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Abstract

Code obfuscation is one of the most powerful concepts in cryptography. It could yield
functional encryption, digital rights management, and maybe even secure cloud computing.
However, general code obfuscation has been proven impossible and the research then focused
on obfuscating very specific functions, studying weaker security definitions for obfuscation, and
using tamper-proof hardware tokens to achieve general code obfuscation. Following this last line
this work presents the first scheme which bases general code obfuscation of multiple programs
on one single stateless hardware token.

Our construction is proven secure in the UC-framework and proceeds in three steps:
1. We construct an obfuscation scheme based on fully homomorphic encryption (FHE)

and a hybrid functionality conditional decrypt, which decrypts the result of a homomorphic
computation given a proof that the computation was performed as intended. One difficulty of the
first step are possible decryptions errors in the FHE. These decryption errors can occur whenever
the randomness for the encryption is chosen maliciously by the receiver of the obfuscated code.
Such decryption errors then could make a real obfuscated computation distinguishable from a
black box use of the non-obfuscated program.

2. Given two common reference strings (CRS) we construct a UC-protocol realizing the
functionality conditional decrypt with a stateless hardware token. As the token is stateless it is
resettable by a dishonest receiver and the proofs given to the token must be resettably sound.
One additional difficulty occurs when the issuer of the token can be corrupted. A malicious
token can be stateful and it cannot be prevented that it aborts after a hardwired number of
invocations. To prevent adaptive behavior of a malicious token the data of the receiver has to be
hidden from the token and the proofs given to the token must even hide the size of the program
and the length of the computation.

3. Last we construct a protocol constructing a CRS with a stateless hardware token. Care
has to be taken here to not let the token learn anything about the resulting CRS which could
not be simulated, because the very same token will later be used in a protocol based on the
security of this CRS.

Keywords: Obfuscation, Stateless Tamper-Proof hardware, Universal Composability, Universal
Arguments, Fully-Homomorphic-Encryption
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1 Introduction

The study of program obfuscation receives a lot of attention, because, on the one hand it would
have tremendous implications for practical applications like software-protection, digital rights man-
agement and cloud-computing. On the other hand, obfuscation allows to delegate arbitrary crypto-
graphic tasks to untrusted parties. This includes the construction of public-key encryption schemes
from private-key encryption schemes (where encryption is delegated) or the elimination of random
oracles in cryptographic protocols. Since [BGI+01] there has been a lot of research on the topic of
program obfuscation. [BGI+01] formalizes the intuitive requirements for obfuscation in the notion
of virtual black-box (VBB) obfuscation. VBB-obfuscation guarantees that nothing more can be
learned from the obfuscated code of a program than what can be learned by black-box access to
the functionality that is implemented by the program. However, [BGI+01] rules out the possi-
bility of virtual VBB-obfuscation for a wide range of functionalities. Subsequently, research on
obfuscation has essentially developed in three directions. In the first direction, one tries to identify
classes of functionalities that can be obfuscated in the strong VBB-sense. Function classes that
were shown to be VBB-obfuscatable include point functions [Can97, Wee05, CD08], access con-
trol systems [LPS04] and, in a slightly relaxed sense, functionalities that operate on ciphertexts
[HRSV07, Had10]. The second direction tries to find weaker meaningful notions of obfuscation than
VBB-obfuscation. However, there exist strong impossibility results even for such relaxed notions of
obfuscation [GK05, GR07]. Finally, the third direction considers the problem of constructing VBB-
obfuscators under setup-assumptions. These setup-assumption include the random-oracle model
[LPS04] and tamper-proof hardware assumptions [GKR08, GIS+10, DKMQ11].

Previous work in the third line faces certain limitations. The work of [LPS04] realizes point-
function obfuscators but does not lead to general purpose obfuscation. The construction of [GKR08]
can be seen as an approach to general purpose obfuscation with honest sender based on the concept
of one-time-programs. However, this inherently limits the number of executions of the obfuscated
program and requires stateful hardware. [GIS+10] provide a construction of a general purpose
obfuscation-scheme based on stateless rather than stateful tamper-proof hardware. Unfortunately,
the construction of [GIS+10] requires a hardware-invocation for each gate of the obfuscated cir-
cuit. Moreover, if the sender may deliver malicious stateful hardware, then the required number
of hardware-tokens grows proportionally with the circuit-size. [DKMQ11] provides a construction
of one-time-programs secure against malicious senders, which requires only a single hardware to-
ken. However, since this construction is based on one-time-programs, it has similar limitations as
[GKR08]. Specifically it requires a stateful hardware-token and allows only a limited number of
program-executions.

