
Profiled Model Based Power Simulator

for Side Channel Evaluation

Nicolas Debande1,2, Maël Berthier1, Yves Bocktaels1 and Thanh-Ha Le1

1 Morpho
18 chaussée Jules César, 95520 Osny, France

firstname.familyname@morpho.com
2 TELECOM ParisTech

46 rue Barrault F-75634 Paris Cedex 13, France
familyname@enst.fr

Abstract

An embedded cryptographic device performs operation on sensi-
tive data and as such, is vulnerable to side-channel attacks. This forces
smart-card manufacturers to carefully consider development of security
mechanisms. To accelerate this procedure, the use of power and elec-
tromagnetic simulator can be relevant and saves non negligible time.
Based on a high level simulator, we propose to use profiled abstract
models to gain accuracy on the simulated traces. These abstract mod-
els are obtained by profiling some parts of the target device which is
physically available by the evaluator.

keyword: Smart Cards, Power Simulation, Side Channel Analysis, Se-
curity Evaluation.

1 Introduction

The amount of embedded devices have considerably increased these last
years. Consequently, there is a real need for protecting information security
from malicious outsider. Nowadays, there exists a wide variety of techniques
to extract secret information from a device. In the context of embedded sys-
tem, Side Channel Analysis (SCA) exploits information leakages generated
by the hardware implementation of the system [6] [7]. The leakage can be

1

observed from the power consumption, the electromagnetic emanation or
even in the time execution of the device. Also, this context allows the at-
tacker to inject faults on the chip, which perturbs the correct behaviour
of the device. The efficiency of these attacks combined with the amount
of embedded device users implies the interest of the smart-card designers,
smart-card manufacturers, certification centres and research laboratories to
this subject. Indeed, a better knowledge of these physical attacks leads to
a better evaluation of the vulnerability or robustness of a device against
Side Channel attacks. Thus, a lot of countermeasures have been worked
out in order to secure embedded devices from these attacks. Companies
in the embedded systems sector are concerned by these security questions,
and have to guarantee information security on their products which ensures
information confidentiality or impossibility of reproduction, etc.

A way to evaluate the security of an embedded device is to attack it.
Indeed, the more efficient the attack, the less secured the device. Besides
having a good knowledge about SCA, to perform an attack requires an
amount of data curves, acquired from a physical device or from a simulator.

In the first case, the attacked device has to be in a post-conception step,
i.e. the device is ready to be sold (except the security validation), in order
to have relevant and realistic results. Indeed, the companies want to test a
device as near as possible than the final product. This is a non-negligible
constraint. When an software information leakage is found, developers in-
clude suitable countermeasures and load the new code on the device. If
the leakage comes from a hardware weakness, then the smart-card manu-
facturers have to patch the device before a security test is performed again.
The use of a power consumption (or electromagnetic emanation) simulator
is motivated by a gain of speed in the security evaluation. However, this
method is naturally less realistic than with real physical device.

To generate power consumption of a device while executing an operation
(e.g. an encryption) requires the knowledge of the hardware design. Indeed,
power consumption is deduced from the number of transistors used by the
device at each instant.

However in practice, many companies needs to verify the security of their
products while they do not even know precisely the hardware design of their
devices. Then in this context, the power consumption is particularly difficult
to simulate with the current tools. The high level simulator introduced in
this paper aims at creating simulated curves in this context, i.e. without
the knowledge of the hardware design. As the substitute for the design, the
simulator characterizes leakages thanks to side channel observations. After
the profiling phase, models are used to generate new traces.

2

The simulator allows to evaluate the device robustness for various leakage
models. Also, it can be used to deduce, from a given model, a new model
according to a code revising or a countermeasure adding. Additionally,
there is many approaches for the combination of the high level simulator
with the low level simulator. The high level simulator can take as inputs
the curves simulated by the low level simulator, in order to characterize a
leakage model. This model will be used to speed up the next simulation
processing. Another way to combine the two tools is to simulate a part of
the device with one simulator and another part of the device with the other.
The simulated curves will be construct according to some countermeasures,
selected by the user (noise, temporal warping, etc.). The simulator aims
at approaching as better as possible the effect of a given countermeasure, in
order to better predict its consequences. Also, the high level simulation is
light and fast, being suitable to generate training sets for academic purpose,
especially when no acquisition equipment is available.

