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Abstract

The focus of this work is hardness-preserving transformations of somewhat limited pseudo-
random functions families (PRFs) into ones with more versatile characteristics. Consider the
problem of domain extension of pseudorandom functions: given a PRF that takes as input el-
ements of some domain U , we would like to come up with a PRF over a larger domain. Can
we do it with little work and without significantly impacting the security of the system? One
approach is to first hash the larger domain into the smaller one and then apply the original
PRF. Such a reduction, however, is vulnerable to a “birthday attack”: after

√
|U| queries to the

resulting PRF, a collision (i.e., two distinct inputs having the same hash value) is very likely to
occur. As a consequence, the resulting PRF is insecure against an attacker making this number
of queries.

In this work we show how to go beyond the aforementioned birthday attack barrier by re-
placing the above simple hashing approach with a variant of cuckoo hashing, a hashing paradigm
that resolves collisions in a table by using two hash functions and two tables, cleverly assigning
each element to one of the two tables. We use this approach to obtain: (i) a domain extension
method that requires just two calls to the original PRF, can withstand as many queries as the
original domain size, and has a distinguishing probability that is exponentially small in the
amount of non-cryptographic work; and (ii) a security-preserving reduction from non-adaptive
to adaptive PRFs.

1 Introduction

The focus of this work is hardness-preserving transformations of somewhat limited pseudorandom
functions families (PRFs) into ones with more versatile characteristics. Examples of somewhat
limited such families include those with small domain or those that can withstand only non-
adaptive (also known as static) attacks, in which the attacker chooses its queries ahead of time,
before seeing any of the answers. In contrast, less limited families might have large domain or be
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secure against adaptive (dynamic) attacks, in which the attacker’s queries might be chosen as a
function of all previous answers.

A common paradigm, first suggested by Levin [29, §5.4], for increasing the usability and security
of a PRF, is to “hash” the inputs into a smaller domain before applying the PRF. This approach was
originally suggested in order to achieve “PRF domain extension” (using a short, e.g., fixed, input
length PRF to get a variable-length PRF); more recently, it was used to transform non-adaptive
PRFs into adaptive ones [7]. Such reductions, however, are vulnerable to the following “birthday
attack”: after

√
|U| queries to the resulting PRF, where U is the hash function range, a collision

(i.e., two distinct inputs having the same hash value) is very likely to occur. Such collisions are an
obstacle to the indistinguishability of the PRF, since in a random function we either do not expect
to see a collision at all (if the range is large enough) or expect to see fewer collisions. Hence, the
resulting PRF is insecure against an attacker making this number of queries.

In this work we study variants of the above hashing approach to go beyond the birthday attack
barrier. In a high-level, our approach, which can be traced back to Siegel [51], is based on applying
a dictionary data structure1, in which the locations accessed in the search of an element are de-
termined by its value and some fixed random string (i.e., the same string is used for all elements),
and not on values seen during the search. Now to do the conversion to domain extension we as-
sign random values to all locations (by the underlying PRF). We think of the large domain as the
universe from which the elements of the dictionary are taken. The resulting value of the extended
function at point x will be some (simple) function of the values assigned to the locations accessed
during the search for x. For instance, one can view Levin’s construction above as an instance of
this framework, where the fixed random string describes a hash function from large domain to a
smaller-size set U , and the PRF, whose domain is U , assigns random values for |U| locations. The
distinguishing probability of the resulting scheme is the distinguishing probability of the underlying
PRF plus the probability of failure of the dictionary (which in Levin’s construction is determined
by the “birthday paradox”). The cost of the extension is related to the worst case search time of
the dictionary (which in Levin’s construction is a single invocation of the hash function).

We focus on constructions based on cuckoo hashing : a hashing paradigm typically used for
resolving hash collisions in a table by using two hash functions and two tables, assigning each
element to one of the two tables, and enabling lookup using only two queries (see Section 1.2). We
use this paradigm to present a new PRF domain extension method that requires just two calls to the
original PRF, can withstand as many queries as the original domain size, and has a distinguishing
probability that is exponentially small in the amount of non-cryptographic work. We also obtain
a security-preserving reduction from non-adaptive to adaptive PRFs, an improvement upon the
recent result of Berman and Haitner [7].

Before stating our results, we discuss in greater detail pseudorandom functions and cuckoo
hashing.

1.1 Pseudorandom Functions

Pseudorandom function families (PRFs), introduced by Goldreich, Goldwasser, and Micali [21],
are function families that cannot be distinguished from a family of truly random functions by an
efficient distinguisher given an oracle access to a random member of the family. PRFs have an

1In this context a dictionary is a data structure used for maintaining a set of elements while supporting membership
queries.
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extremely important role in cryptography, allowing parties who share a common secret key to send
secure messages, identify themselves, and authenticate messages [20, 30]. They have many other
applications as well, and can be used in just about any setting that requires a random function
provided as a black-box [5, 10, 13, 19, 31, 41]. Different PRF constructions, whose security is based
on different hardness assumptions, are known in the literature. The construction most relevant
to this work is the one of [21], hereafter the GGM construction, which uses a length-doubling
pseudorandom generator (and thus can be based on the existence of one-way functions [23]).

We use the following definitions: an efficiently computable function family ensemble F =
{Fn}n∈N is a (q, t, ε)-PRF, if (for large enough n) a q(n)-query oracle-aided algorithm (distin-
guisher) of running time t(n), getting access to a random function from the family, distinguishes
between Fn and the family of all functions (with the same input/output domains), with proba-
bility at most ε(n). F is a non-adaptive (q, t, ε)-PRF if it is only required to be secure against
non-adaptive distinguishers (i.e., ones that prepare all their queries in advance). Finally, F is a
t-PRF if q is only limited by t and ε = 1/t.

We also make use of the information-theoretic analog of a t-PRF, known as a t-wise independent
family, that is formally defined in Definition 2.5.

1.2 Cuckoo Hashing and Many-wise Independent Hash Function

Cuckoo hashing, introduced by Pagh and Rodler [43], is an efficient technique for constructing
dynamic dictionaries. Such data structures are used to maintain a set of elements, while supporting
membership queries as well as insertions and deletions of elements. Cuckoo hashing maintains such
a dynamic dictionary by keeping two tables of size only slightly larger than the number of elements
to be inserted, and two hash functions mapping the elements into cells of those tables. It then
applies a clever algorithm for placing at most a single element in each cell. Each membership query
requires just two memory access (in the worst case) and they are determined by the hash functions.
Many variants of cuckoo hashing have been proposed since its introduction, and extensive literature
has been devoted to its analysis (cf., [17, 14, 28, 18, 2]).

Pagh and Pagh [42] used ideas in the spirit of cuckoo hashing to construct efficient many-wise
independent hash functions. Let H, G and F be function families from D to S, from D to R
and from S to R respectively, where R is a group with operation ⊕. Define the function family
PP(H,G,F) from D to R as

PP(H,G,F) = (F ◦ H)⊕ (F ◦ H)⊕ G, (1)

where F1 ◦ F2, for function families F1 and F2, is the function family whose members are the
elements of F1 × F2 and (f1, f2)(x) is defined by f1(f2(x)) (F1 ⊕ F2 is analogously defined).
In other words, given f1, f2 ∈ F , h1, h2 ∈ H and g ∈ G, design a function PPf1,f2,h1,h2,g(x) =
f1(h1(x)) ⊕ f2(h2(x)) ⊕ g(x). Pagh and Pagh [42] showed that when the families H and G are
of “high enough” independence, that is, roughly (c · log |S|)-wise independent, then the family
PP(H,G,Π) is O(|S|−c)-indistinguishable from random by a |S|-query, non-adaptive distinguisher,
where Π is the set of all functions from S to R. Note that the security of the resulting family goes
well beyond the birthday attack barrier: it is indistinguishable from random by an attacker making
|S| �

√
|S| queries.

Aumüller et al. [4] (building on the work of Dietzfelbinger and Woelfel [15]) strengthen the
result of [42] by using more sophisticated hash functions H and G (rather than the O(log |S|)-wise
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independent that [42] used). Specifically, for a given s ≥ 0, Aumüller et al. [4] constructed a

function family ADWs(H,G,Π) that is O(|S|−(s+1))-indistinguishable from random by a |S|-query,
non-adaptive distinguisher, where Π is the set of all functions from S to R.2 The idea to use
more sophisticated hash functions, in the sense that they require less combinatorial work, already
appeared in previous works, e.g., the work of Arbitman et al. [2, §5.4].

In Section 3 we take the above results a step further, showing that they hold also for adaptive
distinguishers.3 Our approach for this transformation has many predecessors. For instance, the
work of Naor and Reingold [38], and of Jetchev et al. [26]. Furthermore, it turns out that by using
the above function family with a pseudorandom function F , namely the family PP(H,G,F) (or
ADWs(H,G,F)), we get a pseudorandom function that is superior to F (the actual properties of
PP(H,G,F) are determined by the properties of F and the choice of H and G). This understanding
is the main conceptual contribution of this paper, and the basis for the results presented below.

We note that the works of Pagh and Pagh [42], Dietzfelbinger and Woelfel [15], and Aumüller
et al. [4] have gone almost unnoticed in the cryptography literature so far.4 In this work we apply,
in a black-box manner, the analysis of [42] and of [4] in cryptographic settings.

1.3 Our Results

We use a construction inspired by cuckoo hashing to improve upon two PRF reductions: PRF
domain extension and non-adaptive to adaptive PRF.

1.3.1 PRF Domain Extension

PRF domain extensions use PRFs with “small” domain size to construct PRFs with larger (or
even unlimited) domain size. These extensions reduce the cost of a single invocation of the PRF
and increase its usability. Domain extension methods are typically measured by the security of the
resulting PRFs, and by the number of calls the resulting PRF makes to the underlying PRF.

Among the known domain extension techniques are the MAC-based constructions, such as CBC-
MAC and PMAC (a survey on their security can be found in [37]). The number of calls made by
these constructions to the underlying (small domain) PRF can be as small as two. Assuming that
the underlying PRF is a random function over {0, 1}n, then the resulting family is (q,∞, O(q2/2n))-
PRF (i.e., the∞ in the second parameter means that the distinguisher’s running time is unlimited).
A second technique is the Feistel or Benes̆ transformations (e.g., [1, 44, 45], a survey of which can
be found in [46]). The Benes̆ based construction makes 8 calls to the underlying PRF and is
(q,∞, O(q/2n))-PRF, whereas a 5-round Feistel based construction (which makes 5 calls to the
underlying PRF) is (q,∞, O(q/2n))-PRF.

Our cuckoo hashing based function family (see below) is (q,∞, O(q/2n))-PRF and makes only
two calls to the underlying PRF. Moreover, our construction can extend the domain size to any

2The ADW’s function family is in fact more complicated than the above simplified description. See Section 6 for
the formal definition.

3 Note that in some cases an adaptive adversary is a more powerful distinguisher than a non-adaptive one. For
example, when a trying to distinguish between a truly random function and a random involution (permutations where
the cycle length is at most 2). There exists an adaptive distinguisher that will succeed with very high probability by
asking two queries while any non-adaptive distinguisher will fail with very high probability (see [27, 40]).

