG (even one that only allows
to sign scalars), Σn = (Σn-Setup ,Σn-Com ,Σn-Resp ,Σn-Verify ) is a 1-n Σ-Protocol and
H = (CHGen,CHEval,CHFindColl) defines a family of chameleon hash functions11. Moreover,
suppose that the LHSG’s message space is the same as the group G1 of the outputs of Σn-Com.
Our generic construction uses the challange space of the Σ-Protocol as a message space and works
as follows:

ON/OFFKeyGen (1λ, k, n): It runs (vk1, sk1)← KeyGen(1λ, 1, k), (x,w)←Σn-Setup (1λ, n,Rn)
and (hk, ck)← CHGen(1λ). It outputs vk← (vk1,x, hk), sk← (sk1,w, ck).

11 a formal definition of chameleon hash functions can be found in appendix A.3
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OFFSign (sk): This algorithm runs the Σn-Com algorithm k times to obtain (Ri, ri)←Σn-Com
(x), chooses a random string fid′ from the dataset identifiers’ space and randomness ρ′ and
sets fid ← CHEval(hk,fid′, ρ′). Then it signs each Ri using the LHSG signing algorithm
σi ← Sign(sk1, Ri, fid, i) and outputs Ifid′ = {(i, ri, Ri, σi,fid′, ρ′)}i=1,...,k.

ONSign (vk, sk,m,fid, Ifid′ , i): It parses Ifid′ as {(i, ri, Ri, σi,fid′, ρ′)}i=1,...,k, computes s←Σn-Resp
(x,w, ri,m), ρ← CHFindColl(ck, fid′, ρ′,fid) and outputs σ ← (Ri, σi, s, ρ). As explained in
the definition, this algorithm must ensure that all the messages signed with respect to the same
fid are computed from the same information Ifid′

ON/OFFVerify (vk, σ,m,fid, f): It parses σ as (R, σ, s, ρ) and vk as (vk1,x,hk). Then it checks
that

Verify(vk1, σ, R,CHEval(fid, ρ), f) = 1 and Σn-Verify(x, R,m, s) = 1.

If both the above equations hold it returns 1, else it returns 0.
ON/OFFEval (vk, α, σ1, . . . , σk): it parses σi as (Ri, σi, si, ρ) for each i = 1, . . . , k and vk as

(vk1,x). Then it computes:

R← Rα1
1 ◦1 · · · ◦1 R

αk
k , σ ← Eval(vk1, α, σ1, . . . , σk),

s← Combine (x, α, {(Ri, ci, si)}i=1,...,k) .

Finally it returns (R, σ, s, ρ) (as a signature for the message mα1
1 ◦2 · · · ◦2 mαk

k ).

Remark 16. The construction presented above applies to any LHSG. However, if the LHGS itself
is obtained as described in section 4.1, the use of the chameleon hash function could be avoided
by substituting the signature scheme S used for the fid with an on-line/off-line one. This improves
efficiency.

Remark 17. Loosening the requirements on the fid can also help improving the performance of the
scheme. For example, if the fid is allowed to be chosen randomly by the signer and not by the
adversary, the use of the chameleon hash function can be avoided. Moreover, in this case one could
use a LHSG that achieves better efficiency by choosing the fid itself (an example is described in
remark 10).

Theorem 18. If S = (KeyGen,Sign,Verify,Eval) is a randomly secure LHSG, Σn = (Σn-Setup
,Σn-Com ,Σn-Resp ,Σn-Verify ) is a 1-n Σ-Protocol for a non trivial relation Rn, and H im-
plements a family of chameleon hash functions then the LHOOS described above is secure against
a chosen message attack according to definition 25.

For lack of space we defer this proof to appendix B.4.

The security obtained by this construction can be strengthened by assuming additional prop-
erties on the underlying LHSG scheme: if S is strongly secure against a random message attack,
then we can prove that the resulting construction is strongly secure (against a CMA) as well.

Theorem 19. If S = (KeyGen,Sign,Verify,Eval) is a LHSG scheme strongly unforgeable
against a random message attack and Σn = (Σn-Setup,Σn-Com,Σn-Resp,Σn-Verify) is a
1-n Σ-Protocol for a non trivial relation Rn, then the on-line/off-line scheme described above is
strongly unforgeable against chosen message attacks.

The proof is straightforward and similar to the previous one and therefore is omitted.
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10. Nuttapong Attrapadung and Benôıt Libert. Homomorphic network coding signatures in the standard model.
In Dario Catalano, Nelly Fazio, Rosario Gennaro, and Antonio Nicolosi, editors, PKC 2011: 14th International
Workshop on Theory and Practice in Public Key Cryptography, volume 6571 of Lecture Notes in Computer
Science, pages 17–34. Springer, March 2011.
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44. Sébastien Kunz-Jacques and David Pointcheval. About the security of MTI/C0 and MQV. In Roberto De Prisco

and Moti Yung, editors, SCN 06: 5th International Conference on Security in Communication Networks, volume
4116 of Lecture Notes in Computer Science, pages 156–172. Springer, September 2006.
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A Postponed Definitions

A.1 Security definitions for LAEPuV schemes

Here we define a linearly homomorphic version of the IND-CCA security game for public key
encryption. Although this might seem surprising at first, as CCA encryption is usually deployed
to prevent malleability of the ciphertexts, it is possible to give a meaningful definition also in
the context of homomorphic encryption. Namely, since we want to allow the ciphertexts to be
manipulated only up to a certain extent (i.e. linear operations where the function applied is publicly
declared), the best thing that we can do is explicitly disallow the decryption queries on a ciphertext
legitimately derived from the challange cyphertext (as they could reveal information about the
hidden bit the adversary is trying to guess).
Again, our definition is adapted to the linear case from [41].

Definition 20 (Linearly homomorphic indistinguishability under chosen chiperthext
attack). Let H = (AKeyGen,AEncrypt,ADecrypt,AVerify,AEval) a LAEPuV scheme.
Linearly Homomorphic IND-CCA is defined by the following game between a challenger and an
adversary A:

LH-IND-CCAH,A(1λ, k) :

– Setup The challenger runs (sk, vk) ← AKeyGen(1λ, k). Then it initializes an empty set S
and gives vk to the adversary A.

