
An Approach to Reduce Storage
for Homomorphic Computations

Jung Hee Cheon and Jinsu Kim

Seoul National University (SNU), Republic of Korea
jhcheon@snu.ac.kr, kjs2002@snu.ac.kr

Abstract. We introduce a hybrid homomorphic encryption by combining public key encryption
(PKE) and somewhat homomorphic encryption (SHE) to reduce storage for most applications of
somewhat or fully homomorphic encryption (FHE). In this model, one encrypts messages with
a PKE and computes on encrypted data using a SHE or a FHE after homomorphic decryption.
To obtain efficient homomorphic decryption, our hybrid schemes is constructed by combining
IND-CPA PKE schemes without complicated message paddings with SHE schemes with large
integer message space. Furthermore, we remark that if the underlying PKE is multiplicative on a
domain closed under addition and multiplication, this scheme has an important advantage that
one can evaluate a polynomial of arbitrary degree without recryption. We propose such a scheme
by concatenating ElGamal and Goldwasser-Micali scheme over a ring ZN for a composite integer
N whose message space is Z×N .
To be used in practical applications, homomorphic decryption of the base PKE is too expensive.
We accelerate the homomorphic evaluation of the decryption by introducing a method to reduce
the degree of exponentiation circuit at the cost of additional public keys. Using same technique,
we give an efficient solution to the open problem [16] partially.
As an independent interest, we obtain another generic conversion method from private key SHE
to public key SHE. Differently from Rothblum [23], it is free to choose the message space of SHE.

Keywords: ElGamal, Goldwasser-Micali, Naccache-Stern, Hybrid Scheme, Multiplicative Ho-
momorphic Encryption, Additive Homomorphic Encryption, Fully Homomorphic Encryption,
Decryption Circuit, Exponentiation, Bootstrapping

1 Introduction

The concept of computation on encrypted data without decryption was firstly introduced
by Rivest, Adleman and Detourzos in 1978 [22]. After thirty years, Gentry proposed a fully
homomorphic encryption (FHE) based on ideal lattices [9]. This scheme is far from being
practical due to its large computation costs and large ciphertexts. Since then, lots of efforts has
been done to devise more efficient schemes and their successors become much more efficient [3,
11, 12]. However, most FHE schemes still have huge ciphertext size, at least millions of bits
for a single ciphertext. This is a big bottleneck when it is deployed in practice.

We consider a situation: several users upload data encrypted with a FHE, a server carries
out computations on encrypted data and then sends them to a client who has a decryption
key of the FHE. It is common in typical applications of (public key) FHEs such as medical
applications and financial applications [19]. In this situation, one approach to save storage is to
use a public key encryption (PKE) to encrypt data and perform homomorphic computation on
ciphertexts after converted to ciphertexts under a FHE. This approach has a great advantage
in storage and communications because only small ciphertexts under a PKE are transmitted
from users to a server and converted only when its homomorphic computation is required.

2

However, its converting complexity (homomorphic decryption of a ciphertext) is generally too
large when using bit-encrypting FHEs.

In this paper, we explore efficient hybrid homomorphic encryption schemes by combining
a public key encryption with small ciphertext size and a somewhat homomorphic encryption
(SHE) that could evaluate the decryption circuit of the PKE. For efficient construction, we
consider SHE for hybrid scheme rather than FHE.

For efficient conversion, PKE scheme needs to be IND-CPA secure without complicated
message padding whose evaluation requires lots of computation. Interestingly, most candidates
are additive or multiplicative homomorphic. When using these schemes as the underlying
PKEs, we obtain an additional advantage in computations on encrypted data. When using
additive homomorphic encryptions (AHE), it has an advantage that it can evaluate any
linear function without converting to a SHE. We consider the Goldwasser-Micali scheme for
encrypting a bit and the Naccache-Stern scheme for encrypting small messages. We remark
that the leveled DGHV scheme gives more efficient evaluation of their decrypt circuit.

When using multiplicative homomorphic encryptions (MHE), it has a very interesting
property that one can compute SHE(f(m1, . . . ,mk)) from PKE.Enc(m1), . . . , PKE.Enc(mk)
without (expensive) bootstrapping for any multivariate polynomial f(x1, . . . , xk) with poly-
nomially many terms, since each monomial of f(x1, . . . , xk) could be computed under the
PKE. One problem of this approach is that the domain of a MHE is usually not closed under
an addition operation. For example, the (IND-CPA) ElGamal encryption over a ring R could
take as messages only elements in a prime order subgroup, which covers only small part of
R except a binary fields. However, the discrete logarithm problem in an extension field with
small characteristic is not a hard problem any more [14, 2]. Thus we construct a multiplica-
tive homomorphic encryption whose message space is Z×N for a RSA modulus N = p1p2. The
proposed scheme is obtained by combining an ElGamal over Z×N and the Goldwasser-Micali
encryption over ZN and is secure under the decisional Diffie-Hellman assumption and the
quadratic residuosity assumption for common N = pq.

One concern of this approach is the converting complexity. All the decryption circuits of
PKE we considered is composed of an exponentiation by a secret exponent e. Gentry and
Halevi [10] showed that its homomorphic evaluation is done by evaluating a polynomial of
degree log e. This degree is generally very large up to several thousands in our situation. To
obtain efficient converting algorithm, we represent an integer as a binary vector of w logw e
length and reduce the degree to logw e at the cost of Õ(w) additional public keys for an
arbitrary positive integer w.

Also we resolve the open problem of [16] partially that evaluate modq mod p homomor-
phically. We convert the double modulo reduction into depth-3 circuit and then apply the
technique of [10]. Our improved technique plays important role especially in this method, since
the selection of parameters heavily depends on the homomorphic capacity of FHE differently
from leveled FHE.

As an independent interest, our approach gives a generic conversion from private key SHE
to public key SHE. In [23], Rothblum shows the way how to transform any homomorphic
private key encryption scheme whose message space is Z2 into a public key homomorphic
encryption scheme. To apply this method, the private key SHE needs to be compact which
means that the length of a homomorphically generated encryption is independent of the
number of ciphertexts from which it was created. Using our hybrid scheme, however, we
obtain generic conversion from private key SHE to private key SHE whose message space is

3

Zp for large prime p. We only add encryptions of secret key of a PKE under the private SHE
to the public key instead of {SHE.Enci(0)}i and {SHE.Enci(1)}i as in [23].

2 Preliminaries

In this section, we introduce some definitions and base problems needed to prove security.

Notation For m,n ∈ N, [m,n] and [m,n) denote the sets {m,m + 1, . . . , n − 1, n} and
{m,m+1, . . . , n−2, n−1}, respectively. Denote the element in Z∩(−n

2 ,
n
2] which is equivalent

to a modulo n by a mod n or [a]n. We denote the unique integer in (−
∏
i pi
2 ,

∏
i pi
2] which is

congruent to mi modulo pi for all i by CRT(p1,...,pk)(m1, . . . ,mk).

2.1 Base Problems

Definition 1 (Decisional Diffie-Hellman problem over G). Let G be a group with a
generator g of order q. For given a tuple (g, ga, gb, gc), the decisional Diffie-Hellman (DDH)
problem over G is to decide whether gab = gc or not.

Definition 2 (Quadratic Residuosity problem over ZN). Given an odd composite inte-
ger N and a ∈ JN where JN := {a ∈ Z∗N |

(
a
N

)
= 1}, the quadratic residuosity problem (QR)

over ZN is to decide whether a is quadratic residue modulo N or not.

We say that the DDH assumption over Gq holds if no polynomial time distinguisher can solve
the DDH problem with non-negligible advantage. The QR assumption over ZN is defined
similarly.

2.2 Homomorphic Encryption Schemes

Definition 3 (ElGamal Encryption over a Ring). Let R be a ring and Gq a multiplicative
cyclic subgroup of prime order q in R. The ElGamal encryption scheme ElG = (ElG.KeyGen,
ElG.Enc,ElG.Dec) consists of the following algorithms:

ElG.KG(λ) : Take as input a security parameter λ. Choose a generator g of Gq and a
random e ∈ [0, q), and compute y = ge. Output a public key pkElG = (R,Gq, g, y) and a
secret key skElG = e.

ElG.Enc(pkElG,m) : Take as input the public key pkElG and a plaintext m ∈ Gq. Choose a

random r ∈ [0, q) and compute g−r and m · yr. Output c = (g−r,m · yr).

ElG.Dec(skElG, c) : Take as input the secret key skElG and a ciphertext c = (v, u) ∈ R2.
Output m = veu.

Definition 4 (Goldwasser-Micali Encryption). The Goldwasser-Micali encryption scheme
GM = (GM.KeyGen, GM.Enc,GM.Dec) consists of the following algorithms:

GM.KG(λ) : Choose random primes p, q and compute N = pq. Compute quadratic non

residue x modulo N satisfying
(
x
p

)
=
(
x
q

)
= −1. Output a public key pkGM = (N, x) and

a secret key skGM = (p, q).

