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Abstract

In this paper we investigate the topic of integrated public-key encryption (PKE) and
public-key encryption with keyword search (PEKS) schemes (PKE-PEKS as shorthand).
We first formalize the strongest security notion to date for PKE-PEKS schemes, named
joint CCA-security. We then propose two simple constructions of jointly CCA-secure PKE-
PEKS schemes from anonymous (hierarchical) identity-based encryption schemes. Besides,
we also define the notion of consistency for PKE-PEKS schemes, as well as revisit its related
notions (including consistency of PEKS schemes, robustness and collision-freeness of IBE
schemes), which may be of independent interest.
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1 Introduction

Public-key encryption with keyword search (PEKS) [BDOP04] is an useful primitive which
allows one to delegate to a third party the capability of “searching on public-key encrypted
data” without impacting privacy. It has found numerous applications in various fields such as
the design of spam filter and searchable cloud storage. Boneh et al. [BDOP04] illustrated this
mechanism more precisely with the following example. Let (pk, sk) be Alice’s public/secret key
pair. Alice wishes her email gateway can identify if the incoming email contains a particular
keyword w. To do so, Alice sends the gateway a token tw for w. When Bob sends Alice an
email m labeled by a keyword w privately, he first encrypts m under pk using a standard
PKE scheme, then “encrypts” w using a PEKS scheme. The overall encrypted email is of the
form PKE.Encrypt(pk,m)||PEKS.Encrypt(pk,w). Upon receiving an encrypted email, the email
gateway uses its token tw to test if the email is labeled by w. Except the testing result, the
gateway learns essentially no more information about this email and the keywords.

Chosen-Ciphertext Security for PEKS. The original security notion for PEKS schemes is
indistinguishability against chosen-plaintext attack (IND-PEKS-CPA)1 defined in [BDOP04],
where the adversary is only given access to a token oracle. Obviously, this security notion
fails to capture the attacks from more powerful adversaries, say, who can inject packets into
the network and observe actions taken based on them. For instance, an adversary can send a
PEKS ciphertext s to a gateway holding token tw, then learns some useful information from the
routing results. It is thus necessary to consider a stronger security notion for PEKS, namely
IND-PEKS-CCA security [ABN10]. In the corresponding security experiment, besides token
oracle, the adversary is also given access to a test oracle which can decide if a PEKS ciphertext
s encrypts a keyword w.

Integrated PKE and PEKS. PEKS is introduced to provide searchable functionality for
PKE. As pointed out by [BDOP04, BSNS06, ZI07, ABN10], due to lack of data retrieval func-
tion, a PEKS scheme is only meaningful when coupled with a PKE scheme. For this reason, a
full-fledged primitive named integrated PKE and PEKS scheme2 is suggested, which combines
PEKS with PKE to encrypt message m and its keyword w together. It is thus of practical inter-
est to consider PKE and PEKS in a joint sense rather than separately. From here on, we refer
to integrated PKE and PEKS scheme as PKE-PEKS scheme. Loosely speaking, we say a PKE-
PEKS scheme is jointly secure if it provides data privacy (the confidentiality of m) and keyword
privacy (the confidentiality of w) simultaneously. However, constructing a jointly secure PKE-
PEKS scheme in a strong sense is not an easy task. As envisioned by [BSNS06, ZI07, ABN10],
the straightforward approach of concatenating ciphertexts of PKE and PEKS works fine for
joint CPA-security, but is insufficient for joint CCA-security. Note that for PKE, CCA-security
is closely related to the notion of non-malleability [DDN00], which captures an adversary’s in-
ability that given a ciphertext c to output a different ciphertext c′ such that the plaintexts m,
m′ underlying these two ciphertexts are “meaningfully related”. In what follows, we will use
the notion of non-malleability to analyze previous constructions and illustrate our approaches
on an intuitive level.

1In the PEKS setting, “plaintext” in fact means “keyword”. We will slightly abuse this term where it is clear
from the context.

2Integrated PKE and PEKS scheme is also known as combined PKE/PEKS scheme.
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1.1 Known Solutions and Their Limitations

Baek et al. [BSNS06] first considered the problem of combining PKE and PEKS in a secure
manner. They also gave a joint security notion for PKE-PEKS scheme. However, as pointed
out in [ZI07], their notion is not complete since it only considers data privacy, but neglects
keyword privacy. Besides, their notion is restricted for that in the challenge stage the target
keyword w∗ must differ from the target messages m∗0 and m∗1. In the same paper, two solutions
meeting their security notion are proposed in the random oracle model. One is a concrete
scheme based on the REACT version of ElGamal [OP01] (serve as the PKE component) and
the BDOP-PEKS [BDOP04] (serve as the PEKS component). The main idea is exploring the
randomness reuse technique to bind a PKE ciphertext and a PEKS ciphertext together and
then using a hash function (act as a MAC) to protect integrity of the overall ciphertext. The
other is a generic construction based on a OW-PCA (one-wayness against plaintext checking
attack) secure PKE scheme and a PEKS scheme equipped with the same public/secret key pair
as the PKE scheme. These requirements may be too stringent for a generic construction.

Be aware of the incompleteness of Baek et al.’s security notion, Zhang and Imai [ZI07] gave
another security notion which captures both data privacy (IND-PKE-CCA) and keyword privacy
(IND-PEKS-CPA). They also gave a generic construction based on two independent primitives:
a tag-based CCA-secure PKE scheme and a CPA-secure PEKS scheme. To bind them together,
the PEKS ciphertext s is used as a part of the tag for the PKE scheme. The public/secret
key pair of the resulting PKE-PEKS scheme is a direct composition of the two corresponding
public/secret key pairs belong to the underlying PKE scheme and PEKS scheme, respectively.
However, their construction merely performs one-directional binding, not bidirectional binding.
Though the PKE-PEKS ciphertext is non-malleable with respect to the PKE component, it
is still malleable with respect to the PEKS component. This explains why their PKE-PEKS
construction [ZI07] has IND-PKE-CCA security for data privacy but only IND-PEKS-CPA
security for keyword privacy. Besides, in order to achieve joint security (the main principle is
to avoid mutual dependency), their PKE-PEKS construction resorts to key separation strategy,
i.e., using different keys for different cryptographic operations. As a result, the resulting PKE-
PEKS construction suffers from double key size, which could be critical in resource-constrained
applications.

Abdalla et al. [ABN10, Appendix F] noted that the security notions for PKE-PEKS schemes
considered in [BSNS06, ZI07] are not strong enough since the adversary is not given access to a
test oracle. Thereby, they introduced a new combined CCA-security notion that the adversary
can access to both a decryption oracle and a test oracle.3 They also sketched how to construct
a PKE-PEKS scheme satisfying their security notion in the standard model with the techniques
of [DK05], that is, choose a tag-based CCA-secure PKE scheme and a tag-based CCA-secure
PEKS scheme4, then bind the PKE ciphertext and the PEKS ciphertext together by using the
verification key of a one-time signature scheme as a common tag, and append a signature of the
two ciphertexts under the corresponding signing key. It is worth to note that the underlying tag-
based PKE component and tag-based PEKS component are already CCA-secure themselves,
which might make the resulting PKE-PEKS scheme a bit expensive. Besides, their construction
also suffers from double key size due to the adoption of key separation strategy.

3This combined CCA-security notion could be made stronger by giving the adversary access to an additional
token oracle. We believe the absence of the token oracle is probably a careless mistake.

4In [ABN10], tag-based is referred to as label-based [Sho01].
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1.2 Our Contributions

Opposed to key separation strategy, key reuse strategy dictates using the same key for multiple
cryptographic operation [HP01]. Similar to the case of joint encryption and signature analyzed
in [PSST11], using the same key pair for both PKE and PEKS components in PKE-PEKS
scheme can offer us at least two practical advantages: 1) reduce storage requirement for cer-
tificates as well as key pairs; 2) reduce the cost of public key certification, and the time taken
for public key verification. These savings may be critical in resource-constrained applications.
With this motivation in mind, we focus on building jointly CCA-secure PKE-PEKS schemes
with single key pair, a problem of which, as we discussed before, there currently exists no
satisfactory solution.

We first formalize the notion of joint CCA-security for PKE-PEKS schemes in Section 3.1 by
incorporating IND-PKE-CCA security and IND-PEKS-CCA security together in a joint sense.
The resulting joint CCA-security is strictly stronger than previous ones [BSNS06, ZI07].

We then present two generic constructions of jointly CCA-secure PKE-PEKS schemes from
(hierarchical) IBE schemes5 in Section 4 and Section 5, respectively. The first construction is
based on any two-level HIBE scheme that is anonymous against chosen-plaintext attack (ANO-
HIBE-CPA), while the second construction is based on any IBE scheme that is anonymous
against chosen-ciphertext attack (ANO-IBE-CCA) and weakly robust. Our two constructions
embody the same main idea that applying the BCHK transform [BCHK07] and the BDOP
transform [BDOP04, ABC+08] to the underlying (H)IBE scheme in an interweaving manner.
Our constructions have several advantages over existing ones. Firstly, our constructions satisfy
the strongest security notions for PKE-PEKS so far.6 Secondly, our constructions use a single
key pair for both PKE and PEKS operation, thus enjoy the advantages brought by key reuse
as described above. Thirdly, our constructions are mainly derived from one (H)IBE scheme,
thus the major operations of PKE and PEKS are actually implemented in one (H)IBE scheme.
This enables us to achieve better practical efficiency and compact cryptographic code. So far, a
number of anonymous (H)IBE schemes based on various assumptions are known, such as [BF03,
BGH07, GPV08] in the random oracle model and [Gen06, DIP10, ABB10, CHKP10, SC11] in
the standard model. Instantiating our constructions from these (H)IBE schemes yields jointly
CCA-secure PKE-PEKS schemes based on the same assumptions.

As another contribution, in Section 6 we formally define the notion of consistency for PKE-
PEKS schemes, as well as revisit its related notions, including consistency of PEKS schemes,
robustness and collision-freeness of IBE schemes. For a PEKS scheme derived from the BDOP
transform [BDOP04, ABC+08], we prove that it is consistent as long as the underlying IBE
scheme is weakly collision-free. Previous result [ABN10] has to assume the underlying IBE
scheme to be strong robust. We also present enhanced notions of consistency for PEKS schemes
and collision-freeness for IBE schemes. Interestingly, most schemes satisfying the original no-
tions also satisfy the enhanced ones without any modification.

2 Overview of Our Approach

Before sketching our approach, we first describe our definition of joint CCA-security for PKE-
PEKS schemes more clearly, then identify the main challenges in constructing jointly CCA-
secure PKE-PEKS schemes.

5Our constructions also make use of a one-time signature scheme, but it can be derived from one-way functions
which in turn implied by CPA-secure encryption.

6We believe the two key PKE-PEKS construction sketched in [ABN10] is also jointly CCA-secure.
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2.1 Joint CCA-security for PKE-PEKS

The standard security notion for PKE is IND-PKE-CCA security while the strongest security
notion so far for PEKS is IND-PEKS-CCA security (cf. definition in Appendix A.1). Towards
an as-strong-as-possible joint security, we require that a PKE-PEKS scheme retains IND-PKE-
CCA security (with respect to data privacy) in the presence of additional unrestricted token
oracle and test oracle, and meanwhile retains IND-PEKS-CCA security (with respect to keyword
privacy) in the presence of an additional unrestricted decryption oracle.

2.2 The Main Challenges

Minimizing the Size of Keys. In PKE-PEKS system, the key pair for PKE operation and
the key pair for PEKS operation are usually different. Therefore, the overall key pair for PKE-
PEKS comprises two key pairs. To settle the problem of key expansion, a natural solution
is adopting the key reuse strategy, namely using a single key pair for both PKE and PEKS
operation. Thus the primary difficulty is to come up with a PKE component and a PEKS
component sharing the same key pair. Moreover, in our joint CCA-security notion for PKE-
PEKS, the adversary against data privacy has unrestricted access to an additional token oracle
and an additional test oracle, while the adversary against keyword privacy has unrestricted
access to an additional decryption oracle. It is very likely that the PKE component and the
PEKS component badly interacts with one another when they use the same key pair, and
thus compromise data privacy or keyword privacy, leading to the corruption of joint security.
Therefore, delicate technique need to be used to dismiss such bad interaction due to mutual
dependency. Perhaps exactly for this concern, constructions in [ZI07] and [ABN10] followed key
separation strategy, which easily avoid possible mutual undermining since the PKE operation
and the PEKS operation are essentially independent, but at the expense of doubling key size.

Achieving the Joint CCA-security. To attain joint CCA-security is not an easy job. Intu-
itively, the PKE-PEKS ciphertext should be non-malleable with respect to both PKE compo-
nent and PEKS component. Several subtle issues may arise when binding a PKE scheme and a
PEKS scheme together to build a joint CCA-secure PKE-PEKS system. One issue is that the
binding should be bidirectional, otherwise the resulting PKE-PEKS could not be jointly CCA-
secure since the overall ciphertext is malleable with respect to either PKE component or PEKS
component. For example, if one binds a CCA-secure PKE scheme and a CCA-secure PEKS
scheme in the way like [ZI07], the binding is only unidirectional. The other issue is that both the
user and the gateway should be able to check the well-formedness of a PKE-PEKS ciphertext.
Note that in PKE-PEKS systems, the decryption capability of the user is more powerful than
that of the gateway. It is possible that the gateway is incapable to check the well-formedness
of a ciphertext without the knowledge of the secret key (in this case the adversary may violate
keyword privacy by feeding the gateway with malicious-generated ciphertext). We provide such
an example in Remark 5.2 (the first attempt of using MAC to replace one-time signature).

