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In 1989, Adi Shamir [15] proposed a new zero-knowledge identi�cation scheme
based on a NP-complete problem called PKP for Permuted Kernel Problem. For
a given prime p, a given matrix A and a given vector V , the problem is to �nd
a permutation π such that the permuted vector Vπ veri�es A · Vπ = 0 mod p.

This scheme is still in 2011 known as one of the most e�cient identi�cation
scheme based on a combinatorial problem. However, we will see in this paper
that it is possible to improve this scheme signi�cantly by combining new ideas in
order to reduce the total number of computations to be performed and to improve
very e�ciently the security against side channel attacks using precomputations.
We will obtain like this a new scheme that we have called SPKP.

Moreover, if we use precomputed values in the scheme SPKP, then the prover
will need to perform no computations (i.e. only selection and transmission of
precomputed values). This is very interesting for security against side channel
attacks because our scheme is zero-knowledge and we don't perform any com-
putations using the key during the identi�cation so we prove that any attacker
(even using side channel attacks) being successfully identi�ed implies that he
has a solution to the NP-complete problem PKP.

1 Introduction

The articles published on PKP after Adi Shamir's article of 1989 focussed on
the study of various attacks on PKP. In 1992, Georgiades [5] introduced sym-
metric polynomials equations. The symmetric polynomial equation of degree 1 is
very useful and will be used by every other attacks. The symmetric polynomial
equations of bigger degrees seems to be very di�cult to exploit though. The
same year, Baritaud, Campana, Chauvaud and Gilbert [1] attacked PKP using
a time-memory trade-o�. In 1994, Chauvaud and Patarin [2] combined the pre-
vious attacks and used a few new ideas. In 1997, Poupard [13] created a program
to �nd the best attack's parameters improving the previous techniques. In 2001,
Joux ([8]) used a new time-memory trade-o� technique, dividing equations in 4
parts, to further improve the attack.

However, these attacks didn't break Shamir's PKP scheme : they are all expo-
nential and PKP is still very e�cient. For example, the best attack known from
Joux [8] is in 2106. Nevertheless, they show that the initial parameters of Shamir
PKP(16,32) are too weak, specially with today's power computation.



Some articles (Girault [6], Courtois [3]) compared the PKP scheme with other
identi�cation scheme like CLE [17] [18] and SD [16] from Stern, PPP [12] from
Pointcheval and MQ [14] from Sakumoto/Shirai/Hiwatari. These papers show
that PKP scheme is one of the most e�cient in terms of computations needed
and bits transferred.

In this article, we will try to describe variants of PKP that could make it even
more e�cient. It seems like this subject has not been studied so far. In fact, as
we will see, the simplest variants don't give very good results. In this way, we
could say that Shamir's PKP scheme seems quite "stable". Nevertheless we will
see that, combining some simple ideas, we can create a scheme, named SPKP,
that seems to be really more e�cient.

For example, standard parameters PKP(37,64) needs 215 multiplications of 8

bits numbers and 215 additions of 8 bits numbers (for a 2106 security and a 2−30

impersonation probability) and the number of operations remains the same with
a 32 bits microprocessor.
Our new version SPKP needs 214.4 additions of 8 bits numbers (still for 2106

security against the best known attacks) and 212.4 additions of 32 bits numbers
if we use a 32 bits microprocessor.

On modern microprocessors, 8 bits additions and 8 bits multiplications cost
about the same but it may be interesting to use additions instead of multiplica-
tions on very cheap RFID, or when the modulo p becomes large.

We will also see that our scheme SPKP is perfectly safe against SCA (side
channel attacks). With PKP, we need 223.4 bits of precomputed values to be
perfectly safe against SCA, this is not realistic. With SPKP, we need 217 bits of
precomputed values to be perfectly safe against SCA, this a major improvement.

Part I - The original PKP
(Shamir, 1989)

2 De�nitions of PKP and the corresponding identi�cation
scheme

Let p be a prime, V a vector of Znp , A a matrix of Zm×np . For each permutation
σ ∈ Sn, we note Vσ the vector de�ned by Vσ = (vσ(i))i and Aσ the matrix
de�ned by Aσ = (ai,σ(j))i,j . We can notice that, for each permutation σ, we
have AσRσ = AR.

Given a prime p, a matrix A and a vector V , the Permuted Kernel Problem is
to �nd a permutation π such that A.Vπ = 0 mod p.