4Pagh and Pagh [42] did notice this connection, and in particular mentioned the connection of their work to that
of Bellare et al. [6].
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poly(n) length, unlike the aforementioned constructions, which only double the domain size.5

Theorem 1.1 (informal). Let k ≤ n, let H and G be efficient k-wise independent function families
mapping strings of length `(n) to strings of length n, and let Π be the family of all functions from
{0, 1}n to {0, 1}n. Then the family PP(H,G,Π), mapping strings of length `(n) to strings of length
n, is a (q,∞, q/2Ω(k))-PRF, for q ≤ 2n−2.

For k = Θ(n), Theorem 1.1 yields a domain extension that is (q,∞, q/2n)-PRF, and makes
only two calls to the underlying PRF. Replacing in the above construction the function family
PP(H,G,Π) with the family ADWs(H,G,Π) yields a more versatile domain extension that offers
a tradeoff between the number of calls to the PRF and the independence required for the hash
functions. For details, see Section 6.2.

PRG to PRF reductions. Theorem 1.1 can also be used to get a hardness-preserving construc-
tion of PRFs from pseudorandom generators (PRG) in settings where there is a non-trivial bound
on the number of queries to the PRF. Jain et al. [25], who were the first to propose this goal, noted
that one can realize it using a domain extension constructions. Thus, we apply Theorem 1.1 to get
constructions of PRFs from PRGs which improves some of the parameters of Jain et al. [25], but
require longer keys. See Appendix B for details.

1.3.2 From Non-Adaptive to Adaptive PRF

Adaptive PRFs can be constructed from non-adaptive ones using general techniques such as using
the PRG-based construction of Goldreich et al. [21] or the synthesizer based construction of Naor
and Reingold [39]. These constructions, however, make (roughly) n calls to the underlying non-
adaptive PRF (where n is the input length). Recently, Berman and Haitner [7] showed how to
perform this security uplift at a much lower cost: the adaptive PRF makes only a single call
to the non-adaptive PRF. Their construction, however, incurs a significant degradation in the
security: assuming the underlying function is a non-adaptive t-PRF, then the resulting function is
an (adaptive) O(t1/3)-PRF. The reason for this degradation is the birthday attack we mentioned
earlier.

We present a reduction from non-adaptive to adaptive PRFs that preserves the security of the
non-adaptive PRF. The resulting adaptive PRF makes only two calls to the underlying non-adaptive
one.

Theorem 1.2 (informal). Let t be a polynomial-time computable integer function, let H =
{Hn : {0, 1}n 7→ [4t(n)]{0,1}n}n∈N (where [4t(n)]{0,1}n are the first 4t(n) elements of {0, 1}n) and
G = {Gn : {0, 1}n 7→ {0, 1}n}n∈N be efficient O(log t(n))-wise independent function families, and let
F be a length-preserving non-adaptive t-PRF. Then PP(H,G,F) is a length-preserving (t/4)-PRF.

Also in this case, replacing the function family PP(H,G,F) with the family ADWs(H,G,F),
yields a more versatile non-adaptive to adaptive transformation that offers a trade-off between the
number of calls to the PRF and the requisite independence. See Section 6.3 for details.

5Of course, one can use these constructions to extend the domain to any poly(n) length by a recursive construction.
This, however, will increase the number of calls to the underlying PRF by a polynomial factor.
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1.4 More Related Work

Bellare et al. [6] introduced a paradigm for using PRFs in the symmetric-key settings that, in
retrospect, is similar to cuckoo hashing. Assume that two parties, who share a secret function f
would like to use it for (shared-key) encryption. The ‘textbook’ (stateless) solution calls for the
sender to choose r at random and send (r, f(r) ⊕M) to the receiver, where M is the message to
be encrypted. This proposal breaks down if the sender chooses the same r twice (in two different
sessions with different messages). Thus, the scheme is subject to the birthday attack and the length
parameters should be chosen accordingly. This requires the underlying function to have a large
domain. Instead, [6] suggested choosing t > 1 values at random, and sending (r1, . . . , rt, f(r1) ⊕
· · · ⊕ f(rt) ⊕M). They were able to show much better security than the single r case. They also
showed a similar result for message authentication. Our domain extension results (see Section 4)
improve upon the results of [6].

The problem of transforming a scheme that is only resilient to non-adaptive attack into one
that is resilient to adaptive attacks has received quite a lot of attention in the context of pseudo-
random permutations (or block ciphers). Maurer and Pietrzak [33] showed that, given a family of
permutations that are information-theoretic secure against non-adaptive attacks, if two members
of this family are independently composed, then the resulting permutation is also secure against
adaptive attacks (see [33] for the exact formulation). Pietrzak [47] showed, however, that this is not
necessarily the case for permutations that are random-looking under a computational assumption
(see also [36, 48]), reminding us that translating information-theoretic results to the computational
realm is a tricky business.

Paper Organization

Basic notations and formal definitions are given in Section 2. In Section 3 we formally define the
hashing paradigm of Pagh and Pagh [42] and show how to extend their result to hold against
adaptive adversaries. Our domain extension reduction based on [42] is described in Section 4, and
the improved non-adaptive to adaptive reduction, also based on [42], is described in Section 5. In
Section 6 we present the more advanced (and more complex) hashing paradigm of Aumüller et al.
[4], and use it to obtain a more versatile version of the above reductions. Some possible directions
for future research are discussed in Section 7.

2 Preliminaries

2.1 Notations

All logarithms considered here are in base two. We use calligraphic letters to denote sets, uppercase
for random variables, and lowercase for values. Let ‘||’ denote string concatenation. For an integer t,
let [t] = {1, . . . , t}. For a set S and integer t, let S≤t = {s ∈ S∗ : |s| ≤ t ∧ s[i] 6= s[j] ∀i 6= j ∈ [|s|]},
and let [t]S be the first t elements, in increasing lexicographic order, of S (equal to S in case |S| < t).
For sets U and V, let ΠU 7→V stands for the set of all functions from U to V, and for integers n and
`, let Πn,` = Π{0,1}n 7→{0,1}` .

Let poly denote the set all polynomials, and let pptm be abbreviation for probabilistic (strictly)
polynomial-time Turing machine. For s ∈ N and t, q : N 7→ N, we say that D is a t-time q-query
s-oracle-aided algorithm if, when invoked on input of length n, D runs in time t(n) and makes at
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most q(n) queries to each of its s oracles. Given a random variable X, we write X(x) to denote
Pr[X = x], and write x← X to indicate that x is selected according to X. Similarly, given a finite
set S, we let s ← S denote that s is selected according to the uniform distribution on S. The
statistical distance of two distributions P and Q over a finite set U , denoted as SD(P,Q), is defined
as maxS⊆U |P (S)−Q(S)| = 1

2

∑
u∈U |P (u)−Q(u)|.

2.2 Pseudorandom Generators

Definition 2.1 (Pseudorandom Generators). A polynomial-time function G : {0, 1}n 7→ {0, 1}`(n)

is (t, ε)-PRG, if `(n) > n for every n ∈ N (G stretches the input), and∣∣∣Prx←{0,1}n [D(G(x)) = 1]− Pry←{0,1}`(n) [D(y) = 1]
∣∣∣ ≤ ε(n)

for every algorithm (distinguisher) D of running time t(n) and large enough n. A (t, 1/t))-PRG is
called a t-PRG. If `(n) = 2n, we say that G is length-doubling.

2.3 Function Families

2.3.1 Operating on Function Families

We consider two natural operations on function families.

Definition 2.2 (composition of function families). Let F1 : D1 7→ R1 and F2 : D2 7→ R2 be two
function families with R1 ⊆ D2. The composition of F1 with F2, denoted F2 ◦ F1, is the function
family {(f2, f1) ∈ F2 ×F1}, where (f2, f1)(x) := f2(f1(x)).

Definition 2.3 (group operation of function families). Let F1 : D 7→ R1 and F2 : D 7→ R2 be two
function families with R1,R2 ⊆ R, where R is a group with operation ⊕. The group operation of
F1 with F2, denoted F2

⊕
F1, is the function family {(f2, f1) ∈ F2 × F1}, where (f2, f1)(x) :=

f2(x)⊕ f1(x).

In all of our applications, the group R from the above definition will simply be {0, 1}n for some
n ∈ N, with XOR as the group operation.

2.3.2 Function Family Ensembles

A function family ensemble is an infinite set of function families, whose elements (families) are
typically indexed by the set of integers. Let F = {Fn : Dn 7→ Rn}n∈N stands for an ensemble of
function families, where each f ∈ Fn has domain Dn and its range is a subset of Rn. Such ensemble
is length preserving, if Dn = Rn = {0, 1}n for every n. We naturally extend Definitions 2.2 and 2.3
to function family ensembles.

For a function family ensemble to be useful it should have an efficient sampling and evaluation
algorithms.

Definition 2.4 (efficient function family ensembles). A function family ensemble F = {Fn : Dn 7→
Rn}n∈N is efficient, if the following hold:

Efficient sampling. F is samplable in polynomial-time: there exists a pptm that given 1n, outputs
(the description of) a uniform element in Fn.

Efficient evaluation. There exists a deterministic algorithm that given x ∈ Dn and (a description
of) f ∈ Fn, runs in time poly(n, |x|) and outputs f(x).
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2.3.3 Many-Wise Independent Hashing

Definition 2.5 (k-wise independent families). A function family H = {h : D 7→ R} is k-wise
independent (with respect to D and R), if

Prh←H[h(x1) = y1 ∧ h(x2) = y2 ∧ . . . ∧ h(xk) = yk] =
1

|R|k
,

for every distinct x1, x2, . . . , xk ∈ D and every y1, y2, . . . , yk ∈ R.

For every `, k ∈ poly, the existence of efficient k(n)-wise independent family ensembles mapping
strings of length `(n) to strings of length n is well known ([11, 52]). A simple and well known
example of k-wise independent functions is the collection of all polynomials of degree (k − 1) over
a finite field. This construction has small size, and each evaluation of a function at a given point
requires k operations in the field.

Fact 2.6. For `, n, k ∈ N, there exists an k-wise independent function family H = {h : {0, 1}` 7→
{0, 1}n}, such that sampling a random element in H requires k ·max{`, n} random bits, and eval-
uating a function from H is done in time poly(`, n, k).

We mention that a k-wise independent families (as defined in Definition 2.5) look random for
k-query distinguishers, both non-adaptive and adaptive ones. On the other hand, almost k-wise
independent families6 are only granted to be resistant against non-adaptive distinguishers.7 Yet,
the result presented in Section 3 yields that, in some cases, the adaptive security of the latter
families follows from their non-adaptive security.

2.4 Pseudorandom Functions

Definition 2.7 (Pseudorandom Functions). An efficient function family ensemble F =
{Fn : {0, 1}m(n) 7→ {0, 1}`(n)}n∈N is an (adaptive) (q, t, ε)-PRF, if for every t-time q-query oracle-
aided algorithm (distinguisher) D, it holds that∣∣∣Prf←Fn [Df (1n) = 1]− Prπ←Πm(n),`(n)

[Dπ(1n) = 1]
∣∣∣ ≤ ε(n),

for large enough n. If q(n) is only bounded by t(n) for every n ∈ N, then F is called (t, ε)-PRF. A
(t, 1/t)-PRF is called a t-PRF.

If D is limited to be non-adaptive (i.e., it has to write all his oracle calls before making the first
call), then F is called non-adaptive (q, t, ε)-PRF (and we apply the above notational conventions also
for this case).

