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Abstract. The RSA-768 (270 decimal digits) was factored by Kleinjung et al. on
December 12 2009, and the RSA-704 (212 decimal digits) was factored by Bai
et al. on July 2, 2012. And the RSA-200 (663 bits) was factoredby Bahr et al.
on May 9, 2005. Until right now, there is no body successful tobreak the RSA-
210 (696 bits) currently. In this paper, we would discuss an estimation method
to approach lower/upper bound ofφ(n) in the RSA parameters. Our contribution
may help researchers lock theφ(n) and the challenge RSA shortly.
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1 Introduction

Challenge RSA [12] is an interesting and difficult work. Recently, most scientists and
researchers [1, 4, 8] using general number field sieve (GNFS)algorithm to factor RSA
modulusn. In practical environment, it looks like if you to want to break the RSA,
you may have best choice to choose GNFS when you already factor the modulusn. In
theoretical, Wiener [17] first proposed a cryptanalysis of short secret exponents where
the d < N0.5 in 1990. Boneh [3] presented ‘Twenty years of attacks on RSA cryp-
tosystem’ in 1999. He classified and described varieties attack. Followed by Boneh and
Durfee [2], they suggested the provate keyd should be greater thanN0.292 for the se-
curity problem. Even though, some bodies focus on secret keyd or factor composite
numbern. Their purpose are clearly. We can not help but think, does itexist a general
estimation way without factor to challenge RSA? In this article, we would introduce a
new methodology where approach the lower bound and the upperbound ofφ(n). For
this generalize conception, it may match any bit length composite numbern.

2 Review of RSA Conception

The signer prepares the prerequisite of a RSA signature: Twodistinct large primep and
q, n = pq, Lete be a public key so thatgcd(e, φ(n)) = 1, whereφ(n) = (p−1)(q−1),
then calculate the private keyd such thated ≡ 1 (mod φ(n)). The signer publishes
(e, n) and keeps(p, q, d) secretly. The notation as same in [12].
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2.1 RSA Encryption and Decryption

In RSA public-key encryption, Alice encrypts a plaintextM for Bob using Bob’s public
key (n, e) by computing the ciphertext

C ≡ M e (mod n) (1)

wheren, the modulus, is the product of two or more large primes, ande, the public
exponent, is an (odd) integere ≥ 3 that is relatively prime toφ(n), the order of the
multiplicative groupZ∗

n.

2.2 RSA Digital Signature

s ≡ Md (mod n) (2)

where(n, d) is the signer’s RSA private key. The signature is verified by recovering the
messageM with the signer’s RSA public key(n, e):

M ≡ se (mod n) (3)

3 Our Methodology

In this section, we would calculate the upper bound and the lower bound ofφ(n) in
RSA scheme. The detail described as below.
Notation:
ℓ: means lower bound.
u: means upper bound.
ε: a decimal expansion number (e.g99/100 = 0.99 · · · ).

3.1 Approaching φ(n)

If n is composite, hence
φ(n) ≤ n −

√
n, (4)

Sierpinski [15] mentioned it in 1964. It is know that if equation (4) is a good upper
bound forφ(n). Is there a good lower bound forφ(n)? This question also be discussed
by a newsgroup dialog between Ray Steiner and Bob Silverman in 1999 [16]. Forn >
30, the φ(n) > n2/3, Kemdall and Osborn proved it [7]; forn ≥ 3, the φ(n) >
log 2

2
n

log n given by Hatalova and Salat [6].

3.1.1 Estimate upper bound Does the equation (4) a good upper bound? In follows,
we would estimate a new value where its smaller than previousand optimize.

Theorem 1. Assumep, q are large prime numbers, wheren = pq, thenφ(n) = 4k,

k ∈ Z where1 ≤ k ≤ ⌊n−2⌈√n⌉+1
4 ⌋.
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Fig. 1. The lower/upper bound ofφ(n) in RSA scheme.

Proof. As known two variantp andq are large prime numbers, andp, q > 2, since
2 ∤ p, 2 ∤ q,
therefore2 | p − 1, 2 | q − 1.
4 | (p − 1)(q − 1), 4 | φ(n).
φ(n) = 4k, k ∈ Z+.
We will discuss how calculate the range of valuek.

