
Identification Based Encryption with RSA-OAEP

Using SEM and Without

Rkia Aouinatou1, Mostafa Belkasmi2
1UFR SYSCOM, Faculty of Sciences, Mohamed V-Agdal B.P. 1014 Rabat, Morocco

∗ Laboratoire de recherche Informatique et Telecommunication: LRIT
Email: rkiaaouinatou@yahoo.fr

2 ENSIAS: University Mohammed V- Souissi, Rabat, Morocco
Email: belkasmi@ensias.ma

Abstract

In this article we show how we can integrate the RSA (RSA-OAEP) into the IBE. Our prove can be make with
either Standard Model or Random Oracle. We firstly develop the basic ideas made in this direction, so that
to create a novel scheme with which we can signs and crypt at the same time. Then we give our new approach
which conserves properly the syntax of the RSA classic. Additionally we compare our authentication with
the signature of Shamir. More than that, in the RSA-IBE there is the problem of relating the exponent with
an identity. Even if, there was some proposals in this direction, but they operate only with the Random
Oracle. And in this article we will response to question of Xuhua Ding and Gene Tsudik, in order to propose
an efficient exponent for an RSA-IBE. In the end of the article we give a useful appendix.
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1 Introduction

IBE (Identification-Based Encryption) is a public key cryptosystem where the public key can be represented
as an arbitrary string such as an email address. The concept was proposed in 1984 by Adi Shamir without
created any cryptosystem that can work with this technique. But, he applied his idea on the scheme of
signature by integrating the most famous crytosystem RSA. However, integrating the RSA into the IBE is
open until present, because it suffer from a lot of problems, we can cite :

1. The problem of relating the Exponent e or the Modulus n with an identity.

2. The problem that if n is not related to the identity. It will be difficult to precise, if it is for the concerned
receiver. Because, IBE is an off-line to this latter.

These problems are the obstacle to the inventor of IBE and the RSA Shamir, who declared definitively that[1]

it is impossible to combine this later with the first :
≺≺ Unfortunately, the RSA scheme cannot be used in a way that satisfies these conditions simultaneously :

1. If the modulus n is a pseudo-random function of the user’s identity, even the key generation center
cannot factor this n and cannot compute the decryption exponent d from the encryption exponent e.

2. If the modulus n is universal and the seed is its factorization, then anyone who knows an encryption
exponent e and its corresponding decryption exponent d can compute the seed.��

Therefore for these reasons Shamir did not integrate the RSA into the IBE. He used it only on the scheme of
signature, because this last is only to authenticate the users. More than that, we will choose it (the signature)
after choosing the appropriate cryptosystem and thus after setting the most appropriate publics parameters.
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After the failed of Shamir, work in IBE operate only with the pairing (the first proposal is with Boneh and
Franklin[2]). As a consequence, IBE was limited in their practical with the traditional public-key cryptosys-
tems like RSA. So, it can’t benefits from : twenty years of mathematical research, operational familiarity,
experience and comfort with the security of this established system.
But, there was some typical techniques which essayed to manage the RSA with IBE using what is called
SEM. These methods are proposed by the cryptographers : Dan Boneh, Xuhua Ding and Gene Tsudik. None
of them are satisfactory, as it doesn’t conserve the syntax of the RSA classic. In[5][6] the authors used a
modulus fix. But, to share the same modulus by multiple users in the IBE using a normal RSA, will be
utterly insecure. Because, it will be fragile to a trivial attack which can simply factor the modulus. To resist
to this, the authors used the technique of SEM (SEcurity Mediator)[4], at which they divide the secret key
between the SEM and user. Using the fact that none of these later can calculated the modulus n, but this
make communication very low. By contrast, in our approach we can use modulus fix and we can conserve
the RSA classic.
Organization : Firstly we will describe more clearly the idea of some techniques proposed : that’s of Dan
Boneh, Xuhua Ding and Gene Tsudik. In the second and third version we repaire this proposal, more we
propose a new cryptosystem which we study its security. In fourth section we study the rigidity of our
authentication against CCA and in the fifth section we compare this authentication with the signature of
Shamir. At the end we gave a brief conclusion and an Appendix.

2 Some Preliminaries

2.1 Functionality of the IBE :

An IBE system contains four basic components in its construction :
Setup : A trusted central authority manages the parameters with which keys are created. This authority
is called the Private Key Generator or PKG. The PKG takes a security parameter k and returns params
(system parameters) and master-key. The system parameters will be publicly known, while the master-key
will be known only to the (PKG).
Extract : Takes as input params, master-key, and an arbitrary IDR, it returns a private key dIDR

.
Encryption : When Alice wishes to encrypt a message to Bob, he encrypts the message to him by computing
or obtaining the public key, and then encrypting a plaintext message M with params, IDBob to obtain
ciphertext C.
Decryption : When Bob has C, he contact the PKG to obtain the private key SBob, he decrypts C to obtain
the plaintext message M.

2.2 D-RSA- SEP

Definition 1 :[13]

(Decision RSA Short Encrypted-Prime Problem (D-RSA- SEP)). Let (le, ln, lk) be security parameters.
The challenger is given a triple (e′, n′, z′), where n′ is an ln-bit RSA modulus, e′ is an le-bit random
prime, and z′ ←− Zn′

∗ . Its goal is to decide whether or not z′ is of the form ke′ mod n′, for some k ∈
Primes(2lk−1 , 2lk).

3 Idea of Dan Boneh, Xuhua Ding and Gene Tsudik[5]

Identification Based Encryption is one of the technical offers to simplify the problem of revocation of the
keys in the PKI. As we identify each person only by his identity without according him any certificate. This
technique has been proposed by Adi Shamir in 1984 without implementation of any cryptosystem. And we
will wait until 2001, at which Dan Boneh and Matthew Franklin[2] have proposed the first integrated and
the first implementation of a cryptosystem of IBE using Pairings.
The inventor of IBE Shamir operates his idea by integrating the most famous cryptosystem in the world :
RSA, but only on the scheme of signature.
Shamir cites two reasons for which he hasn’t incorporated the RSA in the IBE, and since 1984 up to present
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the integration of RSA in the IBE is almost infeasible. But there was some work which uses some typical
technique to realize this trick. The method that we spirited to talk is about that of Dan Boneh, Xuhua Ding
and Gene Tsudik in their article[5], in which they use what we called SEM
The SEM[4] are used to simplify the revocation of the keys, by installing in the middle a trust entity which
simplifies the validation of digital signatures and the revocation of the keys, and this for any entity which
need the security.

3.1 Introduction to the SEM

The SEM (SEcuriy Mediator) is a trusted entity installed in the middle to generate and to simplify the
derivation of the private key.
To signs or to decrypt a message, Bob must communicate with the SEM to obtain what we called Token
which is a symbol. Without this last, Bob can’t have any private key to decrypt his message and if Bob has
cheated in his communication, the administrator must confirm the SEM to stop sending the token to the
public keys of Bob
Among the most important services of the SEM is the validation of the signatures every time we need it, by
returning the certificate which is more desirable in comparison if we have communicated directly to the CA.
Thus the presence of the SEM is invisible to any user not interested in the key in question.
The SEM are integrated in the communication of the RSA to simplify the revocations of the keys. The
cryptosystem we should mention is : mRSA (ie RSA with mediate SEM) works with this technique.