4

GM.Enc(pkGM,m) : For a plaintext m ∈ {0, 1}, choose y ∈ [0, N) such that gcd(y,N) = 1.

Output a ciphertext c = y2xm mod N .

GM.Dec(skGM, c) : For a ciphertext c ∈ ZN , if
(
c
p

)
= 1 and

(
c
q

)
= 1 output 0. Otherwise

output 1.

Definition 5 (Naccache-Stern Encryption). The Naccache-Stern encryption scheme NS =
(NS.KeyGen, NS.Enc,NS.Dec) consists of the following algorithms:

NS.KG(λ) : Choose random small primes p1, . . . , pk and compute u =
∏k/2
i=1 pi and v =∏k

i=k/2+1 pi and set σ = uv. Choose large primes a and b such that p = 2au + 1 and
q = 2bv + 1 are prime and set N = pq. Choose a random g mod N of order φ(n)/4.
Output a public key pkNS = (σ,N, g) and a secret key skNS = (p, q)

NS.Enc(pkNS,m) : For a plaintext m ∈ Z/σZ, choose x ∈ ZN and output a ciphertext
c = xσgm mod N .

NS.Dec(skNS, c) : For a ciphertext c ∈ ZN , compute cφ(N)/pi and obtain mi by comparing

it with gjφ(N)/pi for all j = 1, . . . , pi − 1. Output m = CRT(p1,...,pk)(m1, . . . ,mk).

3 Encrypt with PKE and Compute with SHE

In this section, we give a concept of hybrid scheme by combining a PKE and a SHE. A
message is encrypted under the PKE and it is converted to a ciphertext under the SHE when
it needs homomorphic computations on the message. The ciphertext is decrypted under SHE.

3.1 A Hybrid Scheme of a PKE and a SHE

Suppose that a client who has limited computation capability wants to compute f(m1, . . . ,mk)
for sensitive messages {m1, . . . ,mk} and a multivariate polynomial f . The client could out-
source the heavy computation to a server which has large computing power. Until now, fully
homomorphic encryptions are good solutions for the delegation of computations [5] ignoring
bandwidth of the client and storage of the server. However these are most significant measures
in construction of cloud environment since they are directly connected the cost in real.

One can reduce bandwidth and storage by combining a PKE with small ciphertext size
and a SHE that could evaluate the decryption circuit of the PKE not its own decryption
circuit. We propose a hybrid scheme to improve an efficiency of SHE when one use it in cloud
computing environment. Let PKE = (PKE.KG,PKE.Enc, PKE.Dec) be a public key encryp-
tion with depth-d decryption circuit and SHE = (SHE.KG, SHE.Enc, SHE.Dec,SHE.Eval) be
a somewhat homomorphic encryption. Suppose that there exists a multivariate polynomial
fDec such that f(sk1, . . . , skn, c) = m for all c = PKE.Enc(m) where (sk1, . . . , skn) is the
expanded secret key of skPKE. The Hybrid scheme of PKE and SHE consists of the following
five algorithms Hyb = (Hyb.KG,Hyb.Enc,Hyb.Conv,Hyb.Eval,Hyb.Dec) :

Hyb.KG(λ,PKE.KG, SHE.KG) : Run PKE.KG and SHE.KG to get (pkPKE, skPKE, pkSHE, skSHE).
Output

pkHyb = (pkPKE, pkSHE, SskPKE , fDec)

skHyb = (skSHE)

5

where SskPKE is an expanded secret key set and SskPKE =
{
SHE.Enc(a) : a ∈ SskPKE

}
.

Hyb.Enc(pkHyb,m) : For a plaintext m ∈MpkPKE , output c = PKE.Enc(pkPKE,m).

Hyb.Conv(pkHyb, c) : Evaluate the decryption circuit PKE.Dec with SskPKE . That is, com-

pute and output a ciphertext C

C = fDec(SskPKE , SHE.Enc(c)).

Hyb.Eval(pkHyb, f, c1, . . . , ct) : For given circuit f and t ciphertexts c1, . . . , ct under SHE,

output SHE.Eval(pkSHE, f, c1, . . . , ct).

Hyb.Dec(skHyb, c) : For a ciphertext c ∈ CpkSHE , output m = SHE.Dec(skSHE, c).

Remark 1. In Hyb.Conv algorithm, we remark that

C = fDec(SHE.Enc(SskPKE), SHE.Enc(c)) = SHE.Enc(fDec(SskPKE , c)) = SHE.Enc(m),

since SHE could evaluate the decryption circuit of PKE fDec.

Remark 2. In a hybrid scheme, the homomorphic capacity of the SHE at least exceeds the
degree of the decryption circuit fDec of the PKE.

Theorem 1 (Semantic Security of Hybrid Scheme). If both the public key encryption
and the somewhat homomorphic encryption are semantically secure, then so is the hybrid
scheme.

The security follows by the standard hybrid argument similar to Theorem 4.2.3 in [8]. We
omit the details.

Let M,C be message space and ciphertext space of the PKE, respectively, and M be a
message space of the SHE. If M,C and M are in the same category and there exist efficient
computable homomorphisms φ : M→Mk and ψ : C→Mk for some positive integer k, one
could construct more efficient hybrid scheme. In this paper, therefore, we only focus on the
case that M,C and M satisfy the above conditions.

Remark 3. Although the elliptic curve ElGamal cryptosystem [18] has small ciphertext, we
do not consider in this paper since it is hard to evaluate the inverse map of message encoding
and the addition of points on the elliptic curve.

3.2 Additive Homomorphic Encryptions for the PKE in Hybrid Scheme

Goldwasser-Micali [13], Paillier [21], Okamoto-Uchiyama [20] and Joye-Libert [15] encryp-
tions are candidates for an additive homomorphic IND-CPA PKE in constructing a hybrid
scheme. The decryption circuit of each system requires an additional circuit besides an ex-
ponentiation, the Chinese remaindering algorithm for Goldwasser-Micali and Naccache-Stern
encryptions and integer division for Paillier, Okamoto-Uchiyama encryptions. Since it seems
hard to evaluate integer division part efficiently, the latter encryptions could not be used for
the PKE. Thus we only consider Goldwasser-Micali and Naccache-Stern encryptions for a
PKE in hybrid scheme.

6

Goldwasser-Micali Encryption We remark that the decryption circuit of Goldwasser-

Micali encryption is: for a given ciphertext c ∈ ZN , output 1 if
(
c
p

)
= 1 and

(
c
q

)
= 1 and

output 0 otherwise. We could modify the decryption circuit by

m = CRT(p,q)(c
(p−1)/2, c(q−1)/2).

Using homomorphic evaluation of secret exponentiation and the Chinese remaindering algo-
rithm, one could evaluate the decryption circuit of Goldwasser-Micali encryption. Since p and
q are secret, encryptions of q(q−1 mod p) and p(p−1 mod q) must be added to the public key
of the hybrid scheme. In this case, the message space of GM encryption is Z2 and the message
space of the SHE is Z2N . The degree of the decryption circuit is about 2 log p (≈ λ2) using
Gentry and Halevi’s technique [10].

Naccache-Stern Encryption The decryption of Naccache-Stern encryption is to compute
cφ(N)/pi and get mi by comparing it with gjφ(N)/pi for all j = 1, . . . , pi− 1. The message m is
recovered by computing m = CRT(p1,...,pk)(m1, . . . ,mk). To compute mi homomorphically, at

first one needs to compute a polynomial fi(x) of degree pi−1 such that fi(g
mφ(n)/pi) = m for

all m ∈ Zpi using the Lagrange interpolation. And then compute CRT(p1,...,pk)(m1, . . . ,mk)

homomorphically. In Naccache-Stern encryption, the message space is ZM where M =
∏k
i=1pi

and the message space of the SHE is ZQ where Q = MN . The degree of the decryption circuit
is about log φ(n) + maxi{pi − 1}.

3.3 Multiplicative Homomorphic Encryptions for the PKE in Hybrid Scheme

We may consider ElGamal encryption [7] as a candidate for a multiplicative PKE in con-
structing a hybrid scheme. An ordinary ElGamal encryption over a ring R has a message
space Gq ⊂ R of prime order q. In other words, elements not in the prime subgroup cannot
be encrypted under ElGamal encryption securely. Although one can take all nonzero element
in R as a message only when R = F2n for n such that 2n − 1 is prime, one could not use
the ElGamal encryption over F2n for a PKE, since a DLP in an extension field with small
characteristic is not a hard problem any more [14, 2]. Unlike the extension field case, it is
impossible to construct an ElGamal encryption whose message space is a full domain over a
integer ring.

