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Abstract

Goldreich and Oren (JoC’94) show that only languages in BPP have 2-message zero-
knowledge arguments. In this note we consider weaker, super-polynomial simulation (SPS),
notions of zero-knowledge. We present barriers to using black-box reductions for demonstrating
soundness of 2-message protocols with efficient prover strategies satisfying SPS zero-knowledge.
More precisely, if poly(T (n))-hard one-way functions exist for a super-polynomial T (n), the
following holds about 2-message efficient prover arguments over statements of length n.
• Black-box reductions cannot prove soundness of 2-message T (n)-simulatable arguments

based on any polynomial-time intractability assumption, unless the assumption can be broken
in polynomial time. This complements known 2-message quasi-polynomial-time simulatable
arguments using a quasi-polynomial-time reduction (Pass’03), and 2-message exponential-time
simulatable proofs using a polynomial-time reduction (Dwork-Naor’00, Pass’03).
• Back-box reductions cannot prove soundness of 2-message strong T (n)-simulatable ar-

guments, even if the reduction and the challenger both can run in poly(T (n))-time, unless the
assumption can be broken in poly(T (n)) time. Strong T (·)-simulatability means that the output
of the simulator is indistinguishable also for poly(T (·))-size circuits, with a negl(T (·)) indistin-
guishability gap. This complements known 3-message strong quasi-polynomial-time simulatable
proofs (Blum’86, Canetti et al’ 00), or 2-message quasi-polynomial-time simulatable arguments
(Khurana-Sahai’17, Kalai-Khurana-Sahai’18) satisfying a relaxed notion of strong simulation
where the distinguisher’s size can be large, but the distinguishing gap is negligible in n.
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1 Introduction

The notion of zero-knowledge, and the simulation-paradigm used to define it, is of fundamental
importance in modern cryptography—most definitions of security rely on it. In a zero-knowledge
protocol, a prover P can convince a verifier V of the naturality of some mathematical statement
x ∈ L, while revealing “zero (additional) knowledge” to V . This zero-knowledge property is formal-
ized by requiring that for every potentially malicious efficient verifier V ∗, there exists an efficient
simulator S that, without talking to P , is able to “indistinguishably reconstruct” the view of V ∗

in a true interaction with P . Namely, the output of S cannot be distinguished (with more than
negligible probability) from the true view of V ∗ by any efficient distinguisher D.

Assuming standard cryptographic hardness assumptions, 3-message zero-knowledge proofs with
constant soundness [Blu86], 4-message zero-knowledge arguments (where the soundness is guaran-
teed to hold only against efficient provers) with negligible soundness [FS90], and 5-message zero-
knowledge proofs with negligible soundness [GK96] are known for all languages in NP; additionally,
given a witness to the prover these interactive proofs/arguments have efficient prover strategies. On
the other hand, by the results of Goldreich and Oren [GO94], 2-message zero-knowledge arguments
only exist for languages in BPP. In the rest of this note, we focus on interactive proofs/arguments
with negligible soundness error and with efficient prover strategies once a witness is given.

Super-Polynomial-Simulation (SPS) Zero-Knowledge. The commonly used notion of zero-
knowledge requires the simulator to run in polynomial time. However, the notion of super-
polynomial-simulation (SPS) zero-knowledge [Pas03] allows the simulator to run in super-polynomial
time1. More specifically, the notion of SPS zero-knowledge is defined similarly to zero-knowledge ex-
cept that the simulator is allowed to run in super-polynomial time T (·); such protocols are referred
to as T (·)-simulatable. [Pas03] also defined the (stronger) notion of strong SPS zero-knowledge with
the additional requirement that any poly(T (·))-time distinguisher cannot distinguish the simulated
transcript from a true transcript with better than negl(T (·)) advantage; such protocols are referred
to as strong T (·)-simulatable.

It is known that under sub-exponential hardness assumptions 2-message quasi-polynomial-time
(i.e., T (n) = npoly(logn)) simulatable arguments for NP exist, but 2-message T (·)-simulatable
proofs only exist for languages in BPTime(poly(T (·))) [Pas03]. On the other hand, based on
sub-exponential hardness assumptions quasi-polynomial-time simulatable 3-message proofs for NP
exist as well [Blu86, CGGM00].

This leaves open the following questions regarding 2-message SPS zero-knowledge:

1. Do 2-message SPS zero-knowledge arguments for NP exist based on standard
polynomial-time hardness assumptions?

2. Do 2-message strong SPS zero-knowledge arguments for NP exist even under
super-polynomial hardness assumptions?

In this note, we present barriers to using black-box reductions for providing affirmative answers to
the above two questions. In particular, we show the following:

Theorem 1.1 (Informally Stated). Assuming the existence of poly(T (n))-hard one-way functions,
the following holds about efficient-prover arguments over statements of length n.

1This is while the distinguisher running time remains polynomial time and the distinguishing advantage needs to
be negl(n) which is non-negligible over the security parameter n rather than negl(T (n)).
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1. Polynomial-time black-box reductions cannot be used to prove soundness of 2-message T (n)-
simulatable arguments based on any intractability assumption is modeled as a security game
with a polynomial-time challenger, unless the security game can be broken in time poly(n).

2. Even poly(T (n))-time black-box reductions cannot be used to prove soundness of 2-message
strong T (n)-simulatable arguments based on some security game, unless the security game can
be broken in time poly(T (n)). This holds even if we allow the challenger of the intractability
assumption to run in poly(T (n)) time.

Let us remark here that n is the security parameter on which the black-box reduction calls the
attacker (i.e., the statement length). The security reduction from a security game using parameter
n′ could also be calling the attacker A on a polynomially smaller security parameter n: for instance,
consider an interactive argument of a statement of length n that uses a one-way function on input
length n′ = nc; we refer to c as the security parameter blow-up. Whenever there is such a security
parameter blow-up c > 1, we have that the security game given security parameter n′ can be broken
in time poly(T ′(n′)) where T ′(n) = T (n′1/c). When there is such a security parameter blow-up,
Part 2 shows that for every ε, and every reduction R, there exists some ε′ = ε/c such that strong

2n
ε
-simulatable arguments cannot be based based on 2n

ε′
hardness. It, however, does not rule out

the existence of some ε′′ > ε′ such that soundness can be based on 2n
ε′′

hardness.
The first part of our theorem complements known 2-message quasi-polynomial-time simulat-

able arguments using a quasi-polynomial-time reduction [Pas03] and 2-message exponential-time
simulatable proofs using a polynomial-time reduction [DN07, Pas03]. The second part of our theo-
rem complements (in terms of the round-complexity) the 3-message strong quasi-polynomial-time
simulatable proofs of [Blu86, CGGM00]. Furthermore the second part of the theorem above also
complements the results shown in [KS17, KKS18]2 showing that a relaxed form of strong quasi-
polynomial-time simulatable 2-message arguments can be obtained when relaxing the notion of
strong simulation to only requiring the distinguishing probability to be negl(n), as opposed to
negl(T (n)) (even when considering T (n)-time distinguishers).