– Queries I A can ask a polynomial number of encryption and decryption queries. Firsts are of
the form (fid,mi, i) (where fid is a dataset identifier, mi ∈M is a message and i ∈ {1, . . . , k} is
an index). The challenger computes ci ← AEncrypt(sk, fid, i,m), gives ci to A and updates the
set S ← S∪{(fid,mi, i, ci)}. No two queries differing only on the mi component can be asked by
the adversary (if this happens, the answer to the second query is ⊥). Decryption queries instead
are of the form (fid, ci, f) and A gets the corresponding output of ADecrypt(sk,fid, c, f) (It
can be ⊥ if c is a not valid ciphertext).

– Challenge A produces a challenge tuple (fid∗, i∗,m0,m1) (as in the previous phase, if a query
of the form (fid∗, i∗, ·) has already been answered, the challenger returns ⊥). The challenger

chooses a random bit b
$← {0, 1} and gives c∗ ← AEncrypt(sk, fid, i,mb) to A. Then it updates

the set S ← S ∪ {(fid,mb, i, ci)}.

– Queries II This phase is carried out as the previous one, the only difference being that the
decryption queries made w.r.t. fid∗ and a function f where fi∗ 6= 0 are answered with ⊥.

– Output Finally A outputs a bit b′. The challenger outputs 1 if b = b′, and 0 otherwise.

The advantage of A in the LH-IND-CCA game is defined as

AdvLH-IND-CCA
H (A)

def
=

∣∣∣∣Pr
[
LH-IND-CCAH,A(1λ) = 1

]
− 1

2

∣∣∣∣
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We say that a LAEPuV scheme is secure against a LH-IND-CCA attack if AdvLH-IND-CCA
H (A) =

negl(λ) for any PPT adversary A.

Definition 21 (Linearly Homomorphic Unforgeability under chosen ciphertext attack
(LH-Uf-CCA)). A LAEPuV scheme is Linearly Homomorphic Unforgeable against chosen ci-
phertext attack if the advantage of any PPT adversary A in the following game is negligible in the
security parameter λ:

– Setup The challenger runs (sk, vk) ← AKeyGen(1λ, k). Then it initializes an empty set Q
and gives vk to the adversary A.

– Queries A can ask a polynomial number of encryption and decryption queries. First are of the
form (fid,mi, i) (where fid is a dataset identifier, mi ∈M is a message and i ∈ {1, . . . , k} is an
index). The challenger computes ci ← AEncrypt(sk,fid, i,m), gives ci to A and updates the
set Q← Q∪{(fid,mi, ci, ei)}. No two queries differing only on the mi component can be asked
by the adversary (if this happens, the answer to the second query is ⊥). Decryption queries in-
stead are of the form (fid, ci, f) and A gets the corresponding output of ADecrypt(sk,fid, c, f)
(It can be ⊥ if c is a not valid ciphertext).

– Forgery A outputs (fid∗, c∗, f∗), where c∗ is a ciphertext, fid∗ a file identifier and f∗ an ad-
missible function.

Let Qfid∗ = {(fid∗,mi, ci, fi)}i=1,...,s ⊆ Q be the set of entries in Q for which fid = fid∗.
The Adversary wins the game if ADecrypt(vk, fid∗, c∗, f∗) = m∗ 6=⊥ and one of the following
conditions hold:

1 Qfid∗ is empty
2 f∗ (interpreted as a vector) is in the span of {f1, . . . , fs} but, for any α1, . . . , αs such that
f∗ =

∑s
i=1 αifi, it holds m∗ 6=

∏s
i=1m

αi
i

3 f∗ (interpreted as a vector) is not in the span of {f1, . . . , fs}

Finally we define the advantage AdvLH-Uf-CCA(A) of A as the probability that A wins the game.

A.2 Linearly homomorphic signature scheme to sign elements in bilinear groups
(LHSG)

Definition 22 (LHSG). A Linearly homomorphic signature scheme to sign elements in bilinear
groups is a tuple of 4 PPT algorithms (KeyGen, Sign, Verify, Eval) such that:

– KeyGen(1λ, n, k) takes as input the security parameter λ, an integer n denoting the length of
vectors to be signed and an upper bound k for the number of messages signed in each dataset.
It outputs a secret signing key sk and a public verification key vk; the public key implicitly
defines a message space of the formM = Gn, a file identifier space D = {0, 1}nd and a signature
space Σ, for some nd ∈ poly(λ).

– Sign(sk,m,fid, i) takes as input the secret key, an element m ∈M, a dataset identifier fid, an
index i ∈ {1, . . . , k} and outputs a signature σ.
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– Verify (vk, σ, m, fid, f) takes as input the public key vk, a signature σ ∈ Σ, a message m ∈M
a dataset identifier fid ∈ D and a function f ∈ F and outputs 1 (accept) or 0 (reject).

– Eval (vk,fid, f, {σi}i=1...k) takes as input the public key vk, a dataset identifier fid, an admis-
sible function f in its vector form (α1, . . . , αk), a set of k signatures {σi}i=1...k and outputs
a signature σ ∈ Σ. Note that this algorithm should also work if less than k signatures are
provided, as long as their respective coefficients in the function f are 0, but we don’t explicitly
account this to avoid heavy notation.

The correctness conditions of our scheme are the following:

– Let (sk, vk) ← KeyGen(1λ, n, k) be an honestly generated keypair, m ∈ M, fid any dataset
identifier and i ∈ 1, . . . , k. If σ ← Sign(sk,m,fid, i), then with overwhelming probability

Verify(vk, σ,m,fid, ei) = 1,

where ei is the i-th vector of the standard basis of Zk.
– Let (sk, vk) ← KeyGen(1λ, n, k) be an honestly generated keypair, m1, . . . ,mk ∈ M any

tuple of messages signed w.r.t the same fid, and let σ1, . . . , σk ∈ Σ, f1, . . . , fk ∈ F such
that for all i ∈ {1, . . . , k}, Verify(vk, σi,mi,fid, fi) = 1. Then, for any admissible function
f = (α1, . . . , αk) ∈ Zk, with overwhelming probability

Verify(vk,Eval(vk,fid, f, {σi}i=1...k), f(m1, . . . ,mk), fid,
k∑
i=0

αifi) = 1

Security Roughly speaking, a LHSG is said to be secure if no PPT adversary A can produce with
more than negligible probability one of the following:

– A signature for a message w.r.t. a new fid (i.e. one that it has never seen before)
– A signature w.r.t. a previously seen identifier, for a message m different from the one obtained

applying the claimed function f to the previously signed messages of the same dataset
– A signature it has not seen but that has been used in the Eval algorithm to compute signatures

it has seen (under certain independence constraints, see the formal definition for details).