We propose a new multiplicative homomorphic encryption whose message space is Z×N ,
which covers almost all nonzero elements of ZN . Our scheme is a combination of the ElGamal
scheme over ZN and the Goldwasser-Micali encryption scheme over ZN [13] for common
N = p1p2, and the ciphertext consists of three elements in Z×N . We call this scheme by EGM
encryption.

Let N = p1p2 with p1 = 2q1 + 1 and p2 = 4q2 + 1 for distinct primes p1, p2, q1, q2. Then

the order of Z×N is φ(N) = 8q1q2 and the Jacobi symbol of -1 is
(−1
N

)
=
(
−1
p1

)(
−1
p2

)
= −1.

Take an element σ ∈ Z×N with
(
σ
p1

)
=
(
σ
p2

)
= −1. We use a bijective map ι,

ι : Z×N → JN × {0, 1}, m 7→ (m̂, m̌) =
(
m
(m
N

)
,
(

1−
(m
N

))
/2
)
,

where JN := {a ∈ Z∗N |
(
a
N

)
= 1}. The EGM = (EGM.KG,EGM.Enc,EGM.Dec) encryption is

as follows:

7

EGM.KG(λ) : Choose a generator g of JN with order φ(N)/2 in Z×N and a random e ∈
[0, 4q1q2), and compute y ≡ ge mod N . Output a public key pkEGM = (N, g, y, σ) and a
secret key skEGM = (e, p2).

EGM.Enc(pkEGM,m) : For a plaintext m ∈ Z×N , compute ι(m) = (m̂, m̌) and choose a

random r ∈ [0, N2)1 and a random h ∈ ZN . Output a ciphertext c = (c1, c2, c3) =
(g−r, m̂yr, σm̌h2).

EGM.Dec(skEGM, c) : Take as input the secret key skEGM and a ciphertext c = (c1, c2, c3) ∈
(Z×N)3. Compute and output a message m ≡ ce1c2 · CRT(p1,p2)(c

q1
3 , c

2q2
3) mod N .

The EGM encryption is multiplicative homomorphic over Z×N , which covers almost all

nonzero element of ZN . We remark that CRT(p1,p2)(c
q1
3 , c

2q2
3) = 1 if m̌ is even, and CRT(p1,p2)(c

q1
3 , c

2q2
3) =

−1 otherwise. From this, the EGM encryption is correct for unlimited number of multipli-
cations on encrypted data. Also the EGM encryption is semantically secure under the DDH
assumption over JN and the QR assumption over ZN for common N = p1p2.

Theorem 2 (Multiplicative Homomorphic). For any positive integer k, suppose that
ci = EGM.Enc(pkEGM,mi) for all i ∈ [1, k]. Then

EGM.Dec(skEGM,
k∏
i=1

ci) =
k∏
i=1

mi,

where a multiplication of two ciphertexts is defined by componentwise. That is, EGM encryp-
tion is multiplicative homomorphic.

Proof. Suppose that ci := (ci1, ci2, ci3) = (gri , m̂iy
ri , σm̌ih2

i) for i ∈ [1, k]. Then

C = (C1, C2, C3) :=
k∏
i=1

ci = (g
∑k
i=1 ri ,

k∏
i=1

m̂iy
∑k
i=1 ri , σ

∑k
i=1 m̌i

k∏
i=1

h2
i)

We remark that if
∑k

i=1 m̌i is even, T (C3) = 1 and
∏k
i=1(miN) = 1. Unless, T (C3) = −1 and∏k

i=1(miN) = −1. Thus we obtain

Ce1C2T (C3) =
(k∏
i=1

m̂i

)
· T (C3) =

(k∏
i=1

mi

(mi

N

))
· T (C3) =

k∏
i=1

mi (mod p2).

ut

Theorem 3 (Semantic Security). The EGM scheme is semantically secure under the DDH
assumption over JN and the QR assumption over ZN .

Sketch of Proof. We use a hybrid argument to prove semantic security. We define a sequence
of games.

Game0: this is the original attack scenario. That is, we simulate the challenger by running
EGM.KeyGen to obtain a public key pk0 = (N, g, y, σ) and a secret key sk0 = (e, p2).

1 The statistical distance between D1 and D2 is at most 1/N , where D1 := {choose r ← [0, N2) : output r mod
φ(N)} and D2 := {choose r ← [0, φ(N)) : output r}. In fact, one can choose N1+ε for some ε > 0 instead of
N2.

8

Game1: this game is the same as Game0, except for the following modification to the key
generation. Instead of choosing σ ∈ Z×N with (σp1) = (σp2) = −1, we choose it as σ′ = r2 for a

randomly chosen r from ZN . That is, pk1 = (N, g, y, σ′).

Game2: this game is the same as Game1, except for the following modification to the en-
cryption of mb. Instead of encrypting a mb as c = (g−r, m̂by

r, σ′m̌bh2), we compute c =
(g−r, u, σ′m̌bh2) for randomly chosen r ∈ [0, N2), h ∈ ZN and u ∈ JN and send c to the
attacker as a challenge ciphertext.

Since the challenge ciphertext c in Game2 is independent from message mb, Pr[S2] is 1/2,
where Si is the event that the attacker succeeds in Gamei. Thus the advantage of the attacker
in Game0 is negligible under the DDH assumption over JN and the QR assumption over
ZN . ut

Encryption of Zero Since the EGM scheme has the message space Z×N , one can encrypt
neither the zero nor a multiple of p1 or p2 in ZN . Since the probability that an encryptor
chooses the multiples of p1 or p2 is negligible, we only care for the message zero.

By borrowing the idea in [24], we could modify the scheme by appending λ GM encryptions
of encoding defined by 0 7→ r ∈R {0, 1}λ and 1 7→ 0λ ∈ {0, 1}λ for 2λ security. The ciphertext
of the modified EGM scheme is of the form (g−r, m̂yr, h2σm̌,GM.Enc(r1), . . . ,GM.Enc(rλ))
where (r1, . . . , rλ) = (0, . . . , 0) for a nonzero message m ∈ Z×N and a random λ-bit element
for the zero element. Note that m̂ and m̌ can be taken arbitrary from Z×N when m = 0. The
random (r1, . . . , rλ) in appended ciphertext is preserved under multiplications with 1 − 2−λ

probability. The decryption algorithm is similar to the original EGM by using a polynomial

f(r1, . . . , rλ) = (−1)λ

λ!

∏λ
i=1(r1 + · · ·+ rλ − i).

EGM Encryption The decryption circuit of EGM encryption consists of three secret ex-
ponentiations, two multiplications and one Chinese remaindering algorithm. Similar to the
GM encryption, one could evaluate the decryption circuit of degree log e+ log p1 (≈ λ2). The
message space of EGM is Z×N and ciphertext space is (Z×N)3. One needs to choose the message
space of SHE as ZN in construction of hybrid scheme.

4 Homomorphic Evaluation of Exponentiation

To enhance a performance of the hybrid scheme, one needs to evaluate a modular exponenti-
ation by a secret exponent efficiently that is related to the decryption circuit of GM, NS and
EGM encryptions. Actually, this problem is dealt with by Gentry and Halevi [10] when evalu-
ating the depth-3 decryption circuit of the form ΣΠΣ. Their idea is to express the secret key
e of the ElGamal encryption as a binary representation and then convert the exponentiation
into a multivariate polynomial. In their approach, the decryption circuit of the ElGamal is
represented by 4λ degree polynomial which is large to evaluate efficiently where λ is the se-
curity parameter. We give an improved algorithm to evaluate an exponentiation with a small
degree multivariate polynomial.

4.1 Improved Exponentiation using Vector Decomposition

Gentry and Halevi [10] firstly proposed a method to evaluate an exponentiation by a secret
exponent homomorphically. They expand secret key e of ElGamal encryption as a binary

9

representation e =
∑

i ei2
i with ei ∈ {0, 1} and compute ve as follows:

ve = v
∑
i ei2

i
=
∏
i

vei2
i
.

They use the Lagrange interpolation in computing vei2
i
, that is vei2

i
= eiv

2i + (1 − ei)v0.
The degree of their exponentiation circuit is about 2 log e (≈ 4λ) which is large where λ
is the security parameter. Reducing the degree of exponentiation by secret exponent is a
meaningful approach since the degree is directly related to selection in parameters of a FHE.
One may consider a w-ary representation of the secret e with w > 2 to reduce a degree of
the exponentiation circuits. When one uses w-ary representation, there are logw e terms of
individual veiw

i
which is smaller than log2 e. However it requires degree (w − 1) polynomial

to express each veiw
i

for ei ∈ [0, w − 1] when using the Lagrange interpolation. Indeed this
increases the degree of exponentiation by e from 2 log e to w logw e.

We use a vector representation of ei to reduce the degree of veiw
i

instead of the Lagrange

interpolation. At first, we expand the secret e in a w-ary representation, e =
∑blogw ec

`=0 e`w
`.