Applications to the Soundness of the Fiat-Shamir Heuristic. The concurrent works of
[DSJKLA12, BDSG+13] demonstrating barriers to provable security of the Fiat-Shamir heuris-
tic also obtained similar results to the second part of Theorem 1.1 using similar techniques, and
applied it to conclude as corollary that the Fiat-Shamir heuristic cannot be based on provable
assumptions. Our result is incomparable to [DSJKLA12]. Our impossibility is proved for “natural”
settings where the security reduction starts from an adversary who breaks the security for a partic-
ularly security parameter (which is the case in all black-box security reductions that we are aware
of) while [DSJKLA12] allows the reduction to call the adversary on multiple security parameters.
On the other hand, we can handle security reductions that assume the adversary to be fixed and
deterministic, and we can handle a certain nonuniform techniques as well. Thus, as corollary of
our Theorem 1.1, we can obtain an incomparable impossibility result for a general instantiation of
the Fiat-Shamir heuristic for interactive proofs (which also deals with nonuniform reductions and
deterministic attackers, whereas the results of [DSJKLA12] only rule out uniform reductions that
need to work for randomized attackers.)3 To see this, as we mentioned above, [CGGM00] shows (as-
suming one-way permutations with sub-exponential hardness) the existence of a 3-message strong

2These results were proved subsequent to the original appearance of this paper.
3We emphasize that this corollary was added after becoming aware of the results in [DSJKLA12].
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quasi-polynomial-time simulatable proof (with negligible soundness error); additionally, this proto-
col is public coin. Assuming the soundness of the Fiat-Shamir heuristic (when applied only to proof
systems), this 3-message proof system can be collapsed to a 2-message strong quasi-polynomial-
time simulatable argument system (the “collapsed” protocol is still strong quasi-polynomial-time
simulatable since the hash-function used in the Fiat-Shamir heuristic can just be viewed as a par-
ticular malicious verifier). Our Theorem 1.1 shows that this 2-message argument can not be proven
sound through a black-box reduction to any “standard” assumption, and thus rules out a black-box
reduction for a general instantiation of the Fiat-Shamir heuristic for interactive proofs. In contrast
to these results, we note that a very recent beautiful line of work shows how to instantiate the
Fiat-Shamir heuristic for special cases of interactive proofs [CCH+19, CLW18, PS19].

1.1 Further Related Work on Separations

There is a large literature on separation results between cryptographic primitives/assumptions. We
distinguish between two types of results:

Separations for Fully Black-Box Constructions. The seminal work of Impagliazzo and
Rudich [IR88] provides a framework for proving black-box separations between cryptographic prim-
itives. We highlight that this framework refutes the possibility of so-called “fully-black-box con-
structions” (see [RTV04] for a taxonomy of various black-box separations); that is, this framework
considers both black-box constructions (i.e., the higher-level primitive only uses the underlying
primitive as a black-box), and black-box proofs of security (i.e., the security reduction only uses the
adversary against the constructed scheme as a black-box). Most black-box separation results fall
into this framework (e.g., [Sim98, GKM+00, BMG07, HHRS07] to name a few). As it was shown
by [RTV04], some of these separations extend to the setting where the security reduction is “semi”
or even “weakly” black-box, but we emphasize that the construction is always black-box.

Separations for Black-Box Security Reductions. In recent years, new types of separations
between cryptographic primitives/assumptions have emerged. These separations apply even to non-
black-box constructions as long as the proof of security is black-box: Pass [Pas06] and Pass, Tseng
and Venkitasubramaniam [PTV11] demonstrate that under certain (new) complexity theoretic
assumptions, various cryptographic tasks cannot be based on one-way functions using a black-box
security reduction, even if the protocol uses the one-way function in a non-black-box way. (These
results follow techniques used by Brassard [Bra83] and Akavia et al [AGGM06] to demonstrate
limitations of “NP-hard cryptography”.)4

Recently, two independent works demonstrate similar types of separation results, but this time
ruling out security reductions to a general set of intractability assumptions: Pass [Pas11] demon-
strates impossibility of using black-box reductions to prove the security of several primitives (e.g.,
Schnorr’s identification scheme, commitment schemes secure under weak notions of selective open-
ing, Chaum blind signatures, etc.) based on any “bounded-round” intractability assumption (where
the challenger uses an a-priori bounded number of messages, but is otherwise unbounded). Gentry
and Wichs [GW11] (assuming the existence of strong pseudorandom generators) demonstrate im-
possibility of using black-box security reductions to prove soundness of “succinct non-interactive

4See also the results of Feigenbaum and Fortnow [FF93] and the result of Bogdanov and Trevisan [BT03] that
demonstrate limitations of NP-hard cryptography for restricted types of reductions.
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arguments” based on any falsifiable assumption (where the challenger is computationally bounded).
An even more recent work by Pass [Pas12], developed in parallel with the current paper, rules out
constructions of statistical NIZK with adaptive soundness and non-interactive non-malleable com-
mitments, based on falsifiable assumptions.

Our results in this work fall into this second category of results and rule out black-box security
reductions for proving the soundness of various forms of SPS zero-knowledge protocols even if the
construction is arbitrarily non-black-box.

2 Definitions

By Un we denote the uniform distribution over {0, 1}n. We say p = poly(n) if p ≤ nO(1). We
say ν(·) is a negligible function, if for every p = poly(n), there is n0 such that ν(n) < p(n) for
all n > n0. By negl(·) we denote a negligible function. By x ← S we denote that x is sampled
uniformly from the set S. A verifier VL for language L ∈ NP runs in polynomial time over |x|, and
x ∈ L iff ∃w, VL(x,w) = 1, in which case w is called a witness for x (with respect to the verifier
VL). For an NP language L, the witness relation RL contains the set of all (x,w) where w is a
witness of membership of x in L.

We call a primitive T (n)-hard if for any poly(T (n))-size adversary, there is a negligible function
ν such that adversary’s advantage in breaking the primitive is at most ν(T (n)) where n is the
security parameter. This notion can be applied to one-way functions and (length-doubling) PRGs.

2.1 Zero-Knowledge Arguments

We recall the definition of interactive proofs/arguments and SPS-ZK.

Notation. For a pair of probabilistic interactive algorithms (P, V ), 〈P (y), V 〉(x) denotes the
output of V at the end of the interaction on the common input x. In the following, the term
polynomial time always means polynomial time in the length of the first input. In particular, for an
interactive protocol’s execution 〈P (y), V ∗(z)〉(x) on common input x, x is the “first input” given
to both parties.

Definition 2.1 (Interactive Arguments [GMR89, BCC88]). A pair of probabilistic interactive algo-
rithms (P, V ) is said to be an interactive proof system for an NP-language L with witness relation
RL if V is PPT and the following two conditions hold:

• Completeness: For every x ∈ L and every y ∈ RL(x), it holds that

Pr [〈P (y), V 〉(x) = 1] = 1.

• Soundness: We say that P ∗ breaks soundness of (P, V ) with probability µ(n) if

Pr
[

(x, z)← P ∗(1n) : 〈P ∗(1n, x, z), V (x)〉 = 1 ∧ x /∈ L
]
≥ µ(n).

We call (P, V ) sound, if for every polynomial-time interactive algorithm P ∗, if P ∗ breaks
soundness of (P, V ) with probability µ(n), then µ(n) is negligible in n. We say that (P, V )
has an efficient prover if P is PPT.
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We now give the definition of T (n)-simulatability.

Definition 2.2 (T (n)-Simulatability [Pas03]). Let (P, V ) be an interactive proof/argument system
for an NP-language L with witness relation RL. We say that (P, V ) is T (n)-simulatable if for
every PPT adversary V ∗, there exists a T (n)-time simulator S such that for every poly(n)-sized
distinguisher D, there exists a negligible function ν(n) such that for every x ∈ L, y ∈ RL(x), and
z ∈ {0, 1}∗, it holds that

|Pr [D(x, 〈P (y), V ∗(z)〉(x)) = 1]− Pr [D(x, S(x, z)) = 1]| ≤ ν(|x|).

We now give the definition of strong T (n)-simulatability.

Definition 2.3 (Strong T (n)-Simulatability [Pas03]). Let (P, V ) be an interactive proof/argument
system for an NP-language L with witness relation RL. We say that (P, V ) is strong T (n)-
simulatable if for every PPT adversary V ∗, there exists a T (·)-time simulator S such that for every
probabilistic poly(T (·))-size distinguisher D, there exists a negligible function ν(n) such that for
every x ∈ L, y ∈ RL(x), and z ∈ {0, 1}∗,

|Pr [D(x, 〈P (y), V ∗(z)〉(x)) = 1]− Pr [D(x, S(x, z)) = 1]| ≤ ν(T (|x|)).

The notions of SPS zero-knowledge and strong SPS zero-knowledge correspond, respectively,
to T (n)-simulatability and strong T (n)-simulatability for a super-polynomial function T (n). It is
shown in [Pas03] that both plain and strong poly(T (n))-simulatability is closed under sequential
composition; we will rely on the proof of this result.