We distinguish between notions where the adversary has no control over the signed messages he
can see, and the standard one where he can adaptively choose them by itself.

Definition 23 (Random message attack security). An LHSG is unforgeable against a random
message attack if for all n, k the advantage of any PPT adversary A in the following game is
negligible in the security parameter λ:
Setup The challenger runs KeyGen(1λ, n, k) and gives vk to A. The message space M, the
signature space Σ and the dataset space D are all implicitly defined by the verification key.
Queries A can ask a polynomial number of queries of the following types:

– Signing Queries A asks for a new message/signature couple w.r.t. to a specific fid ∈ D and
a specific index i ∈ {1, . . . , k} . The challenger checks that this query has not been previously

answered (otherwise it returns ⊥), then it picks a random message m
$←M and uses the secret

key sk to compute a signature σ for m w.r.t. fid and the index i. Finally it picks a handle h
(from a proper set of identifiers), stores (h, (fid,m, σ, ei)) in a table T and returns h to A. Note
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that A does not see neither the message nor the signature, and that here ei ∈ Zk is the i-th
vector of the canonical basis, used to indicate the (trivial) function with respect to which the
signature has been issued.

– Derivation Queries A chooses a set of handles h = (h1, . . . , hk) and a vector of coeffi-
cients f = (α1, . . . , αk). The challenger retrieves {(hi, (fidi,mi, σi, fi))}i=1,...k from T and re-
turns ⊥ if any of these does not exist or if fidi 6= fidj for some i, j ∈ {1, . . . , k} (i 6= j).

Else, it computes m =
∏k
i=1m

αi
i , σ = Eval(vk, fid, f, {σi}i=1...k), chooses a handle h, stores

(h, (fid,m, σ,
∑k

i=0 αifi)) in T and returns h to A.

– Reveal Queries A chooses a handle h. If this handle is not in T , the challenger returns
⊥. Otherwise it retrieves the corresponding record (h, (fid,m, σ, f)) from table T and gives
(fid,m, σ, f) to A. Next it adds (h, (fid,m, σ, f)) to a different table Q.

Forgery A outputs a dataset identifier fid∗, a message m∗, a signature σ∗ and a function f∗.
Let Qfid∗ = {(hi, (fid∗,mi, σi, fi))}i=1,...,s ⊆ Q be the set of entries in Q for which fid = fid∗.
The Adversary wins the game if Verify(vk,fid∗,m∗, σ∗, f∗) = 1 and one of the following conditions
hold:

1 Qfid∗ is empty
2 f∗ (interpreted as a vector) is in the span of {f1, . . . , fs} but, for any α1, . . . , αs such that
f =

∑s
i=1 αifi, it holds m∗ 6=

∏s
i=1m

αi
i

3 f∗ (interpreted as a vector) is not in the span of {f1, . . . , fs}

Finally we define the advantage AdvLHSG−RMA(A) of A as the probability that A wins the game.

Definition 24 (Known Random Message Security). . We extend the definition 23 to con-
sider a slightly stronger adversarial model (that we call Known Random Message Attack security).
Informally the KRMA security game is almost identical to the RMA game. The only difference
concerns Signing queries which are dealt as follows.

– Signing Queries A asks for a new message/signature couple w.r.t. to a specific fid ∈ D and
a specific index i ∈ {1, . . . , k} . The challenger checks that this query has not been previously

answered (otherwise it returns ⊥), then it picks a random message m
$←M and uses the secret

key sk to compute a signature σ for m w.r.t. fid and the index i. Finally it picks a handle h
(from a proper set of identifiers), stores (h, (fid,m, σ, ei)) in a table T and returns h and m
to A. Thus, in this case A actually knows the (random) message (but not the corresponding
signature) being signed by the challenger.

Definition 25 (Chosen message attack security). An LHSG is unforgeable against chosen
message attack if for all n, k the advantage of any PPT adversary A in the following game is
negligible in the security parameter λ:
Setup The challenger runs KeyGen(1λ, n, k) and gives vk to A. The message space M and the
signature space Σ are implicitly defined by the verification key.
Queries A can ask a polynomial number of queries of the following types:

– Signing Queries When A asks for a signature on the triple (fid,m, i) (where fid is a file
identifier, m ∈ M and i ∈ 1, . . . , k), the challenger first checks that no other signature of the
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form (fid, ·, i) has been requested (if this is not the case, it returns ⊥). Then it uses the secret
key sk to compute a signature σ for m w.r.t. fid and the index i. Finally it picks a handle h
(from a proper set of identifiers), stores (h, (fid,m, σ, ei)) in a table T and returns h.

– Derivation Queries A chooses a set of handles h = (h1, . . . , hk) and a set of coefficients
f = (α1, . . . , αk). The challenger retrieves {(hi, (fidi,mi, σi))}i=1,...k from T and returns ⊥ if any

of these does not exists or if fidi 6= fidj for some i, j ∈ 1, . . . , k. Else, it computes m =
∏k
i=1m

αi
i ,

σ = Eval(vk, fid, f, {σi}i=1...k), chooses a handle h, stores (h, (fid,m, σ,
∑k

i=0 αifi)) in T and
returns h to A.

– Reveal Queries A chooses a handle h. If this handle is not in T , the challenger returns
⊥. Otherwise it retrieves the corresponding record (h, (fid,m, σ, f)) from table T and gives
(fid,m, σ, f) to A. Next it adds (h, (fid,m, σ, f)) to a different table Q.

Forgery A outputs a dataset identifier fid∗, a message m∗, a signature σ∗ and a function f∗.
Let Qfid∗ = {(hi, (fid∗,mi, σi, fi)}i=1,...,s ⊆ Q be the set of entries in Q for which fid = fid∗.
The Adversary wins the game if Verify(vk,fid∗,m∗, σ∗, f∗) = 1 and one of the following conditions
hold:

1 Qfid∗ is empty
2 f∗ (interpreted as a vector) is in the span of {f1, . . . , fs} but, for any α1, . . . , αs such that
f =

∑s
i=1 αifi, it holds m∗ 6=

∏s
i=1m

αi
i

3 f∗ (interpreted as a vector) is not in the span of {f1, . . . , fs}

Finally we define the advantage AdvLHSG−CMA(A) of A the probability that A wins the game.

