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Abstract. WG-7 is a stream cipher based on WG Stream Cipher and has been designed by Y. Luo, Q.
Chai, G. Gong, and X. Lai in 2010. This cipher is designed for low cost and lightweight applications (RFID
tags and mobile phones, for instance). This paper addresses cryptographic weaknesses of WG-7 Stream
Cipher. We show that the key stream generated by WG-7 can be distinguished from a random sequence
after knowing 213.5 keystream bits and with a negligible error probability. Also, we investigate the security
of WG-7 against algebraic attacks. An algebraic key recovery attack on this cipher is proposed. The attack
allows to recover both the internal state and the secret key with the time complexity about 227.
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1 Introduction

WG-7 [10] is a fast lightweight stream cipher whose design has been inspired by the family of WG
stream ciphers [12]. The original WG is a synchronous stream cipher submitted to the ECRYPT call.
Both WG-7 and WG are hardware-oriented stream ciphers that use a word-oriented linear feedback
shift register (LFSR) and a filter function based on the Welch-Gong (WG) transformation [8]. The
structure of WG-7 is similar to the WG stream cipher. Both ciphers use LFSRs and filtering functions,
however, WG works in GF (229) but WG-7 in GF (27). WG-7 uses a 80-bit secret key and a 81-bit
initial vector (IV). WG-7 works as follows. First the secret key and IV are used to initialise the
internal state of the cipher LFSR. Next, the LFSR with its nonlinear function is clocked 46 times.
After this initialisation procedure the cipher generates an appropriate string of keystreams that is
used for encryption.

We assume that the initialisation procedure of WG-7 is performed as prescribed. Consequently, the
internal state consists of 161 bits. Note that the security level claimed by the designers is 80 bits. The
cipher has been designed for encryption in resource restricted environments such as RFID applications,
mobile phones and smart cards. The authors of the cipher analysed the design and concluded that
WG-7 [10] is secure against time/memory/data tradeoff attacks, differential attacks, algebraic attacks
and correlation attacks .

This paper is organized as follows. Section 2 describes a brief description of the keystream generator
of WG-7 stream cipher. Section 3 deals with a cryptographic weaknesses of the algorithm, which leads
to our distinguishing and key recovery attacks.

2 Description of WG-7

The structure of the WG-7 stream cipher is illustrated in Figure 1. It consists of a 23-word LFSR,
where a single word is 7-bit long. The filter function WG is a nonlinear function defined for 7 boolean
variables (a word). The word is an element of F27 , where the finite field F27 is defined by the primitive
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Fig. 1. The WG-7 Stream Cipher Scheme

polynomial g(x) = x7 + x + 1 over GF (2). The characteristic polynomial of LFSR is primitive over
F27 and is given by:

f(x) = x23 + x11 + β, (1)

where β is a root of g(x). The nonlinear filter function WG(x) denoted in Figure 1 as WG is a
transformation F27 → F2 and defined below:

WG7(x) = f(x) = Tr(x3 + x9 + x21 + x57 + x87), x ∈ F27 . (2)

3 Cryptanalysis of WG-7

In this section, we describe our two attacks for WG-7. The first attack distinguishes the WG-7 stream
cipher from the random one. The attack exploits a bias in a linear approximation of the nonlinear
filter function. The second attack is a variant of the fast algebraic attack. It permits to recover not
only the internal state of the cipher but also the secret key.

3.1 Distinguishing Attack for WG-7

The WG-7 stream cipher has a relatively simple structure. The main component is LFSR that generates
words that are later transformed in a nonlinear fashion by the filter function. The only nonlinear
component in the cipher is the filter function. It seems to be a quite reasonable idea to check how well
the filter function can be approximated by an affine function. In other words, we are looking for an
affine function that approximates the filter function as close as possible (the best linear approximation).
If we apply the well-known Walsh-Hadamard transform to the filter function, then we can obtain such
linear approximation. Denote it by Γ · (x0, ..., x6) + α, where xi is the i-th bit of the word x, the sign
” · ” is the inner product, Γ (Γ ∈ F27) is a constant (a vector of 7 binary constants) and α is a binary
constant. In case of WG-7, we have found out that there are seven affine functions, which are the
best linear approximation (one of such functions is 1 + x0 + x1 + x4). As the nonlinearity of the filter
function is 52, we can find the following probability

Pr(WG(x) = (Γ · x+ α)) =
27 − 52

27
= 0.59375 (3)

From Equation (1), the following recursive relation can be derived:

Si+23 = Si+11 ⊕ β · Si. (4)