In this paper, we considered attacks which exploit power consumption.
The introduced simulator aims at being a high level (or abstract level) plat-
form for evaluation of SCA vulnerability for embedded device.

We recall some existing simulators in Sec. 2. Then the simulator is
introduced in Sec. 3. The profiling phase and the pattern reconstruction
are described in Sec. 4 and Sec. 5 respectively. At last, some experimental
results are described in Sec. 6.

2 Previous Work

Sec. 2.1 shows several power simulators from the state of the art. Sec. 2.2
recalls some mathematical backgrounds about the stochastic methods.

2.1 Simulation

In this section are showed some low level power consumption simulator:
Nanosim, PINPAS, SCARD, MP-ARM and SystemC. Embedded device
simulators can be classified either ”analog”, based on differential equations
solvers (e.g. SPICE, ADS) or ”digital”, based on logical events propagation
(e.g. Ncsim, PrimePower, Modelsim). Some simulators are both analogue
and digital, as NanoSim. Analog simulators are low level but works with
only a small part of the circuit. Digital simulator are well-studied for big
circuits. However, these simulators do not have enough accuracy to extract
relevant information.

3

NanoSim is a transistor-level power simulator developed for CMOS and
BiCMOS circuit designs [9]. Transistor-level is the lowest possible level.
NanoSim contains also some analysis tools. However, the main goal of
Nanosim is to help designers for lower power but cannot works with high
level models so, it is not suitable for side channel analysis.

PINPAS (Program INferred Power Analysis in Software), developed by
the Eindhoven University of Technology and TNO-TPD in 2004, is a tool
which permit to generate power curves without physical device (see [5]). The
algorithm can also be chosen (DES, IDEA, etc) and even different hardware
implementation. However, PINPAS needs to know the hardware design and
the assembler code to work.

SCARD (Side Channel Analysis Resistant Design flow) is a tool which
aims to simulate side channel analysis effects, developed in 2005 [1]. This
tool proposes to evaluate the efficiency of a given countermeasure by at-
tacking the virtual device with the generated curves and with side channel
analysis. The distinctive characteristic of SCARD is that it already includes
an approach about high level simulation.

MP-ARM is a simulation platform for MP-SoC (Multi-Processor Systems-
on-Chip) based on SystemC (see [3]). This tool aims to ease the design step
of a MP-SoC. Its includes processor models, memory models and some other
pratical tools.

SystemC is used to describe material at a high level [2]. This permits
to simulate systems with a very high speed. However, it is only suitable for
functionality check and not for secret information leakages.

More recently, Thuillet et al. [10] introduced a high level simulator
which allows to construct traces without the knowledge of hardware design.
Based on a software code, the simulator compute all states for all regis-
ters. Then, power consumption traces are deduced from these states using
abstract models as the Hamming distance.

2.2 Stochastic Models

Stochastic model has been introduced by Schindler et al. in [8]. It allows to
profile the power consumption or electromagnetic emanation behaviour of a
device. Let’s assume that the device’s activity is expressed as:

C(t) = β0(t) +
n∑

i=1

βi(t)fi, (1)

where fi are n chosen functions and C(t) is an estimation of the power
consumption or electromagnetic emanation. Let’s assume that we want to

4

model a register r, during the storage process, then fi could be a function
of S0, the initial state of r and S1, the final state of r. In this case, profiling
step aims at computing weighting curves βi depending on all bits of a N -bits
register r and an additional weighting curve β0 which models the rest of the
circuit. The chosen function can be:

• n = 1, Hamming weight of S0 ⊕ S1

• n = N , fi is the ith bit of S0 ⊕ S1

• ...

Note: The choice of fi can be different between profiling and estimat-
ing. Indeed, a countermeasure can be simulate by a suitable choice of fi
functions. For example, we can simulate a balanced power consumption or
electromagnetic emanation by chosen fi such as:

fi =

{
1 if HW(S0 ⊕ S1)i = 1
0.9 if HW(S0 ⊕ S1)i = 0

where HW(S0 ⊕ S1)i is ith bit of the Hamming weight of S0 ⊕ S1.
When averaged activity has been computed, the variance of the noise is

characterized as follows:

v(t) = Var(C(t)− C̃(t)), (2)

where C(t) and C̃(t) are real and reconstructed traces respectively.