2.2 Intractability Assumptions and Black-Box Reductions

Following Naor [Nao03] (see also [DOP05, HH09, RV10, GW11, Pas11]), we model an intractability
assumption based on an interactive game between a probabilistic machine C—called the challenger—
and an attacker A. Both parties get as input 1n where n is the security parameter. For any
t(n) ∈ [0, 1] and any “adversary” A, if Pr [〈A,C〉(1n) = 1] ≥ t(n) + p(n), then we say that A breaks
C with advantage p(n) over the “threshold” t(n). When this happens, we might also say that A
breaks (C, t(·)) with advantage p(n). For the simple case of polynomial-time adversaries, any pair
(C, t(·)) intuitively corresponds to the following assumption.

Assumption (C, t(·)): For any polynomial-time adversary A, there exists a negligible
function ν(·) such A breaks C with advantage at most ν(n) over the threshold t(n).

More generally, one can use (C, t(·)) to model an assumption about adversaries with more
resources (e.g., quasi-polynomial-time adversaries). This aspect becomes important once we define
reductions of security to hardness assumptions, where the running time of the reduction is limited
by the corresponding complexity class of the adversary in the intractability assumption.

If the challenger C of the assumption (C, t(·)) is polynomial-time in the security parameter
n′ and the total length of the messages it receives, then we say that the assumption is efficient
challenger ; such assumptions are referred to as falsifiable assumptions by Naor [Nao03] and Gentry
and Wichs [GW11]. (C, t(·)) is an efficient challenger assumption if and only if (C, t(·)) has a
polynomial-time (or size) challenger. More generally, we can allow the challenger in (C, t(·)) to run
in super-polynomial T ′(n′) where n′ is the security parameter of (C, t(·)). Note that we can capture
relying on super-polynomial hardness assumptions by allowing for reductions to an assumption that
run in super-polynomial-time over the security parameter of the challenge (C, t(·)).
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Black-Box Reductions. We consider PPT Turing reductions—i.e., black-box reductions. A
black-box reduction refers to a PPT oracle algorithm. Roughly speaking, a black-box reduction
for basing the security of a P on the hardness of an assumption (C, t(·)), is a PPT oracle machine
R such that whenever the oracle A “breaks” P with respect to the security parameter n, then
RA “breaks” (C, t(·)) with respect to a polynomially related parameter n′ such that n′ is at most
polynomially bigger than n. As far as we know, all security reductions fall into this framework.
(See the discussion after Definition 2.4.)

Definition 2.4 (Natural Reductions). We say that R is a natural black-box reduction to breaking
C = (C, t(·)), if R is an oracle machine such that the following holds:

• Relation between Security Parameters. There exists some constant c such that if R(1n
′
)

ever queries its oracle on security parameter n, then n′ ≤ nc; we refer to c as the security
parameter blow-up of the reduction.

• Single Adversary Security Parameter. For every security parameter n′, there exists some
fixed security parameter n such that R(1n

′
) only invokes its oracle on security parameter n.

Note that the definition of natural reductions above applies even if R is a reduction to a super-
polynomial T ′(·)-hardness assumption, and it might be that n is supper-polynomially larger than
n′ (but not the other way around). In particular, suppose we are using a natural reduction to a
poly(T ′(·))-hard assumption. Then, the reduction’s running time should be bounded as T (n) ≤
poly(T ′(n′)), because we would like the security reduction to run in time poly(T ′(·)).

Discussion. Definition 2.4 places some restrictions on the reduction, but as far as we know (for
all the reasons explained below) all black-box security reductions are natural. Below we explain
some of the reasons that make security reductions in the literature natural.

Single Adversary Security Parameter. The reason to restrict R to only query its oracle on
a single “security parameter” n (which is the case also in all known security reductions in
the literature), is that standard cryptographic definitions require ruling out the existence of
attackers that break some primitive even for any infinite sequence of input lengths; as these
input lengths can be very sparse, a black-box reduction might only get to access the adversary
over a single “good” input length. Therefore, it must successfully use the adversary even if
it has access to an attacker that only succeeds on a single input length. We formalize this
argument in the Appendix A; see Lemma A.5.

Relation between Security Parameters. The reason to assume n′ ≤ poly(n) in the security
reduction is the following. Suppose we have constructed a primitive on security parameter n
using computationally hard “puzzless” (e.g., one-way functions or public-key encryption) on
security parameter n′. Due to the polynomial running time of the scheme itself, it would be
the case that n′ ≤ poly(n) where n is the security parameter of the scheme. Furthermore,
the security reduction in its most natural form (which includes the actual reductions that we
are aware of), would relate the security of the scheme to the security of one of puzzle used
in it. Then, in the security reduction it would hold that the security parameter n of the
adversary breaking the scheme (which is the same security parameter as the scheme itself)
satisfies n′ ≤ poly(n) where n′ is the challenge the reduction tries to break. This holds even if
one uses sub-exponentially hard variant of these puzzles, in which case we might have n′ � n
(e.g., n′ = polylog(n)).
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Let us turn to defining what it means for a reduction to be successful. For concreteness, we
directly define it for the specific security game of that we focus on in this paper: soundness of a
2-message arguments.

Definition 2.5 (Natural Reductions for Soundness of 2-Message Arguments). Let (C, t(·)) be an
assumption and (P, V ) a 2-message argument. We call R a natural reduction for basing soundness
of (P, V ) on T ′(·)-hardness of the challenge (C, t(·)) if R is a natural reduction and there exists
some inverse polynomial function α such that the following holds. Consider some n, n′ such that
RA(1n

′
) invokes its attacker on security parameter n, and let A be an arbitrary deterministic

attacker that breaks the soundness of (P, V ) with probability at least 1/2 on security parameter
(i.e., statement length) n. Then RA(1n

′
) breaks (C, t(·)) over security parameter n′ with probability

t(n′) + α(T ′(n′)), while running in time at most poly(T ′(n′)).

Note that the default definition of soundness requires the error to be negligible, however in the
definition above we use 1/2 as the threshold for success probability for the adversary, because our
goal is to prove impossibility results, and this choice makes the result only stronger. Also note that
we only consider deterministic attackers; this only makes our result stronger, as we automatically
get a stronger separation for weakly nonuniform security reductions as well.

Weakly Nonuniform Reductions. Suppose R is a security reduction that uses a (potentially)
randomized adversary A on security parameter n′ and breaks a challenge (C, t(·)) on security param-
eter n. A technique commonly used in the literature is to allow the reduction to fix the randomness
of A to its “best” value (perhaps to fix some messages sent form A). Using this technique is jus-
tified as, having access to such A, leads a an efficient circuit that breaks (C, t(·)). Hence, if one
can start from a stronger nonuniform hardness assumption about (C, t(·)), the conclusion is that
no such adversary A exists. More formally, to capture this technique, we define weakly nonuniform
reductions as follows (again focusing on the special case of soundness for 2 message arguments).

Definition 2.6 (Weakly Nonuniform Natural Reductions for Soundness of 2-Message Arguments).
Let (C, t(·)) be an assumption and (P, V ) a 2-message argument. We call R a weakly nonuni-
form natural reduction for basing soundness of (P, V ) on T ′(·)-hardness of (C, t(·)) if R satisfies
Definition 2.5 with the exception that in the second bullet, we require the existence of some ran-
domized (potentially unbounded) function F such that for any randomized attacker A that breaks
the soundness of (P, V ) with probability at least 1/2 for security parameter n, RAF (A)(1n

′
) breaks

(C, t(·)) with probability t(n′) + α(T ′(n′)), where Ar denotes A with randomness fixed to r.

We now observe that Definition 2.6 implies Definition 2.5; this result crucially relies on the fact
that in Definition 2.5 we work with deterministic adversaries. We state the lemma for the specific
case of reducing the soundness of 2-message arguments to black-box assumptions, but a similar
statement holds in general as well.

Lemma 2.7. Let R be a weakly nonuniform natural reduction for basing soundness of (P, V ) on
T ′(·)-hardness of (C, t(·)). Then R is also a natural reduction for basing soundness of (P, V ) on
T ′(·)-hardness of (C, t(·)).