2.3 Our Approach

We first focus on how to obtain a PKE component and a PEKS component equipped with the
same key pair. Our starting point is a CPA-secure and anonymous IBE scheme (see definition
in Appendix A.2) consisting of algorithms Setup, Extract, Encrypt, Decrypt. On the one hand,
the BCHK transform [BCHK07] shows how to build a CCA-secure PKE from a CPA-secure
IBE. Interestingly, [CHK04] indicated that a lite version of the BCHK transform also allows
one to create a CCA1-secure (thus of course CPA-secure) PKE with essentially no overhead as
compared to the underlying IBE, which works as follows: for key generation one runs Setup
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and uses the resulting master public/secret key pair as the public/secret key pair (pk, sk). To
encrypt a message m under pk, one chooses a random “identity” c1, then sets the ciphertext
c to be (c1, c2), where c2 ← Encrypt(pk, c1,m). To recover the message from a ciphertext
c = (c1, c2), one computes m ← Decrypt(dk, c2), where dk ← Extract(sk, c1). The resulting
PKE scheme is essentially tag-based where c1 serves as the tag. On the other hand, the BDOP
transform [BDOP04, ABC+08] shows how to build PEKS from anonymous IBE, which works
as follows: key generation is performed the same way as the BCHK transform. To generate a
token for a keyword w, the user computes tw ← Extract(sk, w), where tw is actually a decryption
key for “identity” w. To encrypt a keyword w under pk, one picks a value s1 from the message
space of the underlying IBE, then computes s2 ← Encrypt(pk,w, s1) and sets the final ciphertext
s to be (s1, s2). The gateway determines if s encrypts the keyword w by testing if s1 =
Decrypt(tw, s2). Thus, applying the lite BCHK transform and the BDOP transform to a CPA-
secure and anonymous IBE scheme simultaneously yields a PKE scheme and a PEKS scheme
with the same key pair. By directly combining them together, we obtain a basic PKE-PEKS
construction that uses a single key pair for both PKE operation and PEKS operation. Next,
we show how to change it to a jointly CCA-secure one.

Securely Reusing the Keys. The above basic PKE-PEKS construction exactly implement
the key reuse strategy. However, as we envisioned before, key reuse is not without its side effect.
Observe that in the basic construction, a token for keyword w is exactly a decryption key for
“identity” w. This fact enables the adversary to launch the following attack against data privacy:
given a PKE-PEKS ciphertext u = (c, s) encrypting message-keyword pair (m,w), where c =
(c1,Encrypt(pk, c1,m)) is a PKE ciphertext of message m and s = (s1,Encrypt(pk, w, s1)) is a
PEKS ciphertext of keyword w, it can simply decrypt c by querying the token for keyword “c1”.
The reason underlying such attack is the tag space of the PKE component and the keyword
space of the PEKS component overlap each other, and consequently the decryption keys and
tokens might be meaningfully related. We resolve this problem by using a bit prefix to provide
domain separation between decryption keys and tokens, that is, mapping tag c1 to “identity”
0||c1 while mapping keyword w to “identity” 1||w. Our use of bit prefix trick to partitioning
the identity space is reminiscent of prior work in the context of joint security of encryption and
signature [PSST11]. The difference is that prior work uses bit prefix to separate private keys
and signatures.

Securely Binding PKE and PEKS. After securely reusing the key pair, we then focus on
securely binding. In the above enhanced basic construction, both the PKE component and the
PEKS component are only CPA-secure, and there is no binding between them. Therefore, it
can not resist chosen-ciphertext attack. Our initial attempt is as follows: generate a one-time
signature key pair (vk, skσ), create a PKE ciphertext c of m under tag vk, create a PEKS
ciphertext s of w as before, then sign the concatenate ciphertext c||s using sk and append
a signature σ. However, the overall ciphertext is still malleable with respect to the PEKS
component. To see this, note that for a ciphertext (vk, c, s, σ), an adversary can simply generate
a new signature pair (vk′, sk′σ), then creates a new valid ciphertext (vk′, c′||s, σ′). This is because
the PEKS operation is still independent to the PKE operation. We solve this problem by setting
vk as a part of input of the PEKS encryption algorithm.

One idea is encoding vk to the “identity” in the PEKS component. More precisely, we set
keyword w as the first level identity and use vk as the second level identity. In this way a PKE
ciphertext and a PEKS ciphertext are binded together under a common value vk. Coupled
with a one-time signature, the final PKE-PEKS ciphertext is non-malleable with respect to
both the PKE component and the PEKS component (see Section 4 for details). The advantage
of this construction is that the joint CCA-security immediately follows from CPA security and
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anonymity of the underlying HIBE scheme. The crux is that in the security proof, the use
of one-time signature forces the adversary’s test queries and decryption queries to differ from
the challenge ciphertext in a special way. The disadvantage is that the underlying IBE scheme
should be hierarchical to accommodate vk as a second level identity.

The other idea is encoding vk to the “message” in the PEKS component. We stress that in
such construction, the overall ciphertext is still malleable with respect to the PEKS ciphertext.
This is because the PEKS ciphertext might be malleable with respect to “message” vk if the
underlying IBE scheme is merely anonymous against chosen-plaintext attack. Therefore, to
guarantee joint CCA-security, the underlying IBE scheme should be at least anonymous against
chosen-ciphertext attack (ANO-IBE-CCA). Somewhat surprisingly, ANO-IBE-CCA anonymity
is still inadequate. Unlike the case of our first construction, the use of one-time signature here
cannot force the adversary’s test queries to differ from the challenge ciphertext, since now vk acts
as message in the PEKS encryption. Consequently, when reducing keyword privacy to ANO-
IBE-CCA anonymity of the underlying IBE, the simulator has to handle the test query directly
related to the challenge ciphertext itself. We overcome this obstacle by requiring the underlying
IBE to satisfy a natural property, named weak robustness [ABN10, FLPQ13] (see definition in
Section 6), which stipulates the decryption result of an honestly-generated ciphertext is ⊥ if the
decryption id′ does not match the encryption id. We will elaborate this on details in the proof
of Lemma 5.2.

2.4 Related Work

Boneh et al. [BDOP04] first proposed the concept of PEKS and discussed the connection between
PEKS and IBE, that is, PEKS implies IBE. Also a transform from anonymous IBE to PEKS
(known as the BDOP transform) is implicitly presented in [BDOP04] without a formal proof.
Shortly afterwards, Abdalla et al. [ABC+08] revised the BDOP transform and provided a formal
proof. Their revised transform is known as the new BDOP transform. In the same paper, they
also systematically studied the notion of consistency of PEKS.

Subsequent works are divided into two main directions. One direction focuses on proposing
new constructions and security models. Di Crescenzo and Saraswat [DS07] constructed a PEKS
scheme based on a variant of the Cocks’ IBE [Coc01] in the random oracle model. As stated
above, Baek et al. [BSNS06], Zhang et al. [ZI07], and Abdalla et al. [ABN10] gave their own
security notions and constructions for PKE-PEKS schemes. The other direction focused on
extending the basic concept of PEKS. Boneh and Waters [BW07] constructed a PKE scheme
that supports conjunctive, subset, and range queries over the keywords. Boneh et al. [BKOI07]
showed how to create a PKE scheme that allows PIR (Private Information Retrieval) searching.
Fuhr and Paillier [FP07] introduced the concept of decryptable PEKS which allows the user
to retrieve the keywords. They also gave a concrete construction in the random oracle model.
Hofheinz and Weinreb [HW08] then gave a decryptable PEKS scheme in the standard model.

3 Definitions

Notation and conventions. For a finite set X, we use x
R←− X to denote that x is sampled

from X uniformly at random. Throughout the paper, κ ∈ N denotes the security parameter.
We use ⊥ to represent a distinguished symbol which falls outside the message space, and we
use x||y to represent the string concatenation of x and y. A probabilistic polynomial-time
(PPT) algorithm A is a randomized algorithm that runs in time polynomial in κ. If A is a
randomized algorithm, we write y ← A(x1, . . . , xn; r) to indicate that A outputs y on inputs
(x1, . . . , xn) and random coins r. Sometimes for brevity, we omit r when it is not necessary to
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make explicit the random coins A uses. Particularly, for probabilistic encryption schemes, we
say c an honestly-generated ciphertext if it is output by the encryption algorithm with fresh
random coins. In this paper, all the security experiments are played between an adversary A
and a challenger CH. The advantage of the adversary is defined over the random coins used by
A and CH.

In our constructions, we will mainly use an (H)IBE scheme and a one-time signature scheme
as the underlying primitives (see definitions and security notions of them in Appendix A.2
and A.3, respectively). Let tg, ts, and tv be the maximum times for key generation, signing,
and verification respectively in a signature scheme, and let tb, tk, te, and td be the maximum
times for key generation, decryption key extraction, encryption, and decryption respectively in
an (H)IBE scheme.

3.1 Integrated PKE and PEKS

We begin by reviewing the syntax of a PKE-PEKS scheme [BSNS06, ZI07, ABN10].

Definition 3.1. A PKE-PEKS scheme consists of the following five PPT algorithms:

• KeyGen(κ): take as input a security parameter κ, output a public/secret key pair (pk, sk).
Let M be the message space, W be the keyword space, and U be the ciphertext space.
We assume pk to be an implicit input for algorithms Decrypt, TokenGen, as well as Test.

• Encrypt(pk,m,w): take as input a public key pk, a message m ∈M and a keyword w ∈W ,
output a PKE-PEKS ciphertext u.

• Decrypt(sk, u): take as input a secret key sk and a PKE-PEKS ciphertext u ∈ U , output
the plaintext m ∈M or a reject symbol ⊥ indicating u is invalid.

• TokenGen(sk, w): take as input a secret key sk and a keyword w ∈W , output a token tw.

• Test(tw, u): take as input a token tw for keyword w and a PKE-PEKS ciphertext u ∈ U
which encrypts keyword w′ under pk, output 1 if w′ = w and 0 otherwise.

Correctness. For any (pk, sk) ← KeyGen(κ), any m ∈ M , any w ∈ W and any tw ←
TokenGen(sk, w), we have Decrypt(sk,Encrypt(pk,m,w)) = m and Test(tw,Encrypt(pk,m,w)) =
1.

Consistency. Except for correctness, we also need to consider the notion of consistency for
PKE-PEKS schemes. Roughly speaking, we say a PKE-PEKS scheme is consistent if for any
m ∈M and any w 6= w′, we have Test(tw′ ,Encrypt(pk,m,w)) = 0. We defer the formal definition
of consistency in Section 6.

3.2 Joint CCA-security for PKE-PEKS

We consider data privacy and keyword privacy for PKE-PEKS schemes in joint sense as follows.

Data Privacy for PKE-PEKS schemes is defined via the following experiment.

Setup: CH runs KeyGen(κ) to generate (pk, sk) and gives A the public key pk.

Phase 1: A can adaptively make three types of queries:

• Decryption query 〈u〉: CH responds with m← Decrypt(sk, u).

• Token query 〈w〉: CH responds with tw ← TokenGen(sk, w).

• Test query 〈u,w〉: CH responds with Test(u, tw) where tw ← TokenGen(sk, w).

Challenge: A outputs two messages m∗0 and m∗1 and a keyword w∗. CH picks a random bit b
and sends u∗ ← Encrypt(pk,m∗b , w

∗) to A as the challenge ciphertext.
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Phase 2: A can adaptively make more decryption queries 〈u〉 subject to the restriction that
u 6= u∗, more token queries 〈w〉 and more test queries 〈u,w〉 with no restriction (token query
〈w∗〉 and test query 〈u∗, w∗〉 are allowed!). CH responds the same way as in Phase 1.

Guess: A outputs its guess b′ for b and succeeds if b′ = b. We denote this event by SuccA and

define A’s advantage as AdvA(κ)
def
= |Pr[SuccA]− 1/2|.

Definition 3.2. A PKE-PEKS scheme is said to has (t, qw, qt, qd, ε) data privacy if for all t-time
adversaries making at most qw token queries, at most qt test queries, and at most qd decryption
queries have advantage at most ε against its data privacy. Informally, we say a PKE-PEKS
scheme has data privacy if there is no PPT adversary having non-negligible advantage in κ in
the above experiment.

Keyword Privacy for PKE-PEKS schemes is defined via the following experiment.

Setup: CH runs KeyGen(κ) to generate (pk, sk) and gives A the public key pk.

Phase 1: Same as that in the experiment for data privacy.

Challenge: A outputs a message m∗ and two keywords w∗0 and w∗1 subject to the restriction
that they had not been asked for tokens in Phase 1. CH picks a random bit b and sends
u∗ ← Encrypt(pk,m∗, w∗b ) to A as the challenge ciphertext.

Phase 2: A can adaptively make more token queries 〈w〉 subject to the restriction that w 6=
w∗0, w

∗
1, more test queries 〈u,w〉 subject to the restriction that (u,w) 6= (u∗, w∗0), (u∗, w∗1), and

more decryption queries with no restriction (〈u∗〉 is allowed!).