3.2 Mediate RSA : mRSA

mRSA is a convenient method to simplify the communication between the user and the CA in the cryptosys-
tem RSA, to obtain secure private key by the intermediate of the SEM. However the communication require
an understanding and a cooperation between user and the SEM without cheating each entity the other.
The main idea of mRSA is that the derivation of the private key is divided in two parts, one for SEM and
the other for the user. So, without cooperation between the two entities, private key remains unknown (for
more detail see[4])
Dan Boneh, Xuhua Ding and Gene Tsudik incorporated mRSA in the IBE basing on the SEM[5]. For reali-
zing this, these authors used +mRSA (the + mRSA has been invented by Bonneh et al[5]. As canesan has
proposed another version mRSA*) and during the rest we are only interested in +mRSA because it is the
version used by Dan Boneh, Xuhua Ding and Gene Tsudik

3.3 IB-mRSA ie IBE with mRSA

3.3.1 Description of the Method

Problem to relate e with ID

In the initialize phase the trust authority PKG publishes their parameters : n = p × q fix and specialized
to the number of user which are in the same organization, hash functions, a useful parameters for one-way
function in a secure site (specialized to an organization or domain). The concerned user extracts these pa-
rameters according to a certificate.
So Alice who has the identity of Bob : IDB wish to send him the message MeB

Alice mod n. Firstly she consults
the site published by the PKG in which Bob is a member according to his Domain (for more detail see[5]) and
she extracts the appropriate parameters but before she calculates the encryption. Alice needs to calculate
an eB corresponding to the IDB and to calculate it we propose tree methods :
The first is that of[5]. According to this, eB = f(IDB) = 0k′0 ||IDB ||00000001 with
k′0 ←− k − |IDB | − 8, k is the secret parameter (f must be one-way function ie we can’t have a coincidence
on identity.) 2

The second one is that of[6]. In[6] eB =0s||KG(IDB)||1 with KG is a hash function such as MD5 or SHA1
and s is the secret parameter selected by the PKG. We privilege this choice because according to it the
authors prove that the scheme is CCA2 secure taking into account that they conserve the same scheme of[5].
The only change they make is in the formulation of eB 2

The third one is Our. In our proposition we have taken into consideration the perspective proposed in[6].
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However, Xuhua Ding and Gene Tsudik announce that they need to investigate alternative mapping func-
tions that can produce more ”efficient” RSA exponents. And it may be preferable to choose it in standard
Model. In our proposition the eB is as follow :
Firstly our goal is to choose an eB (generally eID) in the standard Model and which verify the condition of
RSA i.e eB prime with the Euler function ϕ(n)=(p − 1) × (q − 1). We propose to construct an eB prime
and of length approximately 3

4 the length of the module n. Effectively eB which is surely greater than (p-1)
and (q-1) will be prime with their product (theorem of Bezout).
In the first pad we will project all ID in the code ASCII. This projection will be different from each other
because all ID are different(if not the term identity has any sense). And we multiply it by an odd prime of
length 2k (for example 2k + 1), k is an appropriate parameter preceded by the PKG and fix for all ID. For
example, if our n is of 2048-bit, according to our procedure we wish to search for an eID of length 3

4 .2048=
1536 bit. As the ID may have for example at most 35 characters taking into account the characters of the
organization (for example : @Journal of Secuity.com) which we can eliminate it (since the organization is
the same for their users ). However, our ID may be of 15 characters i.e of 120-bit. So, the k that can be
published by the PKG is of 1410 bit ((1536-120-6)bit, the last 6 bits are reserved to the search of an prime
integer). The projection of ID in ASCII which we take as number (for example if the projection is in form
011011 our number is 11011). If this number is odd i.e it has 1 in his least bit we take it, if not we change
this least 0 bit by 1. We multiply this number for example by 21410 + 1 and we test if this number is prime
or not using the Appendix or the theorem of Wilson (even if it is expansive for large prime) :
Theorem of Wilson : An integer p strictly superior to 1, is a prime number if and only if it divide (p -
1) ! + 1, more precisely if and only if : (p - 1) ! + 1 = 0 mod p. 2

But if we get a number not prime, we add to it 2 until we get a prime number (the prime numbers are dense
in ℵ : set of integer). For more detail see the Appendix
We have constructed a prime number greater than (p-1) and (q-1) so it will be prime with (p-1), (q-1) and so
with their product (p-1)×(q-1). As eID constructed is prime it is rigid against the attack of non-malleability.
More of that all the eID constructed are different from one another (all the ID are different + multiplication
by fix number 2k+prime numbers are dense).
This proposition is useful, because we will have an eID standard as the RSA classic and we will not have
the problem of malleability compared to[6]. That’s we will see in the sequal.
The only weakness of this method is that those eID has a long term which may show down the cal-
culation. But the length of our parameter is small compared to[6] which has length equal to that of n

2

Simple variation in the idea of Boneh, Xuhua and Tsudik
In the idea[5] we add a new approach, especially in the system of communication, since[5] may be expensive.
Because, to distribute du we need a secure channel also we have the problem that the user will authenticate
to the SEM as it authenticate to the PKG. This authentication is very low because it’s in the traditional
form. By contrast, in our method the SEM will only declare and the authority may only control.
We propose that Bob, who has no private key to decrypt the message send by Alice MeB

Alice. Choose a secret
key duB

and send deB
uB

to the authority in the following way :

Fig. 1 – Demand and Authentication

And it is simple to the authority to extract the key duB
from deB

uB
mod n, because it is the only who know

p,q.
The aim of this shipment is to confirm the authority (PKG) this is my chosen private key, and this is my
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Identity, I need complete key to communicate. So the authority takes into consideration this demand, she
stocked somewhere (in a record) the couple (duB

, IDB), and she waits for the second request.
Bob makes a contact for the second time the PKG (message (H(m),H(m)duB ), with m is an arbitrary
message) but in this faith by the intermediate of SEM in the following way :

Fig. 2 – Second contact : party 1

The aim of this tie is to allow SEM to authenticate Bob to the PKG.
So the SEM say to the PKG this is a person who asks the key dSEM you can check its identity. The PKG
consult her record to verify the selected key by Bob and after she calculates :

dSEM = dB − duB

H(m)dSEM

H(m)duB ×H(m)dSEM

H’(m)=(H(m)duB ×H(m)dSEM )eB

After verifying the identification of Bob (H ’(m) = H (m))
The PKG sent dSEM to SEM but this must be across the secure channel (since the SEM is a drift of the
PKG)

Fig. 3 – Second contact : party 2

The SEM should be authenticated to Bob (message H(m),H(m)dSEM )), to tell him that your application is
accepted. So Bob who verifies more the identification of SEM (we need this verification to not broadcast the
message to anyone), sent the message that is sent by Alice ( MAlice

eB coupling with H(m)duB i.e signature)
to the SEM to obtain a Token (help). Then the SEM who received dSEM sent to Bob (MAlice

eB )dSEM , this
is clearly seen in the figure 4 :

Fig. 4 – Authentication+Token

In the last Bob computes :
(MAlice

eB )dSEM × (MAlice
eB )duB mod n= (MAlice

eB )dBmodn = MAlice
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The algorithms used to realize these ties (calculation, verification ...) are summarized in[5]

3.3.2 Security

The security of this method is first linked to the security of RSA-OAEP (see section 4.1.1). Secondly it is
impossible to attack the key dB unless we attack the SEM (of course the SEM is a trusted entity). Because
even if we attack duB

it remains the second slice dSEM which rest to the SEM, since this latter had obtained
this key with a high security (secure channel)
So the security of this cryptosystem is linked to :

The security of RSA-OAEP
The understanding and fidelity of the SEM.

For more detail see[5].
Advantage :
With this method we gain to utilize a fixed n and integrate without problem the RSA in the IBE
(which is our goal)
Drawbacks :

* An Authority who knows all our secrets (the other two entities SEM and Bob are unable to extract the
complete key because each of them had only half key)

* Need for each message to the token and instead of a single contact (Authority) we need at least two
(Authority + SEM).

* Problem of the discrete logarithm (PLD) because if we choose duB
big, so dSEM may be small (or reverse),

therefore it may be vulnerable to PDL (this weakness is related to our procedure)

4 Our Proposal
4.1 Problematic :

Assuming that we have secrets and we want none person to know it, even the PKG who is a trusted authority.
For example, it may be the military secrets or business secrets. That will really rise a problem.
We will present a cryptosystem in which we will repaired the precedent weakness (dependence on the PKG)
and in which we reduce the contact to the SEM ( partially or definitely) and also reduce the contact to the
PKG.

3.1.1 First Version
3.1.1.1 Half Independence

Setup :
Select a security setting n = pB × qB as pB and qB are two very large prime numbers (n may be of 3072 bit
taking into account the current security).
The parameters of publications are : ≺ n, H,Zn �, with H is Hash Function (preferably SHA1). It is
recommended to obtain these parameters with a certificate.
We calculate eID as previously eID (using our method)

Extract :
Assuming that Alice who knows Bob’s identity and therefore his public key, sends him a message. Then Bob
which hasn’t private key, calculates duB

he sent it to the PKG. After that he calculates (H(mB),H(mB)duB )
(the mB is a message chosen by Bob), and he sends it to the SEM.