This problem is NP-complete and has many advantages to be used in an iden-
ti�cation scheme. Indeed, the following identi�cation scheme is Zero-Knowledge
(the prover doesn't reveal anything about the secret during the identi�cation),
it uses very basic operations (multiplications mod p), it is very fast and it di�ers
from many other schemes by not depending of the factorisation or discrete log
problem. Since the problem is NP-complete, it is expected to be secure against
quantum computers (unlike schemes based on factorisation or discrete log).

The identi�cation scheme is the following :

PKP 5 rounds identi�cation scheme [15]

The users agree on a matrix A and a prime p. Each user chooses a random vector
W in Ker(A), a random permutation π and computes V = Wπ−1 . The public
key will be V and the secret key will be π. V has been de�ned such that Vπ is
in Ker(A). Each user can now prove their identity by proving they know π :

1. The prover chooses a random vector R and a random permutation σ. The
prover computes the hashed values of (σ,A.R) and (πσ,Rσ) and sends both
of them to the veri�er.

2. The veri�er chooses a random c ∈ Z/pZ and sends it to the prover.
3. The prover sends W = Rσ + cVπσ.
4. The veri�er sends a bit b.
5. The prover sends σ if b = 0 and sends πσ if b = 1.

In the �rst case, the veri�er checks that the hash of (σ,AσW ) is equal to the
hash of (σ,AR).
In the second case, the veri�er checks that the hash of (πσ,W − cVπσ) is
equal to the hash of (πσ,Rσ).

An honest prover is obviously passing the test successfully : in the �rst case, we
verify that

AσW = Aσ(Rσ + cVπσ) = AσRσ + cAσVπσ = AR+ cAVπ = AR.

In the second case, we verify that

W − cVπσ = Rσ.

As shown in [15], the scheme is Zero-Knowledge and the probability of success
for someone who doesn't know π is less or equal to p+1

2p . For 31 iterations, the

probability of success is approximately 2−30.

3 Parameters

We'd like to have only one solution for each PKP problem. If there are too many
equations, this gives too much information. If there are not enough equations,



there are too many permutations solutions. So, we have to �nd the good number
of equations.

The probability for a random vector to be in the Kernel of A is p−m because
there are m equations. The cardinal of the orbit of V under the permutations
(ie the set {Vσ}σ) is n! if V has distinct coordinates. In order to have only
one solution and to give the good proportion of information, we need to have
n! ≈ pm. This is the �rst constraint.

Now, we have to care about security. The naive attack is to choose the �rst
n−m coordinates of the vector Vπ (using the coordinates of V ) and use the m
equations to �nd the last m coordinates. The complexity of this naive attack is
n!
m! . We need n to be big enough so that n!

m! is big enough, this is the second
constraint.

Later, we will use the best known attack from Joux but in the next sections,
we'll only need the naive attack to understand that the simplest variants are not
e�cient.

Shamir proposed to use p = 251 (the largest prime number on 8 bits) so that
we can use the scheme on small devices like 8 bits microprocessors of smart
cards. This is a good choice and we'll see in section 5 if we can choose other
values for p (for example for 32 or 64 bits processors, are larger values of p more
e�cient ?). Considering the two constraints, values of n and m were proposed
: PKP (16, 32) (which gives a security in 246 against the best known attack at
present and therefore is not su�cient) and PKP (37, 64) (which gives a security
in 2106 against the best known attack).

4 Performances

Let's count how many multiplications we need to do in the identi�cation scheme.

The matrix is A is public so everyone can use Gauss elimination so we can assume
A is given by A = [A′|I] where A′ is a m× (n−m) matrix and I is the m×m
identity matrix.

The prover has to compute A.R at step 1 and c.Vπσ at step 3. This is m× (n−
m) + n multiplications of 8bits numbers and the same number of additions. For
PKP(16, 32), after 31 rounds, this is 214.1 operations (half of them are multipli-
cations). For PKP(37, 64), after 31 rounds, this is 216 operations. This is very
fast compared to many other schemes.

In each round, we send two hashed values (128 bits for both), one vector (8n
bits) and one permutation (log2(n!) bits). For PKP (16, 32), after 31 rounds,
this is 213.9 bits and for PKP (37, 64) this is 214.8 bits.