Then ve can be written in the form ve = v
∑n
`=0 e`w

`
=
∏n
`=0 v

e`w
`
, where e` ∈ [0, w − 1] and

n = blogw ec. We define a map π

π : W −→ Zw

a 7−→ fa+1

where W = [0, w − 1] and {f1, . . . ,fw} is the standard basis in Zw. We denote π(ei) =
(ei0, . . . , ei(w−1)) ∈ Zw where eik ∈ {0, 1} for all i ∈ [0, n] and k ∈ [0, w − 1]. We also define

a vector vi := (1, vw
i
, v2wi , · · · , v(w−1)wi) ∈ Gw

q . Then one can easily verify that veiw
i

=
〈vi, π(ei)〉, where 〈·, ·〉 is the ordinary inner product in Zw. To operate this procedure publicly,
we add encryptions of e`k for all ` ∈ [0, n], k ∈ [0, w − 1] under the SHE to the public key.
In fact, we can omit an encryption of ei0, since ei0 is equal to 1 −

∑w−1
k=1 eik which can be

computed homomorphically.

Eval.Exp.Setup(pkSHE, e, w): Take as input a public key pkSHE of SHE, a secret exponent e and
expansion parameter w.

1. Expand e =
∑n

i=0 eiw
i and compute π(ei) = (ei0, . . . , ei(w−1)) for all i ∈ [0, n] where

n = blogw ec.

2. Output Ēe :=
{
SHE.Enc(eik) : i ∈ [0, n], k ∈ [0, w − 1]

}
.

Eval.Exp(pkSHE, Ēe, w, v): Take as input the public key pkFHE of FHE, the set Ēe output by
Eval.Exp.Setup and v.

1. Encrypt vkw
i

for all i ∈ [0, n], k ∈ [0, w − 1] under the SHE.

2. Output c :=
∏n
i=0

(∑w−1
k=0 SHE.Enc(eik) · SHE.Enc

(
vkw

i))
.

Theorem 4 (Correctness). Suppose that c← Eval.Exp(pkSHE, Ēe, w, v). Then ve ← SHE.DecskSHE
(c).

10

The proof of Theorem 4 is straightforward. It is verified that the degree of exponentiation is
about 2 logw e which is logw times smaller than the original method. Using our method, one
can evaluate the exponentiation by a large secret exponent homomorphically with a small
degree polynomial at the cost of Õ(w) additional public keys for an arbitrary integer w.

4.2 Improve the Bootstrapping without Squashing

Gentry and Halevi [10] proposed a new method to construct FHE without squashing, called
chimeric FHE. The chimeric FHE uses a multiplicative homomorphic encryption (MHE) to
bootstrap a SHE without squashing, thereby they remove the assumption on the hardness
of the sparse subset sum problem. The Gentry and Halevi’s technique in [10] is to express
the decryption of a SHE scheme as a depth-3 (

∑∏∑
) arithmetic circuit. They temporarily

switch to a ciphertext under a MHE, such as ElGamal, to compute
∏

part. And then they
homomorphically evaluate the decryption circuit of MHE to get a ciphertext under SHE.
Using their method, SHE only needs to evaluate MHE’s decryption circuit of fixed degree
2 log e, not its own decryption circuit. Using our efficient evaluation of exponentiation given
in Section 4.1, we can reduce the degree from 2 log e to 2 logw e. Moreover, we point out
that one can handle more general class of SHE whose decryption circuit is a composition
of restricted depth-3 circuit

∑∏∑
and several low depth circuits. This will be given in

Appendix C. By applying our technique, we show that any SHE with decryption circuit of
[·]q mod p type is bootstrappable if it could evaluate degree 2 logw e circuits.

Evaluate Double Modulo Reduction The bottleneck of bootstrapping is to compute
[·]q mod p homomorphically. We call [·]q mod p as a double modulo reduction circuit. In gen-
eral, when the plaintext is Z2, the bootstrapping is done by using bit operations on binary
representations of integers. However it is not easy to bootstrap a ciphertext when the mes-
sage space is Zp with p > 2. We propose a method to evaluate [·]q mod p homomorphically for
large p using Gentry and Halevi’s idea [10]. As a application, we give a bootstrapping method
of [4] when a message is large enough. Since one could not use modulus switching technique
to handle errors of ciphertexts in batch fully homomorphic encryption [4], the selection of
parameters of the FHE heavily depends on the homomorphic capacity of the scheme. Thus
our improved technique plays important role in bootstrapping ciphertexts.

We assume that q is equivalent to 1 modulo p. Then [c]q mod p can be written in the form
as DGHV [27],

[c]q mod p = c− bc/qe · q mod p = c− bc/qe mod p.

In comparison with DGHV scheme, it is hard to express the division by p by a low degree
polynomial over Zp when p is larger than two. To apply the technique in [10], we first modify
the division part using the Gentry’s squashing technique [9]. Let us consider parameters κ,Θ, θ
such that κ = γη/ρ′ log p,Θ = ω(κ · log λ) and θ = λ where γ is a bit length of c, η is a bit
length of q which is larger than ρ′ = 2λ.

Set xq = bpκ/qe and choose Θ-bit random vector s = (s1, . . . , sΘ) with Hamming weight θ.
Choose random integer ui ∈ Z∩ [0, pκ+1) for i = 1, . . . , Θ such that

∑
i siui = xq (mod pκ+1).

Set yi = ui/p
κ which is smaller than p with κ precision after p-ary point. Also [

∑
i siyi]p =

(1/q)−∆q for some |∆q| < p−κ. We firstly compute zi ← [c · yi], keeping only n = dlogp θe+

11

dlogp 8e precision after p-ary point for i = 1, . . . , Θ. That is, [c ·yi] = zi−∆i for some ∆i with
|∆i| ≤ 1/16θ. We have[

(c/q)−
Θ∑
i=1

sizi

]
p

=

[
(c/q)−

Θ∑
i=1

si[c · yi]p +
Θ∑
i=1

si∆i

]
p

=

[
(c/q)− c

[∑
si · yi

]
p

+

Θ∑
i=1

si∆i

]
p

=

[
(c/q)− c [(1/q)−∆q]p +

Θ∑
i=1

si∆i

]
p

=

[
c ·∆q +

Θ∑
i=1

si∆i

]
p

.

Since the bit length of c is at most 2γ < pκ−4, thus c · ∆q ≤ 1/16. Also we observe that
|
∑
si∆i| ≤ θ · 1/16θ = 1/16. Thus we have

[c]q mod p = c− bc/qe mod p = c−
⌊∑

sizi

⌉
mod p. (1)

To apply chimeric technique [10], we convert the above subset sum into a
∑∏∑

form,
defined in Appendix D. The equation (1) can be converted as follows:

[c]q mod p ≡ c− bc/qc mod p

≡ c−

⌊
c ·

Θ∑
i=1

sizi

⌉
mod p

≡ c−
Θ∑
i=1

siz
′
i︸ ︷︷ ︸

simple part

−

⌊
p−n

Θ∑
i=1

siz
′′
i

⌉
︸ ︷︷ ︸
complicated part

modp,

where zi = z′i + z′′i · Q−κ with positive integers z′i, z
′′
i . As well as the simple part, the “com-

plicated part” can be also expressed as a LA-restricted depth-3 circuit C, when we choose p
such that p > 2Θ2 by the Lemmas in Appendix D. Thus we obtain the following Theorem:

Theorem 5. Let q, p be primes such that q > p > 2Θ2 and q ≡ 1 mod p. For any A ⊂ Zp
of cardinality at least 2Θ2 + 1, the double modulo reduction [·]q mod p can be expressed as
LA-restricted depth-3 circuit C of LA-degree at most 2Θ2 having at most 2Θ2 +Θ+ 1 product
gates. Thus one can evaluate the double modulo reduction circuit using chimeric technique.

Bootstrapping in [4] Cheon et al. [4] proposed a fully homomorphic encryption based
on Chinese remainder theorem. The decryption of the scheme consists of [·]pi mod Qi with
i ∈ [1, k]. They only achieve “bootstrapping” when all Qi’s are two. They raised a problem
to evaluate the double modulo reduction [·]pi mod Qi homomorphically when some of Qi is

12

greater than 2. We can solve this problem partially with the above technique and so com-
plete the bootstrapping stage for large enough Qi’s. It gives a fully homomorphic encryption
dealing with large integers. Note that if Qi’s are relatively prime, we can map a plaintext on
ZM with M =

∏
iQi into

∏
i ZQi and so it enables large integer arithmetics on ZM . In this

bootstrapping procedure, our improved technique in evaluation of exponentiation plays im-
portant role, since the parameters of the FHE heavily depends on the homomorphic capacity
of the scheme. Using our method, the homomorphic capacity can be reduced from 2 log e to
2 logw e at the cost of public key size Õ(w).