Consequently, we need to find the best linear approximation of the relation given below:

WG(Si+23)⊕WG(Si+11)⊕WG(Si) = 0. (5)

Remark 1: The Piling up Lemma cannot be used to compute the bias of Equation (5) because the
input variables (Si+23, Si+11, Si) are not independent. In particular, Si+23 is correlated with other



variables by Equation (1). In addition, β ·Si in Equation (4) is linear transformation of Si. The precise
linear relations are given below

β · Si = β · (si0, si1, si2, si3, si4, si5, si6) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

si1 ⊕ si3 ⊕ si4
si2

si2 ⊕ si5
si4

si1 ⊕ si2
si6

si0 ⊕ si1 ⊕ si2 ⊕ si3 ⊕ si4 ⊕ si5 ⊕ si6

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

T

(6)

We need to determine the exact value of the bias ε in the following probability:

Pr(WG(Si+23)⊕WG(Si+11)⊕WG(Si) = 0) = 0.5 + ε (7)

One method to compute the bias in Equation (7) is as follows. We consider the bias between three
output bits at clocks i, i+ 11 and i+ 23. So we get

zi+23 ⊕ zi+11 ⊕ zi =

=WG(Si+23)⊕WG(Si+11)⊕WG(Si)

From Eq. 4
=⇒ =WG(Si+11 ⊕ β · Si)⊕WG(Si+11)⊕WG(Si)

(8)

Observe that Equation (8) is a boolean function with 14 input variables (instead of 21 variables) and
a single bit output. In other words, Si+23 depends on Si and Si+11 based on Equations (4) and (6).
Let F ·GF (214)→ GF (2) be a non-linear boolean function in form of

F (Si, Si+11) = WG(Si+11 ⊕ β.Si)⊕WG(Si+11)⊕WG(Si) (9)

Now, we focus on F (si0, s
i
1, ..., s

i
6, s

i+11
0 , si+11

1 , ..., si+11
6 ) that is an unbalanced boolean function, where

Pr(F (si0, s
i
1, ..., s

i
6, s

i+11
0 , si+11

1 , ..., si+11
6 ) = 0) =

1

2
− 2−7.145 (10)

The relation given by Equation (9) defines a distinguisher, which is able to tell apart the output
of the stream cipher from a truly random cipher with the probability expressed by Equation (10).
The interesting question is: are there better biases to mount a distinguishing attack? We will discuss
possible answers in the remaining part of this section.

Better biases: In the previous section, we have found a linear approximation leading us to a dis-
tinguishing attack. One would wonder whether it is possible to find a better linear approximation so
that the bias is closer to the maximal value of 0.5.

Let us explore this issue in more detail. Repeated squaring of the characteristic polynomial of
LFSR (see Equation 1) gives other linear recurrence polynomials. If we use the exponent 27, we get

x23·2
7

+ x11·2
7

+ β2
7

= 0 (11)

Since β = β2
7
, β ∈ F27 , the summation of Equations (1) and (11) gives:

x23·2
7

+ x11·2
7

+ x23 + x11 = 0 (12)

divided by x11

=⇒ x23·2
7−11 + x11·2

7−11 + x12 + 1 = 0 (13)

It means that the attacker can derive a bitwise linear equation, which is valid for the internal state of
LFSR. Similar to the previous subsection, the function F can be built as follows:

zi+23·27−11 ⊕ zi+11·27−11 ⊕ zi+12 ⊕ zi
= WG(Si+23·27−11)⊕WG(Si+11·27−11)⊕WG(Si+12)⊕WG(Si)

= WG(Si+11·27−11 ⊕ Si+12 ⊕ Si)⊕WG(Si+11·27−11)⊕WG(Si+12)⊕WG(Si)

(14)



Equation (14) can be considered as a boolean function with 21 input variables (instead of 28 variables)
and a single bit output. The boolean function F : GF (221)→ GF (2) is an unbalanced boolean function,
where

Pr(F (Si+11·27−11, Si+12, Si) = 0) =
1

2
+ 2−6.78 (15)

The required data: Now, we explain the amount of output sequences required to distinguish WG-
7 from a truly random cipher. The following theorem determines the required length of keystream
needed to distinguish between two random sequences, where one is uniform (both binary values occur
with 1

2) and the other is biased (one value occurs with 1
2(1 + ε)) - see [11].

Theorem 1. Given two binary random sequences, where the first is uniform and the other is biased,
i.e. one binary value occurs with the probability 1

2(1 + ε) while the other with the probability 1
2(1− ε).