Some applications require the pseudorandom functions to be secure against distinguisher with
access to many oracles (and not just a single oracle as in Definition 2.7).

6Formally, a function family H = {h : D 7→ R} is (ε, k)-wise independent if for any x1, . . . , xk ∈ D and for any

y1, . . . , yk ∈ R it holds that
∣∣∣Prh←H[h(x1) = y1 ∧ · · · ∧ h(xk) = yk]− |R|−k

∣∣∣ ≤ ε. We call a family of functions an

almost k-wise independent family, if it is (ε, k)-wise independent for some small ε > 0.
7See Footnote 3 and references therein.

8



Definition 2.8 (pseudorandom functions secure against many-oracle distinguishers). An efficient
function family ensemble F = {Fn : {0, 1}m(n) 7→ {0, 1}`(n)}n∈N is an s-oracle (q, t, ε)-PRF, if for
every t-time q-query s-oracle-aided algorithm (distinguisher) D, it holds that∣∣∣Prf←Fsn

[Df (1n) = 1]− Prπ←Πs
m(n),`(n)

[Dπ(1n) = 1]
∣∣∣ ≤ ε(n),

for large enough n.

The following lemma shows that a standard (single oracle) PRF is also a many-oracle one, with
only slight worse parameters.

Lemma 2.9 (cf., [9], Theorem 1). Let F = {Fn : {0, 1}m(n) 7→ {0, 1}`(n)}n∈N be a function family
ensemble. Then for every t-time q-query s-oracle adaptive [resp., non-adaptive] distinguisher D,
there exists a (t+ s · q · eF )-time q-query single-oracle adaptive [resp., non-adaptive] distinguisher
D̂, where eF stands for the evaluation time of F ,8 with∣∣∣Prf←Fn [D̂f (1n) = 1]− Prπ←Πm(n),`(n)

[D̂π(1n) = 1]
∣∣∣

≥ 1

s
·
∣∣∣Prf←Fsn

[Df (1n) = 1]− Prπ←Πs
m(n),`(n)

[Dπ(1n) = 1]
∣∣∣ ,

for every n ∈ N.

Lemma 2.9 is proven using a standard hybrid argument. For a complete proof see [9].9

3 From Non-Adaptive to Adaptive Hashing

In this section we show that non-adaptively secure function families with a certain combinatorial
property are also adaptively secure, yielding that the function families of Pagh and Pagh [42]
and Aumüller et al. [4] are adaptively secure. In the next sections we take advantage of the
latter implication to derive our hardness-preserving PRF reductions. We note that the above
approach is not useful for (arbitrary) non-adaptive PRFs, since a PRF might no posses the required
combinatorial property (indeed, not every non-adaptive PRF is an adaptive one).

To define the aforementioned combinatorial property, we use the notion of left-monotone sets.

Definition 3.1 (left-monotone sets). Let S and T be sets. A set M⊆ S∗ × T is left-monotone, if
for every (s1, t) ∈M and every s2 ∈ S∗ that has s1 as a prefix, it holds that (s2, t) ∈M.

Namely, a product set is left monotone, if it is monotone with respect to its left-hand-side part,
where all sequences having a prefix in a monotone set, are also in the set. The main result of this
section is stated as follows.

Lemma 3.2. Let U and V be non-empty sets, let F = F(U ,V) = {fu,v : D 7→ R}(u,v)∈U×V be a
function family and let BAD ⊆ D∗ × U be left monotone. Let t ∈ N, and assume that for every
q = (q1, . . . , q|q|) ∈ D≤t:10

8That is, D(1n) runs in time t(n) + s · q(n) · eF (n). Moreover, we implicitly assume that the evaluation time of F
is greater than the time needed to sample `(n) random bits.

9[9] only states, and proves, the adaptive case, but the very same lines also yields the non-adaptive case.
10Recall that for a set S and an integer t, S≤t denotes the set {s ∈ S∗ : |s| ≤ t ∧ s[i] 6= s[j] ∀i 6= j ∈ [|s|]}.
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1.
(
f(q1), . . . , f(q|q|)

)
f←{fu,v : v∈V} is uniform over R|q|, for every u ∈ U with (q, u) 6∈ BAD, and

2. Pru←U [(q, u) ∈ BAD] ≤ ε.

Then ∣∣∣∣Pru←U
v←V

[Dfu,v = 1]− Prπ←Π[Dπ = 1]

∣∣∣∣ ≤ ε,
for every t-query oracle-aided adaptive algorithm D, letting Π be the set of all functions from D to
R.

Note that the above properties of the family F mean that F is non-adaptively secure. The
proof that F is also adaptively secure, which critically uses the above structure of the set BAD,
can be found in Appendix A.11

3.1 The Pagh and Pagh [42] Function Family

We show that Lemma 3.2 can be applied to the function family of Pagh and Pagh [42].

Definition 3.3 (The Pagh and Pagh [42] function family). Let H be a function family from D to
U , let G be a function family from D to R and let F be a function family from S to R, with U ⊆ S
and R being a group with respect to the operation ⊕. The function family PP(H,G,F) from D to
R, is defined by

PP(H,G,F) := (F ◦ H)⊕ (F ◦ H)⊕ G.

For h1, h2 ∈ H, let PPh1,h2(G,F) := (F ◦ h1)⊕ (F ◦ h2)⊕ G.

Graphically, this function family is given in Figure 1. Pagh and Pagh [42] showed that when
instantiated with the proper function families, the above function family has the following proper-
ties:

Theorem 3.4 ([42]). Let t ∈ N, let H = {h : D 7→ U} and G = {g : D 7→ R} be function families
with R being a group with respect to the operation ⊕, and let Π = ΠS7→R.

If U ⊆ S and |U| ≥ 4t, then for every k ∈ N there exists a left-monotone set BAD ⊆ D≤t ×H2

such that the following holds for every q = (q1, . . . , q|q|) ∈ D≤t:

1. Assuming that G is k-wise independent over the elements of q, then(
f(q1), . . . , f(q|q|)

)
f←PPh1,h2

(G,Π)
is uniform over R|q| for every u ∈ U such that (q, u) 6∈ BAD.

2. Assuming that H is k-wise independent over the elements of q, then Pru←H2 [(q, u) ∈ BAD] ≤
t/2Ω(k).12

11Lemma 3.2 can be derived as a special case of a result given in [26, Theorem 12] (closing a gap in the proof
appearing in [32]). Yet, for the sake of completeness, we include an independent proof of this lemma here.

12The function family we consider above (i.e., PP) is slightly different than the one given in [42]. Their construction
maps element x ∈ D to F1[h1(x)] ⊕ F2[h2(x)] ⊕ g(x), where F1 and F2 are uniformly chosen vectors from Rt,
h1, h2 : D 7→ [t] are uniformly chosen from a function family H and g : D 7→ R is chosen uniformly from a function
family G. Yet, the correctness of Theorem 3.4 follows in a straightforward manner from [42] original proof (specifically
from Lemma 3.3 and Lemma 3.4).
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𝑥 ∈ 𝒟 Input in 𝒟 

𝑓1 

1 2 

𝑔 

1, 2 ∈ ℋ 
𝑔 ∈ 𝒢 

𝑓1, 𝑓2 ∈ ℱ 

𝑓2 

𝑦 ∈ ℛ Output in ℛ 

Element in ℛ 

Element in 𝒮 

 

Figure 1: The function family PP(H,G,F). H hashes down a domain D to a domain S. Then F
maps S to R. We do this twice and xor it with G, that hashes the domain D directly to R.

Pagh and Pagh [42] concluded that for (the many) applications where the analysis is applied
with respect to a static set it is safe to use this family instead. However, as we can see, the function
family PP(H,G,Π) is not only close to being uniform in the eyes of a non-adaptive distinguisher,
but also allows us to apply Lemma 3.2 to deduce its security in the eyes of adaptive distinguishers.
By plugging in Theorem 3.4 into the general framework lemma (Lemma 3.2), we get the following
result:

Lemma 3.5. Let t ∈ N, let H, G and Π be as in Theorem 3.4, and let D be an adaptive, t-query
oracle-aided algorithm. Assuming that H and G are k-wise independent, then∣∣∣Prf←PP(H,G,Π)[D

f = 1]− Prπ←Π[Dπ = 1]
∣∣∣ ≤ t/2Ω(k).

Proof. Let U = H×H and V = Π×Π×G. For (h1, h2) ∈ U and (π1, π2, g) ∈ V, let F(h1,h2),(π1,π2,g) =
π1 ◦ h1 ⊕ π2 ◦ h2 ⊕ g, and let F = {Fu,v : D 7→ R}(u,v)∈U×V . Finally, let BAD be the set BAD of
Theorem 3.4. We prove the lemma showing that the above sets meet the requirements stated in
Lemma 3.2.

Item 1 of Theorem 3.4 and the assumed independence of G andH, yield that the first requirement
of Lemma 3.2 is satisfied. Item 2 of Theorem 3.4 yields that the second requirement of Lemma 3.2
is satisfied for ε = t/2Ω(k). Hence, the proof of the lemma follows by Lemma 3.2. �

Remark 3.6. For some of our applications, see Sections 4 to 6, we need to apply Lemma 3.5
with efficient k-wise independent function family ensembles mapping strings of length n to the set
[t(n)]{0,1}n, where t is an efficiently computable function. It is easy to see (cf., [7]) that such
ensembles exist for any efficiently computable t that is a power of two. By considering t′(n) =
2blog(t(n))c, we use these ensembles for our applications, while only causing factor of two loss in the
resulting security.
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We use the above function family of Pagh and Pagh [42] to extend the domain of pseudorandom
functions (see Section 4), and to transform a non-adaptive pseudorandom function into an adaptive
one (see Section 5). In Section 6 we instantiate the above framework with the more advanced
function family of Aumüller et al. [4], to get more versatile variants of the above applications.

4 PRF Domain Extension

In this section we use the function family PP of Pagh and Pagh [42] (see Section 3) to extend a
domain of a given PRF. We start with instantiation of PP in a settings of strings in {0, 1}∗.

Corollary 4.1. Let k, d, s and r be integers, let H = {h : {0, 1}d 7→ {0, 1}s} and G = {g : {0, 1}d 7→
{0, 1}r} be function families. Assume that H and G are k-wise independent function families, and
let PP be as in Definition 3.3. Then for any q-query adaptive distinguisher D, it holds that∣∣∣Prf←PP(H,G,Πs,r)[D

f = 1]− Prπ←Πd,r [D
π = 1]

∣∣∣ ≤ q/2Ω(k),

for any q ≤ 2s−2.

Proof. The proof follows Lemma 3.5. Set t = q, D = {0, 1}d, U = S = {0, 1}s and R = {0, 1}r.
Note that |U| = 2s ≥ 4q = 4t. Hence, the proof follows a simple implication of Lemma 3.5. �

The above corollary shows that PP(H,G,Π), where Π is the set of all functions with domain
{0, 1}s and range {0, 1}r, is statistically close to the set of all functions with domain {0, 1}d and
range {0, 1}r, where s can be smaller than d. Our next step is, given a PRF F , to show that
PP(H,G,F) is computationally close to PP(H,G,Π). Recall that if H, G and F are ensembles
of function families indexed by an integer n, then PP(H,G,F) is also an ensemble of function
families, and we denoted its n’th function family as PP(Hn,Gn,Fn).