5 Discussions

We give typical applications of fully homomorphic encryption in database and cloud comput-
ing environment and analyze advantages of our hybrid scheme under some scenarios.

5.1 Application Model

Database Encryption Let us consider the situation that a government agency collects
medical records of patients from the hospital and extracts some statistical information from
the records. When lots of data are stored in a storage, it becomes more serious problem to
protect data from insider’s misuse or outsider’s hacking. To reduce the risk, one may store
data after encryption. We are to give a storage efficient solution using a hybrid scheme under
this scenario.

At first, the agency generates (pkHyb, skHyb) of hybrid scheme and stores skHyb in secure
area and makes public only pkPKE to hospitals and pkHyb to a database. Each hospital uploads
its medical records after encrypted under the pkPKE in the database. The agency requests
for some computations on patients data to extract information to the databased. Then the
database performs homomorphic computation on encrypted data using pkHyb. After evaluation
of requested computations, the resulting ciphertexts are sent to the agency. The decryption
is carried out in secure area of the agency.

Outsourcing of Computations in Cloud Environment Suppose that a client who has
small computing power wants to compute heavy computation on private data. He can use a
hybrid scheme to protect his privacy, that is, he outsources computations of PKE-encrypted
data along with pkHyb to a cloud that has huge computing power and storage. The cloud only
performs the outsourced computations and returns the results ciphertext encrypted under
SHE. Although the fact that the client must send pkHyb with large size seems as a weakness
of our hybrid scheme, it doesn’t matter since pkHyb is sent to the cloud only once in the
procedure of outsourcing.

Remark 4. Since the client may not trust the cloud, it is desirable to have the cloud prove
that the computation on encrypted data was done correctly. In [5], they give a solution to
prove the correctness when using FHE only. It needs more study on this problem when one
uses the hybrid scheme in delegation of computations.

5.2 Advantages

The advantages of using our scheme in the above scenarios includes small bandwidth, storage
save and efficient computations.

13

Small Bandwidth In cloud environment, each client encrypts their messages with small
computing power and storage and a server manages encrypted data with large computing
power and storage. However, the current FHE’s may not be suitable to this environment,
because it has a large ciphertext size which causes large communication cost. In the above
scenario, each hospital and the client can encrypt data using efficient PKE scheme instead of
using an inefficient FHE. And then they send ciphertexts with only few thousands of bits to
the database and the cloud. It could reduce the bandwidth of clients dramatically.

Storage Save After receiving the ciphertext from each clients, the server stores ciphertexts
which contain secret information of clients. The server can save the storage by storing only
small PKE ciphertexts rather than large FHE ciphertexts. The server convert them to SHE
ciphertexts and compute some operations only when it is required.

Efficient Computing In our hybrid scheme, one could choose a PKE among additive ho-
momorphic and multiplicative homomorphic depending on the property of a circuit we are
to evaluate. Suppose that the server is to evaluate a multivariate polynomial f and g where
f has polynomially many monomials on inputs and g has polynomially many linear factors.
We will use multiplicative homomorphic encryption as PKE in the first case, and additive
homomorphic encryption as PKE for the second case.

At first, let us consider f(x1, . . . , xn) =
∑

i∈IMi(x1, . . . , xn) be an n-variable polyno-
mial over a ring R, where each Mi is a monomial of f . If the degree of f is large, sev-
eral decryption or modulus switching procedures are required when using ordinary FHEs,
which are slow or increase the ciphertext size. However, using our hybrid scheme, one may
evaluate f without a bootstrapping regardless of the degree f . Suppose the ciphertexts are
encrypted under a multiplicative encryption E with the key (pk, sk) and the SHE can eval-
uate the decryption circuit D(sk, ·) of Epk. Given c1 = Epk(m1), . . . , cn = Epk(mn), we can
compute SHE.Enc(f(m1, . . . ,mn)) with SHE.Enc(sk). Below, we denote SHE.Enc by SHE and
SHE.Dec(a) = SHE.Dec(b) by a ≡ b.

SHE(f(m1, . . . ,mn)) ≡
∑
i

SHE(Mi(m1, . . . ,mn)) (∵ SHE is add. homo.)

=
∑
i

SHE{D(sk,Epk(Mi(m1, . . . ,mn)))} (∵ D ◦ E is an identity)

=
∑
i

SHE{D(sk,Mi(Epk(m1), . . . ,Epk(mn)))} (∵ E is mult. homo.)

≡
∑
i

D̄(SHE(sk),SHE(Mi(Epk(m1), . . . ,Epk(mn)))),

where D̄ is the decryption circuit encrypted with SHE and the last equality is because SHE
can evaluate D with SHE(sk). More concretely, we follow the steps:

1. Given c1 = Epk(m1), · · · , cn = Epk(mn), compute Mi(c1, · · · , cn) = Epk(Mi(m1, · · · ,mn))
for each i.

2. Encrypt Epk(Mi(m1, · · · ,mn)) with SHE and then evaluate the decryption circuit D̄ with
the encrypted secret key SHE(sk) of Epk. (Observe: one may use trivial encryption on
Epk(Mi))

14

3. Add them to obtain SHE(f(m1, . . . ,mn))

Now let us consider that the server is to compute a polynomial g(x1, . . . , xn) =
∏
i∈I Li(x1, . . . , xn)

where each Li is a linear multivariate factor of g. Suppose that the ciphertexts are encrypted
under an additive homomorphic encryption E. In this case, we follow the steps:

1. Given c1 = Epk(m1), · · · , cn = Epk(mn), compute Li(c1, · · · , cn) = Epk(Li(m1, · · · ,mn))
for each i.

2. Encrypt Epk(Li(m1, · · · ,mn)) with SHE and then evaluate the decryption circuit D̄ with
the encrypted secret key SHE(sk) of Epk. (Observe: one may use trivial encryption on
Epk(Li))

3. Multiply them to obtain SHE(f(m1, . . . ,mn))

Remark 5. As you see, one could compute on ciphertexts under a SHE not a PKE after
conversion of ciphertexts. Therefore one makes more good use of the hybrid scheme when
evaluating fixed multivariate polynomials.

5.3 Generic Conversion of SHE from Private-Key to Public-Key

In [23] , Rothblum shows the way how to transform any additively homomorphic private-key
encryption scheme into a public-key homomorphic encryption scheme when the message is Z2.
To apply this method, the private-key SHE needs to be compact which means that the length
of a homomorphically generated encryption is independent of the number of ciphertexts from
which it was created. An additive homomorphic encryption is converted from private-key to
public key by adding a number of encryptions of zero and one to the public key.

One could consider our hybrid scheme as a generic conversion of SHE from private-key
to public key whose message space is Zp for large prime p. We only add encryptions of
secret key of a PKE under the private SHE to the public key instead of {SHE.Enci(0)}i and
{SHE.Enci(1)}i. And the encryption algorithm of “public-key” SHE is made up of Hyb.Enc
and Hyb.Conv. Given a hybrid scheme Hyb = (Hyb.KG,Hyb.Enc,Hyb.Conv,Hyb.Dec,Hyb.Eval)
of a PKE and private key SHE scheme PrivSHE, we could construct a public key SHE PubSHE
as follows:

PubSHE.KG(λ) : Run PKE.KG to obtain pkPKE and skPKE. Output a public key pkPubSHE =
(pkHyb) and a secret key skPubSHE = (skHyb).

PubSHE.Enc(pkPubSHE,m) : For a plaintext m ∈ Zp, encrypt m under Hyb.Enc and then
output a ciphertext C ← Hyb.Conv(pkPubSHE, c) where c← Hyb.Enc(m).

PubSHE.Dec(skPubSHE, C) : For a ciphertext C, output a messagem← Hyb.Dec(skPubSHE, C).

The semantic security of this conversion follows that of hybrid scheme.

6 Implementation of Hybrid Scheme

In this section, we describe an implementation of the hybrid scheme Hyb = (Hyb.KG,Hyb.Enc,
Hyb.Conv,Hyb.Dec) using the EGM encryption scheme over ZN and a symmetric version of
the leveled DGHV scheme proposed by Coron et al. [6].

15

6.1 Implementation Model

We consider a scenario that a client delegates of computations on encrypted data. The client
encrypts a message under EGM given in Section 3.3 and sends the ciphertext with FHE
evaluation key. We use symmetric version of [6], since there is no difference between symmetric
version and public version in this scenario.