Then we need to observe O( 1
ε2

) bits in order to distinguish the two distributions with a non-negligible
probability of success.

In this case, the amount of data required for proposed distinguishing attack is 213.56 bits. This
amount of data can be collected from consecutive (or non-consecutive) keystream and even from one
session key or different session keys in various times.

The result of the implemented distinguishing attack on WG-7 stream cipher are shown in Table
1. We have repeated the experiment 1000 times to compute the success rate of distinguishing attack
with different lengths of output sequences.

Table 1. Experimental results for applying distinguishing attack on WG-7

Used Data (bits) Success Rate

1 29 %68

2 29.8 %75

3 210.3 %85

4 211.5 %90

5 213.5 %99.99

3.2 Key Recovery Attack on WG-7

In this section, we apply an algebraic analysis to recover the initial state of the cipher and consequently
the secret key. Our attack can recover internal states of WG-7 and then attacker is able to clock the
LFSR backward and find the secret key correctly. The designers of the WG-7 stream cipher have
claimed that there is no algebraic attack with the complexity smaller than the exhaustive search and
with the data complexity smaller than 224 of consecutive keystream bits. The idea of our attack is as
follows. Let L : GF (2161)→ GF (2161) be a multivariate linear transformation that corresponds to the
linear transformation defined by a single clock. This transformation is done on the whole state of 23
registers each holding 7 bits (23 · 7 = 161).

Let zt, t = 0, 1, 2, ... be the keystream generated by the cipher after running the state initialization
algorithm of WG-7. Assume also that f is the non-linear filter function WG illustrated in Figure 1.
We consider f as a non-linear map defined from GF (27)→ GF (2). As the output bit is calculated on
the contents of the last register or bits from 154 to 160, we denote this by

f(T (s0, ..., s160)),

where T (s0, ..., s160) extracts the 7-bit content of the last register. So, we can establish the following
system of relations for the cipher:




z0 = f(T (s0, ..., s160))

z1 = f(T (L(s0, ..., s160)))

...

zt = f(T (Lt(s0, ..., s160)))

(16)

where f(T (Lt(s0, ..., s160))) indicates the output keystream at the clock t, generated by the stream
cipher. Now, the cryptanalytic problem can be converted into the problem of solving a system of
nonlinear equations (see [1, 3, 4, 6, 7]).

Algebraic attack on WG-7: The simplest scenario to solve System (16) is known as the linearization
technique [[5], [7]]. The function f is of degree 5. The number N of monomials of degree smaller or
equal to 5 is

N =
5∑

i=1

(
161

i

)
≈
(

161

5

)
= 229.65.

Each of these monomials can be considered as a new variable and then the attacker can solve the non-
linear system with ≈ 229.65 equations and time complexity ≈ 229.65×log72 by the Gaussian elimination
method. Consequently, the complexity of the attack is larger than the exhaustive key search.

The important idea to improve the efficiency of the above attack is to reduce the degree of the
equations. To this end, the attacker tries to find an annihilator function so that f · g = 0 and deg g <
deg f . The steps to apply the attack can be described as follows:

1. Finding an annihilator g of f or f ⊕ 1 with a low degree d.

2. Given multivariate equations of a low degree d on the initial state bits, there are N =
d∑

i=1

(
n
i

)
mono-

mials of degree no bigger than d, where n is the length of internal state. Hence by the linearization
method, time complexity to solve the non-linear system is N log72 . The memory complexity of the
attack is about N .

The algebraic normal form (ANF) of f is as follows:

f(x1, ..., x7) = x1 + x1x3 + x2x3 + x4 + x1x4 + x2x4 +

x1x2x4 + x3x4 + x1x3x4 + x1x2x3x4 + x1x3x5 + x4x5 + x1x2x4x5 +

x1x2x3x4x5 + x6 + x2x6 + x1x2x6 + x1x2x3x6 + x1x2x4x6 + x1x2x3x4x6 +

x1x5x6 + x3x5x6 + x1x4x5x6 + x3x4x5x6 + x7 + x2x7 + x1x2x7 + x2x3x7 +

x1x4x7 + x1x2x4x7 + x1x2x3x4x7 + x5x7 + x1x5x7 + x1x3x5x7 + x1x2x3x5x7 +

x2x4x5x7 + x2x3x4x5x7 + x6x7 + x1x2x6x7 + x1x3x6x7 + x1x2x3x6x7 +

x2x4x6x7 + x1x3x4x6x7 + x2x3x4x6x7 + x5x6x7 + x2x5x6x7 + x1x2x5x6x7 +

x2x3x5x6x7 + x1x4x5x6x7 + x3x4x5x6x7.