Guess: A outputs its guess b′ for b and succeeds if b′ = b. We denote this event by SuccA and

define A’s advantage as AdvA(κ)
def
= |Pr[SuccA]− 1/2|.

Definition 3.3. A PKE-PEKS scheme is said to has (t, qw, qt, qd, ε) keyword privacy if for all
t-time adversaries making at most qw token queries, at most qt test queries, and at most qd
decryption queries have advantage at most ε against its keyword privacy. Informally, we say
a PKE-PEKS scheme has keyword privacy if there is no PPT adversary having non-negligible
advantage in κ in the above experiment.

Definition 3.4. We say a PKE-PEKS scheme is jointly CCA-secure if it has keyword privacy
and data privacy simultaneously.

Our joint CCA-security notion for PKE-PEKS schemes is stronger than previous ones con-
sidered in [BSNS06, ZI07], since it embodies both IND-PKE-CCA security and IND-PEKS-
CCA security in the joint sense. As analyzed earlier, the PKE-PEKS constructions proposed
in [BSNS06, ZI07] are both insecure in our joint CCA-security notion.

4 A Generic Construction from HIBE

We first show how to construct a PKE-PEKS scheme from a two-level HIBE scheme with
algorithms (Setup, Extract, Derive, Encrypt, Decrypt). In our construction we also make use of
a strong one-time signature scheme OT with algorithms (KeyGen, Sign, Verify) (see definition
in Appendix A.3). Without loss of generality, we assume that the message space of the HIBE
scheme is {0, 1}n, the identity space of the HIBE scheme is {0, 1}∗ for each level, and the
verification key space of the signature scheme is {0, 1}n, where n = n(κ) is a polynomially
bounded function.

KeyGen(κ): Run (mpk,msk)← HIBE.KeyGen(κ), output (pk, sk)← (mpk,msk).

Encrypt(pk,m,w):

9



1. Run (vk, skσ)← OT.KeyGen(κ).

2. Encrypt message m using level-1 identity 0||vk as c← HIBE.Encrypt(pk, 0||vk,m).

3. Encrypt vk using level-2 identity (1||w, vk) as s← HIBE.Encrypt(pk, (1||w, vk), vk).

4. Compute σ ← OT.Sign(skσ, c||s), output the final ciphertext u = (vk, c, s, σ).

Decrypt(sk, u):

1. Parse u as (vk, c, s, σ).

2. If OT.Verify(vk, c||s, σ) = 1, then compute dk ← HIBE.Extract(sk, 0||vk),
output m← HIBE.Decrypt(dk, c).

Else output ⊥.

TokenGen(sk, w): compute t1 ← HIBE.Extract(sk, 1||w), t2 ← w, output tw = (t1, t2).

Test(tw, u):

1. Parse tw as (t1, t2), u as (vk, c, s, σ).

2. If OT.Verify(vk, c||s, σ) = 1, then compute dk ← HIBE.Derive(t1, (1||t2, vk)),
output 1 if vk = HIBE.Decrypt(dk, s) and 0 otherwise.

Else output 0.

This completes the description of our first construction. The keyword space W of the resulting
PKE-PEKS scheme is {0, 1}∗. The correctness of the PKE-PEKS scheme follows readily from
that of the underlying HIBE scheme. We will show how to instantiate our first construction
from pairings and lattices in Section 7.1 and Section 7.2.

Theorem 4.1. The above PKE-PEKS construction is jointly CCA-secure, provided that the
HIBE scheme is IND-HIBE-CPA secure in selective-identity sense and ANO-HIBE-CPA anony-
mous at level one and the signature scheme is one-time sEUF-CMA secure.

Proof. We first fix some notations and definitions. A PKE-PEKS ciphertext u = (vk, c, s, σ)
is said to be valid if OT.Verify(vk, c||s, σ) = 1. Let u∗ = (vk∗, c∗, s∗, σ∗) denote the challenge
PKE-PEKS ciphertext received by A. We prove this theorem by the following two lemmas.

Lemma 4.1. Assume the HIBE scheme is (t1, qk1 , ε1) IND-HIBE-CPA secure in selective-
identity sense and the signature scheme is (t3, 1, ε3) sEUF-CMA secure. Then the PKE-PEKS
scheme has (t, qw, qt, qd, ε) data privacy such that

ε ≥ ε1 + 1
2ε3, qw + qt + qd ≤ qk1 ,

t ≤ min{t3 − tb − qwtk − (qt + qd)(tk + tv + td)− 2te, t1 − tg − (qt + qd)(tv + td)− te − ts}.

Proof. Suppose there is an adversary A that has advantage AdvA against the data privacy of
the PKE-PEKS construction in running time t. Let Forge denote the event that A submits
a valid ciphertext (vk∗, c, s, σ) to the decryption oracle (we may assume that vk∗ is chosen at
the outset of the experiment so this event is well-defined even before A is given the challenge
ciphertext.) We prove the following claims:

Claim 4.1. Pr[Forge] ≤ ε3.

Claim 4.2. |Pr[SuccA ∧ Forge] + 1
2 Pr[Forge]− 1

2 | ≤ ε1.

Proof of Claim 4.1 We use A to construct a forger F against sEUF-CMA security of the
signature scheme OT. F simulates A’s challenger in the data-privacy experiment for PKE-
PEKS as follows: given input κ and the verification key vk∗ (output by OT.KeyGen(κ)), F
first runs HIBE.KeyGen(κ) to obtain (pk, sk), and then runs A(pk). Note that F can an-
swer any token queries, test queries, decryption queries with sk. If A happens to submit a
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valid ciphertext (vk∗, c, s, σ) to decryption oracle before requesting the challenge ciphertext,
then F simply outputs (c||s, σ) to its own challenger and aborts. Otherwise, when A out-
puts two messages m∗0 and m∗1 and a keyword w∗ where it wants to be challenged on, F
proceeds as follows: it chooses a random bit b, computes c∗ ← HIBE.Encrypt(pk, 0||vk∗,m∗b),
s∗ ← HIBE.Encrypt(pk, (1||w∗, vk∗), vk∗), then obtains a signature σ∗ of message c∗||s∗ via call-
ing its signing oracle. Finally, F sends the challenge ciphertext (vk∗, c∗, s∗, σ∗) to A. If A
issues a valid decryption query (vk∗, c, s, σ) in Phase 2 (note that in this case we must have
(c, s, σ) 6= (c∗, s∗, σ∗)), then F simply outputs (c||s, σ) as its forgery. It is easy to see that F ’s
success probability is exactly Pr[Forge]. Security of OT implies this claim. �

Proof of Claim 4.2 We use A to construct an adversary D against selective-identity IND-
HIBE-CPA security of the HIBE scheme. D simulates A’s challenger in the data-privacy exper-
iment for PKE-PEKS as follows:

Setup: D runs OT.KeyGen(κ) to generate (vk∗, sk∗σ), commits id∗ = 0||vk∗ to its own challenger
as the target identity, and is then given mpk of the HIBE scheme. D sets pk = mpk and runs
A(pk).

Phase 1: Upon receiving token queries, test queries, and decryption queries issued by A, D
responds as follows:

• Token query 〈w〉: D issues decryption key extraction query 〈1||w〉 to its own challenger
and forwards the reply with w to A.

• Test query 〈u,w〉: D first obtains a token tw for w in the same way as it answers the token
query 〈w〉, then responds with Test(tw, u).

• Decryption query 〈u〉: D parses u as (vk, c, s, σ). If OT.Verify(vk, c||s, σ) = 0 then D
rejects this decryption query with ⊥. Otherwise, D proceeds as follows:

– Case vk = vk∗: event Forge occurs, D aborts and outputs a random bit.

– Case vk 6= vk∗: D obtains a decryption key dk for “identity” 0||vk (by issuing the
decryption key extraction query 〈0||vk〉 to its own challenger), then responds with
HIBE.Decrypt(dk, c).

Challenge: A outputs two messages m∗0 and m∗1 and a keyword w∗ where it wants to be
challenged on. D proceeds as follows: it submits m∗0 and m∗1 to its own challenger, and is then
given c∗ ← HIBE.Encrypt(pk, 0||vk∗,m∗b), where b is a random bit chosen by D’s challenger. D
then computes s∗ ← HIBE.Encrypt(pk, (1||w, vk∗), vk∗), σ∗ ← OT.Sign(sk∗σ, c

∗||s∗). Finally, D
sends u∗ = (vk∗, c∗, s∗, σ∗) to A as the challenge ciphertext.

Phase 2: A can adaptively make more decryption queries, token queries, and test queries.
Note that D can answer all the token queries and test queries correctly since decryption key
extraction queries of the form 〈1||w〉 are always permitted by D’s challenger. D proceeds the
decryption queries in the same way as in Phase 1 except that it will directly reject 〈u∗〉 with ⊥.

Guess: As soon as A outputs its guess b′ for b, D outputs b′ to its own challenger.

Note that D represents a legal strategy for attacking selective-identity IND-HIBE-CPA security
of the HIBE scheme. Furthermore, D provides a perfect simulation for A conditioned on the
event Forge never occurs. Let SuccD denote the event of D outputting the correct bit in the
selective-identity IND-HIBE-CPA security experiment. It is easy to see that:∣∣Pr[SuccD]− 1

2

∣∣ =
∣∣Pr[SuccA ∧ Forge] + 1

2 Pr[Forge]− 1
2

∣∣ .
The assumed security of the HIBE implies this claim. �

Based on Claim 4.1 and Claim 4.2, we can derive a concrete bound of ε. Note that:

|Pr[SuccA]− 1
2 | ≤ |Pr[SuccA ∧ Forge]− 1

2 Pr[Forge]|+ |Pr[SuccA ∧ Forge] + 1
2 Pr[Forge]− 1

2 |
≤ 1

2 Pr[Forge] + |Pr[SuccA ∧ Forge] + 1
2 Pr[Forge]− 1

2 |,
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we have ε ≥ 1
2ε3 + ε1. For the time complexity, it is easy to check that the running time of F

is at most t + tb + qwtk + (qt + qd)(tk + tv + td) + 2te, and the running time of D is at most
t+ tg + (qt+ qd)(tv + td) + te+ ts. During the simulation, D asks at most qw + qt+ qd decryption
key extraction queries. This proves Lemma 4.1. �

Lemma 4.2. Assume the HIBE scheme is (t2, qk2 , ε2) ANO-HIBE-CPA anonymous at level 1
and the signature scheme is (t3, 1, ε3) sEUF-CMA secure. Then the PKE-PEKS scheme has
(t, qw, qt, qd, ε) keyword privacy such that:

ε ≥ ε2 + 1
2ε3, qw + qt + qd ≤ qk2 ,

t ≤ min{t3 − tb − qwtk − (qt + qd)(tk + tv + td)− 2te, t2 − tg − (qt + qd)(tv + td)− te − ts}.

Proof. Suppose there is an adversary A has advantage AdvA against the keyword privacy of
the PKE-PEKS construction in running time t. Let Forge denote the event that A submits a
test query 〈u,w〉 in Phase 2 where u = (vk∗, c, s, σ) is a valid PKE-PEKS ciphertext and w is
either w∗0 or w∗1. We prove the following claims:

Claim 4.3. Pr[Forge] ≤ ε3.

Claim 4.4. |Pr[SuccA ∧ Forge] + 1
2 Pr[Forge]− 1

2 | ≤ ε2.

Proof of Claim 4.3 We use A to construct a forger F against sEUF-CMA security of the
signature scheme OT. F simulates A’s challenger in the keyword-privacy experiment for PKE-
PEKS as follows: given input κ and the verification key vk∗ (output by OT.KeyGen(κ)), F first
runs HIBE.KeyGen(κ) to obtain (pk, sk), and then runs A(pk). Note that F can answer any
token queries, test queries, decryption queries with sk. WhenA outputs two keywords w∗0 and w∗1
and a message m∗ where it wants to be challenged on, F proceeds as follows: it chooses a random
bit b, computes c∗ ← HIBE.Encrypt(pk, 0||vk∗,m∗), s∗ ← HIBE.Encrypt(pk, (1||w∗b , vk∗), vk∗),
then obtains a signature σ∗ of message c∗||s∗ via calling its signing oracle. Finally, F sends
the challenge ciphertext (vk∗, c∗, s∗, σ∗) to A. If A submits a valid test query 〈u,w〉 in Phase
2 where u = (vk∗, c, s, σ) and w is either w∗0 or w∗1 (now for a legal test query we must have
(c, s, σ) 6= (c∗, s∗, σ∗)), F simply outputs (c||s, σ) as its forgery. It is easy to see that F ’s success
probability is exactly Pr[Forge]. Security of OT implies this claim. �

Proof of Claim 4.4 We useA to construct an adversary D against ANO-HIBE-CPA anonymity
at level 1 of the HIBE scheme. D simulates A’s challenger in the keyword-privacy experiment
for PKE-PEKS as follows:

Setup: D is given mpk of the HIBE scheme. D sets pk = mpk and runs A(pk).

Phase 1: Upon receiving token queries, test queries, and decryption queries issued by A, D
responds as follows:

• Token query 〈w〉: D issues decryption key query 〈1||w〉 to its own challenger and forwards
the reply with w to A.

• Test query 〈u,w〉: D obtains a token tw for w in the same way as it answers the token
query 〈w〉, then responds with Test(tw, u).