A.3 Chameleon Hash Functions

Chameleon hash functions were originally introduced in [43]. Very briefly, a chameleon hash func-
tion is a special type of hash function that is collision resistant only without a secret trapdoor
information. Each function has an additional argument normally chosen at random when using the
hash function in the standard way and used by the owner of the trapdoor key to change the input
of the function to any other string without affecting the output. The formal definition can be given
as follows.

Definition 26. A chameleon hash family consists of a set H of functions and a triple of efficient
PPT algorithms (CHGen,CHEval,CHFindColl) such that:

– Each function h ∈ H is defined as h : {0, 1}∗ × Γ → {0, 1}l (where Γ is a sufficiently large set
used as randomness space) and is identified by a string hk.

– CHGen(1k) is a randomized algorithm that takes as input a security parameter k and outputs
a couple of strings (hk, ck) whose length is polinomially related to k. The string hk identifies a
function hhk ∈ H and is used as the public hashing key, while ck is the secret chameleon key
(used for finding collisions).

– CHEval(hk,m, ρ) efficiently computes hhk(m, ρ)
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– CHFindColl(ck,m1, ρ1,m2) computes, using the secret key ck, a value ρ2 such that hhk(m1, ρ1) =
hhk(m2, ρ2), where (hk, ck) is in the image of CHGen.

Moreover, the following additional properties are required:

Collision Resistance There exists no PPT adversary A that on input hk (such that (hk, ck) ←
CHGen(1k) ) can find m1,m2, ρ1, ρ2 satisfying hhk(m1, ρ1) = hhk(m2, ρ2) with more than
negligible probability (The probability is taken over the internal random choices of A and the
couples returned by CHGen).

Uniform distribution For all m1,m2 ∈ M and for all pairs (hk, ck) output by CHGen, if ρ1 is

chosen uniformly at random, then the probability distribution induced over ρ2
$← CHFindColl(ck,

m1, ρ1,m2) is again the uniform distribution.

A.4 Σ-Protocols

LetR ⊆ {0, 1}∗×{0, 1}∗ be an arbitrary binary relation, with the only restriction that if (x,w) ∈ R,
then the length of w is polynomial in the length of x (typically, (x,w) ∈ R if x is part of an NP
language L and w is one of its associated witnesses). A Σ-Protocol for R is an interactive (three
rounds) protocol involving two parties: a prover P and a verifier V . We assume that both parties
are PPT machines and that they agree on some value x in advance, and the goal of the protocol
is to let the prover convince the verifier that he knows w such that (x,w) ∈ R. The three rounds
are carried out as follows: in the first round P sends a message to V , who replies with a string
(chosen at random from a well defined set and called a challenge string), and finally gets back a
third message from P and outputs 1 or 0 depending on whether he is convinced by this interaction.
More formally, a Σ protocol consists of four PPT algorithms Σ = (Σ-Setup, Σ-Com, Σ-Resp,
Σ-Verify ) defined as follows:

Σ-Setup(1λ,R)→ (x,w) It takes as input a security parameter λ and a relation R. It returns a
statement x and a witness w such that (x,w) ∈ R.

Σ-Com(x)→ (R, r) Is a probabilistic algorithm run by the prover to get the first message R to
be sent to the verifier and some private state r to be stored and used later in the protocol.

Σ-Resp(x,w, r, c)→ s Is a deterministic algorithm run by the prover to compute the last (third)
message of the protocol (to be sent to the verifier). It takes as input the statement x, its witness
w, the challenge string (chosen at random by V in a well defined set ChSp and sent as the
second message of the protocol), and some state information r. It outputs the third message of
the protocol.

Σ-Verify(x,R, c, s)→ {0, 1} Is the verification algorithm that on input the message R, a challenge
c ∈ ChSp and a response s, outputs 1 (accept) or 0 (reject).

We assume that the protocol satisfies the following three proprieties:

Completeness ∀(x,w) ∈ R, any (R, r)← Σ-Com(x, r), any c ∈ ChSp and s← Σ-Resp(x,w, r, c),
it holds that Σ-Verify(x,R, c, s) = 1 with overwhelming probability.

Special Soundness There exists a PPT extractor algorithm Σ-Ext such that ∀x ∈ L, ∀R, c, s, c′, s′
such that (c, s) 6= (c′, s′), Σ-Verify(x,R, c, s) = 1 and Σ-Verify(x,R, c′, s′) = 1, outputs
w′ ← Σ-Ext(x,R, c, s, c′, s′) such that (x,w′) ∈ R

Special Honest Verifier Zero Knowledge (HVZK) There exists a PPT algorithm S such
that ∀x ∈ L,∀c ∈ ChSp, S(x, c) generates a pair (R, s) such that Σ-Verify(x,R, c, s) = 1
and the probability distribution of (R, c, s) is identical to the one obtained by running the real
algorithms.
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A.5 Example of Vector Σ Protocols

Here we describe a 1-n vector Σ-Protocol satisfying the Strong Vector Special Soundness Property.

Definition 27 (Schnorr 1-n Σ-Protocol). Let G a group of prime order p and R the DL
relation on G, DL= {(x,w)|x = (p, g, h), h = gw}. Let g ∈ G a group generator. We define
DLg = {(x,w)|x = gw} the restriction of the DL relation to g = g.
The (Strong) Schnorr (Vector) 1-n Σ-Protocol consists of four PPT algorithm Σn = (Σn-Setup,
Σn-Com,Σn-Resp,Σn-Verify) defined as follows:

Σn-Setup(1λ, n,R) It chooses a random group generator g ∈ G and a vector of witnesses w =

(w1, . . . , wn)
$← Znp . Then it computes the vector of statements (x1, . . . , xn) ← (gw1 , . . . , gwn)

and sets x← (x1, . . . , xn, g). Then it outputs (x,w). Obviously the couple (xj , wj) ∈ DLg ∀j =
1, . . . , n.

