
Simple, Efficient and Strongly KI-Secure
Hierarchical Key Assignment Schemes

Eduarda S. V. Freire?, Kenneth G. Paterson??, and Bertram Poettering??

Information Security Group,
Royal Holloway, University of London, U.K.

Abstract Hierarchical Key Assignment Schemes can be used to enforce access control
policies by cryptographic means. In this paper, we present a new, enhanced security model
for such schemes. We also give simple, efficient, and strongly-secure constructions for Hier-
archical Key Assignment Schemes for arbitrary hierarchies using pseudorandom functions
and forward-secure pseudorandom generators. We compare instantiations of our construc-
tions with state-of-the-art Hierarchical Key Assignment Schemes, demonstrating that our
new schemes possess an attractive trade-off between storage requirements and efficiency
of key derivation.

Keywords: key assignment scheme, general poset, pseudorandom function, pseudoran-
dom generator, forward security.

1 Introduction

Access control: There are numerous examples where it is desirable to provide differenti-
ated access to data according to an access control policy. As an illustration, consider a
hospital where doctors are assigned access permission to a set of files containing some
personal information in a patient’s medical record, depending on their seniority, while
nurses, being at a lower level in the hierarchy, have more restricted access to that infor-
mation. As another example, consider a building management scenario where sensors are
installed to capture temperature, humidity, light, motion, sound, or other data. These
data have different levels of sensitivity, and access to information of different types might
be restricted to different personnel, depending on their roles in the organization. Nor-
mal employees would only be able, for example, to access temperature, humidity and
light of the floor where they work, while managers of that floor would be able to have
access to information related to presence in rooms on that floor, like motion and sound
data. The manager of the building would, however, have access to all information for
the different floors of the building. As a third example, broadcasters wish to control
access to broadcast services in such a way that only paying customers can access the
programmes included in the package to which they have subscribed, and nothing else.
Other application domains include management of databases containing sensitive infor-
mation, military and government communication, and protection of industrial secrets.
Indeed the field of access control is a healthy sub-discipline of Information Security in
its own right.

Cryptographic enforcement: The use of cryptographic techniques to enforce access con-
trol policies for hierarchical structures was first proposed in 1983, by Akl and Taylor [1],
who put forward the concept of a (hierarchical) key assignment scheme (KAS). Such
a scheme is a method to assign some private information and encryption keys to each

? This author supported by CAPES Foundation/Brazil on grant 0560/09-0 and Royal Holloway, Uni-
versity of London.

?? This author supported by EPSRC Leadership Fellowship EP/H005455/1.

class in a hierarchy in such a way that the private information assigned to a class, along
with some public information, can be used to derive symmetric encryption keys assigned
to all classes lower down in the hierarchy. Formally, the hierarchy is modelled as a par-
tially ordered set (poset), each data item is labelled by a class u in the hierarchy, and
is encrypted using the encryption key ku corresponding to that class. Now a user, given
access to the private information Su, can derive the relevant encryption key kv for any
descendant class v, and hence gain access to the data of class v. Since the original paper
by Akl and Taylor, a large number of different schemes have been proposed, offering
different trade-offs in terms of the amount of public and private storage required and
the complexity of key derivation – see for example [2–17]. Many additional issues are
addressed in these works: time-dependent constraints, dynamic addition and removal of
classes, and revocation, for example. A recent survey of this area by Crampton et al. [18]
provides a detailed classification and analyses of many of the schemes proposed in the
last decades.

Many of the early schemes lacked any formal security analysis, but this shortcoming
has been gradually addressed beginning with the work of Atallah et al. [8], who proposed
two different security notions: security against key recovery attacks (KR-security) and
security with respect to key indistinguishability (KI-security). Informally, KR-security
captures the notion that an adversary should not be able to compute a key to which
it should not have access; whereas in the notion of KI-security, the adversary should
not even be able to distinguish between the real key and a random string of the same
length. The stronger KI-security notion is important in enabling secure composability for
hierarchical key assignment schemes, that is, in achieving the property that any secure
key assignment scheme can be safely used alongside any suitably secure encryption
scheme.

Our contributions: We first argue that the KI-security notion introduced in [8] needs
to be strengthened in order to capture the widest possible range of realistic attacks. In
particular, the current model does not allow an adversary to gain access to encryption
keys kv for classes above the target class u, even though these encryption keys might
leak through usage and their compromise need not directly lead to a compromise of the
private information Su or encryption key ku for the target class. We then define a model
that provides this additional compromise capability to the adversary, and show that our
new model is strictly stronger than the existing KI-security notion. Section 2 contains
the details.

We next propose two very simple and efficient hierarchical key assignment schemes
for arbitrary posets, and prove them to be secure in the sense of our strengthened security
notion. Both of our schemes exploit the chain partition idea recently introduced by
Crampton et al. [15]. This gives a method of constructing a KAS for an arbitrary access
structure (modelled as a poset), represented by a directed acyclic graph P = (V,E),
from a KAS for a simple chain (i.e. a KAS for a totally ordered set) by partitioning the
poset into chains and building the keys for the more complex scheme for P in a particular
way from the keys of the simpler chain KAS. This approach has the nice property that
the amount of private storage needed per class is bounded by the width of the poset P .
This approach was proposed without any formal security analysis in [15], and analysed
in some specific cases in [16]. We provide in Section 3 a generic security analysis of
this approach, showing that the security of the resulting scheme for P = (V,E) in our
strengthened model is equivalent to the security (also in our strengthened model) for
the chain scheme. It is worth noting that this construction can support different levels

2

of security or efficiency of key derivation for different subgroups in a hierarchy, by using
different schemes in each chain.

This construction enables us to focus on constructing efficient KAS for chain posets
in our strengthened model. Our first construction in Section 4 is based only on pseu-
dorandom functions (PRFs), which can be efficiently implemented using, for example,
HMAC [19] built using only a cryptographic hash function. Our second construction,
in Section 5, is based on any forward-secure pseudorandom generator (FS-PRG). This
construction is a generalization and a strengthening of the construction for chains given
in [16], which implicitly makes use of the known forward-security of the BBS PRG [20]
in order to achieve KI-security. Note that the BBS generator was not originally pre-
sented as a stateful generator and its forward-security property was first used in the
Blum-Goldwasser cryptosystem [21] and later by Bellare and Yee [22]. An FS-PRG can
be obtained cheaply and generically from any PRG using the constructions of Bellare
and Yee [22]; moreover a PRG can be easily obtained from a PRF. Thus our second
scheme can be instantiated in a variety of ways.

We also provide a comparison of instantations of our new constructions with a variety
of proven-secure KAS from the literature. Details can be found in Section 6.