Part II - Analysis of some simple
variants of PKP

5 First variant : Di�erent values of p

5.1 Why 2 ≤ p < 251 is not a good choice in PKP

p=2 : There are many issues in using p = 2. The �rst one is that we don't have n!
di�erent possible solutions anymore because there are many equal coordinates.
The best way to keep many di�erent solutions is to set V with n/2 zeros and
n/2 ones, that way we have n!

(n/2)!2 di�erent possibles solutions.

Moreover, we found another problem with p = 2 : if two public keys V1 and
V2 have the same number of ones and zeros, the user knowing π1 can compute
π2 and inversely. The proof is in the appendice 13.1. This limits the number of
possible keys to n+ 1 at best but most of them are weak.

2<p<251 : For those values of p, we have the same problems that we had with
p = 2. It's di�cult to build public keys with di�erent coordinates and there is
a limited number a possible public keys (specially for small values of p). All the
details are in the appendice 13.1

5.2 Why p > 251 improve the number of operations needed but not
the transmissions

Nowadays, we have access to 32 and 64bits processor so we could use those to
compute modulo prime numbers of 32 or 64 bits. Therefore it is rather natural
to consider PKP on computers (instead of 8 bits smartcards) with values of p
of 32 or 64 bits instead of p = 251 (8 bits). As we will see, we will improve like
this the number of computations (but not the number of transmissions).

The equation n! ≈ pm tell us that, using 4 or 8 times more bits for p, divides
m by 4 or 8. We know that all the attack heavily use those m equations (for
example, the naive attack is in n!/m!).

Let see in the next array some parameters, the corresponding Joux's attack
complexity and the number of multiplications mod p needed. We can notice that
the extra equation of degree one of Georgiades [5] is used here in Joux attack
and is not negligible when p is large. We made di�erent arrays for the various
ranges of attack's complexity (cf appendice 13.2 for more details).

p m n Security Operations Transmissions
251 24 46 279 215.1 214.4

216 8 34 280 213.8 214.6

232 4 34 2104 213.2 215.3

264 2 34 280 212.5 216.2

Security in 280



p m n Security Operations Transmissions
251 34 60 2102 215.8 214.7

216 10 40 2106 214.4 214.8

232 4 34 2104 213.2 215.3

264 3 46 2151 213.4 216.6

Security in 2100

For p with 8, 16, 32 or 64 bits, we gave the parameters that gives a security
greater or equal to 280 for the �rst array and 2100 for the second one. We remark
that, for big values of p, the choice of m is very limited so we can't adjust very
well the parameters to reach a security close to 280 or 2100.

Those results tell us that using big values of p permits to reduce signi�cantly
the number of operations. As shown above, with a 280 security, it needs 212.5

operations for p with 64 bits, m = 2, n = 34 and needs 215.1 operations for the
standard PKP(24,46). This is 6 times faster.

However, the number of transmissions are bigger with big values of p. Comparing
the same parameters than above, we go from 214.4 bits to 216.2, this is 3.5 times
bigger.

6 Second variant : 3 rounds PKP (instead of 5 round
PKP)

We found an identi�cation scheme with 3 rounds (instead of 5) based on the
PKP problem :

PKP 3 rounds identi�cation scheme

1. The prover chooses a random vector R and a random permutation σ. He
sends 4 hashed values :

h1 = H(σ), h2 = H(Rσ + (Vπ)σ), h3 = H(AR), h4 = H(Rσ)

2. The veri�er sends a challenge b = 1, 2 or 3.

3. � If b = 1, the prover reveals σ and W1 = Rσ.
The veri�er veri�es that H(σ) = h1, H(Aσ(W1)) = h3 and H(W1) = h4.

� If b = 2, the prover reveals σ and W2 = R+ Vπ.
The veri�er veri�es that H(σ) = h1, H((W2)σ) = h2 and H(AW2) = h3.

� If b = 3, the prover reveals σπ and W3 = Rσ.
The veri�er veri�es that H(W3 + Vσπ) = h2 and H(W3) = h4.



Theorem :
An honest prover will pass the test successfully all the time while a dishonest
prover has, at best, a probability 2

3 to pass the test successfully. Indeed, if some-
one can answer to the 3 questions then he has a solution for the PKP problem.