3 Description of the simulator

3.1 General Behaviour

The global behaviour of the simulator is described in Fig. 1. For the char-
acterization, we used the profiling phase introduced in [8]. Unlike template-
based profiling [4], stochastic models allows to easily reconstruct traces,
thanks to the linear regression. The characterization step is not dependent
of cryptosystems and implementations, when profiling registers behaviour.
Indeed, it takes on parameter only two successive states of a given register
(for instance, S0 is a part of the plain text and S1 the corresponding part of
the intermediate value at the first round). This step has to be repeated until
all registers is modelled (and possibly on each round). As the original profil-
ing method characterizes only one byte, we have to repeat this step as many
times than the number of registers. Then, these models are merged in the

5

final model. If the profiling phase is applied on a single round, the profiled
βi are used on all the other rounds. In Equ. 1, β0 is useless and never saved
in our case. However, when computing the noise variance, we compute the
averaged activity A which will be used to simulate new traces. Note that
all linear regression methods, and more generally all profiling methods, can
be used for the characterization step, as long as the traces reconstruction is
available with the abstract models.

The ”‘Algorithmic Behaviour”’ part aims at providing intermediate states
necessary for using previous profiled model. For instance, for using an ab-
stract model which characterize the Hamming weight of a variable, the sim-
ulator has to know all values of this variable. This part is similar than
the work provided by Thuillet et al. [10]. Additionally, the evaluator can
add functional information about leakages on other part of the device, as
the noise generated by the clock or the hardware design of a specific coun-
termeasure. This allows to combine information from different sources to
construct a single trace.

Fig. 2 shows an example of a simulated power consumption trace.

Figure 1: Conceptual model of the simulator

3.2 Objectives

The first goal of a simulator is to provide information something which does
not exist yet. In our case, we want to learn about secret leakage of an
embedded device, but we a need real device as an input for the simulator.

6

Figure 2: Comparison between a real and a simulated power trace

This implies we cannot use this kind of simulator in pre-conception. This
section clarifies the objectives of the high level simulator.

In the hardware context, we have a post-conception device and we char-
acterize a cryptoprocessor (with an unknown design). If some leakages are
found, one can wonder which hardware modifications could improve the de-
vice’s robustness. It seems complex to predict any modifications directly
on the characterized cryptoprocessor (e.g. to upgrade from unprotected to
masking implementation). However, models can be used to simulate mod-
ules adding such as noise or delay generator. The question is if stochastic
models are useful to give good predictions on hypothetical hardware counter-
measure adding. Hardware modules activity (as cryptoprocessors) depends
strongly of the design and the used technology. Thus, even a perfect char-
acterization of a hardware module could not lead to a realistic prediction.

An other possibility is to analyse how a micro-controller leaks in SCA
context. Indeed, many works show that SCA attacks are also very efficient
on software codes. Furthermore, reverse engineering techniques are actively
studied. From a known code and a real device, the high level simulator
can characterize each component of the microcontroller. This allows to
developers to validate a modified code without load it on the target device.
The gain in time is non negligible, especially if the device does not have flash
memory. Note that, unlike the hardware case, there no more limitations
about which countermeasures can be evaluated in the software case. Since
each CPU component is modelled, any code sequences can be simulated
without difficulty.

7

4 Profiling Phase

This section describes how the profiling phase is computed. The profiling
step allows to compute averaged power activity according to the chosen
models. Hardware and software case are dealt within two different sections,
Sec. 4.1 and Sec. 4.2 respectively. Then for both cases, the global averaged
activity A(t) is computed as follows:

A(t) = E[C(t)− P (t)], (3)

where C(t) is the profiled traces and P (t) is the reconstructed profiled signal.
The noise variance is modelled by computing:

v(t) = Var[C(t)− P (t)], (4)