Encrypt :
Alice chooses SAlice ∈ Zn.
Alice (recipient) calculates ((MAlice + SAlice)eB mod n,SeB

Alice mod n ) = (u,v)
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Decrypt :
After receiving (H(mB),H(mB)dSEM ) from the SEM and after he is authenticate to the SEM as in the
previous method. Bob sends (u, v) to the SEM
The SEM responds by sending (udSEM mod n,vdSEM mod n)=(u’,v’) to Bob. Having received this answer,
Bob computes v′duB mod n = SAlice, and
u′duB mod n = MAlice + SAlice. In the end he calculates the difference v′duB mod n-u′duB mod n =
MAlice + SAlice- SAlice=MAlice

The SAlice chosen by Alice must be fixed throughout the communication Alice-Bob. By SAlice Bob authenti-
cate Alice every time he communicates with her, because if we assume that an adversary Eve wants to know
the content of the communication (Alice-Bob) she sends a message MEve according her precautions of the
contents of the communication to Bob.
But, since Eve can not access to SAlice she has chosen SEve and she sends
((MEve + SEve)eBmodn ,SeB

Alice mod n ). And Bob must find that
(MEve + SEve)eB − SeB

Alice is a message incoherent, since SEve 6= SAlice.
If we want a full authentication, our procedure is as follows :
The first message sent by Alice must be of the form (MAlice)eB , after she sends the same message in the
form : ((MAlice + SAlice)eB mod n , SeB

Alice mod n)
Using the same first message MAlice, it is to say to Bob, I am the same user and this is my proposed modulus.
In all the communication, all the messages will be sent as follows : ((M ′

Alice + SAlice)eBmodn, SeB

Alice mod n)
This is for message (Alice-Bob), for the reverse (Bob-Alice), we wish Alice to not contact any center of
security to obtain her private key (half independence). To do it, so we must do as follows :
The SAlice chosen by Alice must be as follow SAlice = pAlice× qAlice and not factorials : product of two large
prime numbers in Zn (the SAlice for example is of 2048-bit )
So after having received the message by Bob. To respond to this message, Bob must response in the following
way :
He has chosen firstly SBob ( ∗) in Zn. He sent his message according to the module SAlice instead of n :
((MRBob

+ SBob)eA mod SAlice, SeA

Bob mod SAlice). The MBob is the response of Bob.
To decrypt this message Alice has already calculated dA such that :
dA × eA=1 mod ϕ(SAlice). So she is capable to decrypt the message.
The dA is only known by Alice because she is the only one who knows pAlice,qAlice.
We summarize all this in the figure 5 :

Fig. 5 – Half Independence (Version : 1)

The figure 5 is divided into two parts, one that depends on the SEM and PKG (at the right, framed in red)
and the other not (at the left, framed in green)
We want to make the independence to the party framed in red i.e at the right.

3.1.1.2 Total Independence

If the SBob (∗) chosen by Bob in the previous subsection has the form : SBob = pBob× qBob and not factorial
(the pBob , qBob are two large prime numbers only known by Bob).
So Alice must send her messages in the form :
((MBob + SAlice)eB mod SBob,SeB

Alice mod SBob).
The PKG is unable to read the message sent by Alice, since it can not factorize SBob. So after this, Bob may
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communicate directly with Alice without need to any Token nor contact with the SEM.
The problem with this technique is that the opponents have an immense freedom to contact Bob instead of
Alice. So Bob can receive a very large number of messages without value and he can not clearly authenticate
his sender. More than that Bob may have a problem of revocation of the SIDi . To limit this we propose a
second version in the next section

3.1.2 Second Version

In the figure below [Figure 6] we assume that the entities Alice and Bob during their first messages contact
the PKG by the intermediate of the SEM. And after a certain moment they agree to utilize their chosen
parameters (principle of cryptography hybrid, but in this faith we do not spend a symmetrical clef, we spend
only the public parameters : SAlice=pAlice × qAlice and SBob = pBob × qBob not factorials for t ≤ t1. The
pAlice, qAlice and pBob,qBob are only known respectively by Alice and Bob). So after t > t1 Alice and Bob
are independent from the PKG

Fig. 6 – Independence Total (Version : 2)

There may be other versions, but we must say that the first receptor of the message (first message emitted
during the communication) is unable to release it without the help of the SEM.
The security of these two versions is related to the security of the RSA classic and to the understanding and
the trusting during the communication (fidelity of the SEM, integrity of data and identification).
The problem for these two versions is that our chosen parameters can be changed. But this can be resolved
easily, since we get these parameters through the PKG. So if there is a change (the change can be easily seen
if we can not decrypt the message because of the change of the module S) only the PKG is able to do, and
we can settle this with him.
Also in these two version we still have the PLD i.e the third weakness. To solve this problem we propose
that the authority publish for example their module n in 8192-bit and so any receiver must not repass 4096
bit in his choice of the private key (2048 < dur < 4096)
NB : For changing the parameter SAlice and SBob (problem of revocation). Alice and Bob can return

to the method of the SEM (only for change).
In both these versions 1 and 2 we have used typical techniques. But it is the custom of thirty years that the
construction of RSA is related to the factorization. In the next version we return to our RSA related to the
factorization.

4.2 Third Version

In this paragraph we utilize the following arguments in addition to the bearing of what we called OAEP as
in the previous section

2 RSA strong. An RSA is said to be strong if it has the strong prime number. The number
prime p is said to be strong if p−1

2 is prime[7].
2 Idea of the RSA multiprime[8].

Contrary to what we have already stated : contact the PKG with the intermediate of the SEM. In this
section we can’t utilize this technique and we propose the following method :
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The KDC publish a fixed n, this n is in the form : n=(2p’+1)(2q’+1), p ’and q’ are two strong prime (prin-
ciple of RSA strong ) and with for example 2048 - bit (so n is of 4098-bit).
For each receiver who demands private key dr, the PKG try to calculate this later. It seems that the PKG
computes dr and simply it sends it to the concerned receiver, but how the PKG responds all the ID with
fixed n ? !
To resolve this we propose in addition to the generation of n, the PKG select for each demand k the primes
numbers pirk

and qjrk
such that : eIDrk

× drk
= 1 mod(pirk

× qjrk
× ϕ(n))

The eIDr
is calculated as previously

Concreteness :
After the Fermat theorem we have :{

Mp−1 = 1modp
Mq−1 = 1modq

.

Using the Chinese remainder (reste chinoix) we have :
M (p−1)(q−1) = 1 mod n
So Mpjrk

.qjrk
.(p−1).(q−1) = (1modn)pjrk

.qjrk = 1 mod n
And MeIDrk

×drk = M1+k′×pirk
×qjrk

×ϕ(n)=M.(1 mod n)= M mod n

4.2.1 Method of generation with a security analysis

Alice who wishes to send a message to Bob contacts for the first time an authority (PKG) to extract the
parameters n (which is fix) and the appropriate parameter to generate eBob (as previously). When the user
Bob has received this message from Alice encrypted with his identity, he must contact the PKG to obtain
the private key dB .
After calculating ϕ(n) = 4 × p′ × q′ by the PKG, for example for 5 asks, in Extract the PKG chooses five
primes p1, p2, p3, p4, p5 with 2048 - bit for example such that :
For each eIDi , i ∈ {1, 2, 3, 4, 5} (Bob identity may be one of the five). The PKG computes dIDi which
correspond to ϕ′i(n). We reserve this later to the corresponding recipient as follows :
eIDi

× dIDi
= 1 mod (pi × pi+1×ϕ(n))= 1 mod ϕ′i(n) ∀ i ∈ {1,2,3,4,5}. So we have :

eID1 × dID1 = 1 mod (p1 × p2 × ϕ(n))= 1 mod ϕ′1(n)
eID2 × dID2 = 1 mod (p2 × p3 × ϕ(n))= 1 mod ϕ′2(n)
eID3 × dID3 = 1 mod (p3 × p4 × ϕ(n)) = 1 mod ϕ′3(n)
eID4 × dID4 = 1 mod (p4 × p5 × ϕ(n))= 1 mod ϕ′4(n)
eID5 × dID5 = 1 mod (p5 × p1 × ϕ(n)) = 1 mod ϕ′5(n)

Under this method the PKG can handle with fix n easily 5 requests (the demand of Bob is among the five).
For this method or rather this choice to be rigid against adaptive choice they must verify :

1. ∀i,∈ {1, 2, 3, 4, 5} pi × pi+1 , pi × p′ , pi+1 × p′, pi × q′ , pi+1 × q′ must be not factorial (it is
feasible because our product is of 4096-bit).
2.∀i l(pi) >> l(pi+1), with for example l(pi)− l(pi+1) = 512 bit

(l is the Length. Their difference means the weight or rather the distance of
Hamming, and >> means that it exist a difference ).