φ(n) = (p − 1)(q − 1)

= pq − (p + q) + 1

= n − (p + q) + 1. (5)

And

p + q > 2
√

n,

p + q ∈ Z+,

2 | p + q.

p + q > 2⌈
√

n⌉.
φ(n) ≤ n + 1 − 2⌈

√
n⌉.

φ(n) = 4k, k ∈ Z+.

φ(n) ≤ 4 · ⌊n + 1 − 2⌈√n⌉
4

⌋. (6)

Here, we know the maximum value (limit superior) fork ≤ ⌊n−2⌈√n⌉+1
4 ⌋, we call

boundary value.
Consequently, according to above inference, we obtain a best upper boundu of φ(n)

whereφ(n) ≤ 4⌊n−2⌈√n⌉+1
4 ⌋.

Theorem 2. Assumep, q are large prime numbers, andp, q > 2, n = pq, where
φ(n) ≤ t ≤ n, t ∈ Z. Thent = φ(n) ⇐⇒ x2 − (n + 1 − t)x + n = 0 have two
positive integer solutions.

Proof. We describe two properties, necessary and sufficient conditions as follow:
Necessary condition:
If t = φ(n) = (p−1)(q−1) = pq−(p+q)+1 = n−(p+q)+1, thenn+1−t = p+q,
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in the same time, the formula bex2 − (p + q)x + pq = 0. It is clearly, the equation of
the two rootsp andq are needed to set up.
Sufficient condition:
If equationx2 − (n + 1 − t)x + n = 0 have two integer solutions.
Assumex1, x2 be the equation of the two roots, wherex1, x2 ∈ Z+.
The equation could be transformed to(x − x1)(x − x2) = 0.
Promptly,x2 − (x1 + x2)x + x1x2 = 0.
Thenn = x1x2, according ton’s structure, there are two choice:
1) x1 = 1 andx2 = n (or x1 = n andx2 = 1).
2) x1 = p andx2 = q (or x2 = q andx2 = p).
If x1, x2 one for1 andn.
Now,x1 + x2 = n + 1, becausex1 + x2 = n + 1 − t, hencet = 0.
However, in our assumption, the condition ist > 0, so this inference contradiction.
The equation have two integersp andq where

x1 + x2 = p + q, (7)

then
p + q = n + 1 − t. (8)

Promptly,
t = n + 1 − (p + q), (9)

and
t = φ(n). (10)

Thus, for the sufficient condition is setting up.

Theorem 3. Assumep, q are large prime numbers, andp, q > 2, n = pq, t = 4k
whereφ(n) ≤ t ≤ n, t ∈ Z. If

√

(n + 1 − t)2 − 4n is an integer number, the equation
x2 − (n + 1 − t)x + n = 0 has two integer solutions.

Proof. Sincep, q are both prime numbers wheren = pq, 2 ∤ n, but2 | n + 1.
Supposet = 4k, and2 | t. Thus2 | n + 1 − t.
If

√

(n + 1 − t)2 − 4n ∈ Z, so2 |
√

(n + 1 − t)2 − 4n.
The equationx2 − (n + 1 − t)x = 0 of the two solutions are:

x =
n+1−t±

√
(n+1−t)2−4n

2 .
Because2 | n + 1 − t, and while

√

(n + 1 − t)2 − 4n ∈ Z,
it exists2 |

√

(n + 1 − t)2 − 4n.
When

√

(n + 1 − t)2 − 4n ∈ Z, 2 | n + 1 − t ±
√

(n + 1 − t)2 − 4n.
Due to

√

(n + 1 − t)2 − 4n ∈ Z, thex is also∈ Z.
Here, the two solutions of equationx2 − (n + 1 − t)x + n = 0 are both integers.

3.1.2 Estimate lower bound Loomis et al. [10] thought the Shapiro’s [13] lower
boundφ(n) > n(log 2)/(log 3) as a (naive) lower bound forEn, they can determine
when all members of a givenEn have been found. Powell [11] pointed out that Konya-
gin and Shparlinksi’s lower boundN1(n, p) > (p − 1)/2 − p3/2/n wheren > 1 is a
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positive integer and thatp is an odd prime number withp ≡ 1 (mod n); that is a good
bound ifp is a small compared ton, and establishes that

N1(n, p) ≥ (
√

φ(n)(
∏

q prime

q|n

q1/(q−1))/n)p1−1/φ(n). Powell also discussed an improve-

ment the upper and lower bounds in [11]. What is the optimal lower bound? The other
discuss in following:

Theorem 4. For all n ≥ 3 we haveφ(n) ≥ n
eγ log log n + Ø( n

(log log n)2 ), whereγ

is the Euler-Mascherone Constant, and the above holds with equality infinitely often.
Remark:note in particular that sinceloglogn → ∞ asn grows large, we see that the
result n

m < φ(n) can not hold for any fixed integerm.