Proof : Let σ1,W1, σ2,W2, σ3 andW3 be the answers to the 3 possible questions.
Since the attacker is accepted for each questions, we have the following system :

H(σ1) =h1
H(Aσ1

(W1))=h3
H(W1) =h4
H(σ2) =h1

H((W2)σ2) =h2
H(AW2) =h3

H(W3 + Vσ3
)=h2

H(W3) =h4

Supposing that the H functions are secure, we have :
σ1 = σ2

Aσ1(W1)= AW2

W1 = W3

(W2)σ1
=W1 + Vσ3

ReplacingW1 in the second equation by (W2)σ1+Vσ3 (using the fourth equation),
we have :

Aσ1
((W2)σ1

− Vσ3
) = AW2.

Since Aσ1((W2)σ1) = AW2 and Vσ3 = (Vσ−1
1 σ3

)σ1 , this implies that :

Aσ1
(Vσ−1

1 σ3
)σ1

= 0,

which is equivalent to AVσ−1
1 σ3

= 0. So σ−11 σ3 is solution of PKP and the attacker

knows the secret. ut
Considering this probability, we need 52 rounds to have a 2−30 impersonation
probability.

Theorem :
The PKP 3-rounds scheme is Zero-Knowledge.

Proof : There are 3 di�erents answers. If b = 1, we reveal σ and Rσ so we don't
reveal anything about the secret π. If b = 2, we reveal σ and R+ Vπ, the secret
Vπ is not revealed because R is random so R+ Vπ is random. If b = 3, we reveal
σπ and Rσ but, again, σ and R being random we don't reveal anything about
π. ut
About performances, we need to compute AR and Rσ + (Vπ)σ at step 1. This
is m(n−m) multiplications and m(n−m) + n additions. About transmissions,
there are 4 hash (256 bits), one vector (8n bits) and one permutation (log2(n!)
bits).



7 Third variant : using more vectors and some symmetry
in the PKP problem

What happens if we use more than one vector V i.e. with l ≥ 2 vectors V instead
of l = 1 ? This is the exact same thing to consider V as a matrix of size m× l. If
we increase the number of vectors, we have to decrease the number of equations
m (because n! ≈ pm·l) which should increase the attack complexity. Here we will
explain why l = m (the maximal possible value for l) is not more secure than
l = 1 (they actually have the exact same security, using a symmetry argument).
However, in section 8 we will see that l =

√
m is indeed interesting because, in

this situation, there is an equal number of equations and vectors which is the
�xed point of the following symmetry :

Theorem (Symmetry in PKP) :
Given a prime p and an integer n, solving the PKP problem with m equations
and l vectors has the exact same complexity that solving the PKP problem with
l equations and m vectors.

Proof in Appendice 13.5.

As said before, decreasing m increase the attack's complexity but it slightly
increase the number of operations needed as well. Using p of 8, 16, 32 or 64 bits
didn't lead to interesting results. But, surprisingly, using p = 2 and multiple
vectors permits to decrease the number of operations as we will see in the next
part.

Part III - SPKP : our new PKP
variant

Our new idea :
With one vector, as we have seen above, we couldn't use low prime numbers.
However, with multiple vectors, we noticed that it is now possible to use low
prime numbers and we will see that it can be interesting to consider p = 2. As
long V doesn't have two equal lines, there are n! possibilities for π.

8 De�nition

Our new scheme SPKP combines the three previous ideas :

� 3 rounds (instead of 5 for PKP).
� p = 2 (instead of p = 251 for Shamir's PKP recommended parameters).
� multiple vectors (typically l = 9 instead of l = 1 for PKP).



Considering multiple vectors, we studied what's the best choice for p and it seems
like p = 2 gives the best results. Using the 3 rounds scheme gives better results
as well. At step 1, to compute h2, we have to do n × l additions. At step 1, to
compute h3, we have to compute A.R which has m× l coordinates. For each of
them, we have to do n−m

2 bits additions. Indeed, the last m coordinates of each
line of A has m− 1 zeros and 1 one, half of the other coordinates are zeros.

At step 3, when b = 2, we need nl
2 bits additions to compute W2.

The total is m×l×(n−m)
2 + 3×n×l

2 bits additions.

We need 52 rounds to have a 2−30 impersonation probability.

We need to compute the best parameters n,m and l for SPKP and we'll see
the number of additions needed and conclude on its potential e�ciency. To �nd
those parameters, we have to analyze how SPKP is resisting to the best attack
known. This is the object of the next section.