3.∀{i, j} ∈ {1, 2, 3, 4, 5} (pi × pi+1) + (pj × pj+1) contains the number pi,j such that :
pi,j × p′ × q′ must also be not factorial.

4. ∀i ∈ {1, 2, 3, 4, 5} ϕ′i(n) didn’t divide ϕ′i+2(n).

Are those choices effective ? the answer is yes.
The first condition is intended to not extracted any of pi, p′, q′ from the product
The second condition is designed to resist against chosen adaptive. Because for the well chosen of (ki, kj) in
which we hope to attack ϕ(n), p’,q’.. (for (i,j) ∈ {1,2,3,4,5}) our method of generation may be vulnerable to
chosen adaptive. But in reality it’s not, as we can see in the following cases

a) For the i successive
ki(pi × pi+1)ϕ(n)− ki+1(pi+1 × pi+2)ϕ(n) = pi+1(kipi − ki+1pi+2)ϕ(n) = pi+1ϕ(n)
We can reach to this because pi

∧
pi+2 = 1, but we must choose the right (pi , pi+2) and to do it, it is with
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probability
(C2

np(22048))

(22048) (C is the combination). Choosing the right (pi , pi+2) is linked to the condition :
| pi | - | pi+2 | = | pi | - | pi+1 | + | pi+1 | - | pi+2 | = (512 + 512) bit = 1024 bit.
So this probability is calculated as the form : P(B / A) = P (A

⋂
B)

P (A) ' P(B). We may neglect the event A
in comparison with B as it is simply verified. Moreover we should only take it in to consideration when
we have obtained the appropriate prime pi and pi+1.
(B is the event to choose two appropriate prime numbers among the numbers of the 22048 bit. Until A is
the event that the two prime numbers must verify the condition 2)
But even if we reach this result i.e pi+1ϕ(n), for attacked ϕ(n) we have the probability : c

np(22048) . The c
is the number of the choice to attack pi+1

(P(
⋃

j pj)=
∑

j P (pj) = c, since P (pj) which is a probability to attack pj from the numbers prime is an
equiprobable probability).
And to attacked for example ϕ′i(n) = pipi+1ϕ(n) (knowing that we have assumed that we have attacking
pi+1ϕ(n)) we must try with probability : c′

np(22048) (c’ is the probability to attacking pi)
So

P (ϕ(n)/(ki, ki+1)) '
c

np(22048)
×

(C2
np(22048)

)

(22048)

(C2
np(22048)

)

(22048)

= c
np(22048) which depends on c, but since pi+2 is unknown this

probability is negligible.
The term P (ϕ(n)/(ki, ki+1)) means that the event ϕ(n) is calculable knowing that we chose the right
(ki, ki+1), but choose it, is after a good choice of (pi, pi+1).
(Has noted that (ki, ki+1) can be calculated from ϕ′i and ϕ′i+1)
As a consequence to all this we have :

P (ϕ′i(n)/(ki, ki+1)) = P (ϕ′i(n)/pi+1ϕ(n)) '
c′

np(22048)
× c

np(22048)
c

np(22048)
= c′

np(22048)

And we may see that even if we attack ϕ(n) (this can not be attacked only after a proper choice of the
pj successive according to the above method of chosen adaptive). But for attacking any of ϕ′i(n) which is
more important than ϕ(n), we must do the choice with probability of np(24096)

24096 <<1 ! !.

(np(24096)
24096 is the probability of attacking the pjpj+1 in ϕ′j(n) after attacking ϕ(n))

b) For the i not successive
To attack ϕ(n) from ki(pi × pi+1)ϕ(n)− kj(pj+1 × pj+2)ϕ(n) = (kipi × pi+1 − kjpj+1 × pj+2)ϕ(n) after a
good chosen of (ki, kj) has probability less than : 2np(22048)

22048 or 1
2524288 .

We can show the probability 2np(22048)
22048 and we leave to the readers the occasion of demonstrating the

second.
For example for (p1 × p2 − p3 × p4) we have :
| p1× p2− p3× p4 |> || p1 || p2 | − | p3 || p4 ||. Since the relationship > is an order relation on <, then one
of the terms | p1 || p2 |,| p3 || p4 | is greater than the other. We Assume that it is
| p1 | | p2 | hence :
|| p1 || p2 | − | p3 || p4 || = | p1 || p2 | - | p3 || p4 |
So : | p1 × p2 - p3 × p4 | > | p1 || p2 | - | p3 || p4 | and since | p1 | > - | p3 | which give that
| p1 × p2 - p3 × p4 | > | p1 || p2 | - | p3 || p4 | > -| p3 || p2 | - | p3 || p4 | > -| p3 | (| p2 | + | p4 |). If we apply
the probability P to this inequality. These events are uniform and sure, therefore :
P(| p1 × p2 − p3 × p4 |) < P(-| p3 | (| p2 | + | p4 |)) < P(-| p3 |) + P (| p2 | + | p4 |))
(because P(ab)≤ P(a)+P(b), P (a

⋂
b) = P (ab) = P (a) + P (b)− P (a

⋃
b))

And as we said that < is the relationship of order (we are interested to compare | p2 | and | p4 |)) So for
example we have :
P(| p1 × p2 − p3 × p4 |) < P(-| p3 |) + P (2 | p2 |) ≤ 2np(22048)

22048

(calculate P(2 | p2 |) is equivalent to calculate P(| p2 |))

The third condition is for reason to not attack ϕ(n). But even if we have attack it, we must attacked ϕ′i(n)
and this after attacking pi, pi+1 or pi × pi+1 who have respectively the probability of attacks : np(22048)

22048 and
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np(24096)
24096 . We see that the two are strictly less than 1 (i.e negligible).

The fourth condition is of the fact that : if ϕ′i(n) divide ϕ′i+2(n) (or inversely) then ϕ′i(n) = cte × ϕ′i+2(n)
so dIDi = cte× dIDi+2 which is a risque.
ϕ′i(n) divide ϕ′i+1(n) is excluded because if we have it, we may have pi divide pi+2 which it does not, since
pi+1 is the number prime.

Remarks :
1. The term ϕ′ isn’t the Indicator of Euler it is only the notation
2. We have replaced the term l :length by || for the mathematical reasons
3. np(x) is the number of the number prime that exists in [2 , x] (see the Appendix)
4. The possible values for i not successive are : (p1×p2−p3×p4) , (p1×p2−p4×p5) , (p2×p3−p4×p5).

The ϕ′(n) is the product of four primes, with the degree of security of 8192 bit. And this, is well convenient
to the following table[8], taking into account the security of multiprimes RSA

Tab. 1 – Numbers primes in a given modulo of bit

modulo in bit 1024 2048 4096 8192
number of primes 3 3 4 5

According to this table for a level of 8192-bit (we can utilize 4096-bit to reduce the complexity). We can
integrate 5 prime number, but our ϕ′(n) is constituted only by four prime, so we can nowhere factor it.
With these five primes we have served five identities, since find a number prime of 22048 bit is expensive (see
the Appendix). Can we repeat these parameters ? the answer is yes, because for example with p1 we can
associate the p1piϕ(n) such that p1pi satisfy the condition 2. Then we have i value of ϕ′ so that with an p1

we may serve i identity.
As a numerical estimate we can use with this p1 all the prime numbers pi which existed in the interval [2512,
22048 − 2512]. The boundless of this interval is linked to the effect that if we want to choose one number of
multiprimes constructed of four numbers it is preferable to pass 512 bit. Until the bounds upper is based on
the condition 2.
This principle also applies to other pi( recycles of the utilization ).

Contrary to what we saw earlier : attack the complete key unless we attack the SEM. Since, in this version
we didn’t use the SEM, so we should therefore consider the rigidity of our key.

4.2.2 Security Analysis

4.2.3 Attack against the public key eID

The encryption key can’t caused the attack of the cryptosystemes even if it may have coincidence. Since it is
linked to the identity and therefore it is within to the reach of everybody. So even if the Adversary Eve who
construct an eIDEve

= eIDBob
can’t obtain anywhere dIDB

as she doesn’t have IDBob (the prime number
changes for each identity).
We assumed that the size of e has no influence on the attack of the cryptosystem’s according to[9].