4.1 The Hardware Case: cryptoprocessor

A first approach is to model a cryptoprocessor is to target state registers
using an arbitrary leakage model. By using first-order stochastic model, we
obtain as many weighting curves βi as bit register. Each βi represents the
main activity of one bit, in function of the time. Then in Equ. 3, A is the
averaged activity of the device. To improve the accuracy of the model, one
can repeat the process. Indeed, when computing the βi for the first time,
raw observations C(t) are used. With a second process, the βi are computed
again, but using modified observations g(C(t)) as follows:

g(C(t)) = C(t)−
∑
j

β1j (t)fj = β0(t) +

n∑
i=1

β2i (t)fi, (5)

where the βk(t) are the models computed at the kth iteration.
A natural assumption is to consider that the state register’s model are

invariant from a round to another. Fig. 4 shows averaged bit register models
of an hardware AES on the five last rounds. Clearly, the global activity is
constant modulo round. However, by analyzing models more precisely, we
noticed that the activity strongly differs when regarding on a single bit.
Except state registers, only key values are varying during the encryption.
That’s why we think that the variance of bit activity could be caused by the
key. Fig 3 shows clearly the influence of a key bit on the corresponding bit
activity. This shows that we have to also consider the different round keys
to construct our final model.

8

Figure 3: Influence of key bits on the model

Figure 4: Stochastic profiling applied on several rounds

4.2 The Software Case: microcontroller

In the software case, a first possibility is to study each CPU instruction
individually. For instance, registers which store opcodes and operands can
be characterized. In the other hand, it may be more relevant to analyze
instruction sequences, losing accuracy on each instructions but exploiting
additional information. As we want to the most independent as possible
than the software code (and the sequences), we choose to rule out the last
proposal (more appropriate in reverse engineering context). More precisely,
all microcontroller’s registers (instruction registers, program counter, con-
trol register, etc.) can be characterized using the same methodology than
for the hardware case, i.e. each register independently. For the profiling

9

step, we tried three ways to make partitions. First we focused only on the
target register (without taking into account the other registers), as usually.
However, this method cannot lead to a relevant characterization of the reg-
ister. The reason is that partitions are strongly affected by other activity,
especially caused by the opcode value. Second, we focused on the target
register and the opcode register: we compute an averaged trace for each
opcode, then subtract the corresponding pattern to data before partition-
ing. Again, this failed. At last, by only focusing on the target register and
according to a single opcode, we had relevant register’s model. Fig. 5 shows
different bit activity.

Figure 5: Different shapes for a bit flipping activity

5 Pattern Reconstruction

Curves are generated using all the models as follows:

C̃ = C̃0||C̃1||...||C̃p, (6)

where C̃i is ith cycle of the encryption. Each C̃i are in function of some
parameters, varying on the time (as intermediate values, operands, etc.).
They are defined as:

C̃i(t) = Ai(t) +

n∑
j=1

βj(t)fj . (7)

For instance, an hardware AES can be modelled with:

C̃i(t) = Ai(t) +

128∑
j=1

β1,j(t)f1,j(S0i, S1i) +

128∑
j=1

β2,j(t)f2,j(S1i) (8)

10

with
f1,j(S0i,S1i) = S0i(j)⊕ S1i(j) and
f2,j(S1i) = S1i(j),

where S0i(j) is the jth bit of the state S0.

6 Experimental Results

This section provide some experiments using the high level simulator. Sec. 6.1
discuss about the number of traces needed to obtain a model sufficiently ac-
curate. Then, we compare simulated traces with acquired ones is Sec. 6.3.

6.1 Quality of the obtained stochastic models

In order to evaluate the quality of our simulation method, we compare the
efficiency of standard SCA attacks on simulated sets and experimental ac-
quired sets. As a metric, we used the success rate of the attacks. Fig. 6
shows success rates of CPA on an acquired set and several simulated sets,
according to the number of traces used to construct the stochastic models.
As expected, success rate is very sensitive to the size of used set. Further-
more, we can see that, comparing to the real traces, it is easier to attack
with CPA on simulated traces when the model is sufficiently accurate (i.e.
when computed with a sufficient number of traces).

Figure 6: CPA success rates according to different size of profiled sets

11

6.2 Effect of several iterations during the profiling step

As mentionned in Sec. 4.1, the evaluator can repeat the profiling process
using Equ. 5 in order to obtain more accurate models. In this section,
we compare profiled models using one and two iterations. We simulate an
amount of 10000 traces by fixing manually the βi values and the standard
deviation of Gaussian noise. As metric, we compute the square distance
between the fixed βi and profiled ones. Tab. 1 shows the results for five
different noise level. Clearly, we see that the efficiency of the second process
highly depends on the standard deviation of the noise. With a low level, the
abstract models can significantly be improved with an extra iteration, while
it practically has no effect when the noise is too high.