Σn-Com(x) It chooses a random r ∈ Zp, sets R← gr and returns (r,R).
Σn-Resp(x,w, r, c) Let c ∈ Znp the second message of the protocol. This algorithm outputs

s← r +
∑n

j=1 cjwj .
Σn-Verify(x, R, c) It checks that

gs = R
n∏
j=1

x
cj
j .

If the above equation holds, it outputs 1, else outputs 0.

B Postponed Proofs

B.1 Proof of theorem 6

Proof. We reduce the security of the scheme to the one of the DCRA: we use an adversary A
that wins the LH-IND-CCA game to build a distinguisher D against the DCRA with advantage
AdvD > AdvA. The distinguisher D receives in input (y,N) and runs the simulation as follows:

Key generation phase The distinguisher chooses g ∈ Z∗N2 as a random element of order N , runs
(sk′, vk′)← HKeyGen(1λ, k,N) and gives (vk′, g,N) to A (the function H is substituted with
a random oracle).

Queries The adaptively chosen queries asked by A are handled as follows.
Random Oracle Queries D guesses in advance on which couple (fid∗, i∗) the adversary will

ask its challenge (since A is polynomial, D will be right with non negligible probability). It
chooses u∗, v∗ at random and sets R∗ ← gu

∗
v∗Ny−1 mod N2 as the output of H(fid∗||i∗).

For any other oracle query (fid, i) it chooses random u, v and sets R = guvN mod N2 as
the output. It stores (fid, i, u, v) in a table T (and, if the same query is asked more than
once, the same answer computed from the table T is returned).

Encryption Queries On input a query (fid, i,m), D retrieves the associated u, v from the
table T (if the query (fid, i) has not been already asked, D simulates it and populates the
table T accordingly). Then it computes C ← gmβN for a random β, a ← u+m, b ← βv,
σ ← Sign(sk′,fid, i, a) and returns c = (C, a, b, σ) to A
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Decryption Queries On input a triple (fid, c, f), where c = (C, a, b, σ) is a ciphertext, fid an
identifier and f an admissible function, D verifies the signature on a and that the equation

gabN = C

k∏
i=1

H(fid||i)fi mod N2

holds (the oracle queries appearing in the above equation with non-zero exponents must
exist in T, otherwise D can just assign to these queries a value that does not satisfy the
equation and return ⊥ to A). If this is not the case, it returns ⊥ to A. Otherwise, it
retrieves the couples (ui, vi) associated with each query (fid, i) from the table T. Then it
computes m ← a −

∑k
i=1 fiui and returns m to A. It is easy to see that if c is a valid

ciphertext, than the message m is a correct decryption.
Challenge query On input (fid∗, i∗,m0,m1), if D guessed the right fid and index, it chooses a bit

z, computes C ← gmzβNy for a random β, a ← u + mz, b ← βv, σ ← Sign(sk′, fid, i, a) and
returns c∗ = (C, a, b, σ). Otherwise, the simulation is aborted.

Queries II after the challenge phase another queries phase takes place and all queries are handled
as before, the only exception being that decryption queries involving identifier fid∗ and a
function f whose i∗-th component is non-zero are answered with ⊥.

Output phase When A outputs a bit z′, D guesses that y is a residue if z = z′ and that y is not
a residue if z 6= z′ or if A aborts at any time.

First of all, one can notice that all the answers to the queries made by A (apart from the
challenge query) are distributed as in the real case. Moreover, this is also the case for the challenge
query provided y is an N -th residue, while c∗ contains no information about the bit z in the other
case. This is because, if we write y as gy1yN2 , from c∗ an unconditionally powerful adversary could
deduce 3 dependent equations in the 3 variables y1,mz, u

∗, which makes their simultaneous solution
undetermined.
Therefore, in the case where y is not a residue A is playing the proper security game and D wins
as long as A is successful, which happens with probability 1/2 + AdvA, and in the case where y is
not a residue A can only guess at random, which makes D successful with probability at most 1/2.
In sum, since we are assuming the DCRA problem to be hard, it must be that

negl(n) > AdvD ≥ |1/2 + AdvA − 1/2| ≥ AdvA

which is our thesis.

B.2 Proof of theorem 7

Proof. The reduction is very simple because, since we are not breaking any assumption related to
the modulus N , its factors can be known by the simulator D. D receives in input a public key vk′

for Σ, and prepares the public key for A as in the real case, with the only difference that it uses
vk′ instead of running the key generation algorithm of Σ. The encryption and decryption queries
are handled as in the real case, with the only exception that the σ component of each ciphertext
is requested by D to its signing oracle instead of being computed by D itself. When A outputs a
forged ciphertext c∗ = (C∗, a∗, b∗, σ∗) w.r.t. an identifier fid and a funcion f∗, its σ∗ component
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must be a valid forgery for Σ. If this was not the case, it would imply that, called ci = (Ci, ai, bi, σi)
the signatures returned by the simulator to A in response to its query (fid, i,mi),(

b∗∏k
i=1 b

f∗i
i

)N
=

C∗∏k
i=1C

f∗i
i

.

Therefore this would not be a forgery as C∗ would be in the same residuosity class (and hence
contain the same plaintext) of the ciphertext obtained by computing the function f∗ on the honestly
generated ciphertexts c1, . . . , cn.

B.3 Proof of theorem 8

Proof. Proving correctness is straightforward, given the bilinear property of the pairing function.
For what concerns security, we split the proof in 3 different cases. In each of them, we will show how
an adversary that breaks the security of the scheme can be used to build a simulator that breaks
the 2-3CDH assumption (or the security of the underlying signature scheme S). In particular, let
m∗, π∗ = (fid∗, σ∗, τ∗, V ∗,M∗), f∗ be the forgery returned by the adversary A, Q the set of answers
returned to A in response to its reveal queries, and let Qfid∗ = {(hη, (fid∗,mη, πη, fη))}η=1,...,ν ⊆ Q
be the set of signatures seen by A for which the file identifier is fid∗, where πη = (fidη, ση, τη, Vη,Mη).
Then (at least) one of the following conditions hold:

Case 1: Qfid∗ is empty, or (fid∗, σ∗) 6= (fidη, ση) for all η = 1, . . . , ν (note that, by construction, all
the signatures in Qfid∗ share the same σ∗ component).
Case 2: (fid∗, σ∗) = (fidη, ση) for all η = 1, . . . , ν, f∗ (interpreted as a vector) is in the span of
{f1, . . . , fν} but, for any α1, . . . , αν such that f =

∑ν
η=1 αηfη, it holds m∗ 6=

∏ν
η=1m

αη
η .