Hybrid Scheme of EGM and leveled-DGHV The hybrid scheme of the EGM over ZN
and the leveled-DGHV [6] with is as follows:

Hyb.KG(λ,EGM.KG,FHE.KG) : Take as input security parameter λ, EGM.KG and FHE.KG

algorithms. Run EGM.KG and FHE.KG to get (N, g, y, σ, κ, e, p1 = 2q1 + 1, p2 = 4q2 +
1, pkFHE, skFHE) where JN = 〈g〉 and y = ge with e ∈ [0, 22λ). Let k0 = blogw ec and

k1 = blogw q1c. Define a vector vi := (1, vw
i
, v2wi , · · · , v(w−1)wi). Define a multivariate

polynomial fDec as

fDec(x0, . . . , xk0 , y0, . . . , yk1 , z0, . . . , zk1 , u, v, t) :=

k0∏
i=0

〈vi, π(xi)〉 · v ·

(
α1

k1∏
i=0

〈ti, π(yi)〉+ α2

k1∏
i=0

〈ti, π(zi)〉

)

where α1 = p2·(p−1
2 mod p1) and α2 = p1·(p−1

1 mod p2). Output pkHyb = (N, g, y, S̄1, S̄2, fDec,
FHE.Enc(α1),FHE.Enc(α2)) and skHyb = (skFHE), where

S̄0 =
{
FHE.Enc(eij)

∣∣e =

k0∑
i=0

eiw
i, π(ei) = (eij)

w−1
j=0

}
,

S̄1 =
{
FHE.Enc(q1,ij)

∣∣q1 =

k1∑
i=0

q1,iw
i, π(q1,i) = (q1,ij)

w−1
j=0

}
,

S̄2 =
{
FHE.Enc(q2,ij)

∣∣2q2 =

k1∑
i=0

q2,iw
i, π(q2,i) = (q2,ij)

w−1
j=0

}
,

Hyb.Enc(pkHyb,m) : Take as input the public key pkHyb and a plaintext m ∈ Z×N . Output

EGM.Enc(m).

Hyb.Conv(pkHyb, c) : Take as input the public key pkHyb and a ciphertexts c = (c1, c2, c3)

under EGM encryption. Compute and output

C = fDec(FHE.Enc(e1,00), . . . ,FHE.Enc(q1,00), . . . ,FHE.Enc(q2,00), . . . ,FHE.Enc(q2,k1w−1), c1, c2, c3).

Hyb.Dec(skHyb, C) : Take as input the secret key skHyb and a ciphertext C. Compute and

output a message M = FHE.Dec(skFHE, C).

Remark 6. The degree of decryption circuit fDec is 2(k0 + k1) ≈ O(λ2) for the security pa-
rameter λ.

6.2 Results

Asymptotic Key Size Let N = p1p2 be the modulus of EGM scheme, ρ and κ be the
bit length of errors and pi, respectively. We refer Lenstra’s analysis [17] to choose κ and

16

lattice attacks on approximate gcd problem [26, 27] to choose η and γ. In our construction,
the message space of the EGM and leveled-DGHV is ZN and the set of secret key for leveled-
DGHV is {P1, . . . , PL} where Pi is i-th modulus with size (i+ 1)µ bits for each i = 1, . . . , L.
To remain the ciphertext noise as the same, one should choose µ such that µ ≥ 2ρ+κ+40. We
give concrete analysis in Appendix B. We choose the parameters asymptotically as follows:
ρ = O(λ), κ = O(λ2), µ = O(λ2), ηL = L ·O(λ2) and γ = ω(µ2 log λ) = ω(λ4 log λ).

Optimization Let d be a degree of the decryption circuit of EGM. If one use Gentry and
Halevi’s technique [10], d becomes 2κ + 2 log e. We could reduce this to (2κ + 2 log e)/ logw
when using w-ary expansion of secret exponent. Thus the depth L of leveled DGHV scheme
become smaller as the parameter w increase. Also, we use W -bit decomposition and powers
instead of BitDecomp and Powersof2 as in [6] to reduce running time of SwitchKey by a factor
of W at the cost of increasing the noise by W bits. We take w = 128 and W = µ/2 in our
implementations.

Storage Save As in Table 1, we can use EGM ciphertexts instead of FHE ciphertexts, which
results in about four thousands times storage save.

Instances Security ρ κ log e µ W w L ηL × 10−4 γ × 10−7 FHE size EGM size

Toy 42 80 80 84 480 256
2 8 0.43 0.19 237 KB 60 Byte

128 5 0.28 0.07 87 KB 60Byte

Small 52 106 220 104 1040 512
2 9 1.04 0.96 1.2 MB 165 Byte

128 6 0.72 0.59 0.7 MB 165 Byte

Medium 62 126 343 124 1600 768
2 9 1.6 1.16 1.5 MB 258 Byte

128 7 1.28 0.83 1.1 MB 258 Byte

Large 72 145 506 144 2400 1024
2 10 2.64 6.96 8.7 MB 380 Byte

128 7 1.92 3.69 4.6 MB 380 Byte

Table 1. The parameter setting of the hybrid scheme.

Timing Results We test the timing of the hybrid scheme on a PC with Intel core i7-2600
3.4GHz and 192GB memory and use the NTL library [25] with the GMP library [1]. Table 2
shows that it takes about 52 minutes 11 seconds in FHE.KG and about 1 minute 25 seconds
in Hyb.Conv algorithm under “Medium” parameter setting with w = 128. We verify that our
efficient homomorphic evaluation of exponentiation technique gives about eight times faster
than that of the original method [10].

7 Conclusion

We propose a hybrid scheme of a public key encryption and a somewhat homomorphic en-
cryption. The proposed scheme is suitable for cloud computing environment since it has small
band width, storage and supports efficient computing on encrypted data. At the cost of con-
version from PKE ciphertext to FHE ciphertext, we can reduce the storage size about four
thousands times smaller. If we can batch fully homomorphic encryption over the integers
with modulus switching technique, we may expect to further enhance the performance of the
hybrid scheme.

17

Instances w FHE.KG EGM.KG Hyb.KG Hyb.Conv

Toy
2 1 min 40 s 0.09 s 2.02 s 16.61 s

128 15.2 s 0.06 s 14.3 s 1.38 s

Small
2 28 min 13 s 1.28 s 32.2 s 4 min 38 s

128 7 min 3 s 0.03 s 5 min 15 s 31.7 s

Medium
2 1 h 36 min 2.43 s 1 min 4 s 8 min 15 s

128 52 min 11 s 2.1 s 13 min 16 s 1 min 25 s

Table 2. Timing results of the hybrid scheme.

References

1. GMP: The gnu multiple precision arithmetic library. http://gmplib.org, 2013.

2. R. Barbulescu, P. Gaudry, A. Joux, and E. Thomé. A quasi-polynomial algorithm for discrete logarithm
in finite fields of small characteristic. IACR Cryptology ePrint Archive, 2013. http://eprint.iacr.org/

2013/400.

3. Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (Leveled) Fully homomorphic encryption without boot-
strapping. In S. Goldwasser, editor, Innovations in Theoretical Computer Science 2012, pages 309–325.
ACM, 2012.

4. J. Cheon, J.-S. Coron, J. Kim, M. Lee, T. Lepoint, M. Tibouchi, and A. Yun. Batch fully homomor-
phic encryption over the integers. In T. Johansson and P. Nguyen, editors, Advances in Cryptology -
EUROCRYPT 2013, volume 7881 of Lecture Notes in Computer Science, pages 315–335. Springer Berlin
Heidelberg, 2013.

5. K.-M. Chung, Y. Kalai, and S. Vadhan. Improved delegation of computation using fully homomorphic
encryption. In T. Rabin, editor, Advances in Cryptology CRYPTO 2010, volume 6223 of Lecture Notes in
Computer Science, pages 483–501. Springer Berlin Heidelberg, 2010.

6. J.-S. Coron, D. Naccache, and M. Tibouchi. Public key compression and modulus switching for fully
homomorphic encryption over the integers. In Advances in Cryptology - EUROCRYPT 2012, volume 7237
of Lecture Notes in Computer Science, pages 446–464. Springer Berlin Heidelberg, 2012.

7. T. E. Gamal. A public key cryptosystem and a signature scheme based on discrete logarithms. In G. R.
Blakley and D. Chaum, editors, Advances in Cryptology - CRYPTO 1984, volume 196 of Lecture Notes in
Computer Science, pages 10–18. Springer, 1984.

8. C. Gentry. A fully homomorphic encryption scheme. In PhD thesis. Stanford University, 2009.
crypto.stanford.edu/craig.

9. C. Gentry. Fully homomorphic encryption using ideal lattices. In M. Mitzenmacher, editor, Proceedings
of the 41st Annual ACM Symposium on Theory of Computing - STOC 2009, pages 169–178. ACM, 2009.

10. C. Gentry and S. Halevi. Fully homomorphic encryption without squashing using depth-3 arithmetic
circuits. In R. Ostrovsky, editor, IEEE 52nd Annual Symposium on Foundations of Computer Science -
FOCS 2011, pages 107–109. IEEE, 2011.