1.1 Our Contribution

We proceed the third line of research by presenting the first efficient universally composable [Can01],
general purpose obfuscation-scheme based on a single stateless tamper-proof hardware device. The
scheme allows the execution of different obfuscated programs an arbitrary number of times, while
only requiring a single hardware token. We achieve this result in three steps. In step 1, we present
such a scheme in a hybrid-model where the receiver has access to a conditional decryption function-
ality. This allows the sender of the obfuscation-scheme to deliver fully homomorphically encrypted
[Gen09, vDGHV10, BV11b, BV11a, BGV11] programs to the receiver. Such encrypted programs
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can be evaluated by the receiver on any input of her choice. The evaluation of the encrypted pro-
grams is performed in a deterministic input-oblivious model of computation, e.g. universal oblivious
Turing machines. Since the receiver does not know the secret key of the encryption-scheme, she can
only obtain the evaluation result by invoking the conditional decryption functionality. The receiver
has to prove to the conditional decrypt functionality that the decryption request was honestly
computed. The functionality then checks this proof, and if it is valid outputs the decrypted value.
In contrary to preceding work [GIS+10], the workload of the conditional decryption functionality
is independent of the length of the program evaluation. In addition, the conditional decrypt func-
tionality can be reused an arbitrary number of times, which is impossible for approaches based
on one-time-programs [GKR08, DKMQ11]. This first scheme is perfectly secure against malicious
senders and computationally secure against malicious receivers.

In step 2, we UC-implement the conditional decryption functionality with stateless tamper-
proof hardware and a common reference string (CRS). On a high level, the protocol proceeds as
follows. The sender first commits himself to the inputs of the conditional decryption functionality
and sends an allegedly stateless token. The conditional decryption functionality is then realized
by an efficient 2-party computation between the receiver and the token. This 2-party computation
is implemented as follows. The receiver first generates a pair of public and secret keys for a
fully homomorphic encryption scheme. She then encrypts her inputs to the conditional decryption
functionality and sends them together with a proof of knowledge of plaintext to the token. The
token then evaluates the conditional decryption functionality homomorphically using the receivers
encrypted inputs and its hardwired sender-inputs. It then sends the result together with a proof
of correctness to the receiver. The receiver checks the proof and, if it is correct, decrypts his
layer of encryption from the result. This construction is computationally secure against malicious
sender and receiver respectively, when given a reusable CRS. The CRS is needed to implement
the non-interactive proofs of knowledge used by both parties. Since we allow malicious stateful
tokens, we cannot rule out the possibility that the token simply aborts after a certain number of
invocations. Thus we need to model this defect in the ideal functionalities for obfuscation and
conditional decryption. We model this effect by allowing the functionalities to have a counter of
invocations.

Finally in step 3 we replace the trusted CRS by an efficient interactive offline initialization-
phase between sender, receiver and token. For this the sender hardwires some random string x and
an answer to a randomly chosen hard question into the token. Then the sender sends the hard
question together with the token to the receiver, who replies with a random string y to the sender.
The sender computes the CRS by CRS = x⊕y, signs it and sends it together with the answer to the
hard question to the receiver. The receiver then proves to the token that she knows the answer to
the hard question by a zero-knowledge argument and expects to receive x as reply from the token.
If this x matches with the CRS sent by the sender, the signed CRS will be used as CRS for our
second protocol.

All together, using the combined protocol, we obtain a reusable obfuscation-scheme based on a
single stateless hardware that prohibits adaptive behavior by a malicious token.

1.2 Our Techniques

Our constructions can be seen as a setting of mutual delegation, where the token delegates the
evaluation of the program to the receiver and the receiver delegates the decryption to the token
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respectively. Hence both have to prove to each other that they performed the requested task
correctly. The workload of the token is kept low and independent of the program’s evaluation-time
by utilizing an adapted version of universal arguments [BG02]. Based on universal arguments, we
construct an adaptively sound argument system to prove certain statements. For the emulation-
protocol for conditional decryption, we need to force the parties to know their inputs, while not
revealing them to the other party. Hence we use non-interactive zero-knowledge proofs of knowledge
(NIZKPoKs) [BFM88, FLS90, SCO+01, GOS06]. As argument-system in our third protocol we use
resettably sound zero-knowledge arguments of knowledge [BGGL01], as the honest token is stateless
and therefore resettable. Moreover, there is a subtle issue regarding the correctness of the fully
homomorphic encryption-scheme we employ. Since any behavior of a malicious party must be
simulatable, we cannot allow the occurrence of decryption-errors. Gentry’s [Gen09] definition of
fully homomorphic encryption does not rule out schemes, for which the coins used in the encryption
and evaluation can be chosen such that non-detectable decryption errors depend on the plaintext.
Thus, there is no obvious strategy for the simulator to decide whether to fake a decryption error
or not in its simulated output (since they are not detectable).