Case 3: (fid∗, σ∗) = (fidη, ση) for all η = 1, . . . , ν and f∗ (interpreted as a vector) is not in the span
of {f1, . . . , fν}.

As one can notice, the simulator can guess in which case he will be in advance with probability
at least 1/3.

Case 1. In this case it is possible to reduce the security to the one of the underlying signature
scheme S. The simulator is quite simple: it uses its signing oracle for S to compute the component
of each signature authenticating the fid (i.e. τ), and can easily compute the remaining parts of each
signature by creating the rest of the secret and public key as in the real case. When A outputs a
forgery, by definition of this case the simulator can output ((fid∗, σ∗), τ∗) as a forgery for S.

Case 2. First of all one can notice that, because the forgery must satisfy (in particular) the third
and fourth verification equations, it must be that

M∗ = (m∗)w and V ∗ =

(
k∏
i=1

h
α∗i
i M

∗

)r
Moreover, the same two equations must also hold for the honestly computed signature for the
function f∗ on the messages signed by the challenger (we call m,π such couple). So it must be that:

V ∗V
−1

=

(
k∏
i=1

M∗M
−α∗i
i

)r
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If the left hand side of the equation is equal to 1 we don’t have any forgery (in fact M∗ =
∏k
i=1M

αi
i

and V ∗ = V ).
Else, in the case when

m∗
k∏
i=1

m
−α∗i
i 6= 1

we describe a simulator B that uses A to break the 2-3CDH assumption. B works as follows. It
takes in input a 2-3CDH tuple (g, gw, gr) and guesses the dataset identifier fid′ for which it will
receive a forgery12.

Key Generation B initializes an empty table T (as described in the description of the security
game), runs (sk1, vk1)← KeyGen(1λ) and sets W ← gw (so w is implicitly part of the secret

key). It selects bi
$← Zp for i = 1, . . . , k and for each bi it computes mi = gbi , hi = gδim−wi , for

random δ1, . . . , δk
$← Zp. Finally it gives (vk1, g,W, h1, . . . , hk) to A.

Signing Queries To answer to the queries about the dataset fid′ and index i from A, B uses the
previously created messages mi and answers with the following.
if fid′ 6∈ T , it sets

σ = gr,

τ ← Sign(sk, fid′, σ),

and stores this data in memory.
if fid′ ∈ T , it retrieves the corresponding (σ, τ) from memory.

Then it sets V ← σδi and M ←W bi = mw
i . By inspection, one can check that τ , M and V are

correctly distributed as in the real case.

To answer the other queries with dataset identifier fid 6= fid′ w.r.t. index i it does the following.

if fid 6∈ T , it chooses fresh random r
$← Zp and sets

σ ← gr,

τ ← Sign(sk,fid, σ),

and stores this data in memory.
if fid ∈ T , it retrieves the corresponding (σ, r, τ) from memory.

Then it sets m← gbi for a random bi
$← Zp, V ← (hiMi)

r, M ←W bi .
In both cases, the signature is not directly returned to A but associated with a new handle h
and stored in a table T.

Derivation and Reveal Queries are handled as in the real experiment.

12 Note that the simulator does not need to predict the exact value of the identifier it will receive a forgery about,
but only to pick one among the ones it will be asked to sign (for example, it might pick a random integer i from a
large enough domain and choose fid′ to be the i-th identifier it will be queried about). So the probability to guess
correctly is not negligible and the reduction still works.
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Forgery Assume that the adversary A produced a forgery π∗ for the function f∗ = (α∗1, . . . , α
∗
k)

w.r.t fid∗. If fid∗ 6= fid′, then it aborts. Otherwise it proceeds as follows.
Considering the signature π = (fid, σ, τ , V ,M) for the message m and the function f∗ (that
the simulator can compute by the Eval algorithm from the function f∗ provided by A and
the messages mi chosen by the simulator itself), we can and extract a 2-3CDH solution by the

couple

(
m∗∏k

i=1m
α∗
i
i

, V
∗

V

)
; in-fact the elements of the couple are not trivial by the definition of

this subcase.

Case 3. In this case we can use exactly the same simulation of case 2, and assume, just to simplify
the notation, that the adversary asks for exactly k signing queries (otherwise the simulator can just
compute them on his own). In fact, since f∗ is not in the span of the vectors {f1, . . . , fν}, the
probability that f∗(m1, . . . ,mk) = m∗ (where m1, . . . ,mk are the vectors signed by the simulator
in response to signing queries) is negligible and so we can extract a 2-3CDH solution as in the
previous case. This is true because, in response to a signing query, the adversary is not even given
the message that the simulator chooses at random, but only a handle. So the only information the
adversary learns about those messages are the outputs of the reveal queries (where it can basically
choose a vector f = (α1, . . . , αk) and learn m such that m =

∏k
i=1m

αi
i . Therefore, by the definition

of this case, f∗(m1, . . . ,mk) is information theoretically hidden from the adversary, and it can only
guess it with negligible probability.

B.4 Proof of theorem 18

Here we present a proof sketch in the simplified case where each signing query is immediately fol-
lowed by the corresponding reveal query. In this setting we can just assume that the evaluation
queries are computed by the adversary itself and that for each encryption query it gets the corre-
sponding message/signature couple. A more detailed proof for the general case is deferred to a full
version of the paper.
Proof. Suppose m∗, (R∗, σ∗, s∗) is the forgery returned by an adversary A w.r.t the identifier fid∗

and the vector α∗ = (α∗1, . . . , α
∗
k). Let {σ1, . . . , σk} the set of signatures seen by A w.r.t. the same

identifier fid∗ and the messages (m1, . . . ,mk). Note that, because S is secure against random mes-
sage attacks, and H is collision resistant, it must be that

∏k
i=1R

αi
i = R∗ and fid∗ = fid for some fid

that A has received during the security game. Therefore, by the security definition, the only kind

of forgery the adversary can make is one where m∗ 6= m
α∗1
1 ◦2 · · · ◦2 m

α∗k
k .