9 Attacks and E�ciency of SPKP

SPKP is NP-complete because PKP is NP-complete and PKP is a particular
case of SPKP. SPKP is Zero-Knowledge, the proof is exactly the same we gave
for PKP 3 rounds. We think that all existing attacks are less e�cient on SPKP.
Indeed, for given values n and p, we have the equation

n! = pm×l,

where m is the number of equations and l is the number of vectors. If we use l
vectors instead of 1, we have to divide the number of equations m by l and every
attacks are very much dependent of the number of equations m.

The best attack on SPKP seems to be, as far as we know, similar to the best
attack on PKP such as Joux's attack [8]. It'd be too long and complicate to
describe the Joux's attack there. We adjusted it to SPKP by taking p = 2,
changing n−vectors in n×l−matrix and numbers (in theDi sets) in 1×l−vectors.
In the next arrays, we present the PKP parameters and the SPKP parameters
with the corresponding attack's complexity and the number of computations
needed for a 2−30 impersonation (31 rounds for PKP and 52 rounds for SPKP).
Nowadays, recent smart cards use 32 bits microprocessor so we combined bits
operations together to divide the number of operations needed.

Parameters Security 32 bits operations
SPKP (15, 38, 10) 279 211.9 additions
PKP (24, 46) 279 215.1 operations

280 complexity

Parameters Security 32 bits operations
SPKP (15, 42, 11) 298 212.2 additions
PKP (34, 60) 2102 215.8 operations



2100 complexity

This results shows that SPKP needs less and simpler operations so it seems to
be more e�cient than the original PKP scheme. For a 2100 security, SPKP needs
12 times less operations than PKP and all operations are additions compared to
PKP using multiplications and additions.

Now, we will compare SPKP with other combinatorial schemes. In this array,
we'll show bits operations for SPKP instead of combining them and we give
the number �eld used as well. We used parameters for a 2−80 security and 2−30

impersonation probability.

Schemes CLE SD PP MQ PKP SPKP
Operations 215/F257 218/F256 221/F127 226/F2 215/F251 217/F2

This shows that SPKP is the scheme using the less operations (if we combine
bits operations together).

Moreover, using precomputations, we can make this scheme even more e�cient
as we will see in the next section.

10 Precomputations with SPKP or our PKP 3-rounds

In the original PKP scheme (5 rounds, presented at section 2), the prover has to
computeW = Rσ+cVπσ where c is a value with p possibilities (p = 251 typically)
chosen by the veri�er then he will face one of the two challenges. Therefore, for
the 31 rounds, if the prover want to precompute all the possible answers to the
prover questions in advance, he has to prepare 62p answers, approximately 15000
values. This is not very realistic.

However, in our scheme (PKP 3 rounds, section 6), the veri�er will face one of
the three challenges at each round. Therefore, for the 52 rounds, the prover has
to prepare 104 answers for one identi�cation. This is realistic if we use devices
with enough memory.

Therefore, we see that all the prover's computations can be precomputed so that
the prover doesn't have to compute anything during the identi�cation. We can
create a smart card which contains only the datas Ri, h1, ...,W1, .... The prover
uses this card for identi�cation, his only need is to send and receive datas from
the veri�er.

Precomputation with other combinatorial schemes

This property is possible on every other schemes as long the number of possible
challenges is limited. This is why our scheme is e�cient for precomputation :
there are only 3 possible challenges while the standard PKP has 502 possible
challenges. The memory needed for one identi�cation is the number of bits for
transmission times the number of challenges.



In the following array, we show how much memory is needed for one identi�cation
using precomputations (with 280 security and 2−30 impersonation probability).

Schemes MQ SPKP SD PP PKP CLE
Memory needed in bits 216.4 216.9 217.5 218.6 223.4 223.8

We see that SPKP is one of the most e�cient scheme if we want to use precom-
putation. In 2004, Samsung realised a smart card with 256kbytes of EEPROM
which permits to save datas for about 16 identi�cations using SPKP. In the next
few years, the memory size augmentation could permit to create smart cards
with more than a thousand of identi�cations saved.

11 Security against side channel attacks

Since a few years, very e�cient physical attacks have been discovered on smart
cards and microprocessors, for example : timing attacks, power attacks (SPA,
DPA [9]), fault attacks (DFA), ... Generally some ways to �x those problems was
found by the scienti�c community, but sometimes it is really di�cult to design
secure hardwares against some physical attacks, and it is expected that new
attacks could be found. A lot of those attacks use the fact that the microprocessor
has to manipulate secret datas. In the variants of PKP 3 rounds and SPKP
that we presented, it is possible to precompute everything. That way, no secret
datas are manipulated by the microprocessor which greatly simpli�es the security
against physical attacks.