4.2.4 Attack against the decryption key dID

The security of dID is linked to ϕ′(n) (eID × dID = 1 mod (ϕ′ID(n))), can we attack this ϕ′(n) which occurs
in its expression an ϕ(n) fix ?

4.2.5 Attack against ϕ(n)

The ϕ′(n) is the product of two prime numbers and ϕ(n), since the attack of ϕ(n) has a probability :
P (ϕ(n)/(ki, ki+1)) = c

np(22048) which is a very low probability. Thus our ϕ is the product of p ’and q’. Can
we extracted one of them from ϕ′(n) ?
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4.2.6 Attack cons p’,q’ � Master Key �

Our RSA is strong then ϕ(n) = 4 × p′ × q′ can not be factorial. But we contribute ϕ(n) for each ID and
every time we multiply it by the prime numbers which we change. Can we from several ID attacking p ’, q’ ?
The fact of integrating 4 prime numbers in ϕ′(n) leave the opponents unable to detect what part they attack.
And therefore even if they attack somewhere p ’, q’ they can not come to define the parameters of their
attack. More, those parameters are of 2048-bit !

4.2.7 Attack against ϕ′(n)

Our ϕ′(n) is constructed from 4 prime and after all we have seen the ϕ′(n) can not be attacked.

5 Security against the attacks of Simulations

Before speaking on security of our cryptosystem, we review the following reminders :
The security of a cryptographic scheme combining the possible goals and attack models. The most important
goal is indistinguishability (IND) and Semantic Security. Regarding attacks, chosen-plaintext attacks (CPA)
and chosen-ciphertext attacks (CCA) are the most well-known models.
Indistinguishability : Is a technical goal, aimed at capturing a strong form of privacy and being easier

to work and reason with than semantic security.
Semantic Attack : The semantic security means that no information can be extracted or calculated in

the average polynomial time from the ciphertext.
CPA : Is the abbreviation of Chosen Plaintext Attack ie during the studies of simulations the opponent has

advantage to access to the encrypted of his chosen texts.
CCA : It is an abbreviated of Chosen Ciphertext Attack, and we divide it into two parts : CCA1 and CCA2.

During CCA the adversary has advantage of access to the decrypts texts he has chosen. In
the CCA2 the opponent is less limited by comparison with CCA1. We must say that the CCA2 is
the most powerful among all these attacks.

Combining these goals and attacks one obtains : IND-CPA, IND-CCA1, IND-CCA2, Semantic Security-
CPA, Semantic Security-CCA1, Semantic Security-CCA2. But the commonly accepted security notion (which
satisfy the standardization) for public-key encryption is IND-CCA2.

5.1 Semantic Attack

Semantic security of all the three versions 1,2 and 3 is related to the security semantic of RSA.
To make these version rigid against semantic attack, we must firstly ensure that the standard RSA is rigid
against these attacks.
For the RSA classic all we can say is that it is probably semantic [9]. Since we can easily extract information
which we can calculate in polynomial time from the encrypted message because :
e is prime, so it is odd and we can write it in the form 2k +1, so the Jacobi symbol of
y = xe mod n is equal to the symbol of Jacobi of x because :
(xe

n ) = (x2k+1

n ) = (x2k+1

p ) (x2k+1

q ) = (x2k

p ) (x
p ) (x2k

q ) (x
q ) = (x

p ) (x
q ) = ( x

n ).
So we must take precautions in this sense when we use the function RSA
But this does not mean that the RSA is definitely fragile against the semantics attack. Since from the
ciphertext it will be difficult to extract the parity of the clear text, because we calculate it according to a
modulus.
The security of RSA is not only related to the problem of factorization or finding the inverse of the exponent
e. But we also have the problem of ASCII exhaustive, since the plaintext is always in the form string of the
code ASCII. We assume that we encrypt one by one all ASCII characters, raise their codes to the power e
modulo n. Of course this system can break easily by a simple statistical attack. In this case, the encryption
of the pattern is insecure hence the idea of what is called padding OAEP[11]

(a paiding means that we may concatenate by either 0 or 1, or any arbitrary numbers)
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5.1.1 Functionality of OAEP

The OAEP has been introduced by Bellare and Rogaway in 1994. We give in the following its description :
In this model the message is divided into blocks of size fix completed by zeros (see the detail in the article
[RSAES-OAEP Encryption Scheme][12]).
Note now such block with M (M therefore contains some message m filled with zeros). In addition we are
availing a random generator number G and a hash function H’.
We are raffling at random a number r with the common size of the germ of the random generator G and
with the output of the function hash H’. G : {0, 1}k0 ← {0, 1}k−k0 and H ′ : {0, 1}k−k0 ← {0, 1}k0

Let f and g two permutations : the first is public, until the second is private
The κ(Lk) is the ensemble of parameters starting of f and g, then the public key is f, until the private key
must be g .
Given a message m ∈ {0, 1}n and a random oracle r← {0, 1}n, the algorithm of Encryption εpk(m, r) is
calculated as follows :
S = (m||0k1)

⊕
G(r) and t = r

⊕
H ′(S), so it is simple to calculate c = f(S,t)

Now to calculate Dsk with the algorithm of Decrypt, we will do as follows :
(S,t)=g(c) and then we can calculate r = t

⊕
H(S) and M=S

⊕
G(r)

so if [M ]k1 = 0k1 then returned [M ]n if not, returned reject .
The [M ]k1 is noted LSB : least significant bit, and thus [M ]n must be reserved to MSB : Most significant
bit .
Corresponding transformation :
Suppose we start with the block of plaintext M (the message encrypted) which is a sequence of bytes in
length ln.

2 Encoding. This sequence of bytes M is converted into a sequence of bytes EM with
length ln. The block EM is the encoded message.
C is the encoding EME-OAEP which is composed by : EME : Encoding
Method for Encryption, and OAEP : Optimal Asymmetric Encryption
Padding)).

2 Transformation in integer. Then, EM is transformed into integer m by the
procedure OS2IP (Octet String To Primitive Integer).

2 Encryption. The integer m is encrypted in c by the function RSAEP (RSA
Encryption Primitive). This transformation is simply the application of
the function RSA to the integer m.

2 Transformation of the series of bytes . The integer c is transformed into a
sequence of bytes C by the procedure
I2OSP (Integer To Octet String
Primitive).

When the recipient receives C he applies the following scheme of the decryption
z Transformation in integer. C is transformed into integer c by the procedure OS2IP

(Octet String To Integer Primitive) :
z Decryption of the integer c is transformed into m RSADP (RSA

Decryption Primitive). This transformation is the function RSA−1 (classic).
z The transformation in a serial of bytes : The integer m is transformed into a

sequence of bytes EM by the procedure
I2OSP (Integer To String Octet
Primitive).

z Decoding : The sequence of bytes EM is converted into a sequence bytes M by the
decoding procedure of EME-OAEP.

The procedure OS2IP is very simple. If X1, X2, , Xl are the bytes of the string, set xl−i the integer represented
by the byte Xi 1 ≤ i ≤ l. The : x =

∑l−1
j=0 xj(256)j is the output of the procedure OS2IP.