Proof. Let R be a weakly nonuniform natural reduction for basing soundness of (P, V ) on T ′(·)-
hardness of (C, t(·)), F be the associated randomness fixing function, and α(·) be the “advantage”.
We will now show that R is also a successful natural reduction. Consider some n, n′ such that
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R(1n
′
) calls its attacker on security parameter n. Recall that a natural reduction only needs to

be successful for deterministic attackers; thus, consider some deterministic attacker A such that A
breaks soundness of (P, V ) with probability 1/2 given security parameter n. Since R is a successful
weakly nonuniform reduction, we have that RAF (A)(1n

′
) breaks (C, t(·)) with probability t(n′) +

α(T ′(n′)). But since A is deterministic, A = AF (A), and thus we have that RA(1n
′
) breaks (C, t(·))

with probability t(n′) + α(T ′(n′)), which concludes that R is a successful natural reduction.

3 Barriers for Proving Soundness of 2-Message SPS-ZK

In this section we prove our main result.

Theorem 3.1 (Barriers for Proving Soundness of 2-Message Arguments). Let T (n) be a super-
polynomial monotonically increasing function and assume the existence of T (n)-hard PRGs. Then,
there exists an NP-language L such that if (P, V ) is a 2-message T (n)-simulatable argument for L
with an efficient prover, then the following holds.

1. Consider some challenge (C, t(·)) where C is PPT, and assume the existence of a natural
reduction for basing soundness of (P, V ) on poly-hardness of (C, t(·)). Then (C, t(·)) can be
broken in PPT with advantage 1/poly(n′) for all sufficiently large security parameters n′.

2. Consider some challenge (C, t(·)) where C runs in probabilistic poly(T (·)) time, and assume,
further, that (P, V ) is strong T (·)-simulatable. Assume the existence of a natural reduction
with security parameter blow-up c for basing soundness of (P, V ) on T ′(·)-hardness of (C, t(·)),
where T ′(n) = T (n1/c). Then (C, t(·)) can be broken in probabilistic poly(T ′(n′)) time with
advantage 1/poly(T ′(n′)) for all sufficiently large security parameters n′.

By the result of [HILL99], the existence of one-way functions secure against poly(T (n))-size
circuits implies the existence of PRGs secure against poly(T (n))-size circuits.5

Extensions to Nonuniform Reductions. Because Theorem 3.1 is proved for deterministic
adversaries, by Lemma 2.7 we immediately also rule weakly nonuniform natural reduction. We
also remark that we can deal with an even stronger form of a “fully nonuniform” reduction if we
restrict to argument systems satisfying the stronger notion of adaptive (as opposed to non-adaptive)
soundness; we present these results in Appendix B; see Theorem B.4. It remains an interesting
open question to get the best of both and rule out (fully) nonuniform reductions even for the case
of non-adaptive soundness.

Proof Outline. Following the “meta-reduction” paradigm by Boneh and Venkatesan [BV98]
(which is also used in [Pas11, GW11, Pas12]), we will use R to directly break (C, t(·)) with non-
negligible probability. More formally, we exhibit a particular (inefficient) attacker A that breaks
soundness of (P, V ) with overwhelming probability, and we next show how to “emulate” this attacker
for R efficiently without disturbing R’s interaction with C. In particular, the proof follows the “two
adversary” technique [Pas11, GW11, Wic13] in which, we construct two adversaries A, Ã where (1)
A is inefficient, but is a successful attack against the soundness of the 2-message protocol. (2) Ã

5Even though [HILL99] proved their result for T (n) = poly(n), since it is black-box, it immediately “scales up”
to handle larger T (·) as well.
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is efficient and is indistinguishable from A in eyes of any efficient distinguisher. The first property
implies that A can help the reduction win against the challenge (C, t(·)). The second property means
that once we switch from A to Ã, the reduction (combined with the challenger C) will not “notice”
this change (as their combined algorithm still constitutes and “efficient distinguisher”). Therefore,
the efficient adversary RA shall break the challenge, leading to the conclusion of the theorem. The
actual proof goes through many steps and carefully designs an intermediate adversary Â. See below
for more details.

Proof of Theorem 3.1. We first prove the theorem for the “plain simulatability” of Case 1, and we
then extend this proof to cover the “strong simulatability” of Case 2 as well.

Let g : {0, 1}∗ → {0, 1}∗ be a length-doubling non-uniformly hard PRG. Consider the language
L = {g(s) | s ∈ {0, 1}∗} with witness relation RL(x) = {s ∈ {0, 1}∗ | g(s) = x}.

Suppose (P, V ) is a 2-message T (·)-simulatable protocol for L, and P runs in polynomial time
given any witness w ∈ RL(x). Suppose further that there exists an inverse polynomial α and
a polynomial-time natural reduction R with security parameter blow-up c, such that RA that
breaks the assumption (C, t(·)) with advantage α(n′) given security parameter 1n

′
whenever A

is a deterministic (computationally unbounded) adversary that breaks soundness of (P, V ) with
probability 1/2 on security parameter n (namely, |x| = n where x is the statement of the proof
system); since the security parameter blow-up is c, we have that n′ ≤ nc.

Inefficient Attacker A. We first describe our (inefficient) attacker A, and next explain how to
emulate it efficiently. More precisely (as in [Pas11]), we define a class of deterministic attackers Af ,
parameterized by a function f : {0, 1}∗ → {0, 1}∞. Given that Af is deterministic, we may assume
without loss of generality that R never asks its oracle the same query twice.

Let S = S(x, z) be the T (n)-time simulator for the verifier V ∗(x, z), who sends its auxiliary
input z to the prover P to get a response a, and then simply outputs a. On input 1n, Af samples
x ← {0, 1}n using f(1n) as randomness, and then outputs x. Next, on input a “first message” q,
Af (1n) computes a = S(x, q) using f(x, q) as randomness, and responds with the message a.

In the following, let RO : {0, 1}∗ → {0, 1}∞ be a uniformly distributed random oracle.

Two More Adversaries. First consider an alternative (still inefficient) attacker Âf that selects
s ∈ {0, 1}n/2 (again using f(1n) as the randomness), lets x = g(s), and then proceeds just as Af

does. We also construct a probabilistic polynomial-time attacker Ã that emulates ARO. Ã(1n)
uniformly samples s ∈ {0, 1}n/2 and outputs x = g(s); next, on input a first message q, Ã runs the
honest prover strategy P (x, s) on input the message q and outputs whatever P outputs.

Claim 3.2. There exists a negligible function ν such that ARO breaks soundness of (P, V ) with

probability 1 − ν(n). Moreover, RA
RO

(1n
′
) breaks (C, t(·)) with advantage α(n′)/2 for sufficiently

large n′.

Proof. First, note that by perfect completeness of the scheme, Ã convinces the verifier with prob-
ability 1. By T (·)-simulatability, it follows that Âf also convinces the verifier with probability
1 − negl(n). Additionally, by the hardness of the PRG g, we have that ARO also convinces the
verifier with probability 1 − negl(n). Furthermore, except with probability 2−n/2 (over the choice
of RO), ARO selects a false statement x /∈ L. Therefore, by a union bound, there exists some
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negligible function ν such that with probability 1 − ν(n), ARO selects a statement x /∈ L and
convinces the verifier as well. This finishes the proof of the first part.

probability at least 1 − 2ν(n) over the choice of a random oracle f ← RO, Af To prove the
second part, note that by an averaging argument, with breaks soundness of (P, V ) with probability

at least 1/2. We refer to any such f as being “good”. For every good f , we have that RA
f
(1n

′
)

runs in time poly(n′) and breaks (C, t(·)) with advantage α(n′). Since by assumption n′1/c ≤ n, we

have that 2ν(n) ≤ 2ν(n′1/c = negl(n′) and thus by a union bound, it follows that RA
RO

(1n
′
) breaks

(C, t(·)) with advantage α(n′)/2 for sufficiently large n′.