2 Hierarchical Key Assignment Schemes

2.1 Basic Definitions

A partially ordered set (poset) is a pair (V,≤) where V is a finite set of pairwise dis-
joint classes, called security classes, and ‘≤’ is a partial order on V , i.e. is a reflexive,
antisymmetric, and transitive binary relation. A security class can represent a person,
a department, or a user group in an organisation. Relation ≤ is defined in accordance
with authority for each class in V : for any two classes u, v ∈ V we write v ≤ u or u ≥ v
to indicate that users in class u can access the data of users in class v. We say that u
covers v, denoted v l u or u m v, if v < u and there does not exist c ∈ V such that
v < c < u. (V,≤) is a totally ordered set (or chain) if for all u, v ∈ V , either v < u or
u > v or u = v. We say that A ⊆ V is an antichain in V if for all u, v ∈ A, u 6= v, we
have v � u and v � u. Any poset (V,≤) can be represented by a specific directed acyclic
graph G = (V,E), called access graph, where the vertices coincide with the security
classes and there is an edge from class u to class v if and only if u > v. A partition of
set V is a collection of sets {V1, . . . , Vs} such that (i) Vi ⊆ V ∀i, (ii) V1 ∪ . . . ∪ Vs = V ,
and (iii) i 6= j ⇒ Vi ∩ Vj = ∅.

The problem that we address consists of assigning keys (e.g., to be used in a symmet-
ric encryption scheme) to each class in a poset in such a way that it should be possible
to efficiently derive the keys for any descendant class in the poset. The cryptographic
primitive that solves this challenge is called a hierarchical key assignment scheme [1],
and is defined as follows.

Definition 1 (Key Assignment Scheme). Let Γ denote a set of access graphs, i.e.
of graphs that correspond to posets. A hierarchical key assignment scheme (KAS) for Γ
is a pair of algorithms (Gen, Derive) satisfying the following conditions:

1. Gen(1ρ, G) is a probabilistic polynomial-time algorithm that takes as input a security
parameter 1ρ and a graph G = (V,E) ∈ Γ and outputs

(a) for all classes u ∈ V : private information Su and key ku ∈ {0, 1}p(ρ), for a fixed
polynomial p;

3

(b) public information pub.

We denote by (S, k, pub) the output of Gen(1ρ, G), where S = (Su)u∈V and k =
(ku)u∈V are the vectors of private information and keys, respectively.

2. Derive(G, u, v, Su, pub) is a deterministic polynomial-time algorithm that takes as
input a graph G, classes u, v ∈ V such that v ≤ u, private information Su, and
public information pub, and outputs a key k ∈ {0, 1}p(ρ) assigned to class v.

For correctness we require that for all ρ ∈ N, all G ∈ Γ , all (S, k, pub) output by
Gen(1ρ, G), and all u, v ∈ V, v ≤ u, we have Derive(G, u, v, Su, pub) = kv.

Remark 1. Observe that key assignment schemes are essentially symmetric in nature,
i.e. a separation of entities holding secret keys and entities holding public keys is not
assumed. As a consequence, Gen’s output pub does not have to be public in the classical
sense, but could also be folded into private information Su, for all u ∈ V . We point
out that we left pub in Definition 1 to keep it consistent with prior work. However, the
schemes that we propose in this paper will not make use of pub, i.e. will assign an empty
value to it.

2.2 Security of Key Assignment Schemes

Various informal security models for key assignment schemes have been developed and
proposed in the past. Formal security modelling began with [8]. However, as we will
argue, all these models – both formal and informal – are inadequate for practical appli-
cation in the most challenging of security environments. In the following, we first describe
our new, strengthened models, and then discuss the differences to the established ones.

We consider variants of the key indistinguishability (KI) security goal proposed by
Atallah et al. in [8]. We consider models with both static and dynamic adversaries. It
will shortly become clear, however, that these two models are polynomially equivalent.
We begin with an informal statement of our security models, and then give a formal
model in terms of a security experiment involving an adversary.

Static adversaries Astat , upon given an access graph G = (V,E), first choose a
security class u ∈ V to attack. Using Gen algorithm on graphG, the experiment generates
(S, k, pub). The adversary is then provided with private information Sv assigned to all
classes v ∈ V that should not enable the computation of key ku, along with the set of
all keys kv associated to classes v ∈ V such that v > u, and the public information pub.
Precisely, the adversary gets pub and the two sets CorruptG,S,u and KeysG,u, where we
define

CorruptG,S,u = {Sv ∈ S | u � v} and KeysG,u = {kv | v > u} .

Notice that, given CorruptG,S,u, the adversary can compute for himself all keys kv for
v ∈ CorruptG,S,u. As a challenge, the adversary additionally gets either key ku or a
random string of the same length, and it has to distinguish these two cases. We refer to
Definition 2 below for the formal specification of this experiment. Observe that, from
the obtained information, the adversary can gain access to kv for any v ∈ V \ {u}.

In contrast to static adversaries, dynamic (also called adaptive) adversaries Adyn

may request keys kv and secret information Sv in an adaptive manner before eventually
committing to a security class u ∈ V they want to attack. After receiving a challenge
based on key ku, they continue to request keys and secret information until terminating
and outputting a bit. The adversary wins in the experiment if it successfully distinguishes

4

the key ku from random, under the restriction that u 6≤ v for all classes v in the corrupted
set and that key ku has not been requested.

It is not difficult to see that the static and dynamic models are actually polynomially
equivalent. Indeed, in the corresponding reduction, the static adversary simply guesses
which class will be the subject of the dynamic adversary’s query, and aborts if the guess
turns out to be incorrect; this reduction succeeds with probability 1/|V |. A similar proof
was used in [9] (and implicitly in [8]). So schemes proven secure against static adversaries
are automatically also secure against dynamic adversaries (albeit with a less tight overall
security reduction). In the remainder of the paper, we focus on the static case.

We next give our definition for security in the sense of strong key indistinguishability
with respect to static adversaries (S-KI-ST-security), formalising the above discussion.

Definition 2 (S-KI-ST). Let Γ be a set of access graphs and let (Gen, Derive) be a
hierarchical key assignment scheme for Γ . Consider the following experiment (where we
assume that adversary A keeps state between invocations):

Experiment ExpS−KI−ST
A,G (1ρ) :

u← A(1ρ, G)
(S, k, pub)← Gen(1ρ, G)

β
r←− {0, 1}

If β = 1 then T ← ku else T
r←− {0, 1}p(ρ)

d← A(pub,CorruptG,S,u,KeysG,u, T)

return d

For any G ∈ Γ , the advantage of A in the above experiment is defined as

AdvS−KI−ST
A,G (ρ) = 2

∣∣∣Pr
[
ExpS−KI−ST

A,G (1ρ) = β
]
− 1/2

∣∣∣ .
Note that if we write ExpS−KI−ST,γ

A,G (1ρ), γ ∈ {0, 1}, for the modification of ExpS−KI−ST
A,G (1ρ)

where bit β is fixed to β = γ, we have that

AdvS−KI−ST
A,G (ρ) =

∣∣∣Pr[ExpS−KI−ST,1
A,G (1ρ) = 1]− Pr[ExpS−KI−ST,0

A,G (1ρ) = 1]
∣∣∣ .