The I2OSP procedure is the reverse of the procedure OS2IP corresponds to the decomposition of the entire
base 256, which applies to the procedure. For more detail see[12]

For the CPA it is assumed that RSA-OAEP is secure in[13]. We leave the fact to prove that our cryptosystem :
version 1 and 2 are secured after integrating a suitable change of variable.
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5.2 Security of the third version

We have seen that integrate the RSA-OAEP in Identification Based Encryption, has a lot of problems. The
first one is how we can relate the exponent e with an Identity. In[5][6] the authors propose a method which use
the random oracle. But their methods has some weakness as we can’t be sure if the eID constructed is prime
with ϕ(n) which is a danger because this condition is principal in the RSA. More than that the method[5][6]

suffer from the problem of malleability. By contrast in our proposition (method 3 in section 3.3.1) we will
be sure that the eID is prime with ϕ(n). More as our method is traced in the standard model and as our
eID is prime we would’nt have the problem of malleability.
The second problem of integrating the RSA-OAEP in the IBE is the share of n by a lot of users (in an
organization) which may cause the problem of factorizing n. That’s why the authors in[5][6] propose the
method of SEM. In this method the users has a half unknown key keep with SEM, this block the attack of n.
But, this can be realized if SEM is trust which make (perhaps) their method not sure. In addition to these
weakness, this method necessitate a lot of authentic, user will be trust (there may exist multi-user which use
the help of the SEM too attack the challenge),it is heavy, it doesn’t conserve the RSA classic.
In our method of section 4.2 we haven’t any of these weakness since : we conserve the RSA classic, we aren’t
linked to the SEM, all our users are independent : they depend only to the PKG.
The third version using our method to generate e for an ID is secure in the sense of Semantic-CCA2 (noting
that Semantic-ATK is equivalent to IND-ATK, according to[21]), because :

1. The RSA-OAEP is secure by[15]

2. The method to generate e for an ID resist to malleability

3. The eID constructed is standard (we usen’t any random)

4. All user are independent

Using this and the following lemma. The third version is Semantic-CCA2 secure
Lemma 1 : IBE-RSA/OAEP system with n users is semantically secure and

Succn
IBE−RSA(tn, qd, qe) = Succn

RSA(tn, qd, qe) ≤ qenSucc1
IBE−RSA(t1, qd) = qenSucc1

RSA(t1, qd)
where t1 = tn + O(log(qen))

We need this lemma because we have one n, is share to a lot of identity
Noting that in this lemma we aren’t need to the trust user (contrary to[6]). Because we haven’t a SEM and
our user are independent (we have study this in the section 4.2.1 :i successive and not successive)

5.3 Security of the second version

The security of the leaving version (1 and 2) is related to the security of RSA-OAEP. It is proven that the
RSA-OAEP is CCA1 secure and to show CCA2. Shoup[14] noted that it isn’t secure but in 2004, Eiichiro Fu-
jisaki, Tatsuaki Okamoto, David Piontcheval, Jacque Stern have founded the opposite result[15], they prove
that OAEP-RSA is CCA2 secure. We don’t enter into the detail, we assume that the RSA-OAEP is CCA2
secure, but what we can say about our cryptosystem : ≺ (Mvar + S)e, Se) � ? (version 1 and 2).
Assuming we use the version 2 (after a certain moment the two entities communicated independently from
the PKG)
So the two entities send the message in the form ≺ (M + S)eIDmodS′, SeIDmodS′ � since we added to
our message every time a constant number S (it should be fixed to authenticate the transmitter). So for a
sufficient number of result our cryptosystem can’t be neither CPA nor CCA1 and CCA2 secure. Then to
remedy this problem we propose the following method of mask :
≺ (M +S +h′)eID , (S +h′′)eID , (h′+h′′)eID � the functions h ’, h” are the proposed masks (variable) As M
+ S + h ’ is equal to ctei (ctei is variable for each communication i) and S+h”= ctei also (the h” is variable)
The decrypt of this message is as follow :
≺ ((M + S + h′)eID )dID , ((S + h′′)eID )dID , ((h′ + h′′)eID )dID � = ≺M + S + h′, S + h′′, h′ + h′′ �
Then S + h”-(h ’+ h”) = S-h’ and we subtract this by 2S (firstly we must obtain S in the first message
before the independence ie t < t1) we so obtain : -S-h’
In the end we calculate M+S+h’-S-h’=M.
After we make this mask, our cryptosystem with OAEP is provided in the form :
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≺ (((M + S + h′)eID ))OAEP , (((S + h′′)eID ))OAEP , (((h′ + h′′)eID )dID )OAEP �
For example (((M + S + h′)eID ))OAEP means that we applied the method of OAEP to :
((M + S + h′)eID ). The decryption is after the method of OAEP.
To study the security of this cryptosystem we study firstly the security of
≺ (M + S + h′)eID , (S + h′′)eID , (h′ + h′′)eID � and after we integrate the security of RSA-OAEP.
Now we have used version 2, so we can begin by the initials messages
≺ ((m0 + S)eID )OAEP ,(SeID )OAEP � which must be circulated for t < t1 (depend on PKG ). We are
interested only to the ≺ ((m0 + S)eID , SeID � and after we may occurs the RSA-OAEP.
We have so the following system :{

≺ (m0 + S)eID mod (n) ,SeID mod (n) �
≺ (M + S + h′)eID mod (S’) = cte2, (S + h′′)eID mod (S’)= cte2, (h′ + h′′)eID mod(S’) �

For the PKG it’s a system of 4 equations and 4 unknown. The PKG can’t decrypt or access to : ≺
(M + S + h′)eID mod (S’) = cte2, (S + h′′)eID mod (S’)= cte2, (h′ + h′′)eID mod(S’) �. Mathematically it
is soluble
For the public it is a system of 4 equations and 6 unknown. Mathematically it is insoluble.
Can we resolve it or extract it some formations if we applies the method of simulation : CPA and CCA
(giving the power to the opponents) ?
Firstly we have : CPA ⇒ CCA1 ⇒ CCA2.
The term ⇒ means that this problem is harder than the others, and here the CCA2 is the strongest. So we
prove only the rigidity of the system above against CCA2.
As we are interested to integrate the RSA in the IBE our study should be therefore against
IN-ID-CCA2[2]. Remembered this technique :
We say that our system is rigid against IN-ID-CCA2 if our algorithm of simulation (instead of the opponent)
has no advantage in communicating with the challenger (the verifier or tester). The test is as follows :
Setup :

The challenger chooses the systems of parameters and a master key, he gives the system to the adversary
and he leaves the master key to himself.

Phase 1 :
The opponent issued the choice (queries) q1 ....qm as follow :

1. Extraction queries ≺ IDi � : The challenger executes his algorithm Extract to extract the
corresponding keys ≺ di � for every ≺ IDi � issued by the opponent and he give it to him

2. Decrypt ≺ IDi, Ci � : More of 1 the challenger executes his algorithm Extract to given the
corresponding keys ≺ di � for every ≺ IDi � he executes also the algorithm Decrypt to decrypt
any Ci by his corresponding key and he sending the decrypt (clair text) to the opponent

These keys must be chosen adaptively (ie one depend to the other).
Challenge :

The enemy (adversary) choose an identity ID and two messages of the same size mt1 and mt2 as test,
with condition that they did not appear in either phase 1 nor 2.
The challenger choose b ∈ {0,1} he send C=Encrypt(params, ID, mtb

) to the adversary.
Phase 2 :

The adversary issued more qm+1 ....qn .The qi are :
1. Extraction queries ≺ IDi � with IDi 6= ID it is the same as the phase 1.
2. Decrypt ≺ IDi, Ci � : Also same as Phase 1 but on condition that ≺ IDi, Ci � 6= ≺ ID,C �.

Those choices must be adaptive.
Guess :

Finally the adversary has responding by mtb′ and he win the gain if b’ = b.
We said that this test has an advantage advt negligible if advt = | Pr[b = b′]− 1

2 | < ε, ∀ ε > 0.
The IND-ID-CCA1 works in that manner, but in the simulation study we don’t use the Phase 2.

The security of this version is linked to :
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1. Security of the IBSEM -RSA-OAEP

2. Security with multiuser

3. Honest of the user and SEM

4. Security against key Escrow

Staring from this latter

5.3.1 Security against key Escrow

Security Analysis

Assuming that we have two messages of test (mt1 , mt2) with the same size (we may use different sizes since
we calculate according to a mod). We give them to the person who verifies the algorithm of the simulation
(which is in place of the enemy). Differently from what we previously seen in principle, in the sequel we give
the adversary the power and the possibility to use the challenge (mt1 ,mt2) in his essay. We assume that
the challenger chooses for example mt1 he encrypted it and send it to the virtual adversary in the form :
≺ (mt1 + S + h′t1)

eID mod (S’) = cte2, (S + h′′t1)
eID mod (S’)= cte2, (h′t1 + h′′t1)

eID mod(S’) �. We want to
know the response of our adversary mt1 or mt2 ?