The precomputed datas have to be encrypted or saved in protected areas because,
even if a single data doesn't reveal anything about the secret, the combination
of some datas could reveal the secret. The microprocessor needs to be able to
transmit one of those values but not all of them and eventually decrypt this
value with a key K. The other values have to be encrypted with di�erent keys
or saved in protected areas to assure a good security. In fact, it seems to be
much easier to secure such a scheme from physical attacks than to secure the
traditional schemes that manipulate a secret data s in the computation of an
identi�cation against physical attacks (where s needs to be still secret after the
identi�cation). That's why we think those schemes present a real interest for the
security against physical attacks.

We compared SPKP with other schemes that use precomputations like GPS [7]
or Lamport [10] and his variants. We give more details in appendice 13.3.

12 Conclusion

In this article, we studied simple variants of PKP. Using one idea alone doesn't
give good results but, surprisingly, combining 3 ideas creates a more e�cient



scheme. Those 3 ideas are : 1. to change the characteristic to 2, 2. to use multiple
vectors and 3. to use a 3 rounds scheme instead of 5 rounds. As far as we know,
it is the �rst time that a simple 3 round variant of PKP (instead of 5 rounds of
[15]) is described.

This new scheme called SPKP has good performance. On a 32 bits processor
and for a 280 security, SPKP needs 211.9 additions compared to 215.1 operations
(half of them being multiplications) for PKP. On a 32 bits processor and for a
2100 security, SPKP needs 212.2 additions compared to 215.8 operations (half of
them being multiplications) for PKP.

Moreover, all the computations can be precomputed so that the prover doesn't
have to compute anything during the identi�cation i.e. he needs only to select
some precomputed values and send them. Since no secret value is used or loaded
on the micro-processor during this identi�cation this property might be very
useful for security against the side channel attacks. This may be really interesting
since side channel attacks are often much more e�cient than algorithmic attacks
for practical security. Typically if two stored and precomputed values are given
the secret may be found but only one of this value will be given, in a zero-
knowledge way. We can notice that this property is much more e�cient on our
3 round variant of PKP and SPKP than the previous classical 5 round variant.
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13 Appendices

13.1 Why small values of p are ine�cient

There are many issues in using p = 2. The �rst one is that we don't have n!
di�erent possible solutions anymore because there are many equal coordinates.
The best way to keep many di�erent solutions is to set V with n/2 zeros and
n/2 ones, that way we have n!

(n/2)!2 di�erent possibles solutions.

Moreover, we found another problem with p = 2 : if two public keys V1 and V2
have the same number of ones and zeros, the user knowing π1 can compute π2
and inversely. The proof is in the appendice. This limits the number of possible
keys to n+ 1 at best but most of them are weak.

Indeed, this user just need to compute the permutation σ which sends V2 to
(V1)π1

∈Ker(A) (this permutation exist because V2 and V1 have the same coor-
dinates). That way, we have (V2)σ = (V1)π1

so

A(V2)σ = A(V1)π1
= 0.

This implies that π2 = σ.



We have, at best, n+ 1 di�erent possible public keys but most of them are not
good to use (if there are "too many" zeros or "too many" ones, there are less
possible permutations) so using p = 2 is ine�cient.

p>2 :
We've seen previously that it's much better to have di�erent coordinates for
V so that we can have some control on the number of di�erent solutions for
π. To construct a vector V with di�erent coordinates, we can just randomly
choose the �rst n−m coordinates using di�erent coordinates then compute the
last m coordinates using the m equations. These m last coordinates have to
take di�erent values. there are p − (n − m) choices for the �rst of the last m
coordinates, p− (n−m+1) for the next one and so one until the last one having
p− (n− 1) choices. This gives a probability of :

(p− n+m)!

(p− n)!pm
.

We want this probability to be big enough so that it doesn't take too much time
to build a key. Using the equality m = logp(n!), we have to study the formula :

(p− n+ logp(n!))!

(p− n)!plogp(n!)
=

(p− n+ logp(n!))!

(p− n)!n!

In the same time, we need n!
m! to be big enough (at least 280).