The fully homomorphic encryption-scheme of [Gen09] has no decryption error. However, re-
cent more efficient constructions of fully homomorphic encryption based on LWE [BV11b, BV11a,
BGV11] are prone to decryption errors. Therefore, we need a mechanism to deal arbitrary fully
homomorphic encryption schemes (with negligible decryption-error). Finally, we have to address a
technical issue. Since we are working in the UC-framework [Can01], an environment might com-
municate covert messages to the token through the length of the receiver-inputs. We avoid this
by requiring a fixed upper bound for the receiver-input lengths and padding the inputs accord-
ingly. This issue cannot be avoided in the UC-model by using compressing commitments since
compressing commitments are not online-extractable, and thus do not compose.

1.3 Further Related and Concurrent Work

The increased interest in cloud-computing applications led to a series of works on the delegation
of computation, which we briefly review in the following. [GGP10] construct a secure verifiable
delegation scheme by combining fully homomorphic encryption and garbled circuits. [CKV10]
improve the delegator’s efficiency by not requiring her to garble a circuit. Based on an idea of
[AIK10], [CKV10] exploit the secrecy of fully homomorphic encryption to imply correctness by
mixing hidden challenges among the requests. Recently, [BCCT11, SG11, DFH11] suggested to
check the correctness of an encrypted delegated computation by the use of a 2-round, private coin
argument-system which are based on extractability assumptions. Unfortunately, such an approach
has to fail in our setting, since a malicious receiver can always rewind the stateless hardware token
in order to learn its private coins. The setting considered in [GS09] is similar to ours, since they
also consider how a party can achieve secure computation by interacting with a stateless hardware
token. However their scheme is not intended to achieve obfuscation since the token has almost the
same complexity as the user. In contrast to that, in our construction the receiver carries out the
bulk of the workload while the computation of the token is not even related to computation-length.

Concurrently and independently, [BCG+11] constructed an hardware-based obfuscation scheme
similar to ours. However, their focus lies on honest but leaky hardware, whereas our focus is on
minimizing the number of tokens used and allowing the token to be stateful and corrupted. Finally,
in another independent and concurrent work, [CKS+11] investigated how stateless tamper-proof
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hardware tokens can serve as a minimal UC-setup assumption, also applying similar techniques to
ours.

A preliminary version of this work was presented at the Dagstuhl Workshop on Public-Key
Cryptography 2011.

2 Preliminaries

Let in the following k denote a security-parameter. We use the cryptographic standard notions
of negligible functions, as well as computational/statistical/perfect indistinguishability. We denote
the assignment-operator with ←, while we use = to denote equality.

2.1 Framework

We state and prove our results in the Universal-Composability (UC) framework of [Can01]. In this
framework security is defined by comparison of a real model and an ideal model. The protocol of
interest Π is running in the latter, where an adversary A coordinates the behavior of all corrupted
parties. We assume static corruption, i.e. the adversary A cannot adaptively change corruption
during a protocol-run. In the ideal model, which is secure by definition, an ideal functionality
F implements the desired protocol task and a simulator S tries to mimic the actions of A. An
environment Z is plugged either to the ideal or the real model and has to guess, which model it
is actually plugged to. Denote the random variable representing the output of Z when interacting
with the real model by RealAΠ(Z) and when interacting with the ideal model by IdealSF (Z). Protocol
Π is said to be UC-secure if for any environment Z the distributions RealAΠ(Z) and IdealSF (Z) are
(computationally, statistically or perfectly) indistinguishable.