The virtual adversary is the public

Before giving the message of the test to the opponent he begins his activity but since our S’ is obtained from
the method of the SEM, so this later can’t be replaced. Our opponent may not benefit from the first Extrac-
tion i.e give the ID and receive dID because this be can easily extracted ϕ(s′). So we can concentrate only on
the second Extraction and we propose to utilize the challenge. We may proceed with the method CPA-CCA2
(in the CCA2 we add in phase 1 and 2 that our adversary may benefit from the Encrypt message i.e that
the opponent issue the queries ≺ IDi,Mi � of his chosen to the challenger, this latter encrypt and send it
to this opponent ). Therefore our adversary has the advantage only to test the expression of (h′ + h′′)eID

mod(S’) which varies. But can we extract something ? the adversary can’t draw anything, because we have
the sum so we can’t separate the associate change to h’ of that associate to h” and more the module S’ is
unknown. Even with this, we can’t try and estimate the power of our opponent. So following the principle
we give him the challenge (previous message : the encrypt of mt1), but the opponent who has permission to
have more advantage after the challenge and before his response rates to change for example if we have a
malignant adversary{

X one bit for example in mt1 and two bit for example in mt2 ;
X all the bits except one for example in mt1 and all the bits except two for example in mt2 .

To visualize this we can draw the following diagram :

Fig. 7 – Comparison between the originals bits with those that we varied

In this diagrams the single traits are for bits which we change (bt) and those of the double lines are for the
original bits (b0).
If we choose b0 = 1 ie that the original bit we choose is 1 and if for h’ we choose the bit 0 so 1(b0)+0(h’) =
1. But if we change b0 by bt we have : 0(bt)+1(h’) = 1 (we must conserve the same cte=1 since we want to
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test only h’+h”). After an addition with h”=0 we have 0(h’)+0(h”) = 0 for the original and 1(h’)+0(h”) =
1 for that we varied.
So basing on comparison, the results reversed (the (h′ + h′′)b for the originals are opposed to the test).
So if we install the change in either the LSB or MSB or LSB+MSB

i there will be a total change from the
original. Because for LSB the change influence on all the follow bits and it is the same for LSB+MSB

i (i < to
concerned mod ). But if we install the change in MSB it must give us either a message of size smaller than
the original or greater than the original (because we calculate according to mod so the difference size can’t
serve us). The results are so complicated if we expose with eID, and after the calculation according to the
module, therefore the change must be great. So even if we give all that power to our opponent (use : mt1 ,
mt2), we will have the total change. And thus we conclude that in addition of S’ which remains unknown
to our public adversary the (h′ + h′′)eID mod(S’) is far to be attacked and the opponent can’t distinguish
whether the encryption is for mt1 or mt2 .

The virtual adversary is the PKG

In this section our algorithm of the simulation is intended to investigate the ability of the PKG. We have
noted previously that for{

(1) ≺ (m0 + S)eID mod (n) ,SeID mod (n) �
(2) ≺ (M + S + h′)eID mod (S’)=cte2, (S + h′′)eID mod (S’)=cte2, (h′ + h′′)eID mod(S’) �

The PKG can solve this system because we have 4 equations and 4 unknown, but in reality no, because even
if the PKG can access to (1) so to (m0,S ) as we have mod (n), but for the (2) she can not access to any of
their parameters since we have mod (S’) and the S’ is not factorial (the PKG can’t change S’ because this
change can be easily seen after the fact that he can not decrypt). So if we pursue the argument cited above
the PKG is unable to attack the challenge CCA2 because she wouldn’t access to (h′ + h′′)eID mod(S’).

�
As we show the rigidity of this cryptosystem against Key Escrow we move now to prove the security in
general (i.e condition 1,2,3).
But to prove this we need the following lemma :
Lemma 2. IBSEM -RSA/OAEP system in a single-user setting is polynomially as secure as standard
RSA/OAEP encryption, i.e., Succ1IBSEM (t, qd) = SuccR

1 (t′, qd) where c is constant value, t’ = t + c.
This lemma was given in6 The interest behind this lemma is to show that attacking RSA (for 1 user) using
SEM is equivalent to attack it in classic form (without SEM)
Lemma 3 : IBSEM -RSA/OAEP system with n honest users is semantically secure and

Succn
IBSEM−RSA(tn, qd, qe) ≤ qenSucc1

IBSEM−RSA(t1, qd)
where t1 = tn + O(log(qen))

We need this lemma because in IBSEM -RSA we use one modulus for multiple users
Lemma 4. Under the adaptive chosen ciphertext attack, the system view of the outside adversary (V1),
is polynomially indistinguishable from the combined system view (V2) of a set of malicious insiders, in the
random oracle model.
With V1 : := Pr {N, (e0, ..., en),ΓO, ..ΓE , ..ΓD, ..ΓSEM}
V2 : := Pr {N, (e0, ..., en), {dui

},ΓO, ..ΓE , ..ΓD, ..ΓSEM ,Γdui
}

where {dui
} is the set of user key-shares, Γ0,ΓE ,ΓD are three scripts recording all queries/answers to the

random oracle, encryption oracles and decryption oracles, respectively, ΓSEM is the script recording all
requests/replies between all users and the SEM ; Γdu,n is the script recording all n users computation on
ciphertexts with their own secret key-share dui

.
It is shown in[19] that if a Turing Machine =F which access to the random oracle F is undifferentiate from
the standard Model G, and =F can replace G in any cryptosystem. The resulting cryptosystem will be at
least as secure in the F model as in the G model.
In[6] they use the random oracle in the exponent, but in our proposition we use the standard model.
So after what is shown in[19] we can benefit from this lemma
With our proposition of the exponent we can’t use lemma 4 and the proposition1 in[6], because our exponent
resist to the malleability.
Lemma 5 : Suppose that there exists an IND-ID-CCA adversary A against our scheme that has an advantage
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ε and running time t(k). Suppose also that during the attack A makes at most qd decryption queries and at
most qe queries of encryptions (allowed to be performed by each user). Then there exists an algorithm B to
solve the Decision RSA Short Encrypted-Prime Problem (D-RSA- SEP) problem with advantage ε

2 and
tB= t+qd(τ(exp + mod))
With τ(exp + mod) is the maximum time to calculate an exponentiation and a modulus.

Proof

Firstly to generate an exponent e for an identity we use our method instead of that of6, which is linked to
the random oracle. In addition to the fact that with our simple variation of6 we choose our partial private
key so :
Proof. Suppose A has advantage ε in attacking the IBSEM -RSA system. We build an algorithm B that uses A
to solve the Decision RSA Short Encrypted-Prime Problem (D-RSA- SEP). Algorithm B’s goal is to output
1 if he is able to decide whether or not z1 is of the form ke1 mod n1, for some k ∈ Prime [2l, 2l+1]). and 0
otherwise (response with an arbitrary values).
Setup :

The challenger choose an n1 (as a modulus) an identity ID1 for which we can calculate e1 and a l fixe,
he publish then < n1,ID1, l >

Phase 1 :

A issues up to qd decryption queries. Algorithm B responds to the query as follows :
Firstly for each IDi 6= ID1 which is challenged the adversary B follow the the method (3.3.1-third
method) to calculate eIDi

For Extraction queries of the private key :
B choose an dpartialIDi

he give it to the challenger
With this method B construct a list of tuple eIDi

which he give its dpartialIDi
to the chenllenger

For the Extraction decrypt : For each ID asked B examine its list
If ID is on the list B demand cdSEMID from the challenger (note that in this case SEM and challenger
are the same)and he can then decrypt the message.
If not B choose again dpartialID

he give it to the challenger to receive cdSEMID . In the end he give the
plaintex to A

Before constructing the challenge we put that our system can be written as :
((mh′)emodn, (sh′′)emodn, (h′h′′)emodn) instead of ((m + h′)emodn, (s + h′′)emodn, (h′ + h′′)emodn). The
only difference with them is that the first has a bit long compared to the second
Challenge :

The adversary A decides to finish Phase 1, he outputs two equal length plaintexts m0,m1 (we can even
use different modulus as exponent and we calculate according to a modulus)
B responds with the ciphertext Cb = (mb)e1 .z1modn1, sh

′′
b )emodn1, (k1h

′′
b )emodn1)

Note that B can pick any arbitrary (sh′′b )emodn1 which he has receive from the challenger from phase 1
So if z1 = ke1 mod n1 Cb is a ciphertext valid for Mb

Phase 2 :

the same as phase 1 except that B is not allowed to send the decryption of IDch

Guess :

Finally, A outputs a guess b’ ∈ {0, 1} when B output b. If b = b’ then B outputs 1 meaning that
z1 = ke1 mod n1. Otherwise, it outputs 0.