The key assignment scheme is said to be secure in the sense of strong key indis-
tinguishability with respect to static adversaries (S-KI-ST-secure) if AdvS−KI−ST

A,G (ρ) is
negligible for every efficient adversary A and any graph G ∈ Γ .

It will be evident that one can also define an S-KR-ST-security notion, in which the
adversary is required to recover the key ku rather than distinguish it from a random
key. Clearly S-KI-ST-security implies S-KR-ST security.

We now explain why our model is stronger than the one introduced by Atallah et
al. [8] that it is based on. While our S-KI-ST adversary receives both the set CorruptG,S,u ⊆
S of secret information and the set KeysG,u ⊆ {0, 1}p(ρ) of computed (symmetric) keys,
in the model from [8] the adversary receives only the former set when performing its
attack. In the dynamic setting, our strong adversary has access to keys kv for which
v > u, where u is the challenge security class, whereas in the dynamic model of [8], the
adversary has no access to such keys. Now in a real deployment of a scheme, some of the
cryptographic keys kv used in the scheme may leak, perhaps through cryptanalysis or
misuse. In this case, we would like our selected security model to provide the strongest
possible guarantees about the security of other keys that have not been leaked. But

5

note that the previous security model from [8] provides no such guarantees, whereas
our model provides the strongest possible guarantee, in that all keys kv with v > u are
given to the adversary. Indeed, as the next example makes clear, it is quite feasible that
leakage of a key kv for which v > u can damage the security of the key ku.

A separating example: Consider a graph (V,E) having linear structure, i.e.
V = {v0, . . . , vn−1} with vi+1 l vi for all i. Let H be a one-way function, which we
model as a random oracle. We select Sv0 at random from the domain of H and set
kvi = Svi and Svi+1 = H(Svi) for all i. It is clear how the Gen and Derive algorithms
should be defined, and that the resulting scheme is correct. It is also easy to see that
the scheme is KR-ST-secure in the random oracle model, in the sense of [8]. However,
it is also clear that with knowledge of key kv0 = Sv0 , all keys kv in the hierarchy can
be efficiently determined (including challenge key ku) and hence the scheme is insecure
in the S-KR-ST model. We note that this separation is for key recovery (KR) security
notions.

3 Security Analysis of the Chain Partition Construction

We begin by reviewing the Chain Partition Construction for key assignment schemes
from [15]. Given a partially ordered set (V,≤), represented by the directed acyclic graph
P = (V,E), Dilworth’s Theorem [23] asserts that every partially ordered set (V,≤) can
be partitioned into w chains, where w is the width of V , that is, the cardinality of the
largest antichain in V . The partition need not be unique. We select a particular partition
of V into chains {C0, . . . , Cw−1}. The length of Ci is denoted by li, for 0 ≤ i ≤ w − 1.
We let lmax denote maxi{li}. The maximum class of Ci is regarded as the first class in
Ci and the minimum class as the last class. Since {C0, . . . , Cw−1} is a partition of V ,
each u ∈ V belongs to precisely one chain.

Let C = u0m . . .m um be any chain in V . Then any chain of the form uj m . . .m um,
0 < j ≤ m is said to be a suffix of C. Now, for any u ∈ V , the set ↓ u := {v ∈ V : v ≤ u}
has non-empty intersection with one or more chains C0, . . . , Cw−1. It is proved in [15] that
the intersection of ↓ u and the chain Ci is a suffix of Ci or the empty set. Following, [15],
this will enable us to define the private information that should be given to a user with
label u.

Since {C0, . . . , Cw−1} is a partition of V into chains, {↓ u∩C0, . . ., ↓ u∩Cw−1} is a
disjoint collection of chain suffixes. Additionally, the private information for each class
in V should be chosen so that the private information for the j-th class of a chain can
be used to compute keys for all lower classes in that chain. Hence, we can see that a
user with label u should be given the private information for the maximal classes in the
non-empty suffixes ↓ u∩C0, . . . , ↓ u∩Cw−1. Given u ∈ V , let û0, . . . , ûw−1 denote these
maximal classes, with the convention that ûi =⊥ if ↓ u∩Ci = ∅. Let uij denote the j-th
class in the chain Ci, where 0 ≤ j ≤ li − 1.

The Chain Partition Construction: Let (V,≤) be a poset, P = (V,E) the corresponding
directed acyclic graph, and ρ a security parameter. Select a chain partition of V into
w chains C0, . . . , Cw−1, so that Ci contains classes ui0, u

i
1, . . . , u

i
li−1, with uij+1 < uij ,

0 ≤ j < li − 1. Let lmax denote maxi{li}. Additionally, let X = (GenX, DeriveX) be
a KAS scheme for the set consisting of a single chain of length exactly lmax. Then
the chain partition scheme KASCP(X, P) = (GenCP, DeriveCP) (relative to the particular
partition selected) is defined as follows.

6

Algorithm GenCP(1
ρ, P):

1. For 0 ≤ i ≤ w − 1, run GenX on inputs 1ρ and a chain of length lmax to obtain
(T i, ki, pubi). Discard the last lmax − li elements of T i and ki to obtain the se-
cret information and keys for a chain of length li. Note that this chain has the
same Derive algorithm as the starting chain. For ease of notation, we continue to
denote the reduced sets by T i and ki, and we write T i = {Tui0 , . . . , Tuili−1

} and

ki = {kui0 , . . . , kuili−1
}. We stress here that we could run different algorithms GenX

to produce the different chains of lengths li, but for ease of notation we will assume
they are all the same.

2. For each u ∈ V , define the private information Su to be {Tûi : ûi 6=⊥ , 0 ≤ i ≤ w−1}
and the encryption key ku to be ku = kuij

, where u = uij .

3. Let S and k be the sets of private information and keys, respectively, in the above
construction, and let pubCP = (pub0, . . . , pubw−1).

4. Output (S, k, pubCP).

Algorithm DeriveCP(P, u
i
j , u

g
h, Suij

, pubCP):

1. For uij ≥ ugh, find ûg, the maximal class in ↓ uij ∩ Cg. This class is in chain Cg. We

denote it by ugr , where 0 ≤ r < lg. Note that, by construction, ugr ≤ uij and Tugr ∈ Suij .
2. Set kugh

← DeriveX(Cg, u
g
r , u

g
h, Tugr , pubg).

3. Output kugh
.

Theorem 1 (S-KI-ST Security of the Chain Partition Construction). Let P =
(V,E) be a directed acyclic graph and let lmax be the maximum length of the chains in a
chain partition of V . Let X be an S-KI-ST-secure scheme for the set of graphs consisting
of the single chain of length lmax. Then the scheme KASCP(X, P) = (GenCP, DeriveCP) for
graph P obtained from the above chain partition construction is also S-KI-ST-secure.
More precisely, for every S-KI-ST adversary ACP that breaks the scheme KASCP(X, P)
with advantage AdvS−KI−ST

ACP,P
(ρ), there exists an S-KI-ST adversary AX that breaks X

with the same advantage. Moreover, the two adversaries run in roughly the same time.