2.2 Universal Input-Oblivious Models of Computation

In order to be able to evaluate machines homomorphically, the underlying model of computation
has to be deterministic and input-oblivious. We call a model of computation input-oblivious, if
its sequence of elementary operations only depends on the size of the input but not on the input
itself. This rules out models of computation that require control-flow like conditional jumps. In
general, such models can be regarded as implicit and compact representations of circuits. A non-
trivial model of computation with this property are oblivious Turing machines. For such Turing
machines the head-movement is a fixed function of time 1. [PF79] showed that a two tape oblivious
Turing machine can simulate any non-oblivious Turing machine with only logarithmic slowdown.
Henceforth, when we use the term machine or program M , we use it in the sense of a deterministic
oblivious machine or a circuit. For a program M , define specM to be the auxiliary specification
a universal machine requires to simulate M . For a circuit M , it is sufficient to define specM to
specify the number of input and output-wires and the number of gates. For an oblivious Turing
machine M , we can define specM to be a runtime-bound of M .

1Oblivious RAMs seem to be inappropriate for this application as their head-movement is random rather than
fixed.
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2.3 Fully Homomorphic Encryption

We give a brief overview of a fully homomorphic encryption without going into detail. A fully
homomorphic encryption scheme FHE consists of four algorithms.

• KeyGen(1k): Generates a public/secret-key pair (pk, sk)

• Encpk(m): Takes as input a public key pk and a message m and

• Decsk(m̂): Decrypts the output of the evaluated circuit using the secret key sk. Complexity
is equivalent to EncryptE .

• Evaluatepk(M, x̂): Takes as input the public key pk, a program M and the encrypted values
x̂. Returns an encrypted representation of M(x).

The algorithms KeyGen, Enc and Evaluate are probabilistic. When we want to express that
one of them, for instance Enc uses specific coins r, we shall write Encpk(·; r). When fixing r to be
the all-zero coins of appropriate length, we write Encpk(·; 0∗). We will usually denote ciphertexts
with a hat-notation, i.e. m̂ = Encpk(m). For larger plaintexts m = (m1, . . . ,mn), where each
mi is in the domain of FHE, we write Encpk(m) = (Encpk(m1), . . . ,Encpk(mn)). Even though the
Evaluate function is usually defined on circuits [Gen09], we note that other input-oblivious models
of computation can be seen as compact representations of circuits. Thus we can extend the Evaluate
function to such models of computation without any difficulty. Further, we will use the Evaluate-
function in a rather liberal we. Specifically, let M̃ = (M̂, specM ), where M̂ is the encryption of a
machine M and specM is its specification (e.g. for circuits number of gates, for oblivious Turing
machines a runtime bound). Then we will also write Evaluatepk(M̃, x) for the execution of the

encrypted program M̂ on input x, where x is either a plain- or ciphertext. If x is a plaintext,
Evaluate will first encrypt x. Moreover, if the program M takes several arguments, we shall write
Evaluatepk(M̃, x1, . . . , xn), where we allow the xi to be either plain- or ciphertexts. We require
fully homomorphic encryption schemes FHE to have circuit-privacy. FHE is defined to be circuit
private, if for any public key pk, any program M and any input x it holds that Evaluatepk(M,x) ≈s

Encpk(M(x)) (where ≈s denotes statistical indistinguishability). Thus, ciphertexts do not reveal
whether they are the result of a homomorphic computation or mere encryptions of the computation-
result. A fully homomorphic encryption scheme FHE is said to be correct, if for all admissible M and
all x it holds that Decsk(Encpk(x)) = x and Decsk(Evaluatepk(M,x)) = M(x) with overwhelming
probability over the coins of KeyGen, i.e.

Pr
(pk,sk)←KeyGen(1k)

[∀M∀x : Decsk(Encpk(x)) = x and Decsk(Evaluatepk(M,x)) = M(x)] ≥ 1− negl(k).

The schemes of [vDGHV10, BV11b, BV11a, BGV11] do not suffice this strong correctness condi-
tion. However, in the next section we introduce a slightly weaker correctness condition for fully
homomorphic encryption-schemes, which is sufficient for our application. We use the standard
IND-CPA security-definition for fully homomorphic encryption schemes. Informally the IND-CPA
experiment proceeds as follows: An adversary B gets a public pk and has oracle access to a cor-
responding decryption oracle. He passes a pair of challenge-plaintexts m0,m1 to the experiment,
which decides by coin toss if it encrypts m̂ = Encpk(m0) or m̂ = Encpk(m1). B wins the experiment
if it correctly decides whether m̂ encrypts m0 or m1. We say that an encryption-scheme FHE is
IND-CPA secure, if no PPT-adversary B wins the IND-CPA experiment for FHE with advantage
non-negligible better than 1/2.
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2.4 Strongly Unforgeable Signatures

As our scheme requires the use of signatures, we shall briefly review the standard-notion of strongly
unforgeable signature-schemes. A signature-scheme SIG consists of three PPT-algorithms KeyGen
and Sign and Verify.