11. C. Gentry, S. Halevi, and N. P. Smart. Fully homomorphic encryption with polylog overhead. In
D. Pointcheval and T. Johansson, editors, Advances in Cryptology - EUROCRYPT 2012, volume 7237
of Lecture Notes in Computer Science, pages 465–482. Springer, 2012.

12. C. Gentry, S. Halevi, and N. P. Smart. Homomorphic evaluation of the AES circuit. In R. Safavi-Naini and
R. Canetti, editors, Advances in Cryptology - CRYPTO 2012, volume 7417 of Lecture Notes in Computer
Science, pages 850–867. Springer, 2012.

13. S. Goldwasser and S. Micali. Probabilistic encryption. J. Comput. Syst. Sci., 28(2):270–299, 1984.

14. A. Joux. A new index calculus algorithm with complexity L(1/4+o(1)) in very small characteristic. IACR
Cryptology ePrint Archive, 2013.

15. M. Joye and B. Libert. Efficient cryptosystems from 2k-th power residue symbols. In Advances in Cryp-
tology, EUROCRYPT 2013.

16. J. Kim, M. S. Lee, A. Yun, and J. H. Cheon. CRT-based fully homomorphic encryption over the integers.
Cryptology ePrint Archive, Report 2013/057, 2013. The merged paper appears in Eurocrypt 2013 [4].

17. A. K. Lenstra. Key length, 2004.

18. A. Menezes and S. A. Vanstone. Elliptic curve cryptosystems and their implementations. J. Cryptology,
6:209–224, 1993.

18

19. M. Naehrig, K. Lauter, and V. Vaikuntanathan. Can homomorphic encryption be practical? In C. Cachin
and T. Ristenpart, editors, Proceedings of the 3rd ACM Cloud Computing Security Workshop - CCSW
2011, pages 113–124. ACM, 2011.

20. T. Okamoto and S. Uchiyama. A new public-key cryptosystem as secure as factoring. In K. Nyberg, editor,
Advances in Cryptology - EUROCRYPT 1998, volume 1403 of Lecture Notes in Computer Science, pages
308–318. Springer, 1998.

21. P. Paillier. Public-key cryptosystems based on composite degree residuosity classes. In J. Stern, editor,
Advances in Cryptology - EUROCRYPT 1999, volume 1592 of Lecture Notes in Computer Science, pages
223–238. Springer, 1999.

22. R. Rivest, L. Adleman, and M. Dertouzos. On data banks and privacy homomorphism. Foundations of
Secure Computation, pages 168–177, 1978.

23. R. Rothblum. Homomorphic encryption: From private-key to public-key. In Y. Ishai, editor, TCC, volume
6597 of Lecture Notes in Computer Science, pages 219–234. Springer, 2011.

24. T. Sander, A. L. Young, and M. Yung. Non-interactive cryptocomputing for NC1. In 40th Annual
Symposium on Foundations of Computer Science, FOCS ’99, 17-18 October, 1999, New York, NY, USA,
pages 554–567, 1999.

25. V. Shoup. NTL: A library for doing number theory ver. 6.0.0. http: // www. shoup. net/ ntl/ , 2013.
26. J. H. Silverman, editor. Cryptography and Lattices, International Conference, CaLC 2001, Providence, RI,

USA, March 29-30, 2001, Revised Papers, volume 2146 of Lecture Notes in Computer Science. Springer,
2001.

27. M. van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan. Fully homomorphic encryption over the
integers. In H. Gilbert, editor, Advances in Cryptology - EUROCRYPT 2010, volume 6110 of Lecture
Notes in Computer Science, pages 24–43. Springer, 2010.

A Proofs

Proof of Theorem 3. Under the attacker scenario, the attacker first receives a public key
of the encryption scheme, and outputs a message m0,m1 ∈ ZN . The challenger returns an
encryption of mb for a randomly chosen bit b. Finally, the attacker outputs a guess b′ and
succeeds if b = b′. We use hybrid argument to prove semantic security. We use a sequence of
games and denote Si the event that the attacker succeeds in Gamei.

Game0: this is the original attack scenario. That is, we simulate the challenger by running
EGM.KeyGen to obtain a public key pk0 = (N, g, y, σ) and a secret key sk0 = (e, φ(N), σ1, σ2).

Game1: this game is the same as Game0, except for the following modification to the key
generation. Instead of choosing σ ∈ Z∗N with (σp1) = (σp2) = −1, we choose it as σ′ = r2 for a

randomly chosen r from ZN . That is, pk1 = (N, g, y, σ′).
It is clear that any significant difference between Pr[S0] and Pr[S1] leads immediately to

an effective statistical test for solving the QR problem over ZN . Thus we obtain

|Pr[S0]− Pr[S1]| ≤ AdvQR,

where AdvQR denotes the advantage in solving QR problem over ZN .

Game2: this game is the same as Game1, except for the following modification to the en-
cryption of mb. Instead of encrypting a mb as c = (g−r, m̂by

r, σ′m̌bh2), we compute c =
(g−r, u, σ′m̌bh2) for randomly chosen r ∈ [0, N2), h ∈ ZN and u ∈ JN and send c to the
attacker as a challenge ciphertext.

It is also clear that any significant difference between Pr[S1] and Pr[S2] leads immediately
to an effective statistical test for solving the DDH problem over JN . Thus

|Pr[S1]− Pr[S2]| ≤ AdvDDH,

19

where AdvDDH denotes the advantage in solving DDH problem over JN .

Since the challenge ciphertext c in Game2 is independent from message mb, Pr[S2] is 1/2.
Thus we obtain that

∣∣∣∣Pr[S0]− 1

2

∣∣∣∣ = |Pr[S0]− Pr[S2]|

≤ |Pr[S0]− Pr[S1]|+ |Pr[S1]− Pr[S2]|
≤AdvQR + AdvDDH.

Thus the advantage of the attacker in Game0 is negligible under DDH assumption over JN
and QR assumption over ZN . ut

B Leveled DGHV Scheme with Large Message Space

In [6], they firstly propose the leveled fully homomorphic encryption over the integers. One
could not use the modulus switching technique of BGV scheme [3] directly to DGHV scheme
since p and p′ must remain secret. For given ciphertext c = pq+ r, they use virtual ciphertext
of the form c′ = 2k · q′ + r′ with [q′]2 = [q]2 to switch secret modulus.

In hybrid scheme with the EGM scheme and the leveled DGHV scheme, the message space
of the FHE is ZN for RSA modulus N . In this section, we modify the Lemmas in [6] to deal
with the leveled DGHV scheme whose message space is ZQ.

Lemma 1 (Lemma 4 in [6]). Let p be an odd integer. Let c = pq + r be a ciphertext of
DGHV. Let k, κ be an integer such that |c| < 2κ. Let y be a vector of Θ numbers with κ bits of
precision after the binary point, and s be a vector of Θ bits such that Qk/p = 〈s,y〉 mod Qk+1

with |ε| < 2−κ. Let c = (bc · yie mod Qk+1)1≤i≤Θ and c′ = 〈s, c〉. Then c′ = Qk · q′ + r′ with
[q′]Q = [q]Q and r′ = br ·Qk/pc+ δ where δ ≤ 2 +Θ/2.

Lemma 2 (Lemma 5 in [6]). Let p and p′ be odd integers such that p ≡ p′ mod Q. Let k
be integer such that p′ < Qk and c = pq + r be a ciphertext. Let y be a vector of Θ numbers
with κ bits precision after the binary point, and let s be a vector of Θ bits such that Qk/p =
〈s,y〉+ε mod Qk+1 where |ε| < 2−κ. Let σ = p′q+r+bs′ ·pQk+1e. Let c = (bc ·yie)1≤i≤Θ and
c′ = BitDecomp(c, k) be the expanded ciphertext. Let c′′ = Q〈σ, c′〉+[c]Q. Then c′′ = p′q′′+r′′

where r′′ = br · p′/pc+ δ′ for some δ with |δ| ≤ Q · 2ρ+1 ·Θ · (k + 1)

Now we give the modulus switching algorithm for DGHV with message space ZQ.

SwitchKeyGen(pk, sk, pk′sk′) :

1. Take as input two DGHV secret keys p and p′ of size η and η′ respectively. Let κ = 2γ+ η
where γ is the size of the public key integers xi under p. Let η′′ = bη′/ logQc.