Proof. Assume ACP attacks a class uij of graph P . If ACP is able to distinguish between

the real key kuij
associated with class uij , and a random string having the same length,

we show that we can construct an S-KI-ST adversary AX against the scheme X that,
using ACP as a black box, is able to distinguish between real or random keys. Algorithm
AX plays the S-KI-ST security game described in Definition 2, receiving as initial input
a security parameter 1ρ and a chain on lmax classes. Adversary AX simulates the envi-
ronment of ACP in such a way that ACP’s view is indistinguishable from its view when
playing the S-KI-ST security game.

Algorithm AX:

1. Receive from the S-KI-ST experiment a chain C on lmax classes v0, . . . , vlmax−1.

2. Let P = (V,E) ∈ Γ and run ACP with input (1ρ, P) to get ACP’s choice of target
class u.

3. Generate a chain partition of P containing chains C0, . . . , Cw−1. In this partition,
class u is identified as some class uij in some chain Ci of length li ≤ lmax. For
0 ≤ t ≤ w − 1, t 6= i, run Gen on inputs 1ρ and a chain of length lmax to obtain
(St, kt, pubt), the set of secret information, the set of keys and the public information
for that chain. Note that, as in the construction, these sets can be truncated to obtain

7

the set of secret information, the set of keys and the public information for a chain
of length exactly lt. By abuse of notation, we continue to use (St, kt, pubt) to denote
this data.

4. Output vj in chain C as AX’s choice of target class. AX now receives as input the
public information, pub, output by GenX, along with secret information Svt for all
classes vt < vj in C, and all secret keys kvt in C such that vt > vj . AX also receives
as input a value T which is either the real key kvj or a random key of the same
length. In what follows, AX will identify the first li classes in C with the chain Ci in
the chain partition construction.

5. Set pubCP = (pub0, . . . , pubi−1, pub, pubi+1, . . . , pubw−1). Use the secret information
Svt for classes vt < vj in C together with the secret information in the sets St for
0 ≤ t ≤ w−1, t 6= i to build the set CorruptP,S,u. Use keys kvt in C such that vt > vj
and the keys from the sets kt to build the set KeysP,u.

6. Run ACP with inputs (pubCP,CorruptP,S,u,KeysP,u, T). It is easy to see that AX

has the information required to properly construct the sets CorruptP,S,u,KeysP,u in
such a way that ACP’s input here is valid in ACP’s experiment against the scheme
KASCP(X, P), and such that T is the real key (resp. the random key) in ACP’s experi-
ment if and only if T is the real key (resp. the random key) in AX’s experiment.

7. When ACP outputs a bit, output the same bit.

Now as AX’s simulation is perfect, we see that the advantage of AX in winning its
S-KI-ST indistinguishability game for the chain C of length lmax is the same as the
advantage of ACP in playing the S-KI-ST indistinguishability game against KASCP(X, P).
The theorem now follows. ut

Note that, in the above theorem, X need only be an S-KI-ST-secure scheme for chains
of length exactly lmax. Because of the truncation trick, this is equivalent to X being an
S-KI-ST-secure scheme for the set of graphs consisting of chains of lengths up to lmax.

4 A Scheme based on PRFs

In this section we construct an S-KI-ST-secure key assignment scheme for totally-ordered
hierachical access structures of arbitrary depth, based on pseudorandom functions. By
combining our construction with the result from Section 3, a general key assignment
scheme for arbitrary posets is obtained.

We admit that also Atallah et al. [8] give an efficient PRF-based construction for
arbitrary posets. However, their construction achieves only a security notion called ‘key
recovery’ (where an adversary attacking a class u has to compute the challenge key ku,
instead of distinguishing it from a random key), which is weaker than our S-KI-ST secu-
rity notion. Moreover, our scheme is much simpler, and requires no public information
to be stored.

We start by recalling the definition of a PRF, the central building block of our
construction:

Definition 3 (Pseudorandom Function, PRF). Let K,D,R be finite sets1 and F :
K × D → R be an efficient function. For all κ ∈ K and x ∈ D we also write Fκ(x) =
F (κ, x) and call Fκ : D → R an instance of F . We call K the set of keys, while D
1 More precisely, we assume that K,D,R are families of finite sets, indexed by a security parameter ρ.

That is, we require K = (Kρ)ρ∈N, and similarly for D and R. For the sake of a cleaner exposition,
however, we do not write down the security parameter explicitly.

8

and R are the domain and range of F , respectively. Function F is pseudorandom if the
input/output behaviour of a random instance Fκ is computationally indistinguishable
from that of a random function D → R.

More formally, let Rand = RD = {g | g : D → R} denote the set of all functions
D → R. Let AF be an algorithm that has oracle access to a function D → R, and
returns a bit. In our security model, this function is either drawn at random from Rand,
or is Fκ for a random κ

r←− K, and AF has to distinguish these cases. Consider the
following two experiments:

Experiment ExpPRF−1
AF ,F (1ρ) : Experiment ExpPRF−0

AF ,F (1ρ) :

κ
r←− K g

r←− Rand

d← AFκF (1ρ) d← AgF (1ρ)
return d return d

The advantage of AF is defined as

AdvPRF
AF ,F (ρ) =

∣∣∣Pr
[
ExpPRF−1

AF ,F (1ρ) = 1
]
− Pr

[
ExpPRF−0

AF ,F (1ρ) = 1
]∣∣∣ .

We say that F is pseudorandom (or: is a PRF) if AdvPRF
AF ,F (ρ) is negligible for every

efficient adversary AF .

In our following construction, we will use special PRFs where K = R = {0, 1}ρ
for security parameter ρ, and D is any set. We remark that some constructions in [8]
also require PRFs with similar restrictions on keyspace and range. For concreteness, we
propose to deploy the (hash-based) HMAC primitive [19] as a PRF (see also analysis
in [24]). In addition, it might be possible to find suitable constructions based on number-
theoretic assumptions, e.g. derived from the PRF obtained by converting the BBS [20]
PRG into a PRF via the Goldreich-Goldwasser-Micali (GGM) construction [25].

4.1 A PRF-based Key Assignment Scheme for Totally Ordered Hierarchies

We briefly recall the setting of key assignment for chains. Let Γ be the family of graphs
corresponding to totally ordered hierarchies, and let G = (V,E) ∈ Γ be a graph, where
V = {u0, . . . , un−1} for some n, and ui+1 l ui for all i. To each security class ui ∈
V , private information Si and key ki are assigned, where Si can be used to compute
subordinated keys. Note that here we abuse notation, for better exposition (we can do
this because we are in the linear setting), writing Si for Sui and ki for kui .

Let ρ be a security parameter and let F : {0, 1}ρ × D → {0, 1}ρ be a PRF. Let c0
and c1 be two different elements in D. The Gen and Derive algorithms work as follows.