The following claim concludes the proof of the first part of Theorem 3.1 by letting B = RÃ.

Claim 3.3. For sufficiently large n′, RÃ(1n
′
) breaks (C, t(·)) with advantage at least α(n′)/8.

Proof. By Claim 3.2, we have that RA
RO

(1n
′
) breaks (C, t(·)) with advantage α(n′)/2 ≥ 1/poly(n′)

for sufficiently large n′. Recall the alternative efficient attacker Â defined above. The only difference
between ARO and ÂRO is that the former samples a statement from Un while the latter samples
a statement from g(Un/2). Recall that R(1n

′
) only queries its oracle on the security parameter n.

Now consider the combination of C,R and the executions of S as a single distinguisher D who
wants to distinguish Un from g(Un/2). Such a distinguisher runs in time poly(T (n)), so by the

poly(T (n))-indistinguishability of Un and g(Un/2), it follows that RÂ
RO

(1n) breaks (C, t(·)) with
advantage α(n′)/2− negl(n) ≥ α(n′)/4 for sufficiently large n′.

Recall that R, without loss of generality, never asks the same query twice because we only
consider deterministic adversaries. Therefore, the only difference between ÂRO and Ã is that
the former uses simulated proofs (of true statements) whereas the latter uses honestly generated
proofs. Thus, intuitively, the claim should directly follow by the indistinguishability property of the
simulation (and the fact that C and R are polynomial-size). There is a small catch: note that R can
query its oracle on several first messages q, similar to the execution of a verifier V ∗ in a sequential
composition of (P, V ) (on the same fixed statement x). Indeed, by the same argument as in the
sequential composition theorem for SPS simulation [Pas03], we will show that indistinguishability
still holds. More precisely, let m(n′) be an upper-bound on the running-time of R(1n

′
) (in this case,

m(n′) = poly(n′) = poly(n)), and define a sequence of m(n′) hybrids H0, . . . ,Hm(n′) as follows.

The hybrid Hi is the output of C when interacting with R(·) where the first i oracle responses
(apart from the returned x) are simulated (i.e., answered by ÂRO), and the remaining queries are
answered by running the honest prover strategy (i.e., answered by Ã). Note that H0 is the output

of C after interacting with RÃ(1n
′
), and Hm(n′) is the output of C after interacting with RÂ

RO
(1n

′
).

Indistinguishability of any two consecutive hybrids Hi and Hi+1 follows by the indistinguisha-
bility of the simulation and the fact that oracle responses for all j > i + 1 can be generated in
polynomial-time (given the witness to the selected statement). More formally, if the outputs of

hybrids Hi and Hi+1 are α(n′)
8m(n′) -distinguishable, we can always fix the first i + 1 queries and the

first i oracle responses so that the same α(n′)
8m(n′) -distinguishability holds, and then use this fact to

distinguish between an honest proof and a simulated proof (i.e., the answers to the (i+ 1)th query)

with advantage α(n′)
8m(n′) (by answering the subsequent oracle queries efficiently using a hard-wired

witness). But, since n′ ≤ nc, we have that the distinguishing advantage α(n′)
8m(n′) ≥

α(nc)
8m(nc) (because α

is an inverse polynomial); this contradicts the (nonuniform) indistinguishability of the simulation
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from the honest proof of statements of length n. Thus, the statistical distance between the output

bit of the challenger C in hybrids H0 and Hm(n′) is at most α(n′)
8 for sufficiently large n′. Since

RÂ
RO

(1n) breaks (C, t(·)) with advantage α(n′)
4 for sufficiently large n′, the claim follows.

Second Part of Theorem 3.1. We finally note that if (P, V ) is strong T (n)-simulatable, then
roughly the same argument as above works even if C and R are allowed to run in time poly(T ′(n′)).
Roughly speaking, negl(n) probabilities/advantages would be replaced by negl(T (n)), and α(n′)
will be replaced by α(T ′(n′)), but doing so requires leveraging strong T (n)-simulatability as well
as dealing with some other subtleties.

Before continuing, we make some important observations about the running time of the reduc-
tion and the advantage α of breaking (C, t(·)). By definition, reduction R runs in time poly(T ′(n′)),
and given any adversary who breaks the soundness on message length n, R will win against
C with advantage at least α(T ′(n′)) for some inverse polynomial α(·). Because n′1/c ≤ n and
T ′(n) = T (n1/c), it holds that the reduction’s running time and its (desired) advantage to win in
challenge (C, t(·)) satisfy the following bounds:

poly(T ′(n′)) = poly(T (n′
1/c

)) ≤ poly(T (n)), (1)

α(T ′(n′)) = 1/poly(T ′(n′)) ≥ 1/poly(T (n)), (2)

where Equation 2 follows from Equation 1.
The proof now proceeds by showing the appropriate variants of Claim 3.2 and Claim 3.3.

Claim 3.4 (Variant of Claim 3.2). There is a negligible ν such that ARO breaks soundness of (P, V )

with probability 1− ν(T (n)). Moreover, RA
RO

(1n
′
) breaks (C, t(·)) with advantage α(T ′(n′))/2 for

sufficiently large n′.

Proof. Claim 3.4 can be proved similarly to Claim 3.2, while relying on strong T (n)-simulatability,
perfect completeness and some additional crucial observations. For clarity, we repeat the the proof
to highlight these subtleties. By perfect completeness of the scheme, Ã convinces the verifier
with probability 1. By T (·)-simulatability, Âf also convinces the verifier with probability 1 −
negl(T (n)). By poly(T (n)) hardness of the PRG g, ARO thus convinces the verifier with probability
1− negl(T (n)). Furthermore, except with probability 2−n/2 (over the choice of RO), ARO selects
a false statement x /∈ L. We observe that 2−n/2 < negl(T (n)), since we assume the existence of
poly(T (n))-secure PRGs, and that implies T (n) ∈ 2o(n). We can therefore conclude, by a union
bound, that there exists some negligible function ν such that with probability 1 − ν(T (n)), ARO

selects a statement x /∈ L and convinces the verifier as well. (Note that perfect completeness, or at
least completeness with probability 1−negl(T (n)) as opposed to just negl(n), is here being crucially
used. See Remark 3.6 for more discussion on how to relax this condition.)

The second part then follows using the same averaging argument and a union bound as in the
proof of Claim 3.2: By an averaging argument, with probability at least 1 − 2ν(T (n)) over the
choice of a random oracle f ← RO, Af breaks soundness of (P, V ) with probability at least 1/2.
Call any such f “good”. By Equation 1, we have that poly(T (n)) ≥ poly(T ′(n′)), thus 2ν(T (n) ≤
2ν(poly(T ′(n′))) = negl(T ′(n′)); thus the probability that f is good is at least 1 − negl(T ′(n′)).

Furthermore, note that for every good f , RA
f
(1n

′
) runs in time poly(T ′(n′)) and breaks (C, t(·))

with advantage α(T ′(n′)). By a union bound, it follows that RA
RO

(1n
′
) breaks (C, t(·)) with

advantage α(T ′(n′))/2 for sufficiently large n′.
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We next show the following variant of Claim 3.3.

Claim 3.5 (Variant of Claim 3.3). For sufficiently large n′, RÃ breaks (C, t(·)) with advantage at
least α(T ′(n′))/8.

Proof. By Claim 3.4, we have that RA
RO

(1n
′
) breaks (C, t(·)) with advantage α(T ′(n′))/2 for suffi-

ciently large n′. Recall the alternative (inefficient) attacker Â. The reduction can now run in time
poly(T ′(n′)) ≤ poly(T (n)) (by Equation 1), but again, by the poly(T (n))-indistinguishability of

Un and g(Un/2), it follows that RÂ
RO

(1n
′
) breaks (C, t(·)) with advantage at least α(T (n′))/4 for

sufficiently large n. The reason is that otherwise, we can use C,R and the simulator S (who all
run in time poly(T ′(n′)) ≤ poly(T (n)) and break the poly(T (n))-hardness of the PRG.