1.If z1 is not in the form ke1modn1, i.e., if z1 is a random in Z∗
n1

. Then, the challenge ciphertext is not clair,
and the simulation will failed. So the advantage of the adversary is necessarily 0, because the ciphertext will
be independent to mb. Therefore, the probability of the failed answer will be 1

2 .
2. If z1 = ke1

1 mod n1for some lk1 -bit prime. So the view of the adversary is normal, and it should have ε
as advantage.
In conclusion, we have an advantage ε

2 over the A-D-RSA-SEP problem.
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This lemma is proved in the selective-ID which is invented by[20] (it is a weaker security compared to the
full one)
Theorem : Our scheme is secure against IND-ID-CCA adversaries. Suppose that there exists an IND-ID-
CCA adversary A against our scheme that has an advantage Adv and running time t(k). Then :
Adv ≥ ε

2Succn
IBSEM−RSA(tn, qd, qe)

And
t(k)= tn+qd(τ(exp + mod))=t1 −O(log(qen))+qd(τ(exp + mod))

6 Comparing our authentication with the Signature of Shamir

The inventor of IBE Shamir didn’t succeed to integrate the RSA in the IBE, but he uses it in the scheme
of signature[1]. Since this last is designed to authenticate users. What we do in this article is the opposite,
we integrated RSA in IBE. But to authenticate entities, we are only based on the integrity of data (version
1 and 2). Can we ensure that with this method, we can get the same level of security as that of Shamir
signature ?

5.1 Description of the signature of Shamir

Secret Key : g (secret) such that i = ge (mod n), i is the identity
S : s=g.rf(t,m), r is chosen arbitrarily by the user, until f is chosen by the PKG
t : t=re

We send (s,t), and we verify : se = i.tf(t,m)mod n

5.2 Comparison

Parameters of Shamir signature Parameters of our authentication
≺ s = g.rf(t,m), t = re � ≺ (m + r)e, re �

For our authentication we choose r instead of SAlice , SBob to simplified the comparison

For Signer
– Second term : For both they have the same second term re

– First term : For Shamir it contain the secret parameter g and the expression of s is linked to
r, m and the public parameters f, t. For Our, the expression : (m + r)e is also linked
to r and m (the message) in addition of the public parameter e.

So our authentication has approximatively the same parameters as the signature of Shamir (since this later
is large in comparison with Our)

For Verification
c© We note that the verification of Shamir is related to i = ge and t = re.
c© As long as our authentication is based only on the integrity of data and identification.

Security
r The security of Shamir’s signature is linked to the secrets key g and r as i = ge and t = re. So,

the security is bound to calculate the eime root of ge and re.
r Our authentication is linked to the secret parameter r (identification) which we can not extract

it unless we calculates also the eime root of re in addition it is also based on the verification of
m+r-r=m which necessitate the calculation of the eime root of (m + r)e .

5.3 Recap

Our authentication has the same level as that of Shamir, because its security is linked like Shamir (who is
related to eime root for two parameters). Our authentication is also linked to the eime root for 2 parameters,
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and we add one identification r, and one integrity of data
m + r - r = coherent message. Since we know very well that those latter are the principals conditions in
cryptography in general.

So in both version 1 and 2 we have presented a cryptosystem in which we crypt and sign in the same
time. More than that our signature is strong as it has the same level of Shamir signature

7 Conclusion

In PKI the trusted authority CA manages all extraction of the public parameters (by certificate) and
Private parameters (secure channel). But in the IBE there is a public parameter eID which we do not require
the permission of the authority to extract it. Because of this we have the problem if we want to integrate the
RSA in the IBE, since we can have the problem to extract the convenient modulus. But according to this
article it is not an infeasible problem that we have imagined for about 30 years. Since as we have seen with
the technique of (Boneh, Ding, Tsudik), we can make without problem our goal. But the problem with this
method is that we are necessarily linked to PKG which knows all our secrets and we are also linked to the
help of what we so called SEM for each message. In this article we give the methods to solve this problem
and in which we can sign and crypt at the same time. More than that we have presented a new method that
is independent totally from the method of SEM. Can we have other methods to integrate the most famous
cryptosystem in the world in the recent technique IBE ?
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Appendix :

A. How many primes are less than one million ? less than one billion ? less than
any given numbers ?

x number of the number primes up to x

108 5761455
109 50847534
1010 455052511
1011 4118054813
1012 37607912018
1013 346065536839
1014 3204941750802
1015 29844570422669
1016 279238341033925
1017 2623557157654233
1018 24739954287740860
1019 234057667276344607
1020 2220819602560918840

This table is extracted from[16].

A.1 Our Estimation about the number of primes less than a given number

From this table we see that we have a sequel in the number of the numbers primes, since we started with
seven decimal symbol for 108 (8-1) and we arrived at the number of nineteen decimal symbol for 1020 (20-1).
So if we generalize we find that for 102048 we can find that the number of the number prime is a number
of at least (2048-1=2047 decimal symbol) and for 108192 we can find a number of number prime nearest to
(8192-1 = 8191 decimal symbol).
We want now to estimate the number of the number prime up to 22048. As 10=23 + 2 < 24 ⇒
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10512 < 24×512 = 22048. So we are sure that the number of the number prime up to 22048 is a number of at
least 511 decimal symbols
Imagining now that for a number up to 2048-bit, the number of the number prime is a number of at least
511 decimal symbols ! So we can vastly choose our numbers as we have such size.

A.2 Estimation sure for the density of the prime number

Definition : Let X ∈ N, then π(X) is defined to be the number of primes 1 < p < X (i.e up to X).
An important conjecture in XIXth, proposed by Adrien-Marie Legendre and Carl Friedrich Gauss, that
π(X) is asymptotically equal to X

ln(X) . So the portion π(X)
X tend to 0 when X tend to the infinity with

acceleration of 1
ln(X) . In other words, primes are rather common among the integers.

This information’s are extract from[17].

B. Method to generate and to test the Prime number : A survey

The best method we can surveying is that of[18] (for more detail the reader can follow the site of Acrypta :www.acrypta.com),
because it is the full one
Determine if a number is prime is called the ”Prime” problem, noted P and according to (Manindra Agar-
wal, Nitin Saxena, Neeraj Kayal, PRIMES is in P, 2002) this problem is polynomial, but for large size the
time of its execution is not desirable, so we use the test of non-probabilistic primarily and if necessary we
launch a deterministic algorithm to confirm that the prime candidate found by the probabilistic algorithm
is surely prime.

B.1 Test of non-primarily of Miller-Rabin

Theorem of Fermat : If p is prime, for all element a in (Z/pZ)? we have ap−1 = 1 (in (Z/pZ)?). The
converse is false. However we can have this result for the not prime number p (for example the number of
Carmichael).
An improved method leads to the test of Miller-Rabin. This test is a test of non primarily, so if this test
answered that a number is not prime then it is certain that this number is not prime. It may also response
that this number is probably prime. In this case, the probability to not been detected prime is not fine : we
can imposing that such probability is less than 2−100. Such algorithm is called Monte-Carlo
The next test is a consequence of two theorem principal : the theorem of Miller and that of Rabin. For
more details see the article we announce in the highest

B.1.1 Witness of Miller :

Let’s an odd integer > 1. posing n-1=2st, with t is odd. If it exists a (1<a<n) such that :
at 6= 1 (n) and a2it 6= -1 ∀ i=0,..,s-1,
So n is not prime
Definition : An element a that verified the conditions of the theorem of Miller which therefore provides
evidence of non-primarily of n is called Witness of Miller relative to n.

B.1.2 Theorem of Rabin :

Lets n be an odd integer composite and > 9. Posing n-1=2st with t is an odd prime, the integers a which
satisfy the condition :
at ≡ 1(n) or verify one of the condition a2it ≡ 1(n) (0≤ i ≤ s-1) are numbered of at most φ(n)

4

B.1.3 Test of Miller Rabin :

We choose at random (a < n) and we calculate at mod n.
If we find 1 then a is not a witness of Miller for n, by contrast we calculate the numbers :
a2it mod n, if for some i we find -1 then a is not a witness of Miller for n. We do this test with k random
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values of a, if none of the values that we drawn at random is the witness of Miller, the number n is probably
prime. More precisely if n is composite, the probability of being prime is
< 1

4k . We may take for example k = 50.

B.2 Construction of the prime number with a given size :

To construct the prime number p with given size we select at random the number of odd size and we put it
in the variable X. We test whether the content X is a prime number if it isn’t, we added to it 2. Indeed it
would be better to remove an odd number of given size at random.
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