Algorithm Gen(1ρ, G):

1. Pick random S0
r←− {0, 1}ρ and set k0 ← FS0(c1).

2. For each class ui ∈ V, i > 0, set Si ← FSi−1(c0) and ki ← FSi(c1).
3. Set S ← (S0, . . . , Sn−1), k ← (k0, . . . , kn−1), and pub ← ∅.
4. Output (S, k, pub).

Algorithm Derive(G, ui, uj , Si, pub): (note that we may assume j ≥ i)

1. If i = j then return kj = FSi(c1).
2. For h = i+ 1 to j:

9

Sh ← FSh−1
(c0).

3. Return kj = FSj (c1).

Observe that computing key kj from secret information Si requires exactly j − i + 1
evaluations of the underlying PRF.

Theorem 2 (S-KI-ST Security of the PRF-based Scheme for Totally Ordered
Hierarchies). The above PRF-based scheme is key indistinguishable, in the sense of
Definition 2, for any totally ordered graph G, assuming security of pseudorandom func-
tion F .

Proof. Fix any totally ordered graph G = (V,E) ∈ Γ . Proving the theorem amounts
to showing that the only way to break the key indistinguishability of our PRF-based
scheme, in the sense of Definition 2, is by breaking the pseudorandom function F . To
this aim, we need to show how to turn an S-KI-ST adversary A attacking our KAS
scheme into an adversary AF attacking F . Assume A attacks a class ui ∈ V . We define
a sequence of computationally indistinguishable games Game 0, Game 1, . . ., Game i+1.
Game 0 is the actual adversarial game (as defined in Definition 2), and in the last game,
Game i+ 1, the probability that A is successful in outputting the correct bit β is only
1/2. Let Succι be the event that A is successful in Game ι, i.e. that d = β in the exper-
iment.

Game 0. Let Game 0 be the original attack game as described in Definition 2.

Game ι (1 ≤ ι ≤ i + 1). This game is identical to Game ι − 1, except that here the
assignment of private information and keys is modified in such a way that key kι−1 and
private information Sι are substituted with values randomly selected from {0, 1}ρ. This
modification amounts to substituting the occurrences of FSι−1 in Game ι − 1 with a
truly random function, which is warranted by the security of the PRF, as we will see in
Lemma 1. Hence,

|Pr[Succι]− Pr[Succι−1]| ≤ εPRF(ρ) ,

where εPRF is a bound on the advantage AdvPRF
AF ,F (ρ) for any polynomial-time adversary

AF .

Now, we see that in Game i+ 1 the adversary’s view is independent of bit β: in both
cases it gets as challenge a random value in {0, 1}ρ. Thus,

Pr[Succi+1] = 1/2 .

Therefore, we have

AdvS−KI−ST
A,G (ρ) = 2 |Pr[Succ0]− 1/2| ≤ 2(i+ 1)εPRF(ρ) .

As, by assumption, εPRF(ρ) can be chosen to be negligible, and this completes the proof.
ut

Lemma 1. |Pr[Succι]− Pr[Succι−1]| ≤ εPRF(ρ).

Proof. Assume we have an S-KI-ST adversary A against our PRF-based scheme for
totally ordered sets that attacks a class ui and is able to distinguish between Game ι−1

10

and Game ι. We describe below how to construct an algorithm AF that, using A as a
black-box, is able to distinguish between pseudorandom and truly random functions.

Algorithm AF plays the PRF game described in Definition 3 and is thus given ac-
cess to a function g(·) that is either an instance of a pseudorandom function, keyed with
a key κ, or a truly random function. In order to use algorithm A, AF simulates the
environment of A in such a way that interpolates between Game ι − 1 and Game ι.
This means that if AF is interacting with a pseudorandom function, then the simulation
proceeds as in Game ι−1. Otherwise, if AF is interacting with a random function, then
the simulation proceeds as in Game ι. More formally, algorithm AF works as follows.

Algorithm AF :

1. Run A with input (1ρ, G) to get A’s choice of target class ui.

2. Set up the access hierarchy for graph G by running Gen(1ρ, G) with the following
modifications:

(a) Private information Sι and key kι−1 are computed via oracle g as follows:

Sι ← g(c0), kι−1 ← g(c1).

(b) For all ι′ < ι, set Sι′
r←− {0, 1}ρ.

(c) For all ι′ < ι− 1, set kι′
r←− {0, 1}ρ.

So far, this is almost equivalent to the actions of Game ι − 1 when AF ’s oracle
computes g according to a pseudorandom function, and equivalent to Game ι when
it computes g completely at random. The only difference is that, in case g is a PRF,
the private information Sι−1 is not the same as g’s internal key (unknown to AF).
This is completely indistinguishable from A’s view since A is not allowed to ask for
private information Si′ , i

′ < i+ 1, and thus as ι ≤ i+ 1, A is not allowed to ask for
Sι′ , ι

′ < ι.

3. Pick a random bit β ∈ {0, 1}. If β = 1, AF sets A’s challenge, denoted here by T , to
be the real key ki. If β = 0, AF sets T to be a random key of the same length of ki.

4. Run A with inputs (pub,CorruptG,S,ui ,KeysG,ui , T), where CorruptG,S,ui =
{Si+1, . . . , Sn−1} and KeysG,ui = {k0, . . . , ki−1}, to obtain a bit d. (Note that ac-
cording to AF ’s setup of the access hierarchy, it can compute all this information.)
Here d is A’s guess as to whether it was given the real key associated with class ui
or a random string having the same length.

5. If d = β, output 1, guessing for a pseudorandom function; otherwise, output 0,
guessing for a truly random function.

Now we have

εPRF(ρ) ≥ AdvPRF
AF ,F (ρ)

=
∣∣∣Pr[ExpPRF−1

AF ,F (1ρ) = 1]− Pr[ExpPRF−0
AF ,F (1ρ) = 1]

∣∣∣
= |Pr[AF outputs 1 | g is a PRF]− Pr[AF outputs 1 | g is random]|
= |Pr[A guesses β correctly | g is a PRF]− Pr[A guesses β correctly | g is random]|
= |Pr[Succι−1]− Pr[Succι]| .

ut

11

5 A Scheme based on Forward-Secure PRGs

FS-PRGs, introduced by Bellare and Yee in [22], are stateful/iterated pseudorandom
generators (PRGs) that deterministically derive sequences of fixed-length bit strings
from an initial (random) seed. More precisely, in each iteration they output a string of
bits, update their internal state, and securely erase the old state. Like in regular PRGs,
the output sequences are required to be indistinguishable from sequences of random
strings. The pivotal property of FS-PRGs is forward security, i.e. the adversary has the
ability to eventually corrupt generator’s internal state, but indistinguishability of output
strings is guaranteed to still hold up to that point. Different constructions of FS-PRGs
are proposed in [22], including highly efficient ones based on symmetric building blocks
like blockciphers or HMAC [19], and also a construction based on a number-theoretic
assumption (specifically, on the Blum-Blum-Shub PRG [20]).