We now argue why the adversary Ã can be used instead of ÂRO and derive Claim 3.5. We follow
the same steps as in Claim 3.3. However, we shall use m(n′) = poly(T ′(n′)) ≤ poly(T (n)) hybrids,
because the reduction R can call its oracle poly(T ′(n′)) times. Now, for every pair of consecutive
hybrids Hi and Hi+1 the distinguishability gap that could be obtained by any poly(T (n))-time
distinguisher is at most negl(T (n)), due to the strong T (n)-simulatability property. Therefore,
the statistical distance between the output bit of the challenger in hybrids H0 and Hm(n′) is at

most m(n′) · negl(T (n)) = negl(T (n)). Since RÂ
RO

(1n) breaks (C, t(·)) with advantage α(T ′(n′))
4

for sufficiently large n′, it follows that RÃ breaks (C, t(·)) with advantage at least α(T ′(n′))/4 −
negl(T (n)). But, since α(T ′(n′)) ≥ 1

poly(T (n)) (by Equation 2) is non-negligible in T (n), we have

that α(T ′(n′))/4−negl(T (n)) ≥ α(T ′(n′))/8, for sufficiently large n′, which concludes the proof.

We now briefly discuss some extensions to Theorem 3.1

Remark 3.6 (Completeness Error vs. Probability of Breaking the Challenge). As stated in the
proof of Claim 3.4, when we deal with strong super-polynomial simulation, we are crucially relying
on perfect completeness. We here note relaxations that still enable the proof to go through.

Completeness Error negl(T (n)). If we assume the completeness error is negl(T (n)), (as opposed
to the standard notion of completeness error negl(n)), then the same proof still goes through,
as noted already in the proof of Claim 3.4.

Intractability Assumption Advantage 1/poly(n′). If considering reductions that break the in-
tractability assumption (C, t(·)) with advantage 1/poly(n′) (rather than 1/poly(T ′(n′))), then
it suffices to assume completeness error negl(n). The reason for this is that 1/poly(n′) ≥
1/poly(n) since the reduction is natural.

Threshold t(n′) = 0. Finally, if the threshold t(·) in the challenge (C, t(·)) is zero t(n′) = 0, then
we can again handle completeness error negl(n′) (even when the challenge only needs to
be broken with probability 1/poly(T ′(n′))). The reason is that there is no way to win a
challenge game with threshold t(·) with negative advantage (while doing so is possible when
t(n′) > 0) and hence we can obtain in the first part of Claim 3.4 that with probability
1 − negl(n′) − negl(T (n)) = 1 − negl(n′) over f ← RO, the adversary ARO is successful in

breaking soundness with probability 1/2. Then, for any such good f , RA
RO

would break the

challenge with advantage α(T ′(n′))/2 and for any bad f , RA
RO

still has advantage at least

zero. Combining these two, RA
RO

still breaks the challenge with advantage α(T ′(n′))/2.
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All t(·)-trivial Assumptions. One can generalize the argument above for the case of t(n′) = 0,
to any t(n′) as long as winning the challenge (C, t(·)) with advantage 0 (i.e., with probability
t(n′)) is possible (perhaps trivially) in poly(T ′(n′)) time. This is of course the case of t(n′) = 0,
but more generally for natural scenarios, such as indistinguishability games in cryptography
where t(n′) = 1/2, this is possible by simply outputting a random bit. Formally, we refer
to such assumptions as t(·)-trivial assumptions. In that case, we need to minimally change
the proof to make sure we never end up with a “too negative” advantage when using an
adversary A. In particular, let A be the fixed adversary on security parameter n. Then, the
reduction RA(1n

′
) can first “test” its adversary to make sure that RA(1n

′
) wins the challenge

with advantage at least −α(n′)/10. This can be done by running RA(1n
′
) poly(1/α(n′)) =

poly(T ′(n′)) many times against the poly(T ′(n′))-time adversary, and then rejecting A, if the
average probability of success is below t(n′) − α(n′)/100. If an adversary A is a successful
adversary, (except with negl(T ′(n′)) probability) RA(1n

′
) will pass this test. On the other

hand, if A does not pass this test, we will simply use the trivial adversary who wins the
challenge with non-negative advantage. Finally, if RA(1n

′
) wins the challenge with probability

at most t(n′)−α(n′)/100, (except with negl(T ′(n′)) probability) A will fail the test. Putting
these together, we obtain that the averaging argument of Claim 3.2 still holds as desired (with
just a worse constant next to α(n′)).
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A Natural vs. Semi-natural Reductions

In this section, we further discuss the choices made in Definition 2.5 and justify them. In particular,
we show that a less restrictive notion of a reduction implies the existence of a reduction satisfying
the restrictions of Definition 2.5. We start by defining a less restrictive form a reduction, which
allows the reduction to query the attacker on multiple security parameters. In particular, the
notion of semi-natural reduction is defined exactly as that of a natural reduction, except that we
skip condition (2).

Definition A.1 (Semi-natural Reductions). We say that R is a semi-natural black-box reduction
to breaking C = (C, t(·)), if R defined as in Definition 2.4, except we now only require the first
condition to the satisfied.

Note that in contrast to a natural reduction, a semi-natural reduction is allowed to call its
adversary on multiple security parameters n1, n2, . . . . The key result in this section is to show
that semi-natural reductions can be turned into natural ones. In fact, we shall show something
stronger: It will suffice to have a semi-natural reduction that only succeeds “infinitely-often” to
get a successful natural reduction. Towards formalizing this, we first formally provide a general
definition of what it means for a reduction to be successful.6

Breaking a Security Game. In the rest of the section, we will consider some fixed security
game C = (C, t(·)), and we study reductions from breaking C to breaking another fixed security-
game P = (P, s(·)). For both of them, we will also fix some concrete success probability advantages
ε(·), δ(·). For a security parameter n, we say that an adversary An breaks P, if it breaks it with
advantage at least ε(n) on security parameter n; for a security parameter n′, we say that the
reduction R breaks C, if it breaks it with advantage at least δ(n′) on security parameter n′. Note
that Definition 2.5 can be viewed as a special case where ε(n) = 1/2 and δ(·) is some a-priori fixed
inverse polynomial (i.e., the success probability of the reduction when having access to an attacker
succeeding with probability 1/2.)

To deal with more general primitives (e.g., digital signatures secure under adaptive chosen
message attacks), where the attacker’s communication complexity is not a-priori bounded, we will

6Note that in Definition 2.5, we only did this for the special security game of interest in this paper, that is, breaking
soundness of a 2-round argument.
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also allow both the reduction and the success probability to depend on the total communication
length; towards this, we fix `(n′) as an upper bound on the total message lengths that the adversary
sends to the reduction R when the reduction’s security parameter is n′.

Defining Success of Security Reductions. We start by generalizing the notion of a successful
natural reduction (i.e. generalizing Definition 2.5 to general security games). We here consider
a generalization where the reduction only needs to succeed on some (pre-defined) infinite set of
security parameters J . (Recall that we have here fixed some functions ε, δ, and the notion of
breaking is defined with respect to those fixed bounds.)

Definition A.2 (Success Criteria for Natural Reductions). Let R is be a natural reduction. We
call R successful over security parameters J if the following holds. Consider n′ ∈ J , and assume
that R(1n

′
) calls its oracle on security parameter n. Then, if A breaks P on the security parameter

n, we have that RA breaks C on security parameter n′.

For the case of semi-natural reductions, we will consider an even weaker notion of “infinitely-
often” success: we only require the reduction to succeed on infinitely many security parameters
n′ if given access to any attacker that succeeds on infinitely many security parameters n. To
keep this notion comparable with the success criteria for the natural setting, we again consider
a generalization where the infinitely-often criteria needs to hold on any infinite subset of some
(pre-defined) infinite set of security parameters I for the adversary.

Definition A.3 (Success Criteria for Semi-natural Reductions). Let R be a semi-natural reduc-
tion from breaking C to breaking P. We call R (infinitely-often) successful over a set of security
parameters I if the following holds. For every infinite set I ′ ⊆ I, there is an infinite set J such that
if A breaks P on all security parameters in I ′, then RA breaks C on all security parameters in J .