Lemma 4.2. Let H = {Hn : {0, 1}d(n) 7→ {0, 1}s(n)}n∈N, G = {Gn : {0, 1}d(n) 7→ {0, 1}r(n)}n∈N and
F = {Fn : {0, 1}s(n) 7→ {0, 1}r(n)}n∈N be function families. Then, for every t-time q-query oracle-
aided distinguisher D, there exists a (t+ 2q · (eH + eG + eF ))-time q-query distinguisher D̂, where
eH, eG , eF : N 7→ N are the evaluation and sampling times of H, G and F respectively,13 with∣∣Prf←Fn [D̂f (1n) = 1]− Prπ←Πs(n),r(n)

[D̂π(1n) = 1]
∣∣

≥ 1

2
·
∣∣Prf←PP(Hn,Gn,Fn)[D

f (1n) = 1]− Prf←PP(Hn,Gn,Πs(n),r(n))[D
f (1n) = 1]

∣∣,
for every n ∈ N.

Proof. Let D̃ be the following two-oracle distinguisher:

Algorithm 4.3 (D̃).

Input: 1n.

Oracle: functions φ1, φ2 from Dn to Rn.

13That is, e.g., eH(n) is an upper bound for the time it takes to sample h ← Hn, as well as the time it takes to
compute h(x) for every h ∈ Hn and x ∈ {0, 1}d(n).
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1. Set h1, h2 ← Hn, g ← Gn.

2. Set f = (φ1 ◦ h1)⊕ (φ2 ◦ h2)⊕ g.

3. Emulate Df (1n).

Note that D̃(1n) makes q(n) queries to φ1 and φ2, and it can be implemented to run in time
t(n) + q(n) · (eH(n) + eG(n)). Observe that in case φ1 and φ2 are uniformly drawn from Fn, then
the emulation of Df (1n) done in D̃φ1,φ2(1n) is identical to a random execution of Df (1n) with
f ← PP(Hn,Gn,Fn). Similarly, in case φ1 and φ2 are uniformly drawn from Πs(n),r(n), then the

emulation is identical to a random execution of Df (1n) with f ← PP(Hn,Gn,Πs(n),r(n)). Thus,∣∣Pr(f1,f2)←Fn×Fn [D̃f1,f2(1n) = 1]− Pr(π1,π2)←Πs(n),r(n)×Πs(n),r(n)
[D̃π1,π2(1n) = 1]

∣∣ (2)

=
∣∣Prf←PP(Hn,Gn,Fn)[D

f (1n) = 1]− Prf←PP(Hn,Gn,Πs(n),r(n))[D
f (1n) = 1]

∣∣.
Hence, Lemma 2.9 yields that there exists a single-oracle distinguisher D̂ that when invoked on
input of length n makes q(n) queries to its oracle and runs in time t(n) + q(n) · (eH(n) + eG(n)) +
2q(n) · eF (n) ≤ t(n) + 2q(n) · (eH(n) + eG(n) + eF (n)), such that∣∣Prf←Fn [D̂f (1n) = 1]− Prπ←Πs(n),r(n)

[D̂π(1n) = 1]
∣∣

≥ 1

2
·
∣∣Prf←PP(Hn,Gn,Fn)[D

f (1n) = 1]− Prf←PP(Hn,Gn,Πs(n),r(n))[D
f (1n) = 1]

∣∣.
�

Assuming that F = {Fn : {0, 1}s(n) 7→ {0, 1}r(n)}n∈N is (q, t, ε)-PRF, Lemma 4.2 yields that for
every (t+ 2q(eH + eG + eF ))-time distinguisher D, it holds that∣∣Prf←PP(Hn,Gn,Fn)[D

f (1n) = 1]− Prf←PP(Hn,Gn,Πs(n),r(n))[D
f (1n) = 1]

∣∣ ≤ 2ε(n),

for large enough n. Hence, assumingH and G are k-wise independent function families, Corollary 4.1
and the triangle inequality yield that∣∣∣Prf←PP(Hn,Gn,Fn)[D

f (1n) = 1]− Prπ←Πd(n),r(n)
[Dπ(1n) = 1]

∣∣∣ ≤ 2ε(n) + q(n)/2Ω(k(n))

for large enough n. We get the following domain extension using the PP construction.

Theorem 4.4 (Restating Theorem 1.1). Let H = {Hn : {0, 1}d(n) 7→ {0, 1}s(n)}n∈N and G =
{Gn : {0, 1}d(n) 7→ {0, 1}r(n)}n∈N be efficient k(n)-wise independent function family ensembles, and
let F = {Fn : {0, 1}s(n) 7→ {0, 1}r(n)}n∈N be a (q, t, ε)-PRF. Then,

PP(H,G,F) = {PP(Hn,Gn,Fn) : {0, 1}d(n) 7→ {0, 1}r(n)}n∈N

is a (q, t − p · q, 2ε + q/2Ω(k))-PRF, where p is a polynomial determined by the evaluation and
sampling time of H, G and F and q(n) ≤ 2s(n)−2 for every n ∈ N.

Note that in order for Theorem 4.4 to be useful, we have to set k(n) = Ω(log q(n)). In Section 6
we show how to achieve domain extension using functions with less independence, but with the
cost of additional calls to the PRF.
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5 From Non-Adaptive to Adaptive PRF

In this section we use the function family PP of Pagh and Pagh [42] (see Section 3), to transform
an non-adaptive PRF into an adaptive one in a security preserving manner. As in Section 4, we
start with instantiating PP in a convenient setting. To ease notations, we assume that the given
non-adaptive PRF is length preserving.

Corollary 5.1. Let k, q, d and n be integers with q ≤ 2n−2, let H = {h : {0, 1}d 7→ [4q]{0,1}n} and

let G = {g : {0, 1}d 7→ {0, 1}n}. Assume that H and G are k-wise independent function families,
then for any q-query adaptive distinguisher D, it holds that∣∣∣Prf←PP(H,G,Πn)[D

f = 1]− Prπ←Πd,n [Dπ = 1]
∣∣∣ ≤ q/2Ω(k).

Proof. The proof follows from Lemma 3.5. Set t = q, D = {0, 1}d, S = {0, 1}n, U = [4q]{0,1}n and
R = {0, 1}n. Note that |U| = 4q = 4t. �

We begin by showing that PP(H,G,F) is computationally indistinguishable from PP(H,G,Π),
where F is non-adaptive pseudorandom function and Π is a truly random function with the same
domain and range as F . Recall that if H, G and F are ensembles of function families indexed by
an integer n, then PP(H,G,F) is also an ensemble of function families, and we denoted its nth
function family as PP(Hn,Gn,Fn).

Lemma 5.2. Let q and d be integer functions, let H = {Hn : {0, 1}d(n) 7→ [4q(n)]{0,1}n}n∈N, G =

{Gn : {0, 1}d(n) 7→ {0, 1}n}, and F = {Fn : {0, 1}n 7→ {0, 1}n} be function families. Then for every
t-time q-query oracle-aided adaptive distinguisher D, there exists a (eq + t+ 8q(eH + eG + eF ))-time

4q-query, non-adaptive, oracle-aided distinguisher D̂, where eq is the evaluation time of q, and eH,
eG and eF are the sampling and evaluation time of H, G and F respectively, with∣∣Prf←Fn [D̂f (1n) = 1]− Prπ←Πn [D̂π(1n) = 1]

∣∣
≥ 1

2
·
∣∣Prf←PP(Hn,Gn,Fn)[D

f (1n) = 1]− Prf←PP(Hn,Gn,Πn)[D
f (1n) = 1]

∣∣,
for every n ∈ N and q(n) ≤ 2n−2.

Proof. The proof follows along similar lines to the proof of [7, Lemma 3.3]. Let D̃ be the following
two-oracle distinguisher:

Algorithm 5.3 (D̃).

Input: 1n.

Oracles: Functions φ1 and φ2 from {0, 1}n to {0, 1}n.

1. Compute φ1(x) and φ2(x) for every x ∈ [4q(n)]{0,1}n.

2. Set f = (φ1 ◦ h1)⊕ (φ2 ◦ h2)⊕ g, where h← Hn and g ← Gn.

3. Emulate Df (1n): answer a query x to φ1 and φ2 made by D with f(x), using the information
obtained in Step 1.
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Note that D̃(1n) makes 4q(n) non-adaptive queries to φ1 and φ2, and it can be implemented
to run in time eq(n) + 8q(n) + t(n) + q(n) · (eH(n) + eG(n)). Observe that the definition of PP
guarantees that φ1 and φ2 are only queried on the first 4q(n) elements of their domain. Hence,
in case φ1 and φ2 are uniformly drawn from Fn, then the emulation of Df (1n) done in D̃φ1,φ2 is
identical to a random execution of Df (1n) with f ← PP(Hn,Gn,Fn). Similarly, in case φ1 and
φ2 are uniformly drawn from Πn, then the emulation is identical to a random execution of Df (1n)
with f ← P(Hn,Gn,Πn). Thus,∣∣∣Pr(f1,f2)←Fn×Fn [D̃f1,f2(1n) = 1]− Pr(π1,π2)←Πn×Πn [D̃π1,π2(1n) = 1]

∣∣∣ (3)

=
∣∣∣Prf←P(Hn,Gn,Fn)[D

f (1n) = 1]− Prf←P(Hn,Gn,Πn)[D
f (1n) = 1]

∣∣∣ .
Hence, Lemma 2.9 yields that there exists a non-adaptive, single-oracle distinguisher D̂ that when
invoked on input of length n makes 4q(n) queries and runs in time eq(n) + 8q(n) + t(n) + q(n) ·
(eH(n) + eG(n)) + 2q(n) · eF (n) ≤ eq(n) + t(n) + 8q(n) · (eH(n) + eG(n) + eF (n)), such that∣∣∣Prf←Fn [D̂f (1n) = 1]− Prπ←Πn [D̂π(1n) = 1]

∣∣∣
≥ 1

2
·
∣∣∣Prf←P(Hn,Gn,Fn)[D

f (1n) = 1]− Prf←P(Hn,Gn,Πn)[D
f (1n) = 1]

∣∣∣ ,
for every n ∈ N. �

Let q be an integer function with q(n) ≤ 2n−2 for every n ∈ N, let F = {Fn : {0, 1}n 7→
{0, 1}n}n∈N be a non-adaptive (4q, p · t, ε)-PRF, for p(n) ≥ eq(n) + t(n) + 8q(n) · (eH(n) + eG(n) +
eF (n)). Lemma 5.2 yields that for every t-time q-query oracle-aided algorithm D, it holds that∣∣∣Prf←P(Hn,Gn,Fn)[D

f (1n) = 1]− Prf←P(Hn,Gn,Πn)[D
f (1n) = 1]

∣∣∣ ≤ 2ε(n),

for large enough n. Hence, assuming H and G are k(n)-wise independent, Corollary 5.1 and the
triangle inequality yield that∣∣∣Prf←PP(Hn,Gn,Fn)[D

f (1n) = 1]− Prπ←Πn [Dπ(1n) = 1]
∣∣∣ ≤ 2ε(n) + q(n)/2Ω(k(n))

for large enough n ∈ N. Setting k(n) = Θ(log q(n)) yields the following theorem.