In this case we describe a simulator B that uses A to extract a witness for the language L such
that Ln is the language associated to the relation Rn. We will assume first that the underlying
Σ-Protocol has the vector special soundness, and explain later how to modify the proof in the case
where the strong vector special soundness holds. B takes as input a vector of statements x ∈ Ln.
It must then return a couple (x,w) such that x is a component of x and (x,w) ∈ R. It works as
follows.
Key Generation. B runs (vk1, sk1)← KeyGen(1λ, k, n) and gives to A vk = (vk1,x). It is easy
to check that this key is correctly distributed as in the real case.
Signing queries. Each time A asks for a signature on a message mi w.r.t. an identifier fid
and to an index i ∈ 1, . . . , k, B uses the HVZK simulator of the sigma protocol to compute
(Ri, si) ← S(x,m). Then it computes a signature σi ← Sign(sk1,fid, Ri, i) on Ri and returns
the signature σ ← (Ri, σi, si) to A.
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Forgery Suppose A returns a forgery of type 1 (R∗, σ∗, s∗) for the message m∗. Let m = m
α∗1
1 ◦2

· · · ◦2 m
α∗k
k and s = Combine (x, α∗, {(Ri,mi, si)}i=1,...,k) .

B uses the extractor (x,w)←Σ-Ext (x, R,m∗, s∗,m, s) from the vector special soundness to obtain
a witness for one of the components of x.

In the case where the strong vector special soundness holds, since m∗ 6= m
α∗1
1 ◦2 · · · ◦2 m

α∗k
k , there

exists and index j such that the j-th components of the two sides of the equation are different. B can
guess the index j in advance and prepare the public key by generating n − 1 couples (xi, wi) ∈ L
for i ∈ {1, . . . , n} \ j, setting xj ← x (where x is the statement B received in input) and x ←
(x1, . . . , xn). The rest of the public key and the other phases of the simulation are carried as in the
previous case. When A provides a forgery, assuming B guessed the correct index (this will happen
with non negligible probability, otherwise B aborts), B can use the extractor for the strong vector
special soundness to get the missing witness wj ←Σ-Ext (x, R,m∗, s∗,m, s, {wi}i 6=j).

C From random message security to chosen message security

In this section we present a general transform to construct an LHSG secure against chosen mes-
sage attack from one secure under random message attack. This transform comes in two flavours,
depending on whether the underlying scheme is RMA secure or known RMA secure. In this latter
case the conversion is totally generic. In the first case, on the other hand, the RMA secure scheme
needs to satisfy some additional, but reasonable, requirements. In particular we require it to be
almost deterministic. Informally, this means that given a file identifier fid ∈ D and a signature on a
message m with respect to fid, the signature of any other m′ ∈M w.r.t. to any admissible function
f ∈ F and the same fid is uniquely determined.

Remark 28. We stress that while we present our theorems in the context of linearly homomorphic
signatures (LHSG), if they are applied to linearly homomorphic structure preserving signatures,
the structure preserving property is preserved.

Let S = (HKeyGen,HSign,HVerify,HEval) be a LHSG which is either known RMA-secure
or RMA-secure and almost deterministic. The transformation below shows how to produce a new
LHSG T = (TKeyGen,TSign,TVerify,TEval) which is secure under CMA.

– TKeyGen(1λ, n, k) takes as input the security parameter λ, the vector size n and an upper
bound k for the number of messages signed in each dataset. It runs two times the HKeyGen
algorithm to obtain (sk1, vk1)← HKeyGen(1λ, n, k) and (sk2, vk2)← HKeyGen(1λ, n, k).
It outputs sk = (sk1, sk2) as the secret signing key and vk = (vk1, vk2) as the public verification
key. The message space M is the same of S.

– TSign(sk,m, fid, i) It chooses random m1 = (m1,1, . . . ,m1,n)
$← M and computes m2 ←(

m1
m1,1

, . . . , mn
m1,n

)
(where m = (m1, . . . ,mn)).

Then it computes σ1 ← HSign(sk1,m1, i,fid), σ2 ← HSign(sk2,m2, i,fid) and outputs σ =
(fid,m1, σ1, σ2).

– TVerify(vk, σ,m,fid, f) parses σ as (fid,m1, σ1, σ2), computes m2 ←
(
m1
m1,1

, . . . , mn
m1,n

)
and

checks that the following equations hold:

HVerify(vki,mi, σi,fid, f) = 1 for i = 1, 2.
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– Eval(vk,fid, f, {σ(i)}i=1...k) parses σ(i) as (fid(i),m
(i)
1 , σ

(i)
1 , σ

(i)
2 ) and f as (α1, . . . , αk), then

checks that fid = fid(i) for all i and, if not, aborts. Finally it sets

σ1 ← HEval(vk1,fid, {σ(i)
1 }i=1...k, f),

σ2 ← HEval(vk2,fid, {σ(i)
2 }i=1...k, f),

m1 =

(
k∏
i=1

(m
(i)
1,1)αi , . . . ,

k∏
i=1

(m
(i)
1,n)αi

)
and returns

σ ← (fid,m1, σ1, σ2)

Theorem 29. Suppose S is a LHSG secure against a random message attack with almost deter-
ministic signatures. Moreover assume that the underlying message space is a group where one can
efficiently solve systems of group equations. Then the scheme T described above is a LHSG secure
against a chosen message attack.

Proof. We prove the theorem by reducing the security of T to the one of S, and showing how to
build a simulator B that uses an adversary A against T to break the RMA security of S.
First of all one can notice that, by construction, if (m∗, π∗ = (fid∗,m∗1, π

∗
1, π
∗
2), f∗) is a forgery for

T then at least one between (m∗1, π
∗
1, f
∗) (case 1) and (m∗/m∗1, π

∗
2, f
∗) (case 2) is a forgery for the

corresponding instance of S.
The simulator B works as follows:
It receives a public key vk′ for an instance of S from its challenger. First of all it flips a coin to guess
in which case he will be (as usual, his guess will be right with probability at least 1/2). Without
loss of generality, we will describe the simulation in the case where its guess is case 1.

Setup B runs once the HKeyGen algorithm to obtain (sk2, vk2), sets vk1 ← vk′ and gives
vk = (vk1, vk2) to A.