Before proving the main result of this section, we observe that this infinitely-often notion of
success indeed is weaker than the notion of success we used for natural reductions.

Proposition A.4. If R is a successful natural reduction over an infinite set J , then it is also an
(infinitely-often) successful semi-natural reduction over some infinite set I.

Proof. If R is a successful natural reduction over an infinite set J , and let c be the associated
security parameter blow-up. For every n′, let n = n(n′) be the relevant security parameter for
the adversary such that the reduction uses any successful adversaries over security parameter n to
break the challenger C over security parameter n′. Define I = {n(n′) | n′ ∈ J}. By the security
parameter blow-up property of a semi-natural reduction, recall that n′ ≤ (n(n′))c. Therefore, I has
to be infinite, since n′ ∈ J can be larger than any integer, and therefore n(n′) ≥ n1/c also has to
be larger than any integer.

We claim that R is a successful semi-natural reduction over the set I. Let I ′ ⊆ I be an infinite
subset of I. Then, consider J ′ = {n′ | n(n′) ∈ I ′}. By the definition of J ′ and the fact that R is a
successful natural reduction, if an adversary succeeds on all security parameters in I ′, RA breaks
the challenge on all security parameters in J ′ as well. As a result, R is also an (infinitely-often)
successful semi-natural reduction over I.

We now prove the main result of this section, showing that semi-natural reductions can be
turned into successful natural reductions.
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Lemma A.5 (Sparsification Lemma: From Semi-natural to Natural Reductions). Let T (·) be a
monotonically increasing function such that T (n) < 2n, and let R be a T (·)-time successful semi-
natural reduction from breaking P to breaking C over the natural numbers N. Then there is an
infinite set J and successful natural reduction R′ over J that runs in time poly(T (·)).

Proof. The idea is to first choose a sparse subset I ′ of adversary security parameters, such that a
semi-natural reduction R will not be able to query A on two different security parameters in I ′.
We then define J to essentially be the set of security parameters for C that the reduction R wins on
when given a successful adversary over security parameters n ∈ I ′. The formal argument follows.

Suppose R(1n
′
) runs in time T (n′) < 2n

′
and has security blow-up c. Let F (n) = 2n

c
, and

defined the set I ′ as {F (1), F (F (1)), F (F (F (1))), · · ·}. We claim that for any n′ ∈ N , R(1n
′
) can

call A on at most one security parameter n ∈ I ′. For sake of contradiction, suppose the reduction
asks A on n1 < n2 ∈ I ′. Then, by the security blow-up condition of R, we have

n′ ≤ nc1. (3)

In addition, by definition of I ′, we have 2n
c
1 ≤ n2, which together with Equation 3 implies that

2n
′ ≤ 2n

c
1 ≤ n2. (4)

On the other hand, since R needs to provide the security parameter in unary, 1n, to its attacker
while running in time at most T (n′), it holds that

n2 ≤ T (n′) < 2n
′
,

which contradicts Equation 4.
We now let R′(1n

′
) be the reduction that runs R(1n

′
) and only asks a query to A if it is for a

security parameter n ∈ I ′. Note that since R′ needs to query its attacker on the security parameter
n in unary, 1n, it suffices to be able to decide whether n ∈ I ′ in time poly(2n), to conclude that
R′ has polynomial overhead over R; to do this, we simply iterate F until we either hit n, or reach
a number that exceeds 2n. If n /∈ I ′, then R′ simply internally emulates the response of A by
answering ⊥. Since by the above argument, R(1n

′
) only queries its oracle on a single security

parameter in I ′, we have that R′ is a natural reduction. We now show that R′ is also successful.
Recall that R is an infinitely-often successful reduction. Since I ′ is infinite, there exists be an infinite
set J (depending on I ′) such that, whenever A is a successful attack on I ′, then RJ succeeds in
breaking C on security parameters in J . We now state and prove that R′ is a successful natural
reduction over J , which concludes the proof of Lemma A.5.

Claim A.6. Consider some attacker A that is successful on the set N. Then there exists some
infinite set J such that R′A succeeds in breaking C over security parameters in J .

Proof. Let the adversary A′ be defined as A on security parameters in I ′, and simply answering ⊥ on
all other security parameters. Recall that R′ does not call its adversary on any security parameter
outside I ′, so R′A and R′A

′
behave exactly the same. Moreover, RA

′
succeeds on security parameters

in J , by the definition of J and that the fact that A′ is successful over security parameters in I ′.
Therefore, R′A = R′A also succeeds in breaking C for security parameters in J .
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B Barriers for Nonuniform Reductions and Adaptive Soundness

Here we discuss extensions to our Theorem 3.1 to arbitrary nonuniform reductions, when the
reductions job is to prove adaptive soundness of the 2-message scheme.

Definition B.1 (Interactive Arguments with Adaptive Soundness). Let (P, V ) be a 2-message
interactive argument for the language L, where the verifier’s first message is only a function of the
length of the statement x to be proven. We say that an adversary P ∗ breaks the adaptive soundness
of (P, V ) with probability µ(n), if

Pr [r ← {0, 1}∞, q ← Vr(1
n); (x, aux)← P ∗(1n, q) : 〈P ∗(aux), Vr〉(x) = 1 ∧ x /∈ L ∩ {0, 1}n] ≥ µ(n)

where Vr denotes V with randomness fixed to r. We say that (P, V ) satisfies adaptive soundness,
if for any PPT adversary that breaks adaptive soundness of (P, V ) with probability µ(n), it holds
that µ(n) = negl(n).

We now define a general definition for nonuniform natural reduction; this definition is adapted
from [CLMP13]. We next define what it means for such a reduction to be successful in reducing
adaptive soundness to the hardness of some security game.

Definition B.2 (Nonuniform Natural Reductions). We say that R is a nonuniform natural black-
box reduction to breaking C = (C, t(·)), if R is an oracle machine such that the following holds.
For every security parameter n′, there exists some fixed security parameter n such that for every
z, R(1n

′
, z) only invokes its oracle on security parameter n. Moreover, there exists some constant c

(referred to as the security parameter blow-up) such that for every such n′, n, we have that n′ ≤ nc.

Definition B.3 (Nonuniform Natural Reductions for Adaptive Soundness of 2-Message Argu-
ments). Let (C, t(·)) be an assumption and (P, V ) a 2-message argument with adaptive soundness
syntax (for its verifier). We call R a nonuniform natural reduction for basing adaptive soundness
of (P, V ) on a T ′(·)-hardness of challenger (C, t(·)), if R is a nonuniform natural reduction and
there exists some inverse polynomial function α and a function Z(·) such that the following holds.
Consider some n, n′ such that RA(1n

′
) invokes its attacker on security parameter n, and let A be an

arbitrary deterministic attacker that breaks the adaptive soundness of (P, V ) with probability at
least 1/2 on security parameter (i.e., statement length) n. Then RA(1n

′
, Z(A)) runs in probabilistic

time poly(T ′(n′)) and breaks (C, t(·)) over security parameter n′ with probability t(n′) +α(T ′(n′)).

We proceed to state the extension of Theorem 3.1 to the nonuniform setting; note that we
rule out a larger set of “fully” nonunifornm reduction, but the impossibility result only applies to
arguments satisfying the stronger notion of adaptive soundness.

Theorem B.4 (Barriers against Nonuniform Reductions for Adaptive Soundness). Let T (n) be a
super-polynomial monotonically increasing function and assume the existence of T (n)-hard PRGs.
Then, there exists an NP-language L such that if (P, V ) is a 2-message T (n)-simulatable argument
for L with an efficient prover, then the following holds.

1. Consider some challenge (C, t(·)) where C is PPT, and assume the existence of a natural
nonuniform reduction for basing adaptive soundness of (P, V ) on poly-hardness of (C, t(·)).
Then (C, t(·)) can be broken in nonuniform PPT with advantage 1/poly(n′) for all sufficiently
large security parameters n′.
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2. Consider some challenge (C, t(·)) where C runs in probabilistic poly(T (·)) time, and assume,
further, that (P, V ) is strong T (·)-simulatable. Assume the existence of a natural nonuniform
reduction with security parameter blow-up c for basing adaptive soundness of (P, V ) on T ′(·)-
hardness of (C, t(·)), where T ′(n) = T (n1/c). Then (C, t(·)) can be broken in nonuniform
poly(T ′(n′)) time with advantage 1/poly(T ′(n′)) for sufficiently large security parameters n′.