• Decryption query 〈u〉: D parses u as (vk, c, s, σ). If OT.Verify(vk, c||s, σ) = 0, then D
rejects this decryption query with ⊥. If not, D obtains a decryption key dk for “identity”
0||vk (by issuing decryption key extraction query 〈0||vk〉 to its own challenger), then
responds with HIBE.Decrypt(dk, c).

Challenge: When A outputs a message m∗, two keywords w∗0 and w∗1 where it wants to be
challenged on, D proceeds as follows:

1. Run (vk∗, sk∗σ)← OT.KeyGen(κ), set id∗ = 0||vk∗.
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2. Compute c∗ ← HIBE.Encrypt(pk, id∗,m∗).

3. Submit vk∗ (as the message) and two target identities (1||w∗0, vk∗) and (1||w∗1, vk∗) to its
own challenger, and get the encryption s∗ of vk∗ under identity (1||w∗b , vk∗), where b is a
random bit chosen by D’s challenger.

4. Compute σ∗ ← OT.Sign(sk∗σ, c
∗||s∗).

5. Send u∗ = (vk∗, c∗, s∗, σ∗) to A as the challenge ciphertext.

Phase 2: A can adaptively make more token queries, test queries, and decryption queries in
Phase 2, D responds as follows:

• Token query 〈w〉: as long as w 6= w∗0, w
∗
1, D can always issue decryption key extraction

query for identity 1||w, then sends the reply with w to A.

• Test query 〈u,w〉: test queries 〈u∗, w∗0〉 and 〈u∗, w∗1〉 will be rejected. D parses u as
(vk, c, s, σ), first checks if OT.Verify(vk, c||s, σ) = 0. If so, D returns 0. If not, when w is
not w∗0 or w∗1, D obtains a token tw for w in the same way as it answers the token query
〈w〉 and then responds with Test(tw, u). Otherwise, D proceeds as follows:

– Case vk = vk∗: event Forge occurs (now w is either w∗0 or w∗1, thus for a legal query
we must have u 6= u∗), D aborts and outputs a random bit.

– Case vk 6= vk∗: D obtains a decryption key dk for identity (1||w, vk), returns 1 if
vk = HIBE.Decrypt(dk, s) and 0 otherwise.

• Decryption query 〈u〉: D responds to the decryption queries as it did in Phase 1. Since
decryption key extraction queries of the form 〈0||vk〉 are always permitted, D can answer
all the decryption queries correctly.

Guess. As soon as A outputs its guess b′ for b, D outputs b′ to its own challenger.

Note that D represents a legal strategy for attacking ANO-HIBE-CPA anonymity of the under-
lying HIBE scheme. Furthermore, D provides a perfect simulation for A in the keyword privacy
experiment of PKE-PEKS conditioned on Forge never occurs. Let SuccD denote the event of D
outputting the correct bit in the ANO-HIBE-CPA anonymity experiment for the HIBE scheme.
It is easy to see that:

|Pr[SuccD]− 1
2 | = |Pr[SuccA ∧ Forge] + 1

2 Pr[Forge]− 1
2 |.

The assumed anonymity of the HIBE implies this claim. �

Based on Claim 4.3 and Claim 4.4, we can derive a concrete bound of ε. Note that:

|Pr[SuccA]− 1
2 | ≤ |Pr[SuccA ∧ Forge]− 1

2 Pr[Forge]|+ |Pr[SuccA ∧ Forge] + 1
2 Pr[Forge]− 1

2 |
≤ 1

2 Pr[Forge] + |Pr[SuccA ∧ Forge] + 1
2 Pr[Forge]− 1

2 |,

we have ε ≥ 1
2ε3 + ε2. For the time complexity, it is easy to check that the running time of F

is at most t + tb + qwtk + (qt + qd)(tk + tv + td) + 2te, and the running time of D is at most
t+ tg + (qt+ qd)(tv + td) + te+ ts. During the simulation, D asks at most qw + qt+ qd decryption
key extraction queries. This proves Lemma 4.2. �

Theorem 4.1 immediately follows from Lemma 4.1 and Lemma 4.2. �

5 A Generic Construction from IBE

We now show how to construct a PKE-PEKS scheme from an IBE scheme with algorithms
(Setup, Extract, Encrypt, Decrypt). As in the first construction, we also make use of a strong
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one-time signature scheme OT, and assume that the message space of the IBE scheme is {0, 1}n,
the identity space of the IBE scheme is {0, 1}∗, and the verification key space of the signature
scheme is {0, 1}n.

KeyGen(κ): Run (mpk,msk)← IBE.KeyGen(κ), output (pk, sk)← (mpk,msk).

Encrypt(pk,m,w):

1. Run (vk, skσ)← OT.KeyGen(κ).

2. Encrypt message m using identity 0||vk as c← IBE.Encrypt(pk, 0||vk,m).

3. Encrypt keyword w using identity 1||w as s← IBE.Encrypt(pk, 1||w, vk).

4. Compute σ ← OT.Sign(skσ, c||s), output the final ciphertext u = (vk, c, s, σ).

Decrypt(sk, u):

1. Parse u as (vk, c, s, σ).

2. If OT.Verify(vk, c||s, σ) = 1,
then compute dk ← IBE.Extract(sk, 0||vk), output m← IBE.Decrypt(dk, c).

Else output ⊥.

TokenGen(sk, w): output tw ← IBE.Extract(sk, 1||w).

Test(tw, u):

1. Parse u as (vk, c, s, σ).

2. If OT.Verify(vk, c||s, σ) = 1,
output 1 if vk = IBE.Decrypt(tw, s) and 0 otherwise.

Else output 0.

This completes the description of our second construction. Similar to our first construction,
the keyword space W of the resulting PKE-PEKS scheme is {0, 1}∗. The correctness of this
construction follows readily from that of the IBE scheme. We will show how to instantiate our
second construction from pairing in Section 7.3.

Theorem 5.1. The above PKE-PEKS construction is jointly CCA-secure, provided that the IBE
scheme is IND-IBE-CPA secure in selective-identity sense and ANO-IBE-CCA anonymous and
weakly robust and the signature scheme is one-time sEUF-CMA secure.

Proof. We first fix some notations and definitions. A PKE-PEKS ciphertext u = (vk, c, s, σ)
is said to be valid if OT.Verify(vk, c||s, ) = 1. Let u∗ = (vk∗, c∗, s∗, σ∗) denote the challenge
PKE-PEKS ciphertext received by A. We prove this theorem by the following two lemmas.

Lemma 5.1. Assume the IBE scheme is (t1, qk1 , ε) IND-IBE-CPA secure in selective-identity
sense and the signature scheme is (t3, 1, ε3) sEUF-CMA secure. Then the PKE-PEKS scheme
has (t, qw, qt, qd, ε) data privacy such that

ε ≥ ε1 + 1
2ε3, qw + qt + qd ≤ qk1 ,

t ≤ min{t3 − tb − qwtk − (qt + qd)(tk + tv + td)− 2te, t1 − tg − (qt + qd)(tv + td)− te − ts}.

Proof. Suppose there is an adversary A has advantage AdvA against the data privacy of the
PKE-PEKS construction in running time t. Let Forge denote the event that A submits a valid
PKE-PEKS ciphertext (vk∗, c, s, σ) to the decryption oracle. We prove the following claims:

Claim 5.1. Pr[Forge] ≤ ε3.

Claim 5.2. |Pr[SuccA ∧ Forge] + 1
2 Pr[Forge]− 1

2 | ≤ ε1.
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Proof of Claim 5.1 We use A to construct a forger F against sEUF-CMA security of the
signature scheme OT. F simulates A’s challenger in the data-privacy experiment for PKE-PEKS
as follows: given input κ and the verification key vk∗ (output by OT.KeyGen(κ)), F first runs
IBE.KeyGen(κ) to obtain (pk, sk), and then runs A(pk). Note that F can answer any token
queries, test queries, decryption queries with sk. If A happens to submit a valid ciphertext
(vk∗, c, s, σ) to decryption oracle before requesting the challenge ciphertext, then F simply
outputs (c||s, σ) to its own challenger and stops. Otherwise, when A outputs two messages m∗0
and m∗1 and a keyword w∗ where it wants to be challenged on, F proceeds as follows: it chooses
a random bit b, computes c∗ ← IBE.Encrypt(pk, 0||vk∗,m∗b), s∗ ← IBE.Encrypt(pk, 1||w∗, vk∗),
then obtains a signature σ∗ of message c∗||s∗ via calling its signing oracle. Finally, F sends the
challenge ciphertext (vk∗, c∗, s∗, σ∗) to A. If A submits a valid decryption query (vk∗, c, s, σ)
note that we must have (c, s, σ) 6= (c∗, s∗, σ∗). In this case, F simply outputs (c||s, σ) as its
forgery. It is easy to see that F ’s success probability is exactly Pr[Forge]. Security of OT implies
this claim. �

Proof of Claim 5.2 We use A to construct an adversary D against IND-IBE-CPA security
in selective-identity sense of the IBE scheme. D simulates A’s challenger in the data-privacy
experiment for PKE-PEKS as follows:

Setup: D runs OT.KeyGen(κ) to generate (vk∗, sk∗σ), commits id∗ = 0||vk∗ to its own challenger
as the target identity, and is then given mpk of the IBE scheme. D sets pk = mpk and runs
A(pk).

Phase 1: Upon receiving token queries, test queries, and decryption queries issued by A, D
responds as follows:

• Token query 〈w〉: D issues decryption key query 〈1||w〉 to its own challenger and forwards
the reply to A.

• Test query 〈u,w〉: D first obtains a token tw for w in the same way as it answers the token
query 〈w〉, then responds with Test(tw, u).

• Decryption query 〈u〉: D parses u as (vk, c, s, σ). If OT.Verify(vk, c||s, σ) = 0 then D
rejects this decryption query with ⊥. Otherwise D proceeds as follows:

– Case vk = vk∗: event Forge occurs, D aborts and outputs a random bit.

– Case vk 6= vk∗: D obtains a decryption key dk for “identity” 0||vk (by issuing
decryption key extraction query 〈0||vk〉 to its own challenger), then responds with
IBE.Decrypt(dk, c).

Challenge: A outputs two messages m∗0 and m∗1 and a keyword w∗ where it wants to be
challenged on. D proceeds as follows: it submits m∗0 and m∗1 to its own challenger, and is then
given c∗ ← IBE.Encrypt(pk, 0||vk∗,m∗b), where b is a random bit chosen by D’s challenger. D
then compute s∗ ← IBE.Encrypt(pk, 1||w∗, vk∗), σ∗ ← OT.Sign(sk∗σ, c

∗||s∗). Finally, D sends
u∗ = (vk∗, c∗, s∗, σ∗) to A as the challenge ciphertext.

Phase 2: A can adaptively make more token queries, test queries, and decryption queries. Note
that D can answer all the token queries and test queries correctly since decryption key queries
of the form 〈1||w〉 are always permitted by D’s challenger. D proceeds decryption queries in
the same way as in Phase 1 except that it will directly reject 〈u∗〉 with ⊥.

Guess: As soon as A outputs its guess b′ for b. D outputs b′ to its own challenger.

Note that D represents a legal strategy for attacking the selective-identity IND-IBE-CPA se-
curity of the underlying IBE scheme. Furthermore, D provides a perfect simulation for A
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conditioned on the event Forge never occurs. Let SuccD denote the event of D outputting the
correct bit in the selective-identity IND-IBE-CPA security experiment. It is easy to see that:

|Pr[SuccD]− 1
2 | = |Pr[SuccA ∧ Forge] + 1

2 Pr[Forge]− 1
2 |.

The assumed security of the underlying IBE implies this claim. �

Based on Claim 5.1 and Claim 5.2, we can derive a concrete bound of ε. Note that:

|Pr[SuccA]− 1
2 | ≤ |Pr[SuccA ∧ Forge]− 1

2 Pr[Forge]|+ |Pr[SuccA ∧ Forge] + 1
2 Pr[Forge]− 1

2 |
≤ 1

2 Pr[Forge] + |Pr[SuccA ∧ Forge] + 1
2 Pr[Forge]− 1

2 |,

we have ε ≤ 1
2ε3 + ε1. For the time complexity, it is easy to check that the running time of F

is at most t + tb + qwtk + (qt + qd)(tk + tv + td) + 2te, and the running time of D is at most
t+ tg + (qt+ qd)(tv + td) + te+ ts. During the simulation, D asks at most qw + qt+ qd decryption
key extraction queries. This proves Lemma 5.1. �

Lemma 5.2. Assume the IBE scheme is (t2, qk2 , qd2 , ε2) ANO-IBE-CCA anonymous and also
(t4, qk4 , ε4) weakly robust, and the signature scheme is (t3, 1, ε3) sEUF-CMA secure. Then the
PKE-PEKS scheme has (t, qw, qt, qd, ε) keyword privacy such that:

ε ≥ ε2 + ε4 + 1
2ε3, qw ≤ qk2 , qt + qd ≤ qd2 , qw + qt + qd ≤ qk4 ,

t ≤ min{t3 − tb − qwtk − (qt + qd)(tk + tv + td)− 2te, t4 − tg, t2 − (qw + qt)tk}.