With those contraints, there is no solution for p with 5 bits or less. With p = 61,
the probability of building a key is 2−66 with n = 58. This is not acceptable.
With p = 127, the probability goes down to 2−6.9 with n = 37. We could use
PKP with p = 127 and build "good" keys but it doesn't improve the standard
parameters p = 251. It's slightly worse because m is bigger with smaller values
of p.

We can also use the same argument used for p = 2 to attack the other small

values of p. We can create only (n+p−1)!
n!(p−1)! public keys. Therefore it is not a good

idea to use small values of p.

13.2 Maple computations

We adapted the best known attack on PKP from Joux [8] in order to attack
p = 2 with multiple vectors.

attaque := proc (m, n, l, p)

local n1, n2, n3, n4, k, psi, timeattaque;

n3 := floor((1/4)*n-(1/4)*m-1/4);

n1 := floor((1/3)*n-(1/3)*m-1/3-(1/3)*n3);

n2 := floor((1/2)*n-(1/2)*m-1/2-(1/2)*n1-(1/2)*n3);

n4 := n-m-1-n1-n2-n3;



k := round(log(factorial(n-n1)/factorial(n))/log((n-n1-n2)/p^l));

psi := ((n-n1-n2)/p^l)^k;

timeattaque := round(log[2]((1/64)*psi*

factorial(n)^2/(factorial(n-n1-n2)*factorial(n-n3-n4))));

return timeattaque

end proc

13.3 Comparison with Lamport and GPS

There are very e�cient schemes on smart cards. We already cited the combinato-
rial schemes like CLE [18], SD [16], ... The scheme GPS (Girault Poupard Stern
[7]) is also very e�cient. It only needs to do one addition during the identi�cation
if we have some precomputed values. Nevertheless, this addition manipulates a
secret value to protect during the computation and the security of GPS is based
on the discrete log problem (attackable on hypothetical quantum computers)
which is not a NP-complete problem.

The Lamport's scheme [10] and his variants [11] are also e�cient public-key
identi�cation schemes. However, if we don't use precomputations, SPKP can re-
alise an arbitrary number of identi�cations while Lamport is limited. If we use
precomputations and we want to do no computations at all during the identi�-
cation, Lamport seems to be less e�cient than SPKP and the public-key size is
in O(n) (it was O(ln(n)) if we accept computations during the identi�cation), n
being the number of identi�cations needed. A deeper study is in progress.

13.4 Small prime numbers with multiple vectors

We'll show here a toy example explaining why we can use small prime numbers
with multiple vectors. In the following example, we see that, with one vector,
there are some permutations that doesn't change the permuted vector. If we
permute the two �rst line, the �rst vector is not modi�ed while the second
matrix is modi�ed.


0
0
1
1



0 0
0 1
1 0
1 1


4!
2!2 permutations 4! permutations

In order to be able to build public-keys with small prime numbers using multiple
vectors, we need that there are no two equal lines in V . This is possible as long
pl ≥ n. With SPKP, we have pl ≈ 211 and n ≤ 26 so, there is no problem to
build public keys.



13.5 Symmetry in PKP

If we consider V with l columns instead of 1, we will increase the attack's com-
plexity by reducing m. Indeed, a random vector is in the Kernel of A with a
probability p−m×l so, to keep the same number of solutions, multiplying by l
the number of vectors implies to divide by l the number of equations m. We
know that all the attacks are more e�cient when m increases (for example, the
naive attack is n!

m! ). We could be tempted to multiply the number of vectors by
m so we could have only one equation. This is actually useless, let's see why.

Theorem (Symmetry in PKP) :
Given a prime p and an integer n, solving the PKP problem with m equations
and l vectors has the exact same complexity that solving the PKP problem with
l equations and m vectors.

There is some symmetry for the PKP Problem. We can see the vector Vπ as
the result of Mπ.V where Mπ is the matrix associated to the permutation π :
M = (δπ(i),j). That way, the PKP Problem can be written as :

A.Mπ.V = 0.

Taking the transpose, we have :

tV. tMπ.
tA = 0.

The transpose of Mπ is Mπ−1 so :

( tV ).( tA)π−1 = 0.

To summarize :
A.Vπ = 0⇔ ( tV ).( tA)π−1 = 0.

Using this symmetry, we know that switching the number of equations with the
number of vectors doesn't change the problem.