In this section, building on generic FS-PRGs, we construct a key assignment scheme
which achieves S-KI-ST security for totally-ordered access graphs and, in combination
with the results from Section 3, for arbitrary posets. It is worth pointing out that
we actually widely generalize the construction from [16], which implicitly exploits the
property of forward security of the BBS pseudorandom generator. As our construction
generically builds on FS-PRGs, it is amenable to the efficiency gain obtained by replacing
the BBS-based FS-PRG by, for instance, an HMAC-based one.

Before describing our scheme, let us first recall the definition and security notion of
forward-secure pseudorandom number generators (FS-PRGs). Observe that we slightly
weaken the model from [22] (considering static adversaries instead of adaptive ones),
what renders our construction of a key assignment scheme more general. Clearly the
FS-PRG constructions proposed and proved secure in [22] naturally remain secure in
our adapted model.

Definition 4 (Forward-Secure PRG). Let GFS = (GFS.setup, GFS.key, GFS.next)
be a set of efficient algorithms such that GFS.setup is a probabilistic algorithm that, on
input a security parameter 1ρ, outputs a set of system parameters ‘params’; GFS.key
is a probabilistic key generation algorithm that takes ‘params’ as input and outputs an
initial state St0 ∈ {0, 1}ρ (the initial seed); GFS.next : {0, 1}ρ → {0, 1}ρ×{0, 1}p(ρ) is a
deterministic algorithm that turns state Sti−1 ∈ {0, 1}ρ (the ‘seed’ at iteration i) into a
pair (Sti, Outi), where Sti ∈ {0, 1}ρ is the updated state, and Outi is a p(ρ)-bit string.

Let D be an adversary against GFS. D is fed with a number of output blocks, Out1,
Out2, . . . , Outi, each of length p(ρ), and is given the then current state of the generator,
Sti. D’s job is to decide whether these blocks are the real output of the generator, or just
a sequence of random bits. To formalize this, we consider the following experiments.

The advantage of D is defined as

AdvFS−PRG
D,GFS

(ρ) =
∣∣∣Pr
[
ExpFS−PRG−1

D,GFS
(1ρ) = 1

]
− Pr

[
ExpFS−PRG−0

D,GFS
(1ρ) = 1

]∣∣∣ .
We say that GFS is a forward-secure pseudorandom number generator (FS-PRG) if
AdvFS−PRG

D,GFS
(ρ) is negligible for every efficient adversary D.

12

Experiment ExpFS−PRG−1
D,GFS

(1ρ) : Experiment ExpFS−PRG−0
D,GFS

(1ρ) :

i← D i← D
params

r←− GFS.setup(1ρ) params
r←− GFS.setup(1ρ)

St0
r←− GFS.key(params) St0

r←− GFS.key(params)
i′ ← 0 i′ ← 0
Repeat Repeat
i′ ← i′ + 1 i′ ← i′ + 1
(Sti′ , Outi′)← GFS.next(Sti′−1) (Sti′ , Outi′)← GFS.next(Sti′−1)

Outi′
r←− {0, 1}p(ρ)

Until i′ = i Until i′ = i
Out← Out1, Out2, . . . , Outi Out← Out1, Out2, . . . , Outi
d← D(Sti, Out) d← D(Sti, Out)
return d return d

5.1 The FS-PRG-based Scheme for a Single Chain

Key assignment schemes for totally-ordered access graphs are readily constructed from
FS-PRGs: In our construction, we identify the FS-PRG’s state Sti with the private
information Si stored for class ui, while key ki is set to the FS-PRG’s output Outi+1.

More precisely, let Γ be the family of graphs corresponding to totally ordered hi-
erarchies, let G = (V,E) ∈ Γ be a graph, where V = {u0, . . . , un−1} for some n, and
ui+1 l ui for all i. As in Section 4.1, we write Si for private information Sui , and ki for
key kui . Let ρ be a security parameter, and let GFS = (GFS.setup, GFS.key, GFS.next)
be an FS-PRG. Then Gen and Derive algorithms work as follows.

Algorithm Gen(1ρ, G):

1. Run params ← GFS.setup(1ρ) and S0 ← GFS.key(params);
2. For all 0 ≤ i < n:

Compute (Si+1, ki)← GFS.next(Si);
3. Set S ← (S0, . . . , Sn−1), k ← (k0, . . . , kn−1), and pub ← ∅;
4. Output (S, k, pub).

Algorithm Derive(G, ui, uj , Si, pub): (note that we may assume j ≥ i)

1. For h = i to j:
(Sh+1, kh)← GFS.next(Sh);

2. Return kj .

Theorem 3 (S-KI-ST Security of the FS-PRG-based Scheme for Totally Or-
dered Hierarchies). The above FS-PRG-based scheme is key indistinguishable, in the
sense of Definition 2, for any totally ordered graph G, assuming security of the FS-
PRG, GFS.

Proof. Fix any totally ordered graph G = (V,E) ∈ Γ . This proof amounts to showing
that for every S-KI-ST adversary A that breaks our FS-PRG-based scheme with advan-
tage AdvS−KI−ST

A,G (ρ), there exists a PPT algorithm D that breaks the security of the

FS-PRG, GFS, with advantage AdvFS−PRG
D,GFS

(ρ) ≥ AdvS−KI−ST
A,G (ρ)/2. Assuming we have

an S-KI-ST adversary A that attacks a class ui and is able to distinguish between the

13

real key ki and a random string of the same length, we can construct an algorithm D
that, using A as a black box, is able to tell apart output blocks generated by GFS, up
to some iteration t, from a sequence of purely random blocks.

Algorithm D has to distinguish the two experiments described in Definition 4. For
this, it initially outputs an iteration number, say t, and then is given access to a sequence
of t output blocks Out1, . . . , Outt, that are either random or the first t output blocks of
GFS. D is also given the current state, Stt, of the FS-PRG. Given all that information,
D simulates the environment of A in a way that A’s view is indistinguishable from its
view when playing the S-KI-ST game described in Definition 2. We need to prove that

AdvS−KI−ST
A,G (ρ) =

∣∣∣Pr[ExpS−KI−ST,1
A,G (1ρ) = 1]− Pr[ExpS−KI−ST,0

A,G (1ρ) = 1]
∣∣∣ ≤ 2εFS−PRG(ρ) ,

where εFS−PRG is an upper bound on the advantage AdvFS−PRG
D,GFS

(ρ) for any polynomial-
time distinguisher D. We define a sequence of games and then analyse it.

Game 0. Define Game 0 to be identical to ExpS−KI−ST,0
A,G (1ρ). In particular, challenge

key T is chosen to be random in {0, 1}p(ρ).

Game 1. This game is like Game 0, except that all elements in KeysG,u are replaced
by random strings. Challenge key T remains as before, i.e. random.

Game 2. This game is identical to ExpS−KI−ST,1
A,G (1ρ). In particular, challenge key T is

the real key, as computed via Derive algorithm.