Proof. Suppose there is an adversary A has advantage AdvA against the keyword privacy of the
PKE-PEKS construction in running time t. Let m∗, w∗0 and w∗1 be the target message-keyword
output by A. Let (vk∗, c∗, s∗, σ∗) be the challenge PKE-PEKS ciphertext of (m∗, w∗b ). Let Forge
denote the event that A submits a valid test query 〈u,w〉 in Phase 2 where u = (vk∗, c, s, σ)
and w is either w∗0 or w∗1. Let Break denote the event that the decryption of s∗ under identity
1||w∗

b̄
is not ⊥. We prove the following claims:

Claim 5.3. Pr[Forge] ≤ ε3.

Claim 5.4. Pr[Break] ≤ ε4.

Claim 5.5. |Pr[SuccA ∧ Forge ∨ Break] + 1
2 Pr[Forge]− 1

2 | ≤ ε2.

Proof of Claim 5.3 We use A to construct a forger F against sEUF-CMA security of the
signature scheme OT. F simulates A’s challenger in the keyword-privacy experiment of PKE-
PEKS as follows: given input κ and the verification key vk∗ (output by OT.KeyGen(κ)), F first
runs IBE.KeyGen(κ) to obtain (pk, sk), and then runs A(pk). Note that F can answer any token
queries, test queries, and decryption queries with sk. When A outputs two keywords w∗0 and w∗1
and a message m∗ where it wants to be challenged on, F proceeds as follows: it chooses a random
bit b, computes c∗ ← IBE.Encrypt(pk, 0||vk∗,m∗), s∗ ← IBE.Encrypt(pk, (1||w∗b ), vk∗), vk∗), then
obtains a signature σ∗ of message c∗||s∗ via calling its signing oracle. Finally, F sends the
challenge ciphertext (vk∗, c∗, s∗, σ∗) to A. If A submits a valid test query 〈u,w〉 in Phase 2
where u = (vk∗, c, s, σ) and w is either w∗0 or w∗1 (now we must have (c, s, σ) 6= (c∗, s∗, σ∗)), F
simply outputs (c||s, σ) as its forgery. It is easy to see that F ’s success probability is exactly
Pr[Forge]. Security of OT implies this claim. �

Proof of Claim 5.4 We use A to construct an algorithm B against weak robustness of the
IBE scheme. B simulates A’s challenger in the keyword-privacy experiment of PKE-PEKS as
follows: given mpk of the IBE, B sets pk = mpk and runs A(pk). Note that in Phase 1 the
decryption key extraction queries for “identities” of the form 1||w and 0||vk are always permitted
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by B’s challenger, thereby B is able to handle any token queries, test queries, and decryption
queries in Phase 1. In the challenge stage, when A outputs a message m∗ and two keywords
w∗0 and w∗1 where it wants to be challenged on, B runs OT.KeyGen(κ) to generate (vk∗, sk∗σ),
chooses a random bit b, then sends two identities 1||w∗b and 1||w∗

b̄
and a message vk∗ to its own

challenger and halts. Suppose s∗ ← IBE.Encrypt(pk, 1||w∗b , vk∗) is an IBE ciphertext honestly-
generated by B’s challenger, then it also serves as a valid component of an honestly-generated
PKE-PEKS ciphertext. Thereby, B’s success probability in the WROB experiment of IBE is
exactly Pr[Break]. The assumed weak robustness of IBE implies this claim. �

Proof of Claim 5.5 We use A to construct an adversary D against ANO-IBE-CCA anonymity
of the IBE scheme. D simulatesA’s challenger in the keyword-privacy experiment of PKE-PEKS
as follows:

Setup: D is given mpk of the IBE scheme. D sets pk = mpk and runs A(pk).

Phase 1: Upon receiving the token queries, test queries, and decryption queries issued by A,
D responds as follows:

• Token query 〈w〉: D issues decryption key query 〈1||w〉 to its own challenger and forwards
the reply to A.

• Test query 〈u,w〉: D parses u as (vk, c, s, σ). If OT.Verify(vk, c||s, σ) = 0, D outputs 0.
Else, D issues decryption query 〈1||w, s〉 to its own challenger. D outputs 1 if the reply is
vk and 0 otherwise.

• Decryption query 〈u〉: D parses u as (vk, c, s, σ). If OT.Verify(vk, c||s, σ) = 0, then D
rejects this decryption query with ⊥. If not, D issues decryption query (0||vk, c) to its
own challenger and forwards the reply to A.

Challenge: When A outputs a message m∗ and two keywords w∗0 and w∗1 where it wants to be
challenged on, D proceeds as follows:

1. Run (vk∗, sk∗σ)← OT.KeyGen(κ).

2. Compute c∗ ← IBE.Encrypt(pk, 0||vk∗,m).

3. Submit vk∗ (as the message) and two target identities 1||w∗0 and 1||w∗1 to its own challenger,
and get the response s∗ ← IBE.Encrypt(pk, 1||w∗b , vk∗), where b is a random bit chosen by
D’s challenger.

4. Compute σ∗ ← OT.Sign(sk∗σ, c
∗||s∗).

5. Send u∗ = (vk∗, c∗, s∗, σ∗) to A as the challenge ciphertext .

Phase 2: A may issue more token queries, decryption queries, and test queries in Phase 2, D
responds as follows:

• Token query 〈w〉: as long as w 6= w∗0, w
∗
1, D can always issue decryption key extraction

query for identity 1||w, then forwards the reply to A.

• Test query 〈u,w〉: test queries 〈u∗, w∗0〉 and 〈u∗, w∗1〉 will be rejected. For a legal test query,
D parses u as (vk, c, s, σ), first checks if OT.Verify(vk, c||s, σ) = 1. If not, D returns 0.
If so, when w is not w∗0 or w∗1, D issues decryption query 〈1||w, s〉 to its own challenger,
returns 1 if the reply is vk and 0 if not. Otherwise, D proceeds as follows:

– Case vk = vk∗: event Forge occurs (now w is either w∗0 or w∗1, thus for a legal query
we must have u 6= u∗), D aborts and outputs a random bit.

– Case vk 6= vk∗: if s 6= s∗, D makes decryption query 〈1||w, s〉 to its own challenger,
then returns 1 if the reply is vk and 0 otherwise. If s = s∗, D returns 0. We stress
that D’s responses for test queries belong to this subbranch (vk 6= vk∗, s = s∗, and
w = w∗0 or w = w∗1) are always correct conditioned on Break never occurs. To see
this, note that if w = w∗b , the decryption of s∗ under “identity” 1||w is exactly vk∗
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(differs from vk); if w = w∗
b̄
, the decryption of s∗ under “identity” 1||w∗

b̄
is ⊥ (Break

does not happen). Thus the PEKS test fails in both cases.

• Decryption query 〈u〉: D responds to the decryption queries as it did in Phase 1. Since
decryption queries of the form 〈0||vk, c〉 are always permitted, D can answer all the de-
cryption queries correctly.

Guess: As soon as A outputs its guess b′ for b, D outputs b′ to its own challenger.

Note that D represents a legal strategy for attacking ANO-IBE-CCA anonymity of the IBE
scheme. Furthermore, D provides a perfect simulation for A in the keyword privacy experiment
of PKE-PEKS conditioned on neither Forge nor Break occurs. Let SuccD denote the event of D
outputting the correct bit in the ANO-IBE-CCA anonymity experiment of the IBE, we have:

|Pr[SuccD− 1
2 | = |Pr[SuccA ∧ Forge ∨ Break] + 1

2 Pr[Forge]− 1
2 |.

The assumed anonymity of the IBE implies this claim. �

Based on Claim 5.3, Claim 5.4, and Claim 5.5, we can derive a concrete bound of ε. Note
that:

|Pr[SuccA]− 1
2 | ≤ |Pr[SuccA ∧ (Forge ∨ Break)]− 1

2 Pr[Forge]|+
|Pr[SuccA ∧ Forge ∨ Break] + 1

2 Pr[Forge]− 1
2 |

≤ 1
2 Pr[Forge] + Pr[Break] + |Pr[SuccA ∧ Forge ∨ Break] + 1

2 Pr[Forge]− 1
2 |,

we have ε ≥ 1
2ε3 + ε4 + ε2. For the time complexity, it is easy to check that the running time of

F is at most t+ tb + qwtk + (qt + qd)(tk + tv + td) + 2te, the running time of B is at most t+ tg,
and the running time of D is at most t + (qw + qt)tk. During the simulation, B asks at most
qw + qt + qd decryption key extraction queries; D asks at most qw decryption key extraction
queries and at most qt + qd decryption queries. This proves Lemma 5.2. �

Theorem 5.1 immediately follows from Lemma 5.1 and Lemma 5.2. �

Remark 5.1. In our two constructions, we use vk as the “message” for the PEKS encryption
to further reduce the size of the overall ciphertext. Our two constructions could be potentially
more efficient by employing two tricks as below: 1) observe that the PKE component only need
to be CPA-secure, thus we may achieve better efficiency by employing the selective CPA-secure
version encrypt algorithm of the underlying (H)IBE to build the PKE component; 2) observe
that the user knows the “master secret key” sk of the underlying (H)IBE scheme, then it is
very likely to speed up the decryption by directly using sk. See the instantiation presented in
Section 7.3 for such an example.

Remark 5.2. It seems unlikely that one can improve our constructions by adapting the optimiza-
tion suggested by [BCHK07] which replaces the one-time signature scheme by a combination of
a message-authentication code (MAC) and a weak form of commitment. We sketch the reasons
as below. One attempt is to encrypt the decommitment string dec in the PKE component.
In this case, the gateway is unable to check the well-formedness of a PKE-PEKS ciphertext
since the MAC can only be verified by the user holding the secret key sk. The other attempt
is to encrypt dec in the PEKS component. In this case, the gateway is able to check the well-
formedness of a PKE-PEKS ciphertext since it can recover the MAC key k and then verify the
MAC. However, with k the gateway can also manipulate the PKE-PEKS ciphertext and thus
break the data privacy. We omit the technical details here.
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6 Consistency for PEKS Revisited

For a cryptographic scheme, except its security requirement, we also need to pay attention to
its consistency requirement, which ensures that the primitive fulfills its functionality. As for
PEKS, its consistency requirement set by [BDOP04] is that for two keywords w, w′ and a PEKS
ciphertext s of w, Test(tw′ , s) outputs 1 if w = w′ and outputs 0 if w 6= w′. This condition
can be divided into two pieces. The former might be viewed as an analogy of correctness for
IBE (decryption reverses encryption), which indicates that Test(tw, s) = 1 when s encrypts w.
Adopting the treatment of [ABC+08], we view it as a built-in property for PEKS and reserve
the term consistency to the latter, namely Test(tw′ , s) = 0 when s encrypts w and w 6= w′.
Abdalla et al. [ABC+08] formally defined perfect, statistical, and computational consistency for
PEKS. In this work, we only focus on computational consistency.

6.1 Consistency for PEKS

We consider two levels of consistency for PEKS schemes, namely weak consistency (WCON)
and strong consistency (SCON), which are defined by the following experiment:

Initialize: CH runs KeyGen(κ) to generate (pk, sk) and gives pk to A.

Phase 1: A can adaptively make token queries 〈w〉. CH responds with tw ← TokenGen(sk, w).

Finalize (weak consistency): A outputs two distinct keywords w and w′. CH honestly
generates a PEKS ciphertext s ← Encrypt(pk,w). A succeeds if Test(tw′ , s) = 1, where tw′ ←
TokenGen(sk, w′).

Finalize (strong consistency): A outputs two distinct keywords w and w′ and a PEKS
ciphertext s of w. Note that s might be generated using adversarially chosen random coins. A
succeeds if Test(tw′ , s) = 1, where tw′ ← TokenGen(sk, w′).

We denote the event that A succeeds by SuccA and define A’s advantage as AdvA
def
= Pr[SuccA].

A PEKS scheme is said to be (t, qw, ε) weakly consistent (resp. strong consistent) if for all t-time
adversaries making at most qw token queries have at most advantage ε in the corresponding
experiment. We note that the weak consistency is exactly the original notion of consistency for
PEKS defined in [ABC+08, ABN10]. In what follows, we recall two notions of IBE schemes
that are closely related to consistency of PEKS schemes.

Definition 6.1 (Robustness for IBE). Abdalla et al. [ABN10] formally studied the notion of
robustness of encryption schemes. In the IBE setting, robustness intuitively requires that a
ciphertext c does not decrypt to a valid plaintext under the decryption keys for two distinct
identities id and id′, which is formally defined by the following experiment:

Initialize: CH runs Setup(κ) to generate (mpk,msk) and gives mpk to A.

Phase 1: A can adaptively make decryption key extraction queries 〈id〉, and CH responds with
dkid ← Extract(msk, id).

Finalize (weak robustness): A outputs two distinct identities id and id′ subject to the
restriction that they had not been asked for decryption keys in Phase 1, and a message m ∈M .
CH honestly generates an IBE ciphertext c ← Encrypt(mpk, id,m). A succeeds if m′ 6= ⊥,
where m′ ← Decrypt(dkid′ , c) for dkid′ ← Extract(msk, id′).

Finalize (strong robustness): A outputs two distinct identities id and id′ subject to the
restriction that they had not been asked for decryption keys in Phase 1, and a ciphertext c.
Note that c may not be an honest encryption, say, generated using adversarially chosen random
coins. A succeeds ifm 6= ⊥ andm′ 6= ⊥, wherem← Decrypt(dkid, c) for dkid ← Extract(msk, id)
and m′ ← Decrypt(dkid′ , c) for dkid′ ← Extract(msk, id′).
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We denote the event that A succeeds by SuccA and define A’s advantage as AdvA
def
= Pr[SuccA].