Proof. At a high level, the proof is similar to that of Theorem 3.1, but we also use Lemma B.5 below,
due to [Unr07], which was also previously used in [CLMP13] to prove separation for nonuniform
security reductions.

Notation. Suppose S is a set of oracle queries and f is an oracle. By fS we refer to the partial
function that is defined over S and is equal to f on those points.

Lemma B.5 (Re-sampling of Random Oracles under Nonuniform Advice [Unr07]). Suppose D
is a (computationally unbounded) oracle algorithm that receives an nonuniform advice z of length
|z| = d about an oracle f ← RO and asks u queries to its oracle, and suppose z is computed using
a function Z that maps f to {0, 1}d. Then for every integer w, there is an (inefficient) function
Samp that gets as input some z ∈ {0, 1}d and f and outputs a set S of w points in the domain of
f such that the view of D in the following two experiments is

√
du/(2w) statistically close:

• (1) f ← RO, (2) z = z(f), and (3) Execute Df (z).

• (1) f ← RO, (2) z = z(f), (3), Get S ← Samp(z, f) (4) Re-sample f ′ ← (RO|fS) (i.e.,
sample f ′ ← RO conditioned on answers to S not changing), and (5) Execute Df ′(z).

Informally speaking, we use Lemma B.5 to fix part of the inefficient oracle (in the proof of
Theorem 3.1) and re-sample the rest of the adversary at random, and this way we essentially make
the nonuniform advice independent of the oracle. This allows us to switch the adversary from
inefficient to efficient on every other non-fixed point without the reduction noticing it.

We will only write the proof for the first part of Theorem B.4, and the second part will be a
straightforward adaptation of the proof of the second part of Theorem 3.1 using the same exact
technique that we apply to the first part of Theorem B.4.

We use the same PRG g and same language L as in the proof of Theorem 3.1. Again assume
(P, V ) is a 2-message T (·)-simulatable protocol for L with simulator S and in which P runs in
polynomial time.

Suppose further that there exists an inverse polynomial α and a polynomial-time natural nonuni-
form reduction R with corresponding auxiliary-input selecting function Z and security parameter
blow-up c, such that RA(1n

′
, Z(A)) that breaks the assumption (C, t(·)) with advantage α(n′) given

security parameter 1n
′

whenever A is a deterministic (computationally unbounded) adversary that
breaks soundness of (P, V ) with probability 1/2 on security parameter n.

Let S = S(x, z′) be the T (n)-time simulator for the verifier V ∗(x, z′), who sends its auxiliary
input z′ to the prover P to get a response a, and then simply outputs a. Consider some security
parameter n′ and let n denotes the security parameter R(1n

′
, ·) invokes its oracle on.

Adversaries. We define the following adversaries based on an oracle f : {0, 1}∗ 7→ {0, 1}∞.

• Inefficient Adversary Af : Given query (1n, q), Af uses f(1n, q) to sample (x, r) at random,
where x ∈ {0, 1}n is a statement and r is some randomness for S; A next computes a = S(x, q)
using r as randomness and outputs (x, a).
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• Inefficient Adversary Âf : Given query (1n, q), Âf uses f(1n, q) to sample (s, r) at random,
where s ∈ {0, 1}n/2 and r is some randomness for S; Â next computes x = g(s), and computes
a (by running S and r) just as A does.

• Efficient Adversary Ã: Given any new query (1n, q), Ã samples a random string s ∈
{0, 1}n/2, lets x = g(s), and generates a honestly generated proof (using P ) of x given the
first message q and using witness s.

We now go over Claim 3.2 and Claim 3.3 and adapt their statements and proofs to the new
nonuniform setting. Claim 3.2 holds exactly as stated. One difference in the proof is that the three
adversaries have a different syntax, but they are still indistinguishable in eyes of a polynomial-time
verifier, which is what we need to prove the first part of Claim 3.2. For the second part, by a similar
union bound, it again follows that RA

RO
(1n, Z(ARO)) breaks (C, t(·)) with advantage α(n′)/2 for

sufficiently large n′.
Claim 3.3 needs to change substantially. We cannot simply switch between the different adver-

saries without the reduction noticing it, due to the nonuniform advice. What we will do, however,
is to use Lemma B.5 as follows. We will fix the inefficient adversary’s responses to some of the
queries, so that the remaining part of the oracle RO is almost completely independent of the advice
(at least as much as the reduction can notice it through its interaction with its oracle). We then
hard-wire the answers into the code of the reduction R′ that breaks the challenge, and use the
efficient adversary to answer the remaining queries. The remaining steps are similar to the uniform
setting.

More formally, below, we will define a distribution over non-uniform PPT attackers B (more
precisely, a distribution over the nonuniform advice to be given to B) and show that B (with the
sampled advice z) breaks (C, t) with inverse polynomial advantage. This directly yields the theorem
as we can then simply nonuniformly fix the best nonuniform advice z.

We turn to defining the attacker B and the nonuniform advice it takes.

The Nonuniform Challenge Breaker B: B on input 1n
′

proceeds as follows:

1. Sample f ← RO and interpret this as the oracle that defines the inefficient adversary Af on
security parameter n′.

2. Let z = Z(Af ) be the nonuniform advice to be given to the security reduction R.

3. Interpret C communicating with RA as D of Lemma B.5 and apply this lemma with the
following parameters: Let u = poly(n′) be the query complexity of the reduction R and
d = |z|. Pick w = poly(n) large enough such that

√
d · u/(2w) ≤ α(n′)/4, and run Samp of

Lemma B.5 to obtain the set S.

4. For every query c = (1n, q) ∈ S, let ac be the simulated answer generated by the simulator
as executed by the adversary Af on query c using randomness f(1n, q).

5. Emulate RAf but for any query c ∈ S, provide the “hard-wired” answer ac; for any other
query c′ 6∈ S, use the efficient adversary Ã to answer c.

Before proving the claim, note that in the above description of the attacker B, the last emulation
step—which is the only step that will communicate with the external challenger—can be performed
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in PPT. This final step, however, requires the earlier steps to generate some nonuniform advice;
this advice consists of (1) the polynomial-size advice z (used by R), and (2) “hard-coded answers”
to a polynomial sized set of queries.

Let us now prove that this attacker B is successful.

Claim B.6. B(1n
′
) wins in the challenge (C, t(·)) with advantage at least α(n′)/16 given security

parameter n′.

Proof. To analyze the success probability of B, consider a hybrid attacker B′ that in the the last
step, samples a new random oracle f ′ ← (RO|fS), and emulates answers to queries c′ 6∈ S by using
the inefficient attacker Af

′
. By Lemma B.5, it holds that the output of C in an interaction with B′

given security parameter n′ is α(n′)/4-statistically close to the output of C in an interaction RA
RO

.

Since by the (analog of) Claim 3.2, RA
RO

wins with advantage α(n′)/2, we have that B′ wins with
advantage at least α(n′)/4. However, note that now, the oracle f ′ is completely independent of the
advice z given to the reduction B and the partially fixed oracle fS . Therefore, using exactly the
same argument as in the proof of Claim 3.3, we can switch from emulating the last step using the
inefficient adversary Af

′
to instead using the efficient adversary Ã and still preserve non-negligible

probability (α(n′)/4)/4 = α(n′)/16 of winning in the challenge (C, t(·)).

23


	Introduction
	Further Related Work on Separations

	Definitions
	Zero-Knowledge Arguments
	Intractability Assumptions and Black-Box Reductions

	Barriers for Proving Soundness of 2-Message SPS-ZK
	Natural vs. Semi-natural Reductions
	Barriers for Nonuniform Reductions and Adaptive Soundness