In the analysis, let Succι be the event that A outputs 1 in Game ι. First we
show that |Pr[Succ0]− Pr[Succ1]| ≤ εFS−PRG(ρ). Consider the following distinguisher
D against the FS-PRG GFS: It runs A with input (1ρ, G) to get ui, the class that
A is aiming to attack. D chooses an integer t = i and sends it to its own chal-
lenger, receiving Sti and Out = Out1, . . . , Outi, where the latter is either the honest
output generated by GFS.next, or a collection of random strings in {0, 1}p(ρ). D sets
KeysG,ui = Out1, . . . , Outi and uses Sti to compute the private information collected
in CorruptG,S,ui . D sets CorruptG,S,ui = {Sti+1, . . . , Stn−1} and pub ← ∅. Finally, D exe-
cutes A on input (pub,KeysG,ui ,

CorruptG,S,ui , T), where like in Games 1 and 2, T is chosen to be random in {0, 1}p(ρ).
Whenever D receives a bit d from A, D forwards the same bit to its own challenger.
We see that if Out is the sequence of outputs generated by GFS.next, then A’s view is
exactly as in Game 0. On the other hand, if the values are random strings, then A’s
view is the one from Game 1. Now we have

εFS−PRG(ρ) ≥ AdvFS−PRG
D,GFS

(ρ)

=
∣∣∣Pr
[
ExpFS−PRG−1

D,GFS
(1ρ) = 1

]
− Pr

[
ExpFS−PRG−0

D,GFS
(1ρ) = 1

]∣∣∣
= |Pr[Succ0]− Pr[Succ1]| .

Next we bound |Pr[Succ1] − Pr[Succ2]|. The reduction is similar to the one above,
the difference is that this time the FS-PRG distinguisher D specifies t = i + 1 instead
of t = i, and assigns kj ← Outj+1 for all 0 ≤ j ≤ i. This means that not only the keys
in KeysG,ui are taken from Out, but also the ‘challenge key’ ki. Notice that here, D
has access to the value Sti+1 and thus is able to compute the set of private information

14

CorruptG,S,ui = {Sti+1, . . . , Stn−1}. Similarly to above, this establishes |Pr[Succ1] −
Pr[Succ2]| ≤ εFS−PRG(ρ).

All in all, this proves that

AdvS−KI−ST
A,G (ρ) =

∣∣∣Pr[ExpS−KI−ST,1
A,G (1ρ) = 1]− Pr[ExpS−KI−ST,0

A,G (1ρ) = 1]
∣∣∣

= |Pr[Succ2]− Pr[Succ0]|
≤ 2εFS−PRG(ρ),

as required. ut

6 Comparison with Previous Schemes

In this section, we compare instantiations of our constructions with other provably secure
schemes from the literature. Note that all these previous schemes have proofs only in
weaker models than our strong models. (However, in some cases, these schemes can also
be proven secure in our strong models.)

In [8, 13], Atallah et al. proposed a first construction based on pseudorandom func-
tions, which they prove to be KR-secure; and a second construction which they prove to
be KI-secure, but which requires the additional use of a symmetric encryption scheme
secure under chosen plaintext attack (SE-CPA). In both constructions the private in-
formation of a class consists of a single symmetric key associated with that class. In the
first construction, the amount of public information grows with the number of edges in
the directed acyclic graph (each edge has an associated PRF output). In the second con-
struction, the amount of public information grows with the number of classes (each class
has an associated ciphertext). In both constructions, key derivation uses only symmetric
operations and its cost grows linearly with the number of levels between the classes.

De Santis et al. [12] proposed a construction which is based on symmetric encryption
schemes only, achieves KI security and is simpler than the KI-secure scheme proposed
in [8]. The construction uses only a chosen plaintext secure symmetric encryption scheme
and the required private key storage is small at one key per class. The amount of public
storage needed grows linearly with the number of classes and the number of edges in the
graph. Key derivation requires roughly h symmetric decryptions, where h is the number
of levels between the classes.

Ateniese et al. [9,17] proposed two different constructions for time-bound key assign-
ment schemes, which achieve KI security. Their first construction is based on symmetric
encryption schemes and the second makes use of bilinear maps. The security of the
latter construction is based on the Bilinear Decisional Diffie-Hellman (BDDH) assump-
tion. The advantage of these constructions is that they provide very efficient procedures
for key derivation, requiring only one decryption or one pairing evaluation, no matter
the number of levels between the classes. However, the public information for a scheme
obtained from the first construction can be very large since it depends not only on the
number of classes, but also on the number of time periods. The downside of the second
construction is that the private information could be as large as the number of time
periods (and the public information is already very large). These constructions are not
directly comparable to normal (i.e. non-time-bound) schemes, but we include them in
the table to get an idea of their efficiency compared to normal schemes.

D’Arco et al. [14] proposed a generic construction yielding a key assignment scheme
offering KI security, using as components a KR-secure scheme and the Goldreich-Levin

15

Scheme
Private Public

Key derivation
Type of Security

storage storage security based on

Atallah et al. [8, 13]
ρ ρ|E| (cH + cXOR)h KR PRFs

ρ ρ1|E| (cH + cD)h KI PRF+SE-CPA

De Santis et al. [12] ρ ρ1(|E| + 2|V |) (cD + 1)h KI SE-CPA

Freire and Paterson [16] w.ρ2 ρ2 cS(h+ 1)` KI PRG:BBS

Ateniese et al. [9, 17]
ρ ρ1O(|V |2.|T |3) cD KI SE-CPA

ρ4O(|T |) ρ3O(|V |2) cP KI BDDH

D’Arco et al. [14] (+ [1]) ρ2 ρ2(|V |(1 + `) + 2) cE` KI Random exp. RSA

Ours (PRF-based) w.ρ 0 cPRF(h+ 1) S-KI PRF

Ours (FS-PRG-based) w.ρ2 0 cPRG(h+ 1) S-KI FS-PRG

Table 1. Comparison with Previous Schemes

hard-core bit (GL bit) [26]. They instantiated their construction with an Akl-Taylor
scheme, which they proved to be KR-secure under the RSA assumption, therefore achiev-
ing KI-security under the same assumption. Their construction can also be instantiated,
for example, with the KR-secure scheme from Atallah et al. [8], yielding a KI-secure
scheme based on PRFs. However, their construction involves a significant “blow up”
when going from KR-security to KI-security, since it requires the use of a KR-secure
scheme for a poset having ` classes for each class in the poset for the final KI-secure
scheme, where ` is the length of the keys ku. Typically, we would desire ` = 128 bits
in applications. Their construction also consumes a large amount of public storage, re-
quiring roughly ` times as many public values as in the starting KR-secure scheme. Key
derivation also involves an increase by a factor of ` relative to the starting scheme.