An IBE scheme is said to be (t, qk, ε) weakly robust (resp. strong robust) if for all t-time
adversaries making at most qk decryption key extraction queries have at most advantage ε in
the corresponding experiment. Both weak robustness (WROB) and strong robustness (SROB)
are also considered under chosen-ciphertext attacks [ABN10], yielding the notions of WROB-
CCA and SROB-CCA.

Definition 6.2 (Collision-freeness for IBE). Mohassel [Moh10] introduced the notion of collision-
freeness for encryption schemes, which is a natural relaxation of robustness. In IBE setting,
collision-freeness intuitively requires that a ciphertext does not decrypt to the same message
under the decryption keys for two distinct identities, which is formally defined by the following
experiment:

Initialize: same as the experiment for robustness.

Phase 1: same as the experiment for robustness.

Finalize (weak collision-freeness): A outputs two distinct identities id and id′ subject to
the restriction that they had not been asked for decryption keys in Phase 1, and a message
m ∈M . CH honestly generates an IBE ciphertext c← Encrypt(mpk, id,m). A wins if m = m′,
where m′ ← Decrypt(dkid′ , c) for dkid′ ← Extract(msk, id′).

Finalize (strong collision-freeness): A outputs two distinct identities id and id′ subject to
the restriction that they had not been asked for decryption keys in Phase 1, and a ciphertext c.
Note that c may not be an honest encryption. A wins if m = m′, where m ← Decrypt(dkid, c)
for dkid ← Extract(msk, id) and m′ ← Decrypt(dkid′ , c) for dkid′ ← Extract(msk, id′).

We denote the event that A succeeds by SuccA and define A’s advantage as AdvA
def
= Pr[SuccA].

An IBE scheme is said to be (t, qk, ε) weakly collision-free (resp. strong collision-free) if for all t-
time adversaries making at most qk decryption key extraction queries have at most advantage ε in
the corresponding experiment. Similar to the notion of robustness, both weak collision-freeness
(WCFR) and strong collision-freeness (SCFR) are also considered under chosen-ciphertext at-
tacks [Moh10], yielding the notions of WCFR-CCA and SCFR-CCA.

6.2 Connection between Consistency, Robustness, and Collision-freeness

Addalla et al. [ABC+08] noticed that the original BDOP transform generally does not provide
consistency, and thus proposed a new BDOP transform which is consistency-providing instead.
After studying the robustness for encryption schemes, Abdalla et al. [ABN10] proved that
even the original BDOP transform can guarantee the resulting PEKS scheme satisfies weak
consistency if the underlying IBE scheme is SROB-CPA. However, strong robustness seems to
be overkill for weak consistency. Note that Mohassel [Moh10] has pointed out that collision-
freeness can be a sufficient requirement instead of robustness in some scenarios in practice. It is
compelling to know if we can base the consistency for PEKS on collision-freeness for IBE. We
answer this question affirmatively by presenting the following theorem:

Theorem 6.1. For a PEKS scheme constructed using the BDOP transform, it is (t, qw, ε)
weakly (resp. strong) consistent if the underlying IBE scheme is (t′, qk, ε

′) weakly (resp. strong)
collision-free, where ε ≥ ε′, t ≤ t′, and qw ≤ qk.

Proof. Suppose there is an adversary A has advantage AdvA against WCON/SCON of the
PEKS scheme in running time t, we can construct an algorithm D that uses A to break
WCFR/SCFR of the IBE scheme as follows:

Initialize: D is given (mpk,msk) of the IBE scheme. D forwards mpk to A as pk.
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Phase 1: Upon receiving token query 〈w〉 issued by A, D makes decryption key extraction
query for “identity” w to its own challenger, and forwards the reply to A.

Finalize (weak consistency): A outputs two distinct keywords w and w′. D outputs (id =
w, id′ = w′,m), where m is set to be the pre-fixed value specified by the BDOP transform.
Let s2 be an ciphertext of m under id which is honestly generated by D’s challenger, then
s = (s1 = m, s2) is also an honestly-generated PEKS ciphertext.

Finalize (strong consistency): A outputs two distinct keywords w and w′ and a PEKS
ciphertext s = (s1, s2) that encrypts w. D outputs (id = w, id′ = w′, s2) to its own challenger.

Since PEKS.Test(tw′ , s) = 1 is equivalent to IBE.Decrypt(s2, dkid′) = IBE.Decrypt(s2, dkid) =
m, thus D breaks WCFR/SCFR of the IBE scheme with the same advantage as A breaks
weak/strong consistency of the PEKS scheme. The running time of D is at most t. During the
simulation, D asks at most qw decryption key extraction queries. This proves the theorem. �

It is straightforward to verify that this theorem also holds for the new BDOP transform.
Note that Mohassel [Moh10] has shown that WCFR is strictly weaker than SROB, thus our
result improves previous result due to [ABN10].

6.3 Consistency for PKE-PEKS

The notion of consistency of PEKS schemes extends naturally to PKE-PEKS schemes. We
formally define consistency for PKE-PEKS schemes via the following experiment:

Initialize: CH runs KeyGen(κ) to generate (pk, sk) and sends pk to A.

Phase 1: A can adaptively make token queries 〈w〉. CH responds with tw ← TokenGen(sk, w).

Finalize (weak consistency): A outputs a message m and two distinct keywords w and
w′. CH honestly generates a PKE-PEKS ciphertext u ← Encrypt(pk,m,w). A succeeds if
Test(tw′ , u) = 1, where tw′ ← TokenGen(sk, w′).

Finalize (strong consistency): A outputs two distinct keywords w and w′ and a PKE-PEKS
ciphertext u encrypting (m,w) for some message m. Note that u might be generated using ad-
versarially chosen random coins. A succeeds if Test(tw′ , u) = 1, where tw′ ← TokenGen(sk, w′).

We denote the event that A succeeds by SuccA and define A’s advantage as AdvA
def
= Pr[SuccA].

A PKE-PEKS scheme is said to be (t, qw, ε) weakly consistent (resp. strong consistent) if for all t-
time adversaries making at most qw token queries have at most advantage ε in the corresponding
experiment. Via a similar reduction as we did in the proof of Theorem 6.1, it is easy to verify
our two constructions presented in Section 4 and Section 5 are weakly (resp. strong) consistent
if the underlying (H)IBE scheme is weakly (resp. strong) collision-free.

Theorem 6.2. For a PKE-PEKS scheme derived from the first generic construction, it is
(t, qw, ε) weakly (resp. strong) consistent if the underlying HIBE scheme is (t′, qk, ε

′) weakly
(resp. strong) collision-free, where ε ≥ ε′, qw ≤ qk, and t ≤ t′ − tg (resp. t ≤ t′).

Proof. Suppose there is an adversary A has advantage AdvA against WCON/SCON of the
PKE-PEKS scheme in running time t, we can build an adversary D against WCFR/SCFR of
the underlying HIBE scheme as follows:

Initialize: D is given (mpk,msk) of the HIBE scheme. D forwards mpk to A as pk.

Phase 1: Upon receiving token query 〈w〉 issued by A, D makes decryption key extraction
query for “identity” 1||w to its own challenger, and forwards the reply with w to A.
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Finalize (weak consistency): A outputs a message m and two distinct keywords w and w′.
D runs OT.KeyGen(κ) to generate (vk, skσ), then outputs (id = (1||w, vk), id′ = (1||w′, vk), m̃ =
vk) to its own challenger.

Finalize (strong consistency): A outputs two distinct keywords w and w′ and a PKE-PEKS
ciphertext u = (vk, c, s, σ) of (m,w) for some message m. Note that u might be generated using
adversarially chosen random coins. D outputs (id = (1||w, vk), id′ = (1||w′, vk), s) to its own
challenger.

According to the first generic construction of PKE-PEKS from HIBE described in Section 4,
we have PKE-PEKS.Test(tw′ , u) = 1 ⇒ HIBE.Decrypt(dkid′ , s) = vk, where u = (vk, c, s, σ) is
a PKE-PEKS ciphertext of (m,w) and id′ = (1||w′, vk). To see why this implication holds,
we just need to decompose the left-hand side according to the PKE-PEKS construction from
HIBE. More precisely, note that tw′ is computed as (HIBE.Extract(sk, 1||w′), w′) and the test
algorithm outputs 1 if u is valid and vk = HIBE.Decrypt(dkid′ , s), the implication immediately
follows. Based on this implication, we conclude that:

• If A breaks WCON of the PKE-PEKS scheme with advantage AdvA, which means event
PKE-PEKS.Test(tw′ , u) = 1 happens with probability AdvA for an honestly-generated
PKE-PEKS ciphertext u = (vk, c, s, σ), then event HIBE.Decrypt(dkid′ , s) = vk must
happen with probability at least AdvA for an honestly-generated HIBE ciphertext s ←
HIBE.Encrypt(pk, id, m̃), which is the third element from u. Thereby, D violates WCFR
of the HIBE scheme with advantage at least AdvA.

• If A breaks SCON of the PKE-PEKS scheme with advantage AdvA, which means event
PKE-PEKS.Test(tw′ , u) = 1 happens with probability AdvA for an adversarially-generated
PKE-PEKS ciphertext u = (vk, c, s, σ), then event HIBE.Decrypt(dkid′ , s) = vk must
happen with probability at least AdvA. Thereby, D violates SCFR of the HIBE scheme
with advantage at least AdvA.

In the case of weak consistency, the running time of D is at most t + tg. In the case of strong
consistency, the running time of D is at most t. In both cases, D asks at most qw decryption
key extraction queries during the simulation. This concludes the proof of the theorem. �

Theorem 6.3. For a PKE-PEKS scheme derived from the second generic construction, it is
(t, qw, ε) weakly (resp. strong) consistent if the underlying IBE scheme is (t′, qk, ε

′) weakly (resp.
strong) collision-free, where ε ≥ ε′, qw ≤ qk, and t ≤ t′ − tg (resp. t ≤ t′).

Proof. Suppose there is an adversary A has advantage AdvA against WCON/SCON of the
PKE-PEKS scheme in running time t, we can build an adversary D breaking WCFR/SCFR of
the underlying IBE scheme as follows:

Initialize: D is given (mpk,msk) of the IBE scheme. D forwards mpk to A as pk.

Phase 1: Upon receiving token query 〈w〉 issued by A, D makes decryption key extraction
query for “identity” 1||w to its own challenger, and forwards the reply to A.

Finalize (weak consistency): A outputs a message m and two distinct keywords w and w′.
D runs OT.KeyGen(κ) to generate (vk, skσ), outputs (id = 1||w, id′ = 1||w′, m̃ = vk) to its own
challenger.

Finalize (strong consistency): A outputs two distinct keywords w and w′ and a PKE-PEKS
ciphertext u = (vk, c, s, σ) of (m,w) for some message m. Note that u might be generated using
adversarially chosen random coins. D outputs (id = 1||w, id′ = 1||w′, s) to its challenger.

According to the second generic construction of PKE-PEKS from IBE described in Section 5,
we have PKE-PEKS.Test(tw′ , u) = 1 ⇒ IBE.Decrypt(dkid′ , s) = vk, where u = (vk, c, s, σ) is a
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PKE-PEKS ciphertext of (m,w), id′ = 1||w′. To see why this implication holds, we just need
to decompose the left-hand side according to the PKE-PEKS construction from IBE. More
precisely, note that tw′ is computed as dkid′ ← IBE.Extract(sk, 1||w′) and the test algorithm
outputs 1 if u is valid and vk = IBE.Decrypt(tw′ , s), the implication immediately follows. Based
on this implication, we conclude that:

• If A breaks WCON of the PKE-PEKS scheme with advantage AdvA, which means event
PKE-PEKS.Test(tw′ , u) = 1 happens with probability AdvA for an honestly-generated
PKE-PEKS ciphertext u = (vk, c, s, σ), then event IBE.Decrypt(dkid′ , s) = vk must
happen with probability at least AdvA for an honestly-generated IBE ciphertext s ←
IBE.Encrypt(pk, id, m̃), which is the third element from u. Thereby, D violates WCFR of
the IBE scheme with advantage at least AdvA.

• If A breaks SCON of the PKE-PEKS scheme with advantage AdvA, which means event
PKE-PEKS.Test(tw′ , u) = 1 must happen with probability AdvA for an adversarially-
generated PKE-PEKS ciphertext u = (vk, c, s, σ), then event IBE.Decrypt(dkid′ , s) = vk
happens with probability at least AdvA. Thereby, D violates SCFR of the IBE scheme
with advantage at least AdvA.

In the case of weak consistency, the running time of D is at most t + tg. In the case of strong
consistency, the running time of D is at most t. In both cases, D asks at most qw decryption
key extraction queries during the simulation. This concludes the proof of the theorem. �

6.4 Enhanced Notions of Consistency, Collision-freeness, and Robustness

Enhanced Notion of Consistency. Abdalla et al. [ABC+08] formulated the consistency for
PEKS more like a security condition, via a security experiment involving an adversary. Just
as they indicated, the adversary against consistency is not very “adversarial”: it is modeled to
capture some kind of worst case but not malicious behavior. They also noticed that the basic
notion of consistency can be made stronger by giving the adversary a token oracle and/or a test
oracle. Indeed, we would go so far as to say the consistency should retain even the secret key sk
is exposed to the adversary. This interpretation agrees with the intuition of the notion of con-
sistency for PEKS [BDOP04]. In our understanding, consistency, like correctness, should also
be viewed as a built-in property for PEKS and PKE-PEKS. Therefore, we are motivated to en-
hance the notion of consistency for PEKS and PKE-PEKS schemes. The enhanced weak/strong
consistency is same as the original weak/strong consistency, except that in the Initialize step,
the adversary is given both pk and sk.