Proof. ConsiderR, set of alln such thatm < n implies φ(n)
n < φ(m)

m . This set is then
all of the ‘record breaking’n. If n ∈ Rhask prime factors, letn∗ be the product of the
firstk prime factors. Ifn 6= n∗ andφ(n)∗

n∗ ≤ φ(n)
n , which is impossible. Hence,Rconsist

entirely ofn of the formn =
∏

p≤y p for somey. Now for n ∈ R, we can choosey
so thatlog n =

∑

p≤y log p = θ(y). Then using one of Mertens estimates we see that
φ(n)

n =
∏

p≤y(1− 1
p ) = e−γ

log y +O( 1
(log y)2 ). Sincelog log n = log(θ(y)) = log y+Ø(1)

by Mertens estimates again, we have forn ∈ R, φ(n) = ne−r

log log n + O( 1
(log log n)2 .

Fig. 2. The same digits ofφ(n) and modulusn parameters in RSA.

From above, it seems so complexity. Does it exist a simple computation method? We
observed the modulusn with φ(n), there have some characteristics. An example for
RSA-200, the modulusn and theφ(n) are 200 decimal digits. We comparedn and
φ(n) each other, there are the same digits from left to right110 digits. The example
showed in Figure2. Discuss on RSA modulus number with haft of the bit prescribed,
be introduced some literatures in [5, 9, 14]. To RSA-704, then and φ(n) had same

Table 1. Comparison of some types in RSA parameters. Unit: decimal digits

type Modulusn length φ(n) length p length q length same digitsn & φ(n) same digitsφ(n) &u
RSA-200 200 200 100 100 110 101
RSA-210 200 200 105 105 ? ?
RSA-704 212 212 106 106 106 108
RSA-768 232 232 116 116 115 120
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digits 106, it amounts same length withp or q. We computed the upper bound value
according to Theorem1, this upper bound had same108 digits with its φ(n). And
analyzed the RSA-768, then had115 digits same withφ(n); theφ(n) had120 digits
same with its upper boundu. Please see Table1 We observed the relationship ofφ(n)
and its boundary valuek, whenφ(n) divided byk, we obtained this quotient are very
approaching to number4, these lower bounders are very close to multiples of number
4. We say3.999, and have106’s 9 after decimal point for case of RSA-210 type. The
lower bound approximation figure diagram be shown in figure4 and in Table2. As

Fig. 3. The lower bound approximation curve status.

Table 2. The relationship ofφ(n) and its boundary valuek.

type φ(n)/k statement

RSA-2003.

99
′
s 9

︷ ︸︸ ︷

99999 8 there have99’s 9 after the decimal point

RSA-2103.

106
′
s 9

︷ ︸︸ ︷

99999 2 Estimating have106’s 9 after decimal point

RSA-7043.

107
′
s 9

︷ ︸︸ ︷

99999 8 there have107’s 9 after decimal point

RSA-7683.

117
′
s 9

︷ ︸︸ ︷

99999 7 there have117’s 9 after decimal point

known as the modulus numbern of RSA-210, we re-estimated its lower/upper bounds.
We assume:

(3 + ε)⌊n − 2⌈√n ⌉ + 1

4
⌋ ≤ φ(n) ≤ 4⌊n − 2⌈√n ⌉ + 1

4
⌋, (11)
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whereε = 0.

106′s 9
︷ ︸︸ ︷

99999. We therefore compute the upper boundu and lower boundℓ; those
shown result in Figure4.

Fig. 4. The lower/upper bound parameters ofφ(n) in RSA-210.

4 Conclusion

In this paper, we re-estimated a new lower/upper bound values ofφ(n) in RSA-210, our
methodology are easily, simply, clearly, no intricately and intuitive. It may be useful
to researchers who would quickly reduce the searching ranges. Looking back, more
researchers focus on secretd or modulusn, such as well known short exponent attack,
side channel attack, or common modulus and cyclic attacks. Our method is differ to
previous literatures. Finally, We presented what we claimed actually.
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