Table 1: Square distances between real and profiled models
σ = 1 σ = 2 σ = 5 σ = 10 σ = 20

#iter = 1 0.6944 0.6826 1.3254 5.2614 24.903

#iter = 2 0.0665 0.2556 1.1010 4.9972 23.749

Ratio 10.4 2.67 1.20 1.05 1.05

6.3 Comparison with acquired traces

The main goal of the simulator is to be realistic as far as possible. Using
guessing entropy metric, we can evaluate the realistic property of a simulated
set of traces. We used five sets of traces to make the comparison. The
first set is made up of acquired traces of a hardware AES on SASEBO-
B. Using this real set, we made profiling according to Hamming weigth
and Hamming distance model. This leads to three simulated set of traces:
using the Hamming weight model (HW), the Hamming distance model (HD)
and the combination of both models. At last, we simulate three sets using
a very high level model (without profiling phase). Actually the last sets
corresponds to stochastic models with all coefficient equal to one. Fig. 7
and Fig. 8 shows the guessing entropy of a CPA on all these sets. In Fig. 7,
we can see that, simulated attacks using profiled model are quite close to the
real attack. Furthermore, using both profiled models (HD and HW) leads
to a better prediction of the attack efficiency. In Fig. 8, guessing entropy
curves are quite different from the simulated to the real one. We can explain
this by assuming that there is some leakages we did not consider and which
are dependent on the Hamming weight of the manipulated data. Thus, by
reconstructing the traces, the simulator increased the signal to noise ratio

12

and so favour the CPA attack.

Figure 7: CPA guessing entropy using Hamming Distance model

Figure 8: CPA guessing entropy using Hamming Weight model

7 conclusion

In this paper, we show how to make a high level simulator more realistic
using acquired traces as input for profiling. The profiling phase brings to
the simulator abstract models which are then used to construct new traces.
The advantages of this approach is the possibility of combining these profiled
models with new assumption on the device as some hardware countermea-
sures or a different code sequence. We show that using profiled models leads
to a more realistic simulation compared to a very high level simulator.

13

References

[1] M. J. Aigner, S. Mangard, F. Menichelli, R. Menicocci, M. Olivieri,
T. Popp, G. Scotti, and A. Trifiletti. Side channel analysis resistant
design flow. In ISCAS. IEEE, 2006.

[2] D. Automation. Ieee standard systemc language reference manual.
IEEE Computer Society, 2002(March):1666–2005, 2006.

[3] L. Benini, D. Bertozzi, A. Bogliolo, F. Menichelli, and M. Olivieri.
Mparm: Exploring the multi-processor soc design space with systemc.
VLSI Signal Processing, 41(2):169–182, 2005.

[4] S. Chari, J. R. Rao, and P. Rohatgi. Template attacks. In B. S. K. Jr.,
Çetin Kaya Koç, and C. Paar, editors, CHES, volume 2523 of Lecture
Notes in Computer Science, pages 13–28. Springer, 2002.

[5] J. den Hartog, J. Verschuren, E. P. de Vink, J. de Vos, and W. Wiersma.
Pinpas: A tool for power analysis of smartcards. In D. Gritzalis, S. D. C.
di Vimercati, P. Samarati, and S. K. Katsikas, editors, SEC, volume
250 of IFIP Conference Proceedings, pages 453–457. Kluwer, 2003.

[6] P. C. Kocher. Timing attacks on implementations of diffie-hellman, rsa,
dss, and other systems. In N. Koblitz, editor, CRYPTO, volume 1109
of Lecture Notes in Computer Science, pages 104–113. Springer, 1996.

[7] P. C. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In M. J.
Wiener, editor, CRYPTO, volume 1666 of Lecture Notes in Computer
Science, pages 388–397. Springer, 1999.

[8] W. Schindler, K. Lemke, and C. Paar. A stochastic model for differential
side channel cryptanalysis. In CHES, pages 30–46, 2005.

[9] B. Sukhwani, U. Padmanabhan, and J. M. Wang. Nano-sim: A step
wise equivalent conductance based statistical simulator for nanotech-
nology circuit design. CoRR, abs/0710.4633, 2007.

[10] C. Thuillet, P. Andouard, and O. Ly. A smart card power analysis
simulator. In CSE (2), pages 847–852, 2009.

14