Enhanced Notion of Collision-freeness and Robustness. For the same reasoning as
above, the original notion of collision-freeness can also be enhanced. Particularly, in the IBE
setting the enhanced collision-freeness can be defined analogously as above. Namely, no ad-
versary can break collision-freeness with non-negligible probability even it knows the master
secret key msk. As an analogy of Theorem 6.1, we claim that a PEKS scheme is enhanced
weak/strong consistent if the underlying IBE scheme is enhanced weak/strong collision-free.
We omit the proof here due to its straightforwardness.

Schemes such as the ElGamal PKE [ElG85] and the Boyen-Waters IBE [BW06] are shown
to be strong collision-free in [Moh10]. Interestingly, they are also strong collision-free in the
enhanced sense. Moreover, we find that many encryption schemes are at least weak collision-
freeness in the enhanced sense without any modification, such as the Cramer-Shoup PKE [CS02],
the DHIES [ABR01], the Boneh-Franklin IBE [BF03], the Sakai-Kasahara IBE [SK03], the
Boneh-Boyen IBE [BB04a], and the Waters IBE [Wat05]. For many encryption schemes,
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collision-freeness inherently relies on their internal structure and collision-resistance of hash
functions being used, but not on the hardness of the underlying assumptions. Thereby, we
consider the enhanced notion of collision-freeness as a reasonable strengthening. It might be
fairly viewed as a built-in property for PKE/IBE. The same observation also holds for the case
of robustness, thus we can enhance the notion of robustness similarly. We would like to mention
that the enhanced notion of robustness is concurrently and independently proposed by Farshim
et al. [FLPQ13], which they refer to as unrestricted strong robustness.

7 Instantiations

7.1 Pairing-based Instantiation of Construction 1

De Caro et al. [DIP10] constructed a CPA-secure and anonymous HIBE based on three newly
introduced complexity assumptions in composite bilinear groups in the standard model. We
give a two-level version of the HIBE scheme [DIP10] as below:

• KeyGen(κ, 2): take as input a security parameter κ, generate four primes p1, p2, p3, p4, two
groups G and GT of order N = p1p2p3p4, subgroups Gpi of G with order pi for 1 ≤ i ≤ 4,

and a bilinear map e : G×G→ GT ; pick Y1, X1, u1, u2
R←− Gp1 , Y3

R←− Gp3 , X4, Y4
R←− Gp4

and α
R←− ZN , output the master key pair

mpk = (N,Y1, Y3, Y4, t = X1X4, u1, u2,W = e(Y1, Y1)α), msk = (X1, α).

• Extract(msk, id): take as input msk and a level-1 identity id = (id1) where id1 ∈ Zp1 ,

pick r1, r2
R←− ZN , and R1,1, R1,2, R2,1, R2,2

R←− Gp3 , then compute

K1,1 = Y r1
1 R1,1, K1,2 = Y α

1 (uid1 X1)r1R1,2, E1,2 = ur12 R1,2,

K2,1 = Y r2
1 R2,1, K2,2 = (uid1 X1)r2R2,2, E2,2 = ur22 R2,2,

output the decryption key dkid = (K1,1,K1,2, E1,2,K2,1,K2,2, E2,2).

• Derive(dkid, id
′): take as input a decryption key dkid = (K1,1,K1,2, E1,2,K2,1,K2,2, E2,2)

for a level-1 identity id = (id1) and a level-2 identity id = (id1, id2), pick r̃1
R←− ZN , and

and R̃1,1, R̃1,2
R←− Gp3 , then compute

K ′1,1 = K1,1(K2,1)r̃1R̃1,1, K ′1,2 = K1,2(K2,2)r̃1(E1,2)id2(E2,2)r̃1id2R̃1,2,

output the decryption key dkid = (K ′1,1,K
′
1,2). Note that for a level-2 identity, it’s not

necessary to generate any other secret elements, say Ei’s as in the output of Extract
algorithm, since we do not need to derive a decryption key for the next level (no such a
level exists).

• Encrypt(mpk, id,m): take as input mpk, an identity id = (id1, id2), and a message m ∈
GT , choose s

R←− ZN and Z,Z ′
R←− Gp4 , then compute

c0 = m ·W s, c1 = (uid11 uid22 t)sZ, c2 = Y s
1 Z
′,

output the ciphertext c = (c0, c1, c2).

• Decrypt(dkid, c): take as input a decryption key dkid for identity id and a ciphertext
c = (c0, c1, c2), output the message

m = c0 ·
e(K1,1, c1)

e(K1,2, c2)
.
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Collision-freeness of the above scheme is easy to verify. As for the candidate of one-time signa-
ture, we recommend the Boneh and Boyen short signature scheme [BB08], which is sEUF-CMA
secure based on the strong Diffie-Hellman (SDH) assumption in the bilinear groups in the stan-
dard model. By employing these two schemes as the underlying primitives for our first generic
construction, we obtain a pairing-based PKE-PEKS scheme which is consistent and jointly
CCA-secure in the standard model.

7.2 Lattice-based Instantiation of Construction 1

Agrawal et al. [ABB10] proposed a CPA-secure and anonymous HIBE scheme based on the
learning with errors (LWE) assumption in the standard model. Their original scheme encrypts
just one bit at one time and is only selective-identity secure and anonymous. As the authors
of [ABB10] pointed out, their scheme can be simply extended to support multi-bit encryption by
reusing the randomness of the encryption algorithm, and can be bootstrapped to an adaptive-
identity secure and anonymous scheme by applying a similar technique used in [Wat05, Boy10].

Before we present the two-level version of the HIBE scheme [ABB10], we first fix some
notations and recall several related algorithms on lattices in the sense of functionality (since we
try not to involve too much knowledge on lattices here). For integers n, m and q, we treat a
matrix in Zn×mq simply as the set of its column vectors in Znq , and denoted by bold capital letters
(e.g., A). We use bold lower-case letters to denote vectors x ∈ Znq , and the l2 norm (namely, the

Euclidean norm) of a vector x = (x1, . . . , xn) ∈ Znq is denoted by ‖x‖ =
√∑n

i=1 x
2
i . In addition,

the norm of a matrix X is defined as the norm of its longest column (i.e., ‖X‖ = maxi ‖xi‖).

• TrapGen(n, q): take as input two integers n and q, output a matrix A ∈ Zn×mq and a
trapdoor TA ∈ Zm×m, such that ATA = 0 mod q and ‖TA‖ ≤ O(n log q).

• SampleBasisLeft(A,B,TA, σ): take as input two matrices A ∈ Zn×m1
q , B ∈ Zn×m2

q , a
trapdoor TA ∈ Zm1×m1 of A, and a real σ, output a trapdoor TF of F = (A||B) ∈
Zn×(m1+m2)
q .

• SamplePre(A,TA,u, τ): take as input a matrix A ∈ Zn×mq , a trapdoor TA ∈ Zm×m of A,
a vector u ∈ Znq and a real τ , output a short vector e ∈ Zm×m such that Ae = u mod q.

We refer the readers to [ABB10] for more details about the parameters and the algorithms.
For simplicity, we assume the level-2 identity space is {−1, 1}l × {−1, 1}l, the adaptive-

identity secure and anonymous HIBE encrypting one bit is given below:

• KeyGen(κ, 2): take as input a security parameter κ, generate a n×m matrix A0 ∈ Zn×m
together with its trapdoor TA0 using the TrapGen algorithm; randomly choose 2(l + 1)
matrices {Ai, {Bi,j}j=1,...,l}i=1,2 from Zn×mq and a vector u from Znq , and finally output
the master key pair

mpk = (A0, {Ai, {Bi,j}j=1,...,l}i=1,2,u) , msk = (TA0) ∈ Zm×m.

• Extract(msk, id): take as inputmsk and an identity id = (id1) where id1 = (b1,1, . . . , b1,l) ∈
{−1, 1}l, define matrix Fid = (A0||A1 +

∑l
j=1 b1,jB1,j), pick a real σ, then output a de-

cryption key dkid for id as

dkid ← SampleBasisLeft
(
A0,A1 +

l∑
j=1

b1,jB1,j ,msk, σ
)
.
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• Derive(dkid, id
′): take as input a decryption key dkid for identity id = (id1) and an iden-

tity id′ = (id1, id2) where id2 = (b2,1, . . . , b2,l) ∈ {−1, 1}l, define Fid′ = (Fid||A2 +∑l
j=1 b2,jB2,j), then output the decryption key dkid′ for id′ as

dkid′ ← SampleBasisLeft
(
Fid′ ,A2 +

l∑
j=1

b2,jB2,j , dkid, σ
)
.

• Encrypt(mpk, id,m): take as input mpk, an identity id, and a message m ∈ {0, 1}, first
define the corresponding matrix Fid as in the algorithm Extract (i.e., a level-1 identity)
or Derive (i.e., a level-2 identity); randomly choose a vector s ∈ Znq and a matrix R ∈
{−1, 1}m×km, where k = 1 for level-1 identity, and k = 2 for level-2 identity, randomly
choose a noise vector x ∈ χ,y ∈ χm, and finally output the ciphertext

c =
(
c0 = uT s + x+m

⌊q
2

⌋
, c1 = FT

ids + RTy
)
.

• Decrypt(dkid, c): take as input a decryption key dkid for identity id and a ciphertext
c = (c0, c1), first set τ = σ

√
(k + 1)mω(

√
log(km)), then compute

eid ← SamplePre(Fid, dkid,u, τ).

Let w = c0 − eTidc1. If |w − b q2c| < b
q
4c, output 1. Else, output 0.

The CPA-security and anonymity of the above two-level HIBE scheme is implied by the original
results of [ABB10], while collision-freeness is easy to be verified, Very recently, Micciancio and
Peikert [MP12] constructed a short signature scheme, which is static sEUF-CMA secure based
on the small integer solution (SIS) assumption on lattices in the standard model. We can
bootstrap it to standard sEUF-CMA security by leveraging the generic transform [KR00] with
chameleon hash functions. A suitable type of chameleon hash function [CHKP10] has been
constructed under a weak hardness of the SIS assumption. By employing these two schemes as
the underlying primitives for our first generic construction, we obtain a lattice-based PKE-PEKS
scheme which is consistent and jointly CCA-secure in the standard model.

7.3 Pairing-based Instantiation of Construction 2

We now give an instantiation of our second generic construction by employing the Gentry’s
IBE [Gen06] together with the Boneh-Boyen signature scheme [BB08].

KeyGen(κ): generate two groups G and GT of prime order p along with a bilinear map e :

G × G → GT , pick g, h1, h2, h3
R←− G∗ and α

R←− Zp, set g1 = gα; choose a collision-resistant
hash function H from {0, 1}∗ to Zp; output public key pk = (g, g1, h1, h2, h3,H) and secret key
sk = α.

Encrypt(pk,m,w):

1. Pick t
R←− G∗ and x, y

R←− Z∗p, compute u = tx, v = ty, and then set vk = (t, u, v),
skσ = (x, y).

2. Compute id0 ← H(0||vk), choose r0
R←− Zp, and compute c1 = gr01 g

−r0·id0 , c2 = m ·
e(g, h1)−r0 ; set c = (c1, c2).

3. Compute id1 ← H(1||w), choose r1
R←− Zp, and compute s1 = gr11 g

−r1·id1 , s2 = e(g, g)r1 ,
s3 = H(vk)·e(g, h1)−r1 , s4 = e(g, h2)r1e(g, h3)r1β for β ← H(s1||s2||s3); set s = (s1, s2, s3, s4).
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4. Compute z ← H(c||s), pick σ1
R←− Zp\

{
− x+z

y

}
, and compute σ2 = t1/(x+z+yσ1), here the

inverse is computed modulo p; set the signature σ = (σ1, σ2).

5. Output the final ciphertext u = (vk, c, s, σ).

Decrypt(sk, u):

1. Parse u as (vk, c, s, σ), where vk = (t, u, v), and σ = (σ1, σ2).

2. Compute z ← H(c||s). If e(σ2, u · tz · vσ1) 6= e(t, t), output ⊥. Otherwise, compute
id0 ← H(0||vk) and output m = c2 · e(c1, h

1/(α−id0)).

TokenGen(sk, w):

1. Compute id1 ← H(1||w), and then choose dki,1
R←− Zp, compute dki,2 = (hig

−dki,1)1/(α−id1)

and set dki = (dki,1, dki,2) for 1 ≤ i ≤ 3. If α = id1, the algorithm aborts. Otherwise,
output tw = (dk1, dk2, dk3).

Test(tw, u):

1. Parse tw as (dk1, dk2, dk3), u as (vk, c, s, σ).

2. Compute z ← H(c||s). If e(σ2, u · tz · vσ1) 6= e(t, t), output 0. Otherwise, compute

β ← H(s1||s2||s3), test if s4 = e(s1, dk2,2dk
β
3,2)s

dk2,1+dk3,1β
2 . If the check fails, output 0.

Else, continue to check if H(vk) = s3 · e(s1, dk1,2)s
dk1,1
2 . If so, output 1. Else output 0.