Freire and Paterson [16] proposed a construction which exploits the chain partition
approach proposed in [15] and which achieves KI security. In their scheme, the maximum
amount of private information associated with a class is related to the width w of the
poset representing the hierarchy. The public storage is much smaller than in previous
schemes: when instantiated using the BBS generator, the public storage is just one RSA
modulus. Key derivation requires multiple squaring operations modulo an RSA modulus,
the number of such operations growing as `h where ` is the bit-size of the scheme’s keys
and h is the number of levels between the classes.

Our constructions provide stronger security guarantees (i.e., key indistinguishability
in our strengthened model) than all the above schemes and indeed all other hierarchical
key assignment schemes in the literature. As with [16], our constructions provide schemes
having a trade-off between storage of private information and efficiency of key derivation,
depending on how the poset is partitioned into chains. The overall efficiency of key
derivation is bounded by the length of the longest chain in the partition, and the amount
of private information depends on w, the poset width (which is equal to the number
of chains in the partition). Moreover, due to the cryptographic components used in
our constructions (PRFs and FS-PRGs), key derivation is relatively efficient, growing
linearly in h, the number of levels between classes. In addition, our constructions require
no public storage.

Table 1 gives us a comparison of our schemes and other provably secure schemes in
the literature. Private storage is measured per class in the access graph, public storage
is measured for the entire hierarchy, and key derivation shows the maximum amount of

16

computation that is needed to traverse h levels down in the hierarchy. We also include
the type of security that the scheme achieves, key recovery (KR), key indistinguishability
(KI) or our strengthened version, S-KI, and the basic components of the scheme. In the
table, ρ is a security parameter that corresponds to the size of the keys for a PRF or for a
symmetric encryption scheme E ; ρ1 represents the size of ciphertexts for a semantically
secure symmetric encryption scheme; ρ2 is a security parameter for a pseudorandom
number generator; ρ3 represents the size of pairing-friendly group elements (which is
typically a little larger than twice the security parameter, e.g. 171 bits at the 80-bit
security level); ρ4 is the size of the order q of a pairing-friendly group (which can usually
be taken as twice the security parameter); cH denotes the computation required to
compute the output of a hash function; cD is the computation needed for a symmetric
key decryption; cP is the computation needed for one pairing evaluation; cS is the cost
of squaring modulo an integer N of size ρ2; cE is the cost of exponentiation modulo an
integer N of size ρ2; cPRF is the computation needed to compute the output of a PRF;
cPRG is the computation needed to compute the output of an FS-PRG; ` is the bit-size
of the scheme’s keys; and w is the width of a poset. Finally, |T | represents the number
of distinct time periods in the time-bound schemes of [9, 17].

References

1. Akl, S.G., Taylor, P.D.: Cryptographic solution to a problem of access control in a hierarchy. ACM
Transactions on Computer Systems 1(3) (1983) 239–248

2. MacKinnon, S.J., Taylor, P.D., Meijer, H., Akl, S.G.: An optimal algorithm for assigning cryp-
tographic keys to control access in a hierarchy. IEEE Transactions on Computers 34(9) (1985)
797–802

3. Harn, L., Lin, H.Y.: A cryptographic key generation scheme for multilevel data security. Computers
& Security 9(6) (1990) 539–546

4. Chen, T.S., Chung, Y.F.: Hierarchical access control based on Chinese Remainder Theorem and
symmetric algorithm. Computers & Security 21(6) (2002) 565–570

5. Shen, V., Chen, T.S.: A novel key management scheme based on discrete logarithms and polynomial
interpolations. Computers & Security 21(2) (2002) 164–171

6. Wu, T.C., Chang, C.C.: Cryptographic key assignment scheme for hierarchical access control. Int.
Journal of Computer Systems Science and Engineering 16(1) (2001) 25–28

7. Yeh, J.H., Chow, R., Newman, R.: A key assignment for enforcing access control policy exceptions.
In: Int. Symposium on Internet Technology. (1998) 54–59

8. Atallah, M.J., Blanton, M., Fazio, N., Frikken, K.B.: Dynamic and efficient key management for
access hierarchies. In: ACM Conference on Computer and Communications Security. (2006) 190–202

9. Ateniese, G., De Santis, A., Ferrara, A.L., Masucci, B.: Provably-secure time-bound hierarchical
key assignment schemes. In: ACM Conference on Computer and Communications Security. (2006)
288–297

10. Tzeng, W.G.: A secure system for data access based on anonymous authentication and time-
dependent hierarchical keys. In: ACM Symposium on Information, Computer and Communications
Security. (2006) 223–230

11. Wang, S.Y., Laih, C.S.: An efficient solution for a time-bound hierarchical key assignment scheme.
IEEE Transactions on Dependable and Secure Computing 3(1) (2006) 91–100

12. De Santis, A., Ferrara, A.L., Masucci, B.: Efficient provably-secure hierarchical key assignment
schemes. In: MFCS. (2007) 371–382

13. Atallah, M.J., Blanton, M., Fazio, N., Frikken, K.B.: Dynamic and efficient key management for
access hierarchies. ACM Trans. Inf. Syst. Secur. 12(3) (2009)

14. D’Arco, P., De Santis, A., Ferrara, A.L., Masucci, B.: Variations on a theme by Akl and Taylor:
Security and tradeoffs. Theoretical Computer Science 411(1) (2010) 213–227

15. Crampton, J., Daud, R., Martin, K.M.: Constructing key assignment schemes from chain partitions.
In: Working Conference on Data and Applications Security (DBSec 2010). (2010) 130–145

16. Freire, E.S.V., Paterson, K.G.: Provably secure key assignment schemes from factoring. In: ACISP.
(2011) 292–309

17

17. Ateniese, G., De Santis, A., Ferrara, A.L., Masucci, B.: Provably-secure time-bound hierarchical
key assignment schemes. J. Cryptology 25(2) (2012) 243–270

18. Crampton, J., Martin, K.M., Wild, P.R.: On key assignment for hierarchical access control. In:
Computer Security Foundations Workshop. (2006) 98–111

19. Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authentication. In:
CRYPTO. (1996) 1–15

20. Blum, L., Blum, M., Shub, M.: A simple unpredictable pseudo-random number generator. SIAM
Journal on Computing 15(2) (1986) 364–383

21. Blum, M., Goldwasser, S.: An efficient probabilistic public-key encryption scheme which hides all
partial information. In: CRYPTO. (1984) 289–302

22. Bellare, M., Yee, B.S.: Forward-security in private-key cryptography. In: CT-RSA. (2003) 1–18
23. Dilworth, R.P.: A decomposition theorem for partially ordered sets. Annals of Mathematics 51(1)

(1950) 161–166
24. Dodis, Y., Gennaro, R., Hastad, J., Krawczyk, H., Rabin, T.: Randomness extraction and key

derivation using the CBC, Cascade and HMAC modes. In: CRYPTO. Volume 3152. (2004) 115–133
25. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J. ACM 33(4) (1986)

792–807
26. Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way functions. In: ACM STOC. (1989)

25–32

18