The best annihilator is of the form:

g(x1, ..., x7) = 1 + x1 + x3 + x1x2x3 + x4 + x1x4 + x2x4 + x1x2x4 + x3x4 + x1x3x4 + x2x3x4 +

x1x3x5 + x4x5 + x1x4x5 + x3x4x5 + x6 + x1x6 + x2x6 + x1x2x6 + x3x6 +

x2x3x6 + x7 + x3x7 + x1x3x7 + x2x3x7 + x4x7 + x2x4x7 +

x3x4x7 + x3x5x7 + x4x5x7 + x6x7 + x1x6x7 + x2x6x7 + x3x6x7.

It means that the attacker can reduce the degree of the relations to 3 and solve them with time

complexity ≈
(
161
3

)log72 = 254.36 and memory complexity
(
161
3

)
= 219.38. It is obvious that the designers

of WG-7 have ignored this attack, which breaks the cipher with the memory complexity smaller than
224.



Improved Attack on WG-7 Fast algebraic attacks (see [3, 7, 9]) on stream ciphers that use LFSR
are based on equations of type zXe +Xd with e < d. This is a shorthand to describe that at least one
equation of type

z · g(s0, ..., sn−1) + h(s0, ..., sn−1) = 0 (17)

exists, where g and h are some multivariate polynomials of degree e and d (e < d) respectively, and
z = f(s0, ..., sn−1). The attack can be summarized as follows:

t+D∑
i=t

αt+i.zi.g(T (Li(s0, ..., s160))) (18)

for some linear combination (α0, ..., αD1) ∈ GF (2)D, where D =
d∑

i=1

(
n
i

)
. The same equation applies

to each window of D consecutive steps and we will write it E times, for E overlapping intervals, with

E =
e∑

i=1

(
n
i

)
. This is because we need to get the final system of the degree e that is solvable by

linearisation (with the complexity Elog72 ). This approach is discussed in [1, 2, 7, 9]. The steps of our
improved attack are summarized as follows:

1. Relation step: One searches g and h with small degrees such that f · g = h. The lower bound on
the complexity of solving a linear system with D +E equations is O((D +E)log

7
2 ). In general one

considers e < d.

2. Pre-computation step: Computation of linear relations to eliminate the terms of degrees greater
than e in the equations. This needs 2D bits of stream bits with the complexity O(Dlog2(D)).

3. Substitution step: One eliminates the monomials of degree greater than e. The time complexity is
O(E2D) [2] but by DFT [9] it can be further reduced to O(E.D.log(D)).

4. Solving step: One solves the system with E linear equations in O(Elog72 ).

In case of WG-7, to apply the fast algebraic attack, we have found the boolean functions g and h and
they are:

g(x1, ..., x7) = 1 + x1 + x3 + x7.

h(x1, ..., x7) = x1x2x3 + x4 + x1x4 + x2x4 + x1x2x4 + x3x4 +

x1x3x4 + x2x3x4 + x1x3x5 + x4x5 + x1x4x5 +

x3x4x5 + x6 + x1x6 + x2x6 + x1x2x6 + x3x6 + x2x3x6 +

x3x7 + x1x3x7 + x2x3x7 + x4x7 + x2x4x7 + x3x4x7 +

x3x5x7 + x4x5x7 + x6x7 + x1x6x7 + x2x6x7 + x3x6x7.

The data complexity of the fast algebraic attack on WG-7 is
(
161
d

)
=
(
161
3

)
and the time complexity

is approximately
(
161
e

)log72 ≈ (1611 )2.807. Table 2 summarizes the results of our attacks.

Table 2. Comparison of different algebraic attacks against WG-7

Attack type n d e Time
Complex-
ity

Data
Complex-
ity

Memory Pre-Computation

1 Trivial Attack 161 5 - 283.02 229.65 - -

2 Algebraic Attack 161 3 - 254.36 219.38 - -

3 Fast Algebraic At-
tack

161 1 3 226.73 219.38 214.66 226.87



3.3 Conclusions

In this paper, the security of the WG-7 stream cipher has been investigated. We have shown that
distinguishing attack works with a high probability of success after observing 213.5 keystream bits.
Additionally, the key recovery attack has been described that can recover the secret key with the
time complexity about 227 and the data complexity 219.38. The presented results have proved that the
WG-7 stream cipher is not secure and therefore, it is not recommended to be used.
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