The Gentry’s IBE [Gen06] is ANO-IBE-CCA based on the truncated q-ABDHE assumption, and
the Boneh-Boyen signature scheme [BB04b] is sEUF-CMA secure based on the SDH assumption.
Besides, the Gentry’s IBE [Gen06] is weak robust against CCA-attack and thus it is certainly
weak collision-free. Therefore, according to Theorem 5.1 this above construction is consistent
and jointly CCA-secure in the standard model.

8 Extensions

Keyword Hiding. As noticed in [BW07, HW08, Nis12], the IND-PEKS-CPA/CCA notions
only ask that searchable ciphertext does not reveal any information about the keyword, but
neglect to capture keyword privacy against the gateway, namely a token does not reveal infor-
mation about its corresponding keyword. We refer to such privacy as keyword hiding, which is
desired in scenarios that the user want to keep the specific keyword hidden from the gateway.
It is often noted that the standard indistinguishable-style keyword hiding cannot be achieved
in non-interactive setting.7 To see this, note that given two different keywords w0 and w1 and
a token twb

, one can always learn b by using “encrypt-then-test” method [HW08, Nis12]. In
fact, due to the functionality of PEKS schemes, no meaningful notion of keyword hiding is
possible beyond the minimum assumption that the keywords corresponding to the given tokens
are sampled from distributions with certain amount of min-entropy (which must be at least
super-logarithmic in the security parameter κ). Recently, Boneh et al. [BRS13] proposed a new
notion named “function privacy” for IBE schemes, which captures the intuition that secret key
skid hides its functionality. They formalized this notion via an indistinguishable-style defini-
tion, which requires that skid for an identity id sampled from any sufficiently unpredictable
distribution is indistinguishable from skid′ for an independently and uniformly sampled iden-
tity id′. They also developed an approach called “extract-augment-combine” for designing IBE

7Here, “non-interactive” means both token generation and keyword search are done in a non-interactive
manner. We emphasize that indistinguishable-style keyword hiding is possible in interactive setting. Boneh et
al. [BKOI07] constructed a PEKS scheme allowing Private Information Retrieval [KO97], which hides all the
information including the keyword.
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schemes that satisfy the notion of function privacy. Noting the connection between IBE and
PEKS, keyword hiding for PEKS is in spirit of function privacy for IBE. Following [BRS13], we
can formalize an indistinguishable-style definition of keyword hiding for PEKS schemes as well
as PKE-PEKS schemes. It seems plausible that one could achieve indistinguishable keyword
hiding via the extract-augment-combine approach.

Multi-Keyword Setting. For brevity, we described our construction in single keyword setting.
Our construction extends easily to multi-keyword setting as follows: to encrypt message m
with a string of keywords (w1, . . . , wn) intended to Alice, Bob generates a key pair (vk, sk)
for a one-time signature scheme and creates a PKE ciphertext c ← Encrypt(pk, 1||vk,m) as
in the single keyword setting; then creates a PEKS ciphertext s = s1|| . . . ||sn, where si ←
Encrypt(pk, (0||wi, vk), vk) for 1 ≤ i ≤ n, and compute the signature σ of c||s with sk. The final
PKE-PEKS ciphertext is (vk, c||s, σ). The security proof is omitted here since it is very similar
to that for the construction in the single keyword setting.

Integrated IBE and IBEKS. Abdalla et al. [ABC+08] put forwarded the concept of Identity-
Based Encryption with Keyword Search (IBEKS). Naturally, we can define integrated (H)IBE
and (H)IBEKS scheme and its joint security notion analogously. Both our constructions extend
to give transforms from (H)IBE schemes with appropriate properties to jointly CCA-secure
integrated (H)IBE-(H)IBEKS schemes.
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A Review of Standard Definitions

A.1 Public-Key Encryption with Keyword Search

A non-interactive public-key encryption with keyword search scheme [BDOP04] consists of four
PPT algorithms as follows:

• KeyGen(κ): take as input a security parameter κ, output a public/secret key pair (pk, sk).
Let W be the set of all possible keywords.

• Encrypt(pk, w): take as input a public key pk and a keyword w ∈W , output a ciphertext
s.

• TokenGen(sk, w): take as input a secret key sk and a keyword w ∈W , output a token tw.

• Test(tw, s): take as input a token tw and a ciphertext s ← Encrypt(pk, w′), output 1 if
w′ = w and 0 otherwise.

The IND-PEKS-CPA security for PEKS schemes is defined by the following experiment:

Setup: CH runs KeyGen(κ) to generate (pk, sk) and gives A the public key pk.

Phase 1: A can adaptively make token queries 〈w〉. CH responds with tw ← TokenGen(sk, w).

Challenge: A outputs two distinct keywords w∗0, w
∗
1 ∈ W subject to the restriction that

they had not been asked for tokens in Phase 1. CH picks a random bit b and sends c∗ ←
Encrypt(pk, w∗b ) to A as the challenge ciphertext.

Phase 2: A can adaptively make more token queries 〈w〉 subject to the restriction that w 6=
w∗0, w

∗
1. CH responds the same way as in Phase 1.

Guess: A outputs a guess b′ for b and succeeds if b′ = b. We denote this event by SuccA and

define A’s advantage as AdvIND-CPA
A,PEKS (κ)

def
= |Pr[SuccA]− 1/2|.

Definition A.1. A PEKS scheme is (t, qw, ε) IND-PEKS-CPA secure if for all t-time adversaries
making at most qw token queries have advantage at most ε in the above experiment.

The IND-PEKS-CCA security for PEKS schemes can be defined by a similar experiment by
giving the adversary access to an additional test oracle which can determine if c is an encryption
of w. To avoid triviality, test queries 〈c∗, w∗0〉 and 〈c∗, w∗1〉 are not allowed in Phase 2.
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Definition A.2. A PEKS scheme is (t, qw, qt, ε) IND-PEKS-CCA secure if for all t-time adver-
saries making at most qw token queries and at most qt test queries have advantage at most ε in
the IND-PEKS-CCA experiment.

A.2 Hierarchical Identity-Based Encryption

Hierarchical identity-based encryption (HIBE) [HL02, GS02] is a generalization of IBE [BF03] to
identities supporting hierarchical structures. In an HIBE scheme, identities are hierarchical and
take the form id = (id1, id2, . . . ). Each user in the hierarchy can act as a local key-generation
authority for all subordinate hierarchical identities. An HIBE scheme consists of five PPT
algorithms as follows:

• KeyGen(κ, `): take as input a security parameter κ and a parameter ` for the maximum
depth of the HIBE, output a master public/secret key pair (mpk,msk). Let I be the
identity space, M be the message space, and C be the ciphertext space. We assume mpk
is used as an implicit input for algorithms Extract, Derive, as well as Decrypt,

• Extract(msk, id): take as input msk and an identity id ∈ I, output a decryption key dkid.
8

• Derive(dkid, id
′): take as input a decryption key dkid for identity id = (id1, . . . , idj−1) of

depth j − 1 and an identity id′ = (id1, . . . , idj) of depth j, output a decryption key dkid′

for id′.

• Encrypt(mpk, id,m): take as input mpk, an identity id ∈ I, and a message m ∈M , output
a ciphertext c ∈ C.

• Decrypt(dkid, c): take as input a decryption key dkid for identity id and a ciphertext c ∈ C,
output a message m ∈M or a reject symbol ⊥ indicating c is invalid.

The basic security notion for HIBE schemes is indistinguishability against adaptive chosen-
plaintext attack (IND-HIBE-CPA), which is defined by the following experiment:

Setup: CH runs KeyGen(κ, `) to generate (pk, sk) and gives A the master public key mpk.

Phase 1: A can adaptively make decryption key extraction queries 〈id〉. CH responds with
dkid ← Extract(msk, id).

Challenge: A outputs two distinct messages m∗0, m∗1 and an identity id∗ subject to the restric-
tion that any prefix of id∗ had not been queried for decryption keys in Phase 1. CH randomly
picks a bit b and sends c∗ ← Encrypt(mpk, id∗,m∗b) to A as the challenge ciphertext .

Phase 2: A can adaptively make more decryption key extraction queries 〈id〉 subject to the
restriction that id is not a prefix of id∗. CH responds the same way as in Phase 1.

Guess: A outputs a guess b′ for b and succeeds if b′ = b. We denote this event by SuccA and

define A’s advantage as AdvIND-CPA
A,HIBE (κ)

def
= |Pr[SuccA]− 1/2|.

Definition A.3. A HIBE scheme is (t, qk, ε) IND-HIBE-CPA secure if for all t-time adversaries
making at most qk decryption key extraction queries have advantage at most ε in the above
experiment.

Selective-identity IND-HIBE-CPA security can be defined similarly. The difference is that
the adversary has to commit a target identity id∗ before seeing mpk and is not allowed to query
decryption keys for any prefix of id∗ throughout the experiment.

Orthogonal to security, anonymity is introduced to capture identity privacy, which ensures
the ciphertext reveals no information about the recipient’s identity. To allow a fine-grained

8According to the convention of IBE, decryption key dk is usually denoted by sk and referred to as private
key. In this work we reserve the symbol sk for secret key of PKE, PEKS, and PKE-PEKS schemes and call
private key in IBE schemes as decryption key to avoid confusion.
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treatment, Abdalla et al. [ABC+08] defined anonymity regarding to a set L of levels, meaning
that in the anonymous experiment the adversary is challenged to distinguished two distinct
identities differing only at levels l ∈ L. For ease of notation, we will write l rather than {l}
when L = {l} is a singleton set. Let diff(·, ·) be a function outputting the set of levels at
which the two input identities differ. We recall the definition of anonymity for HIBE schemes
as follows:

Setup: CH runs KeyGen(κ) to generate (pk, sk) and gives A the master public key mpk.

Phase 1: A can adaptively make decryption key queries 〈id〉. CH responds with dkid ←
Extract(msk, id).

Challenge: A outputs a message m∗ and two distinct identities id∗0, id∗1 subject to the restric-
tions that any prefix of id∗0 and id∗1 had not been asked for decryption keys and diff(id∗0, id

∗
1) ⊂ L.

CH picks a random b ∈ {0, 1} and gives c∗ ← Encrypt(mpk, id∗b ,m
∗) to A as the challenge ci-

phertext.

Phase 2: A can adaptively make more decryption key extraction queries for any identity id
subject to the restriction that id is not a prefix of id∗0 or id∗1. CH responds the same way as in
Phase 1.

Guess: A outputs a guess b′ for b and succeeds if b′ = b. We denote this event by SuccA and

define A’s advantage as AdvANO-CPA
A,HIBE (κ)

def
= |Pr[SuccA]− 1/2|.

Definition A.4. A HIBE scheme is (t, qk, ε) ANO-HIBE-CPA [L]-anonymous if for all t-time
adversaries making at most qk decryption key extraction queries have advantage at most ε in
the above experiment.

When considering anonymity for HIBE schemes in the presence of chosen-ciphertext attack,
we obtain the ANO-PEKS-CCA security [ABN10], which is defined by a similar experiment
as above by giving the adversary additional access to a decryption oracle subject the natural
restriction that decryption queries 〈id∗0, c∗〉 and 〈id∗1, c∗〉 are not allowed in Phase 2.

Definition A.5. A HIBE scheme is (t, qk, qd, ε) ANO-HIBE-CCA [L]-anonymous if for all t-
time adversaries making at most qk decryption key extraction queries and at most qd decryption
queries have advantage at most ε in the ANO-HIBE-CCA experiment.

A.3 Signatures

A signature scheme consists of three PPT algorithms as follows:

• KeyGen(κ): take as input a security parameter κ, output a verification key vk and a
signing key skσ. Let M be the message space.

• Sign(skσ,m): take as input a signing key skσ and a message m ∈ M , output a signature
σ.

• Verify(vk,m, σ): take as input a verification key vk, a message m, and a signature σ,
output 1 indicates “acceptance” and 0 indicates “rejection”.

For the correctness of a signature scheme, we require that for all (vk, skσ) ← KeyGen(κ) and
all m ∈M , Verify(vk,m,Sign(skσ,m)) = 1 always holds. If (σ,m) satisfies Verify(vk,m, σ) = 1,
then σ is said to be a valid signature of message m under the verification key vk.

A strong notion of security for signature schemes is strong existential unforgeability under
adaptive chosen-message attack (sEUF-CMA), which is defined by the following experiment:

Setup: CH runs KeyGen(κ) to generate (vk, skσ) and gives A the verification key vk.

Forgery: A may do one of the following:
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• A adaptively make signing queries 〈mi〉, and is then given in return σi ← Sign(skσ,mi).
After this, A outputs (m∗, σ∗).

• A outputs (m∗, σ∗) without making any signing queries. In this case (mi, σi) are undefined.

We denote the event that A outputs (m∗, σ∗) such that Verify(vk,m∗, σ∗) = 1 but (m∗, σ∗) 6=
(mi, σi) (if (mi, σi) are defined) as SuccA, and defineA’s advantage as AdvsEUF-CMA

A,SIG
def
= Pr[SuccA].

Definition A.6. A signature scheme is (t, qs, ε) sEUF-CMA secure if for all t-time adversaries
making at most qs signing queries have advantage at most ε in the above experiment. Particu-
larly, a signature scheme is one-time strongly unforgeable if it is (t, 1, ε) sEUF-CMA secure.
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