Signing Queries Each time A asks a query of the form (fid,m, i), B forwards a query of the form
(fid, i) to its challenger and gets back an handle h (if the challenger returns an error ⊥, B simply
forwards it toA). Then it chooses a random message13 m2, computes π2 ← Sign(sk2,m2,fid2, i)
and returns h to A. The handle h, the messages m and m2, the signature π2 and the index i
are stored in a table T, like in the real experiment.

Derivation Queries In response to a derivation query (h1, . . . , hk, f), the simulator forwards the
query to its challenger, and gets back a new handle h (or an error ⊥, which gets forwarded to
A). Then it executes itself the query on the second part of the signature by computing π(h) ←
Eval(vk, fid, f, {π(hi)}i=1,...,k), computes the corresponding messages m(h) =

∏k
i=1(m(hi))fi ,

m
(h)
2 =

∏k
i=1(m

(hi)
2 )fi (the components m(hi),m

(hi)
2 , π(hi) corresponding to each handle hi are

retrieved from the table T ). Finally, B gives h to A and stores the messages, signature, handles
and function f in T .

13 We stress that, since the simulator does not know what random message m1 the challenger has chosen to sign, at
this point there is no guarantee that m = m1m2. However, the adversary only gets a random handle, and we will
deal with this problem later.
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Reveal Queries When A provides a handle h in a reveal query, B forwards the reveal query
to the challenger. If the answer is ⊥, B simply forwards it to A. Otherwise, it gets a tuple
(fid,m1, π1, f). Since the adversary expects to receive a valid signature for a certain message
m (that the simulator knows since it is stored in its own table T together with the handle h,
the message m2 and signature π2), it must now modify the table T in such a way that it is
compliant with the information that the adversary has requested and the ones it has already
obtained in the previous reveal queries. In particular, for each reveal query (associated with

a function f), the adversary knows a message m2 such that, called m
(1)
2 , . . . ,m

(k)
2 the mes-

sages corresponding to the second part of the signatures issued by the simulator in response

to the signing queries for the same fid, it holds that m2 =
∏k
i=1(m

(hi)
2 )fi . It can modify the

table by choosing a random simultaneous solution for all these equations14 (in the unknowns

m
(1)
2 , . . . ,m

(k)
2 ) and computing new signatures15 for each entry in T (except for those who

have been already given to the adversary) by either using the Sign or the Eval algorithm. Fi-
nally, it can compute m1 = m/m2 and give the updated signature toA in response to the query.

Forgery Suppose A returns m∗, π∗ = (fid∗,m∗1, π
∗
1, π
∗
2), f∗ as a valid forgery and that B’s guess

was correct. Then B can return (fid∗,m∗1, π
∗
1, f
∗) as a valid forgery against S to its challenger.

We remark that the proof above becomes much simpler if the simulator were allowed to know
the messages signed by the challenger when answering signing queries. Formalizing this observation
leads to the following theorem (whose proof is omitted):

Theorem 30. If S is a LHSG secure against known random message attack the scheme T described
above is a LHSG secure against a chosen message attack.

D A simple variant of Catalano et al. signature.

In [23] Catalano et al. present a Network Coding signature scheme based on the strong RSA
assumption. Here we describe a simple variant of the scheme that allows a user to sign messages in
a bigger space.

KeyGen(1k, N) Let N product of two arbitrary safe primes each one of length k′/2. The KeyGen
algorithm chooses two random (safe) primes p̂, q̂ of length k/2 each such that gcd(N,φ(N̂)) =
116 where N̂ = p̂q̂ and proceeds by choosing g, g1, h1, . . . , hm at random (in Z∗

N̂
). Moreover

it chooses some (efficiently computable) injective function H : {0, 1}∗ → {0, 1}` that maps to
primes of length ` < k′/2. The public key is set as (N,H, N̂ , g, g1h1, . . . , hm), while the secret
key is (p̂, q̂).

14 A solution always exists, since if the simulator was given the actual messages chosen by the challenger, he could
set m

(i)
2 = m/mi

1 for all i. Moreover, we assumed that such a solution can be efficiently computed
15 by the the property that the scheme is almost deterministic, the adversary cannot distinguish whether or not the

signatures it has not seen have been modified during the game because for each message there is only one signature
and therefore this signature does not contain any information about how it was generated.

16 Supposing p̂ and q̂ are two safe prime of equal lenght k/2 we can write p̂ = 2p̂′+ 1 and q̂ = 2q̂′+ 1 so φ(N̂) = 4p̂′q̂′

where |p̂′| = |q̂′| ≈ k
2
− 1. So, fixed N , it’s enough choose p̂, q̂ of length at least k′/2 + 2 to verify gcd(N,φ(N̂)) = 1
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Sign(sk, fid,M, i) Let ei the i-th vector of the canonical basis on Zm. The signing algorithm
proceeds as follows. First it maps the random identifier fid to prime: e ← H(fid). It chooses
random elements s ∈ ZeN and uses its knowledge of p̂ and q̂ to solve the following equation

xeN = gshig
M
1 mod N̂

We denote with σ = (e, s,fid, x) the signature for the message M w.r.t. the function ei and the
identifier fid.

Verify(vk, σ,M, f) To verify a signature σ for a message M w.r.t. an identifier fid and a function
f , the verification algorithm proceeds as follows

– Compute e← H(fid)
– Check that M, s are in ZeN .
– Define f ′ = f−f mod eN

eN and x̂ = x∏m
j=1 h

f ′
j
j

– Finally check that the equation

x̂eN = gs
m∏
j=1

h
fj
j g

M
1

is satisfied
– If all the checks above are satisfied, output 1, otherwise 0.

Combine(vk,fid, f̂ , σ1, . . . , σm) To combine signatures σi sharing the same fid it works as follows.
Let f̂ = (α1, . . . , αm). It sets s =

∑m
i=1 αisi mod eN , s′ = (

∑m
i=1 αisi− s)/(eN). It outputs the

signature σ = (e, s,fid, x) which is obtained by computing

x =

∏m
i=1 x

αi
i

gs′
mod N̂ .

Security theorem follows very easily from the proof of the original signature scheme in [23].

Theorem 31. Under the Strong-RSA assumption, the scheme described above is an unforgeable
signature scheme under chosen messages attack according to [15] definition.
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