Theorem 5.4. Let q be a polynomial-time computable integer function with q(n) ≤ 2n−2 for every
n ∈ N, let H = {Hn : {0, 1}n 7→ [4q(n)]{0,1}n}n∈N and G = {Gn : {0, 1}n 7→ {0, 1}n}n∈N be efficient
(c · log q)-wise independent function family ensembles, where c > 0 is universal, and let F =
{Fn : {0, 1}n 7→ {0, 1}n}n∈N be a non-adaptive (4q, p · t, ε)-PRF, where p ∈ poly is determined by
the evaluation time of q,H,G and F . Then PP(H,G,F) is an adaptive (q, t, 2ε+ 1/q)-PRF.

Theorem 5.4 implies the following simpler corollary.

Corollary 5.5 (Restatement of Theorem 1.2). Let t be a polynomial-time computable integer
function with t(n) ≤ 2n−2 for every n ∈ N, let H = {Hn : {0, 1}n 7→ [4t(n)]{0,1}n}n∈N and
G = {Gn : {0, 1}n 7→ {0, 1}n}n∈N be efficient (c · log t)-wise independent function family ensembles,
where c > 0 is universal, and let F = {Fn : {0, 1}n 7→ {0, 1}n}n∈N be a non-adaptive (p · t)-PRF,
where p ∈ poly is determined by the evaluation time of t,H,G and F . Then PP(H,G,F) is an
adaptive t-PRF.

Proof. By definition, F is also (4t, p · t, 1/(p · t))-non-adaptive PRF (we assume that p(n) ≥ 4 for
every n ∈ N). The proof is now a direct implication of Theorem 5.4. �
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6 Hardness-Preserving Reductions via Advanced Cuckoo Hashing

In this section we apply the reductions given in Sections 4 and 5 using the function family of Pagh
and Pagh [42], with the function family of Aumüller et al. [4], to get a more versatile reduction (for
comparison see Section 6.2.1). Roughly speaking, the function family of Aumüller et al. [4] requires
less combinatorial work (i.e., smaller independence) than the Pagh and Pagh [42] family. On the
other hand, the function family of Aumüller et al. [4] requires more “randomness” (i.e., has a longer
description) and is harder to describe. In Section 6.1 we formally define the hash function family
of Aumüller et al. [4], state their (non-adaptive) result, and apply Lemma 3.2 to get an adaptive
variant of this result. In Section 6.2 we use the function family of Aumüller et al. [4] to obtain a
PRF domain extension, where in Section 6.3 we use this family to get a non-adaptive to adaptive
transformation of PRFs.

6.1 The Aumüller et al. [4] Function Family

The function family of Aumüller et al. [4] (building upon Dietzfelbinger and Woelfel [15]) follows
the same basic outline as the Pagh and Pagh [42] function family, but uses more complex hash
functions. Recall that the members of the Pagh and Pagh [42] function family PP(H,G,F) are
of the form (f1 ◦ h1) ⊕ (f2 ◦ h2) ⊕ g, for f1, f2 ∈ F , h1, h1,∈ H and g ∈ G. In the function
family ADW(H,L,G,F ,M,Y) described below, the role of h1, h2 ∈ H is taken by some variant
of tabulation hashing (and not simply from a relatively high k-wise independent family as in [42]).
Roughly, at the heart of these functions lies a function ah,g,m : D 7→ S of the form:

ah,g,m(x) := h(x)
⊕

1≤i≤z
mi(gi(x)),

for h : D 7→ S, g = (g1, · · · , gz) where gi : D 7→ U and m = (m1, · · · ,mz) where mi : U 7→ S.
Jumping ahead, the mi’s will be chosen to be random functions (or pseudorandom functions) and
the gi’s and h will be chosen from a relatively low independence family. The Aumüller et al. [4]
construction uses several functions of the above form that, unlike [42], are chosen in a correlated
manner (in particular, sharing the same function vector g). The precise definition is:

Definition 6.1 (The Aumüller et al. [4] function family). For z ∈ N let

1. D,U be sets and S,R be commutative groups defined with respect to an operation ⊕S and ⊕R,
respectively (we will omit the subscript when it is clear);

2. function families H = {h : D 7→ S}, L = {` : D 7→ R}, F = {f : S 7→ R}, G = {g : D 7→ U},
M = {m : U 7→ S} and Y = {y : U 7→ R};

3. functions h1, h2 ∈ H, ` ∈ L, f1, f2 ∈ F ;

4. function vector g = (g1, · · · , gz), where gi ∈ G for every 1 ≤ i ≤ z;

5. function vectors m1 = (m1
1, . . . ,m

1
z),m

2 = (m2
1, . . . ,m

2
z), where mj

i ∈ M for each j ∈ {1, 2}
and 1 ≤ i ≤ z; and

6. function vector y = (y1, . . . , yz), where yi ∈ Y for 1 ≤ i ≤ z.
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Define adwm1,m2,y,h1,h2,`,g,f1,f2
: D 7→ R by

adwm1,m2,y,h1,h2,`,g,f1,f2
:= (f1 ◦ ah1,g,m1)⊕R (f2 ◦ ah2,g,m2)⊕R a`,g,y, (4)

where ah,g,m(x) := h(x)
⊕

1≤i≤zmi(gi(x)).14

For m1,m2 ∈Mz, h1, h2 ∈ H and g ∈ Gz, function family L,F and Y as above, let

ADWz,(m1,m2,h1,h2,g)(L,F ,Y) := {adwm1,m2,y,h1,h2,`,g,f1,f2
: y ∈ Yz, ` ∈ L, f1, f2 ∈ F}.

Finally, let

ADWz(H,L,G,F ,M,Y) :={adwm1,m2,y,h1,h2,`,g,f1,f2
:

m1,m2 ∈Mz, y ∈ Yz, h1, h2 ∈ H,
` ∈ L, g ∈ Gz, f1, f2 ∈ F}.

Graphically, this function family is described in Figure 2.

𝑥 ∈ 𝒟 Input in 𝒟 

𝐹1 

𝑎ℎ1,𝑔 ,𝑚 1 𝑎ℎ2,𝑔 ,𝑚 2 

𝑎ℓ,𝑔 ,𝑦  

1, 2 ∈ ℋ 
ℓ ∈ ℒ 

𝑔 = (𝑔1, … , 𝑔𝑧) ∈ 𝒢𝑧 
𝑓1, 𝑓2 ∈ ℱ 

𝑚 1 = (𝑚1
1, … ,𝑚𝑧

1)  ∈ ℳ𝑧 
𝑚 2 = (𝑚1

2, … ,𝑚𝑧
2)  ∈ ℳ𝑧 

𝑦 = (𝑦1, … , 𝑦𝑧) ∈ 𝒴𝑧 

𝐹2 

𝑦 ∈ ℛ Output in ℛ 

Element in ℛ 

Element in 𝒮 

 

𝑥 ∈ 𝒟 Input in 𝒟 

𝑚1
1 

𝑔1 𝑔𝑧 

1 

𝑚𝑧
1 

𝑦 ∈ 𝒮 Output in 𝒮 

Element in 𝒮 

Element in 𝒰 

 

Figure 2: The function family ADWz(H,L,G,F ,M,Y) in the top left corner. On the bottom
right corner the function ah1,g,m1 is depicted. The function ah2,g,m2 is similar. In a`,g,y the range
of the functions ` and y1 . . . , yz is R (rather than S).

Aumüller et al. [4] proved the following result with respect to the above function family.

14Note that ah1,g,m1 , ah2,g,m2 : D 7→ S uses ⊕S and a`,g,y : D 7→ R uses ⊕R.
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Theorem 6.2 ([4]). Let t, k, z ∈ N and let D,R,S,U be commutative groups defined with respect to
an operation ⊕ such that |U| ∈ [t] and |S| ≥ 4t.15 Assume that z · k ∈ O(log t). Let H = {h : D 7→
S}, L = {` : D 7→ R} and G = {g : D 7→ U} be 2k-wise independent hash families. Then there exist

a universal constant const > 0 and a left-monotone set BAD ⊆ D≤t ×
(

((ΠU 7→S)z)2 ×H2 × Gz
)

,

such that the following holds for every q = (q1, . . . , q|q|) ∈ D≤t:

1.
(
f(q1), . . . , f(q|q|)

)
f←ADWz,u(L,ΠS7→R,ΠU7→R)

is uniform over R|q| for every u ∈ ((ΠU 7→S)z)2 ×
H2 × Gz such that (q, u) 6∈ BAD, and

2. Pru←((ΠU7→S)z)2×H2×Gz [(q, u) ∈ BAD] = const · t/ |U|z·k/2.

Remark 6.3. The construction from Definition 6.1 and Theorem 6.2 are taken from [3, Section
6] which is the conference version of [4]. In [3] the authors only considered the case where z · k is
constant, independent of t. The proof for the case where z · k ∈ O(log t) follows from the proof of
[4, Theorem 2].

Applying Lemma 3.2, the above yields that, for the right choice of parameters, the function
family ADWz(H,L,F ,G,M,Y) is not only close to being uniform in the eyes of a non-adaptive
distinguisher, but also in the eyes of an adaptive one. Specifically, combining Lemma 3.2 and the-
orem 6.2 yields the following result.

Lemma 6.4. Let t, k, z, const,D,R,S,U ,H,L,G be as in Theorem 6.2 and let D be an adaptive,
t-query oracle-aided algorithm. Then∣∣∣Prf←ADWz(H,L,G,ΠS7→R,ΠU7→S ,ΠU→R)[D

f = 1]− Prπ←Π[Dπ = 1]
∣∣∣ = const · t/ |U|z·k/2 .

Proof. Let U ′ = ((ΠU 7→S)z)2×H2×Gz, V = (ΠU→R)z × (ΠS→R)2×L. For (m1,m2, h1, h2, g) ∈ U ′
and (y, π1, π2, `) ∈ V, let

F(m1,m2,h1,h2,g),(y,π1,π2,`) = (π1 ◦ ah1,g,m1)⊕ (π2 ◦ ah2,g,m2)⊕ a`,g,y,

and let
F = {Fu′,v : D 7→ R}(u′,v)∈U ′×V .

Finally, let BAD be the set BAD of Theorem 6.2.
The above sets meet the requirements stated in Lemma 3.2: Item 1 of Theorem 6.2 assures

that the first property of Lemma 3.2 is satisfied, and according to Item 2 of Theorem 6.2 we
set ε of Lemma 3.2 to be const · t/ |U|k·z, and thus the second property is also satisfied. Hence,
applying Lemma 3.2 concludes the proof of the lemma. �

We note that for large enough z, and in contrast to the Pagh and Pagh [42] family, using ADW
we get meaningful results even when using an underlying k = o(log t)-wise independent family.
(For a thorough comparison between PP and ADW see Section 6.2.1). In particular, for specific
settings of parameters we get the following corollaries.

15The actual setting in [4] is more general. Specifically, an additional parameter ε > 0 is used to set the size of
S as (1 + ε)t. For simplicity of presentation, comparison with the statement of Theorem 3.4, and since we use this
theorem only when m is an integer, we set ε = 3.
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Corollary 6.5. Let t, const,D,R,S,U ,H,L,G be as in Theorem 6.2. Let c ∈ N, z = 2(c + 2),
|U| = t and k = 1. Let D be an adaptive, t-query oracle-aided algorithm. Then∣∣∣Prf←ADWz(H,L,G,ΠS7→R,ΠU7→S ,ΠU7→R)[D

f = 1]− Prπ←Π[Dπ = 1]
∣∣∣ = const/tc+1.