2. Generate a vector y of Θ random modulo Qη
′′+1 with κ bits of precision after the binary

point, and a random vector s of Θ bits such that Qη
′′
/p = 〈s,y〉 + ε mod Qη

′′+1 where
|ε| < 2−κ. Generate the expanded secret key s′ = Powersof2(s, η′′)

3. Compute a vector encryption σ of s′ under sk′, defined as follows:

σ = p′ · q + r +

⌊
s · p′

Qη′′+1

⌉
(2)

20

where q ← (Z ∩ [0, q0))(η′′+1)Θ and r ← (Z ∩ (−2ρ
′
, 2ρ

′
))(η′′+1)Θ, where q′0 is from x′0 =

p′q′0 + r′ in pk′.
4. Output τpk→pk′ = (y,σ)

SwitchKey(τpk→pk′ , c) :

1. Let (y,σ)← τpk→pk′

2. Compute the expanded ciphertext c = (bc·yie mod Qη
′′+1)1≤i≤Θ and let c′ = BitDecomp(c, η′′).

3. Output c′′ = Q〈σ, c′〉+ [c]Q.

C Improved Bootstrapping without Squashing

Suppose that s := (s1, . . . , sn) ∈ {0, 1}n is a secret key of the SHE and c := (c1, . . . , cn) ∈
{0, 1}n is a ciphertext of plaintext m ∈ Zp under the SHE. Suppose that the decryption of
SHE consists of one or several following functions:

f(c) = T

n+1∑
j=1

λj

n∏
i=1

(aj + si · ci)

 , (3)

where the aj ’s and λj ’s are the publicly known constants in Zp and T is a circuit of degree
d. Actually, aj ’s are chosen such that aj and aj + 1 are quadratic residues modulo p and
λj is chosen depending on aj ’s. We allow that T is a composition of several

∑
and

∏
, and

so may have exponentially many terms when represented as a sum of monomials. Now we
describe recrypting a ciphertext c = SHE.Enc(m) using our new technique. The public key
of FHE contains encryptions of the secret key of SHE under ElGamal and encryptions of the
secret key of ElGamal under SHE additionally. FHE.Recryptlow.Setup and FHE.Recryptlow are
as follows:

FHE.Recryptlow.Setup(pkSHE, skSHE, pkElG, skElG, {λj}, {aj}, w): Take as input the public key

and secret key pair of SHE and ElG with publicly known constant {λj} and {aj}.

1. Encrypt aj + si and aj for all i ∈ [1, n] and j ∈ [1, n + 1] where s := (s1, . . . , sn) is the
secret key of the SHE.

2. Expand e as a w-ary representation, e =
∑blogw ec

`=0 e`w
` with e` ∈ [0, w − 1].

3. Encrypt e`k for ` ∈ [0, blogw ec] and k ∈ [0, w − 1], where π(e`) = (e`0, . . . , e`(w−1)).
4. Output

E1 :=
{
ElG.Enc(aj + si)

∣∣i ∈ [1, n] and j ∈ [1, n+ 1]
}
∪
{
ElG.Enc(aj)

∣∣j ∈ [1, n+ 1]
}

E2 :=
{
SHE.Enc(e`k)

∣∣` ∈ [0, blogw ec] and k ∈ [0, w − 1]
}
.

FHE.Recryptlow(pkSHE, E1, E2, w, c): Take as input the public key of SHE, the set E1, E2 output
by FHE.Recryptlow.Setup and a ciphertext c = (c1, . . . , cn) to recrypt.

1. Given ciphertext c := (c1, . . . , cn), if ci = 1, choose bji := ElG.Enc(aj+si), otherwise choose
bji = ElG.Enc(aj) from the public key and compute bj :=

∏n
i=1 bji for all j ∈ [1, n+ 1].

21

2. Let bj = (yj , hj). Compute SHE.Enc((yw
`

j)k) and SHE.Enc(hj) for all j ∈ [1, n + 1], ` ∈
[0, blogw ec] and k ∈ [0, w − 1].

3. Compute Aj := SHE.Enc(hj) ·
∏blogw ec
`=0

(∑w−1
k=0 SHE.Enc(e`k) · SHE.Enc((yw

`

j)k)
)

for all

j ∈ [1, n+ 1].

4. Encrypt the publicly known constant λj under SHE, and define dj := SHE.Enc(λj) for all
j ∈ [1, n+ 1].

5. Output B := T (
∑n+1

j=1 djAj).

In the step 4 and 5,

Aj = SHE.Enc
(
hj ·

blogw ec∏
`=0

(

w−1∑
k=0

e`k · ye`2
`

j)
)

= SHE.Enc
(
hj · yej

)
= SHE.Enc

(n∏
i=1

(aj + si · ci)
)
,

since ye`w
`

=
∑w−1

k=0 e`k · (yw
`
)k for e` ∈ [0, w − 1] and

B = T
(n+1∑
j=1

SHE.Enc
(
λj

n∏
i=1

(aj + si · ci)
))

= SHE.Enc
(
T
(n+1∑
j=1

λj

n∏
i=1

(aj + si · ci)
))
.

Thus B = SHE.Enc(m) which is a refreshed ciphertext of m by the equation (3). We ob-
serve that B is not a completely refreshed ciphertext, since computing B involves evaluating
(2blogw ec+ 3) + d degree polynomials in ciphertexts.

In the original FHE.Recrypt algorithm in [10], the SHE needs to support evaluating poly-
nomials of degree 2blog ec+ 2 (≈ 4λ). To ensure this, one must increase the parameters of the
SHE scheme until it can handle them. We give the alternative approach to solve this problem.
The w-ary representation instead of binary representation reduces the parameter required to
enable the bootstrapping. The SHE only needs to support degree 2blogw ec+ 2 polynomial in
our variant which is smaller than 2blog ec+ 2. Our contribution is the reduction in the degree
of polynomial required to bootstrap. It prevents the parameter rise which causes inefficiency
overall scheme.

D Definitions and Lemmas

Definition 6. Let L = {Lj(x1, . . . , xn)} be a set of polynomials, all in the same n variables.
An arithmetic circuit C is an L-restricted depth-3 circuit over x := (x1, . . . , xn) if there exists
multi sets S1, . . . , St ⊂ L and constants λ0, λ1, . . . , λt such that

C(x) = λ0 +

t∑
i=1

λi ·
∏
Lj∈Si

Lj(x1, . . . , xn).

The degree of C with respect to L is d = maxi |Si|.

Lemma 3 ([10]). Let Q be a prime with Q > 2Θ2. Regarding the “complicated part” of
the decryption circuit, there is an univariate polynomial f(x) of degree ≤ 2Θ2 such that
f(
∑Θ

i=1 siz
′′
i) = bQ−n

∑Θ
i=1 siz

′′
i e mod Q.

22

Lemma 4 ([10]). Let T,Θ be positive integers, and f(x) a univariate polynomial over ZQ
(for Q prime, Q ≥ TΘ + 1). Then there is a multilinear symmetric polynomial Mf on TΘ
variables such that

f(
Θ∑
i=1

siz
′′
i) = Mf (s1, . . . , s1︸ ︷︷ ︸

z′′1

, 0, . . . , 0︸ ︷︷ ︸
T−z′′1

, . . . , sΘ, . . . , sτ︸ ︷︷ ︸
z′′Θ

, . . . , 0, . . . , 0︸ ︷︷ ︸
T−z′′Θ

), (4)

for all s = (s1, . . . , sΘ) ∈ {0, 1}Θ and z′′1 , . . . , z
′′
Θ ∈ [0, T], .

Lemma 5 ([10]). Let Q ≥ Θ + 1 be a prime, let A ⊂ ZQ have cardinality Θ + 1, let
x = (x1, . . . , xΘ) be variables, denote LA = {(a + xi : a ∈ A, 1 ≤ i ≤ Θ}. For every
multilinear symmetric polynomial M(x) over ZQ, there is a circuit C(x) such that:

• C is a LA-restricted depth-3 circuit over ZQ such that C(x) ≡M(x) mod Q.
• C has Θ + 1 product gates of LA-degree Θ, one gate for each value aj ∈ A, with the j-th

gate computing the value λj
∏
i(aj + xi) for some constant λj.

• A description of C can be computed efficiently given the values M(x) at all x = 1i0Θ−i

Sketch of Proof. Since M(x) is multilinear (degree 1 with respect to each xi) and sym-
metric, M(x) =

∑τ
i=0 `iei(x), where ei is i-th elementary symmetric polynomial. Consider

f(x) =
∏τ
i=1(x+ xi) = eτ (x) + eτ−1(x)x+ · · ·+ eo(x)xτ . Thusf(α0)

...
f(ατ)

 =

1 α0 · · · ατ0
...

. . .
...

1 ατ · · · αττ

eτ (x)

...
e0(x)

Thus M(x) can be written in the form,

M(x) =
[
`τ · · · `0

] eτ (x)
...

e0(x)

 =
[
`τ · · · `0

] 1 α0 · · · ατ0
...

. . .
...

1 ατ · · · αττ

−1 f(α0)

...
f(ατ)

 =
[
λ0 · · · λτ

] f(α0)
...

f(ατ)

 .
We can write M(x) =

∑τ
j=0 λjf(αj) =

∑τ
j=0 λj

∏τ
i=1(αj + xi). ut