Proof. Since H and L are pairwise independent, z = 2(c+ 2), and k = 1 it holds that

const · t/ |U|z·k/2 ≤ const/tc+1.

Plugging this into Lemma 6.4 completes the proof. �

Corollary 6.6. Let t, const,D,R,S,U ,H,L,G be as in Theorem 6.2. Let c ∈ N, z = 2(c+2) · log t,
k = 1 and |U| = 2. Let D be an adaptive, t-query oracle-aided algorithm. Then∣∣∣Prf←ADWz(H,L,G,ΠS7→R,ΠU7→S ,ΠU7→R)[D

f = 1]− Prπ←Π[Dπ = 1]
∣∣∣ = const/tc+1.

Proof. Since H and L are pairwise independent, z = 2(c+ 2) · log t, and k = 1 it holds that

const · t/ |U|z·k/2 ≤ const/tc+1.

Plugging this into Lemma 6.4 completes the proof. �

6.2 PRF Domain Extending Via the ADW Family

In this subsection we present a PRF a domain extension using the Aumüller et al. [4] family, ADW.
This allows us to avoid the large independence required for using the Pagh and Pagh [42] family
PP.

Instantiating the above construction in the setting of strings over {0, 1}∗, we get the following
corollaries, analogous to Corollary 4.1.

Corollary 6.7. Let d, u, s, r, q, c > 0 be integers such that u ≤ s ≤ r, let z = 2(c + 2) and let
H = {H : {0, 1}d 7→ {0, 1}s}, L = {L : {0, 1}d 7→ {0, 1}r} and G = {G : {0, 1}d 7→ {0, 1}u}. Assume
H,L and G are pairwise independent function family, then for any q-query adaptive distinguisher
D, it holds that∣∣∣Prf←ADWz(H,L,G,Πs,r,Πu,s,Πu,r)[D

f = 1]− Prπ←Πd,r [D
π = 1]

∣∣∣ ≤ O (1/qc+1
)
,

for any q ≤ 2r−2.

Corollary 6.8. Let d, s, r, q, c > 0 be integers, let u = 2, let z = 2(c + 2) · log q and let H =
{H : {0, 1}d 7→ {0, 1}s}, L = {L : {0, 1}d 7→ {0, 1}r} and G = {G : {0, 1}d 7→ {0, 1}u}. Assume H,L
and G are pairwise independent function family, then for any q-query adaptive distinguisher D, it
holds that ∣∣∣Prf←ADWz(H,L,G,Πs,r,Πu,s,Πu,r)[D

f = 1]− Prπ←Πd,r [D
π = 1]

∣∣∣ ≤ O (1/qc+1
)
,

for any q ≤ 2r−2.
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In what follows we state two domain extension results (whose proofs are similar to that of
Theorem 4.4). Recall that ADWz makes two calls to F , 2z calls toM, and z calls to Y (in total 3z+
2 calls). In the first theorem (see Theorem 6.9) we rely on Corollary 6.7 and implement the function
families Πs,r,Πu,s and Πu,r using a single pseudorandom function family F = {Fn : {0, 1}s(n) 7→
{0, 1}r(n)}n∈N. Assuming u(n) ≤ s(n) and s(n) ≤ r(n), the implementation is done in the natural
way by padding with leading zeroes. This results with a PRF that makes 3z + 2 calls to the
underlying PRF. In the second theorem (see Theorem 6.10) we take advantage of the fact that in
Corollary 6.8 u = 2. This enables us to implement the function families M and Y as small tables
of random values which are embedded into the PRF key. This results with a PRF that makes just
two calls to the underlying PRF (but has a longer key).

Theorem 6.9. Let d and q be integer functions, let c > 1 be a constant, let z = 2(c + 2), let
H = {Hn : {0, 1}d(n) 7→ {0, 1}s(n)}n∈N, L = {L : {0, 1}d(n) 7→ {0, 1}r(n)} and G = {G : {0, 1}d(n) 7→
{0, 1}u(n)} be efficient pairwise independent function family ensembles, where u(n) ≤ s(n) ≤ r(n),
and let F = {Fn : {0, 1}s(n) 7→ {0, 1}r(n)}n∈N be a (q, t, ε)-PRF. Then ADWz(H,L,G,F ,F ,F) =
{ADWz(Hn,Ln,Gn,Fn,Fn,Fn) : {0, 1}d(n) 7→ {0, 1}r(n)}n∈N is a (q, t− p · q, (3z + 2) · ε+ 1/qc+1)-
PRF, where p ∈ poly is determined by the evaluation and sampling time of H and F and q(n) ≤
2n−2.

Theorem 6.10. Let d and q be integer functions, let c > 1 be a constant, let z = z(n) =
2(c + 2) · log q(n), let H = {Hn : {0, 1}d(n) 7→ {0, 1}r(n)}n∈N, L = {L : {0, 1}d(n) 7→ {0, 1}s(n)}
and G = {G : {0, 1}d(n) 7→ {0, 1}u(n)} be efficient pairwise independent function family ensem-
bles, let M = {Mn}n∈N (resp., Y = {Yn}n∈N) be family of tables, such that Mn (resp.,
Yn) is a table of two (resp., z(n)) random elements from {0, 1}s(n) (resp., {0, 1}r(n)), and let
F = {Fn : {0, 1}s(n) 7→ {0, 1}r(n)}n∈N be a (q, t, ε)-PRF. Then ADWz(H,L,G,F ,M,Y) =
{ADWz(n)(Hn,Ln,Gn,Fn,Mn,Yn) : {0, 1}d(n) 7→ {0, 1}r(n)}n∈N is a (q, t− p · q, 2ε+ 1/qc+1)-PRF,
where p ∈ poly is determined by the evaluation and sampling time of H and F and q(n) ≤ 2n−2.

Roughly speaking, the difference between Theorems 6.9 and 6.10 is that in Theorem 6.9 the
resulting PRF makes a large constant (i.e., 6c + 12) number of queries to the underlying PRF,
whereas in Theorem 6.10 it only makes two calls to the underlying PRF but the PRF key is longer
(i.e., it has (6c+ 12) · log q random values embedded into it).

6.2.1 Comparing the PP and ADW Based Constructions

Theorems 4.4, 6.9 and 6.10 present different tradeoffs between two types of resources: “crypto-
graphic work” — the total evaluation time of the calls to the underlying short-domain PRF, and
“combinatorial work” — the independence needed from the function families used.16 In the PP-
based construction (Theorem 4.4), we minimize the number of calls to the PRF, thus keeping the
cryptographic work small. But on the other hand, we require relatively high independence, thus
requiring fairly much combinatorial work. In the first ADW-based construction (Theorem 6.9),
the situation is somewhat reversed: we minimize the independence needed, but make more calls to
the PRF. In the second ADW-based construction (Theorem 6.10), we minimize both the number
of calls to the PRF and the independence needed, but we require much more hash functions, thus
increasing again the combinatorial work.

16The independence affects the amount of random bits and evaluation time needed for these families.
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In the following we instantiate Theorems 4.4, 6.9 and 6.10 in a specific setting, and compare
their performance in terms of required randomness complexity, and evaluation time.17 Our starting
point is a length-preserving (q, t, ε)-PRF F = {Fn}n∈N. Our goal is to construct a function family
with a larger domain, {0, 1}d(n), whose security only deteriorates, comparing to that of F , by an
additive factor of 1/q(n)c, for c := c(n) > 1. Let rF (n) be the amount of random bits required to
sample a random element in Fn, and let eF (n) be the evaluation time of a single call to an element

in Fn. Let e
(k)
`,n be the evaluation time of a k-wise independent function family from {0, 1}` to

{0, 1}n. Recall that by Fact 2.6, sampling a random element in the latter function family requires
k ·max{`, n} random bits.

Theorem 4.4 yields the following result, which makes only two calls to F , but requires hash
functions of high independence.

Corollary 6.11. Let c > 1 be an integer, let H = {Hn : {0, 1}d(n) 7→ {0, 1}n}n∈N be Ω(c · log q(n))-
wise independent function family, let F = {Fn : {0, 1}n 7→ {0, 1}n}n∈N be (q, t, ε)-PRF and let
PP(H,F) = {PP(Hn,Fn) : {0, 1}d(n) 7→ {0, 1}n}n∈N be according to Definition 3.3. Then the
following holds:

1.
∣∣∣Prf←PP(Hn,Fn)[D

f (1n) = 1]− Prπ←Πd(n),n
[Dπ(1n) = 1]

∣∣∣ = O(ε(n) + 1/q(n)c), for any adap-

tive (t− p · q)-time q-query oracle-aided algorithm D and large enough n ∈ N, where p ∈ poly
is according to Theorem 4.4, and q(n) ≤ 2n−2.

2. The randomness complexity of PP(H,F) is O(c · d · log q) + 2 · rF . Namely, there exists an
algorithm that on input 1n, uses O(c · d(n) · log q(n)) + 2 · rF (n) random bits, and outputs a
random element in PP(Hn,Fn).

3. The evaluation time of PP(H,F) is O
(

e
(c·log q)
d,n

)
+ 2 · eF . Namely, there exists an algorithm

that on input f ∈ PP(n) and x ∈ {0, 1}d(n), runs in time O
(

e
(c·log q(n))
d(n),n

)
+ 2 · eF (n), and

outputs f(x).

In comparison, Theorem 6.9 allows us to reduce the independence needed, in the price of
increasing the number of calls to F .

Corollary 6.12. Let c > 1 be an integer, let z = 2(c+ 2), let H = {Hn : {0, 1}d(n) 7→ {0, 1}n}n∈N
be efficient pairwise independent function family ensembles, let F = {Fn : {0, 1}n 7→ {0, 1}n}n∈N
be a (q, t, ε)-PRF and let ADWz(H,F) := ADWz(H,H,H,F ,F ,F) = {ADWz(Hn,Fn) :=
ADWz(Hn,Hn,Hn,Fn,Fn,Fn) : {0, 1}d(n) 7→ {0, 1}n}n∈N be according to Definition 6.1.

1.
∣∣∣Prf←ADWz(Hn,Fn)[D

f (1n) = 1]− Prπ←Πd(n),n
[Dπ(1n) = 1]

∣∣∣ = O(c · ε(n) + 1/q(n)c), for any

(t − p · q)-time q-query adaptive oracle-aided algorithm D and large enough n ∈ N, where
p ∈ poly is according to Theorem 6.9, and q(n) ≤ 2n−2.

2. The randomness complexity of ADWz(H,F) is O(c · d) + (6c+ 14) · rF . Namely, there exists
an algorithm that on input 1n, uses O(c · d(n)) + (6c+ 14) · rF (n) random bits, and outputs a
random element in ADWz(Hn,Fn).

17Another criterion of comparison is the sampling time. In our settings it is analogous to the evaluation time, so
we omit it.
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Function Family Randomness Complexity (Key Size) Evaluation Time

PP (Corollary 6.11) O(c · d · log q) + 2 · rF O
(

e
(c·log q)
d,n

)
+ 2 · eF

ADW (Corollary 6.12) O(c · d) + (6c+ 14) · rF O
(
c · e(2)

d,n

)
+ (6c+ 14) · eF

ADW (Corollary 6.13) O(c · d · log q) + 2 · rF O
(
c · log q · e(2)

d,n

)
+ 2 · eF

Table 1: Comparison between the domain extension results based on the function family PP
instantiated as in Corollary 6.11 and the function family ADW instantiated as in Corollaries 6.12
and 6.13.

3. The evaluation time of ADWz(H,F) is O
(
c · e(2)

d,n

)
+ (6c+ 14) · eF . Namely, there exists an

algorithm that on input f ∈ ADWz(Hn,Fn) and x ∈ {0, 1}d(n), runs in time O
(
c · e(2)

d(n),n

)
+

(6c+ 14) · eF (n), and outputs f(x).

Finally, Theorem 6.10 allows us to make only two calls to F and keep both the independence
needed low, in the price of needing much more hash functions.

Corollary 6.13. Let c > 1 be an integer, let q be an integer function, let z(n) = 2(c+ 2) · log q(n),
let H = {Hn : {0, 1}d(n) 7→ {0, 1}n}n∈N be efficient pairwise independent function family ensembles,
let M = {Mn}n∈N (resp., Y = {Yn}n∈N) be a family of tables, where Mn (resp., Yn) is a random
table of two (resp., z) elements from {0, 1}n, let F = {Fn : {0, 1}n 7→ {0, 1}n}n∈N be a (q, t, ε)-
PRF and let ADWz(H,F ,M,Y) := ADWz(H,H,H,F ,M,Y) = {ADWz(n)(Hn,Fn,Mn,Yn) :=

ADWz(n)(Hn,Hn,Hn,Fn,Mn,Yn) : {0, 1}d(n) 7→ {0, 1}n}n∈N be according to Definition 6.1.

1.
∣∣∣Prf←ADWz(n)(Hn,Fn,Mn,Yn)[D

f (1n) = 1]− Prπ←Πd(n),n
[Dπ(1n) = 1]

∣∣∣ = O(ε(n) + 1/q(n)c), for

any (t− p · q)-time q-query adaptive oracle-aided algorithm D and large enough n ∈ N, where
p ∈ poly is according to Theorem 6.9, and q(n) ≤ 2n−2.

2. The randomness complexity of ADWz(H,F ,M,Y) is O(c · d · log q) + 2 · rF . Namely, there
exists an algorithm that on input 1n, uses O(c · d(n) · log q(n)) + 2 · rF (n) random bits, and
outputs a random element in ADWz(n)(Hn,Fn,Mn,Yn).18

3. The evaluation time of ADWz(H,F ,M,Y) is O
(
c · log q · e(2)

d,n

)
+2 ·eF . Namely, there exists

an algorithm that on input f ∈ ADWz(n)(Hn,Fn,Mn,Yn) and x ∈ {0, 1}d(n), runs in time

O
(
c · log q(n) · e(2)

d(n),n

)
+ 2 · eF (n), and outputs f(x).

The above corollaries are summarized in Table 1.

6.3 From Non-Adaptive to Adaptive PRF Via the ADW Family

In this subsection we present a non-adaptive to adaptive transformation using the Aumüller et al.
[4] family, ADW. As in the previous section, this allows us to avoid the large independence required
for using the function family PP of Pagh and Pagh [42]. For simplicity we state only the reduction

18The constant hidden in the big O notation in this item is slightly larger than the corresponding constant in the
same item in Corollary 6.12. The difference comes from including M and Y into the key.
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follows Corollary 6.6. Corollary 6.5 also yields non-adaptive to adaptive reduction, with different
tradeoff between the randomness complecity (key size) of the PRF to its evaluation time (see
Section 6.2.1).

Recall that our reduction from Section 5 requires that all calls to the PRF F are within the first
4q(n) first elements of {0, 1}n. We make sure the above holds by the following settings. Specifically,
Corollary 6.6 yields the following theorem with respect to the above function family (similarly to
Theorem 5.4).

Theorem 6.14. Let q be integer functions, let c > 1 be a constant, let z = z(n) = 2(c+2) · log q(n),
let H = {Hn : {0, 1}n 7→ [4q(n)]{0,1}n}, L = {L : {0, 1}n 7→ {0, 1}n} and G = {G : {0, 1}n 7→
{0, 1}} be efficient pairwise independent function family ensembles, let M = {Mn}n∈N (resp.,
M = {Mn}n∈N) be family of tables, such that Mn (resp., Yn) is a random table of two (resp.,
z(n)) elements from [4q(n)]{0,1}n (resp., {0, 1}n), and let F = {Fn : {0, 1}n 7→ {0, 1}n}n∈N be a
non-adaptive (4q, p · t, ε)-PRF, where p ∈ poly is determined by the evaluation time of q,H,G, L
and F .

Then, ADWz(H,L,G,F ,M,Y) = {ADWz(n)(Hn,Ln,Gn,Fn,Mn,Yn) : {0, 1}n 7→ {0, 1}n}n∈N
is a (q, t, 2ε+ 1/qc+1)-PRF.

7 Further Research

The focus of this paper is on PRFs. Specifically, in Sections 4 to 6 we have shown domain exten-
sion techniques and non-adaptive to adaptive transformations for PRFs that provide a nice tradeoff
between combinatorial work, cryptographic work and error. In general, hardness-preserving reduc-
tions between pseudorandom objects has led to fruitful research with many result (some of which
we review next). It is an interesting question whether our technique has any bearing on other
models.

Perhaps the most interesting model for this kind of reductions is pseudorandom permutations
(PRPs) (without going through a PRP-to-PRF reduction). Given a family of (q, t, ε)-PRPs from
n-bits to n bits, how can we construct a family of PRPs with larger domain while preserving
its security? How about constructing a family of PRPs with smaller domain while preserving
its security? Finally, it is also interesting how to transform a family of (q, t, ε)-PRPs that is
secure against non-adaptive adversaries to a family of PRPs that are also secure against adaptive
adversaries (see discussion in Section 1.4). One related paper is that of Hoang et al. [24], that gives
a method to convert a PRF into a PRP with beyond-birthday security (see also [50, 35]). Another
related work is of H̊astad [22] that showed how to extend the domain of a PRP.

A different model of interest is message authentication codes (MACs). In this model, we are
interested in designing domain extension techniques that given an n-bit to n-bit MAC with MAC
security ε against q queries provide variable-length MAC with some (good enough) promise on the
MAC security in terms of q and ε. The best answer to-date for this question was given by Dodis
and Steinberger [16] that showed that given an n-bit to n-bit MAC with MAC security ε against
q queries, it is possible to get a variable-length MAC achieving MAC security O(ε · q · poly(n))
against queries of total length qn.

Another interesting model is public random functions. A public random function f : {0, 1}m →
{0, 1}n is a system with a public and private interface which behaves as the same random function
at both interfaces. In other words, a public random function can be interpreted as a random
oracle. In this model, again, the domain extension problem is very interesting. To date, the best
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construction is of Maurer and Tessaro [34] that presented a construction Cε,m,` that extends public
random functions f : {0, 1}n → {0, 1}n to a function Cε,m,`(f) : {0, 1}m(n) → {0, 1}`(n) with
time complexity poly(n, 1/ε) and which is secure against adversaries which make up to Θ(2(1−ε)n)
queries.

On a different note, notice that all of our constructions assume that we are given the number
of queries in advance. Can we get any non-trivial results given only an upper bound on the number
of queries (in any of the models above)? In particular, in the non-adaptive to adaptive reduction
of Section 5 we assumed that q(n), the number of queries to which the non adaptive function is
resistent to, is known. What can be done if it is not known? This issue was addressed by Berman
and Haitner [7] in a non security preserving manner.

Recently Pǎtraşcu and Thorup [49] have shown that for many data structure problems it is
possible to use tabulation hashing even though it is ‘merely’ 3-wise independent. The question is
whether this has any bearing on cryptographic constructions.
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A Proof of Lemma 3.2

In this section we prove Lemma 3.2 from Section 3. We mentioned again that Lemma 3.2 can be
derived as a special case of a result given in [26, Theorem 12] (closing a gap in the proof appearing
in [32]). Yet, for the sake of completeness, we include an independent proof of this lemma below.

Definition A.1 (Restating Definition 3.1). Let S and T be sets. A set M ⊆ S∗ × T is left-
monotone, if for every (s1, t) ∈M and every s2 ∈ S∗ that has s1 as a prefix, it holds that (s2, t) ∈M.
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Lemma A.2 (Restating Lemma 3.2). Let U and V be non-empty sets, let F = F(U ,V) =
{fu,v : D 7→ R}(u,v)∈U×V be a function family and let BAD ⊆ D∗ × U be left monotone. Let
t ∈ N, and assume that for every q = (q1, . . . , q|q|) ∈ D≤t:19

1.
(
f(q1), . . . , f(q|q|)

)
f←{fu,v : v∈V} is uniform over R|q|, for every u ∈ U with (q, u) 6∈ BAD, and

2. Pru←U [(q, u) ∈ BAD] ≤ ε.

Then ∣∣∣∣Pru←U
v←V

[Dfu,v = 1]− Prπ←Π[Dπ = 1]

∣∣∣∣ ≤ ε,
for every t-query oracle-aided adaptive algorithm D, letting Π be the set of all functions from D to
R.

Proof. Let D be an t-query distinguisher. We assume for simplicity that D is deterministic (the
reduction to the randomized case is standard) and makes exactly t valid (i.e., inside D) distinct
queries. To prove the lemma we consider a process (Algorithm A.3) that runs D twice: one giving
it completely random answers and the second time, choosing a u ← U and continuing answering
with the same answers as the first round until we hit a BAD event according to the queries and
the chosen u. We then choose a random v that is consistent with answers given so far and continue
answering with it.

Intuitively, the answers provided to D in the first round are distributed like the answers D
expects to get from a truly random function, while the answers provided to D in the second round
are distributed like the answers D expects to get from a random function in F . But, since these
answers are the same until a BAD event occurs, the distinguishing ability of D is bounded by the
probability of such an event to occur. Since, u is chosen after D has already “committed” to the
queries it is going to make, this probability is bounded by the non-adaptive property of F .

For a vector v = (v1, . . . , vt), let v1,...,i be the first i element in v (i.e., v1,...,i = (v1, . . . , vi)) and
let v1,...,0 = λ, where λ is the empty vector. Consider the following random process:

Algorithm A.3.

1. Emulate D, while answering the ith query qi with ai ← R.

Set q = (q1, . . . , qt) and a = (a1, . . . , at).

2. Choose u← U and set v =⊥.

3. If (λ, u) ∈ BAD, set v ← V.

4. Emulate D again, while answering the ith query q′i according to the following procedure:

(a) If (q′1,...,i = (q′1, . . . , q
′
i), u) /∈ BAD, answer with a′i = ai (the same ai from Step 1).

(b) Otherwise ((q′1,...,i, u) ∈ BAD):

i. If v =⊥, set v ← {v′ ∈ V : ∀j ∈ [i− 1] : fu,v′(q
′
j) = a′j}.

ii. Answer with a′i = fu,v(q
′
i).

19Recall that for a set S and an integer t, S≤t denotes the set {s ∈ S∗ : |s| ≤ t ∧ s[i] 6= s[j] ∀i 6= j ∈ [|s|]}.
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5. Set q′ = (q′1, . . . , q
′
t) and a′ = (a′1, . . . , a

′
t). In case v =⊥, set v ← {v′ ∈ V : ∀j ∈ [t] : fu,v′(q

′
j) =

a′j}.

Let A, Q, A′, Q′, U and V be the (jointly distributed) random variables induced by the values
of q, a, q′, a′, u and v respectively, in a random execution of Algorithm A.3. By definition A has
the same distribution as the oracle answers in a random execution of Dπ with π ← Π. In Claim A.4
we show that A

′
is distributed the same as the oracle answers in a random execution of Dfu,v with

(u, v)← U × V. Using it, we now conclude the proof by bounding the statistical distance between

A and A
′
.

Since the queries and answers in both emulations of D at Algorithm A.3 are the same until
(Q1,...,i, U) ∈ BAD for some i ∈ [t], and since BAD is monotone, it holds that

Pr[A 6= A
′
] ≤ Pr[(Q,U) ∈ BAD] (5)

In addition, since U is chosen after Q, the second condition of Lemma A.2 yields that

Pr[(Q,U) ∈ BAD] ≤ ε (6)

It follows that Pr[A 6= A
′
] ≤ ε and therefore SD(A,A

′
) ≤ ε.

We conclude that ∣∣∣∣Pru←U
v←V

[Dfu,v = 1]− Prπ←Π[Dπ = 1]

∣∣∣∣ ≤ SD(A,A
′
) ≤ ε.

�

Claim A.4. A
′

has the same distribution as the oracle answers in a random execution of Dfu,v

with (u, v)← U × V.

Proof. It is easy to verify that A
′

is the oracle answers in DfU,V . Hence, to obtain the claim we
need to show that (U, V ) is uniformly distributed over U × V. The definition of Algorithm A.3
assures that U is uniformly distributed over U , so it is left to show that conditioned on any fixing
u of U , the value of V is uniformly distributed over V.

In the following we condition on U = u ∈ U . For an answers vector w ∈ Rk, let qw [resp.,
q+
w ] be the first k [resp., k + 1] queries asked by D, assuming that it gets w as the first k answers

(since D is deterministic these values are well defined). Let Sw = {v ∈ V : fu,v(qw) = w} and let
W = {w ∈ R∗ : |w| ≤ t ∧ (qw, u) /∈ BAD}. If λ /∈ W , it follows that (λ, u) ∈ BAD, and thus
Algorithm A.3 chooses v at Step 3. Hence V is uniformly distributed over V. In case λ ∈ W , we
conclude the proof by applying the following claim (proven below) with w = λ (note that Sλ = V).

Claim A.5. Conditioned on A′1,...,i = w ∈W for some i ∈ {0, , . . . , t}, the value of V is uniformly
distributed over Sw.

�

Proof of Claim A.5. We prove by reverse induction on i = |w|. For the base case i = t, we note
that (by definition) Algorithm A.3 chooses v at Step 5, and thus V is uniformly distributed over
Sw. In the following we assume the hypothesis holds for i+ 1, and condition on A′1,...,i = w ∈ W .
In case (q+

w , u) ∈ BAD, Algorithm A.3 chooses v at Step 4(b)i, and thus V is uniformly distributed
over Sw. So it is left to handle the case (q+

w , u) /∈ BAD.
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Fix v′ ∈ Sw and let a ∈ R be such that v′ ∈ Sw◦a, where ‘◦’ denotes vector concatenation
(i.e., for w = (w1, . . . , wi), w ◦ a = (w1, . . . , wi, a)). Conditioning on A′i+1 = a, we can apply the
induction hypothesis on w ◦ a (since w ◦ a ∈ W ) to get that V is uniformly distributed over Sw◦a.
It follows that

Pr[V = v′ | A′1,...,i = w] = Pr[A′i+1 = a | A′1,...,i = w] · Pr[v = v′ | A′1,...,i+1 = w ◦ a]

=
1

|R|
· 1

|Sw◦a|

=
1

|R|
· |R|

|w|+1

|V|

=
|R||w|

|V|
=

1

|Sw|
,

concluding the induction step. The second equality holds by the induction hypothesis, and for the
third one we note that

|Sw′ |
|V|

= Prv←V [v ∈ Sw′ ] = Prv←V [fu,v(qw′) = w′] =
1

|R||w
′| , (7)

for every w′ ∈ W , where the third equality of Equation (7) holds by the first property of F(U ,V)
(as stated in Lemma A.2). �

B Hardness-Preserving PRG to PRF Reductions

Another application of our technique is a hardness-preserving construction of PRFs from pseu-
dorandom generators (PRGs). For instance, constructing 2c

′n-PRF for some 0 < c′ < c, from a
2cn-PRG. The efficiency of such constructions is measured by the number of calls made to the
underlying PRG as well as other parameters such as representation size.

The construction of Goldreich et al. [21] (i.e., GGM) is in fact hardness preserving according
to the above criterion. Their construction, however, makes n calls to the underlying PRG, which
might be too expensive in some settings.

Proposition B.1 ([21]). Let G be a length-doubling (t, ε)-PRG whose evaluation time is eG. For
any efficiently-computable integer functions m and `, there exists an efficient oracle-aided function
family ensemble whose n’th function family, denoted GGMG

m(n)→`(n), maps strings of length m(n)

to strings of length `(n), makes m(n) calls to G and is a (q, t −m · q · eG(`),m · q · ε(`))-PRF for
any integer function q.20

As already mentioned in the introduction, in order to reduce the number of calls to the under-
lying PRG, Levin [29] suggested to first hash the input to a smaller domain, and only then apply

20GGMG
m(n)→`(n) is a variant of the standard GGM function family, that on input of length m(n) uses seed of

length `(n) for the underlying generator, rather than seed of length m(n). Formally, GGMG
m→` is the function family

ensemble {GGMG
m(n)→`(n)}n∈N, where GGMG

m(n)→`(n) = {fr}r∈{0,1}`(n) , and for r ∈ {0, 1}`(n), the oracle-aided

function fr : {0, 1}m(n) 7→ {0, 1}`(n) is defined as follows: given oracle access to a length-doubling function G and
input x ∈ {0, 1}m(n), fGr (x) = rx, where rx is recursively defined by rε = r, and, for a string w, rw||0||rw||1 = G(rw).
The original GGM construction was length-preserving, i.e., m(n) = `(n) = n.
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GGM (this is known as “Levin’s trick”). The resulting construction, however, is not hardness
preserving due to the “birthday attack” described in Section 1.

While the GGM construction seems optimal for the security it achieves (as shown in [25]), in
some settings the number of queries the distinguisher can make is strictly less than its running
time. Consider a distinguisher of running time 2cn that can only make 2

√
n � 2cn queries. In

such settings the security of the GGM construction seems like an overkill and raises the question of
whether there exist more efficient reductions. Jain et al. [25] (who raised the above question) gave
the following partial answer, by designing a domain extension method tailored to PRG to PRF
reductions for a specific range of parameters.

Theorem B.2 ([25]). Let G be a length-doubling 2cn-PRG. Let c > 0, 1/2 ≤ α < 1 and q(n) =
2n

α
. There exists a length-preserving function family JPT G that on input of length n makes

O(log(q(n))) = O(nα) calls to G and is a (q(n), 2c
′n, 2c

′n)-PRF for every 0 < c′ < c.

A restriction of Theorem B.2 is that it dictates that the resulting PRF family makes at least
Ω(
√
n) calls to the underlying PRG (since 1/2 ≤ α < 1). We note that the restriction that α > 1/2

(and hence q(n) > 2
√
n) in the construction of [25] is inherent due to their hashing technique (and

is not a mere side-effect of the parameters above).
Using better hashing constructions (based on cuckoo hashing) yields a more versatile version

of the above theorem, that in particular allows α to be arbitrary. Specifically, combining Proposi-
tion B.1 with Theorem 4.4 yields the following result.

Corollary B.3. Let G be a length-doubling (t, ε)-PRG. Let H = {Hn : {0, 1}n 7→ {0, 1}m(n)}n∈N
and G = {Gn : {0, 1}n 7→ {0, 1}n}n∈N be efficient k(n)-wise independent function family ensembles.
Let q(n) ≤ 2m(n)−2.

Then, the length-preserving function family ensemble {PP(Hn,Gn,GGMG
m(n)→n)}n∈N, when in-

voked on input of length n, makes m(n) calls to G and is a (q, t− p ·m · q, 2m · q · ε+ q/2Ω(k))-PRF,
where p(·) is a polynomial determined by the evaluation and sampling time of H, G and G.

In particular, for c > 0, 0 < α < 1, t(n) = 2cn, ε(n) = 1/t(n), q(n) = 2n
α

, m(n) = Θ(log(q(n)))
and k(n) = Θ(nα + cn), the function family PP(H,G,GGMG

m(n)→n) makes m(n) = O(nα) calls to

G and is a (q(n), 2c
′n, 2c

′n)-PRF, for every 0 < c′ < c.

Proof. We prove the “In particular” part of the corollary. Set q(n) = 2n
α
, m(n) = dnαe+ 2, and H

and G to be k(n)-wise independent for k(n) = Θ(nα + cn), with an appropriate constant, such that
q(n)

2Ω(k(n)) < 2−cn. Let t′ = t− p ·m · q and ε′ = 2m · q · ε+ q/2Ω(k). By the first part of the corollary

we get that PP(H,G,GGMG
m(n)→n) makes m(n) calls to G and is a (q, t′, ε′)-PRF. Next, we show

that t(n) > 2c
′n and ε(n) < 2−c

′n for large enough n.
Let c′′ ∈ N such that nc

′′
> p(n) for large enough n. It follows that t(n) > 2cn−nc′′2nα(nα + 2)

and ε(n) < 21+log(nα+2)+nα−cn+2−cn. Hence, for every c′ < c, we have ε(n) < 2−c
′n and t(n) > 2c

′n

for large enough n, as required. �

Comparison with the Jain et al. reduction The advantage of Corollary B.3 is that when the
adversaries are allowed to make less than 2

√
n queries, the number of calls to the PRG is reduced

accordingly, and below O(
√
n) calls. This improves upon the function family JPT , that for such

adversaries must make at least O(
√
n) calls to the PRG.

The function family JPT , however, might have shorter description (key) and evaluation time.
Specifically, let q denote the number of queries the adversaries are allowed to make (i.e., q = 2n

α
).
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Family #queries limitation description (key) size evaluation time

JPT [25] 2n
1/2

< q < 2n Θ(log q · n) Θ(log q · eG + e(log q))

PP(H,G,GGMG
m) 0 < q < 2n Θ(n2) Θ(log q · eG + e(n))

Table 2: Comparison between the family JPT in Theorem B.2 to PP(H,G,GGMG
m) in Corol-

lary B.3. The notation e(k) in the table refers to the evaluation time of a k-wise independent
function.

According to Corollary B.3, the parameter k (the independence required) needs to be set to Θ(n).
Hence, by Fact 2.6 it takes Θ(n2) bits to describe a function in PP(H,G,GGMG

m). The evaluation
time of a single call to PP(H,G,GGMG

m) is Θ(log q · eG + e(n)), where eG is the evaluation time
of G and e(k) is the evaluation time of a k-wise independent function. In comparison, it takes
Θ(log q · n) bits to describe a member in JPT , and its evaluation time is Θ(log q · eG + e(log q)).
This is summarize in Table 2.

Independent work. Independently and concurrently with this work, Chandran and Garg [12]
showed that a variant of the construction of [25] achieves similar security parameters to [25] and
also works for 2n

α
queries for any 0 < α < 1/2. The construction of [12], however, outputs only

n2α bits, as opposed to n bits in the construction of [25] and in our construction.
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