• KeyGen(1k) generates a public verification-key vk and a private signature-key sgk

• Signsgk(m) takes a signature-key sgk and a message m ∈ {0, 1}∗ and returns a signature σ

• Verifyvk(m,σ) takes as input a verification-key vk, a message m ∈ σ∗ and a signature σ and
outputs 1 if σ is a valid signature for m and 0 otherwise.

In the EUF-CMA-experiment an adversaryA is given a verification key vk and access to a signature-
oracle. A wins the experiment if it manages to forge a valid signature σ for a message of its choice
m, without having queried its signature-oracle with m. A signature-scheme SIG is called EUF-
CMA-secure, if no PPT-adversary A wins the EUF-CMA-experiment better than with negligible
probability. For the sake of simplicity, we require signature-schemes with deterministic verification
procedure and succinct signature length (i.e. the length of σ does not depend on m). Standard
hash-and-sign [NY89, Rom90] constructions suffice these requirements.

2.5 Universal Arguments, Resettably Sound Zero-Knowledge and NIZKPoKs

For the construction of our obfuscation-scheme, we use the machinery of universal arguments (UA)
[BG02], non-interactive zero-knowledge proofs of knowledge (NIZKPoK) [BFM88, FLS90, SCO+01,
GOS06] and resettably sound zero knowledge (rsZK) [BGGL01]. We briefly define the three notions.

Definition 1. Let SU = {(M,x, t) : ∃w s.t. Machine M accepts (x,w) within t steps} be the uni-
versal language. Let RU be the witness-relation of SU . A universal argument system is a pair of
interactive Turing machine (P,V), such that the following conditions hold.

• Efficient Verification It exists a fixed polynomial p(·), such that for every (M,x, t) ∈ SU ,
the total time spent by the probabilistic verifier V is at most p(|(M,x, t)|).

• Completeness via relatively efficient prover For every ((M,x, t), w) ∈ RU , it holds
that Pr[〈P(w),V〉(M,x, t) = 1] = 1. Furthermore there exists a polynomial p(·), such that
for every ((M,x, t), w) ∈ RU the time spent by P(w) on common input (M,x, t) is at most
p(|M |+ t).

• Computational Soundness For every non-uniform PPT P∗ and every (M,x, t) /∈ SU with
|(M,x, t)| = n it holds that Pr[〈P∗,V〉(M,x, t) = 1] < negl(n).

• Weak Proof of Knowledge For every polynomial p(·) there exists a polynomial p′(·) and
a PPT oracle machine Ext, such that for every PPT P∗ and every sufficiently long y =
(M,x, t) ∈ SU it holds that: If Pr[〈P∗,V〉(M,x, t) = 1] < 1/p(|y|) then Prr[∃w ∈ RU (y) : ∀i ∈
[|w|] : ExtP

∗
(y, i; r) = wi] > 1/p′(|y|).

Universal argument systems can be instantiated for arbitrary NT IME(f(k))-languages L, by
setting M to be the witness-verifier of L and t = O(f(k)). The completeness condition says that
the prover P has instance-based complexity, i.e. the runtime of the prover depends on the size of
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the witness and can be super-polynomial if the witness has super-polynomial size. The universal
argument system of [BG02] has the additional feature that it is public coin, i.e. the each message
of the verifier consists w.l.o.g of a string of uniformly chosen coins.

Definition 2. A non-interactive zero-knowledge proof of knowledge system for a language L ∈ NP
(with witness-relation RL) consists of a triple (CRSGen,P,V) of PPT machines such that there exist
three PPT-machines FakeGen, Sim and Ext and the following conditions hold.

• CRSGen(1k) samples a string CRS according to some distribution.

• FakeGen(1k) samples a pair ( ˜CRS, td), such that the common reference string ˜CRS is statis-
tically close to CRS← CRSGen(1k).

• Completeness For every (x,w) ∈ RL it holds Pr[V(CRS, x, π) = 1|CRS← CRSGen(1k), π ←
P(CRS, x, w)] = 1.

• Soundness For every x /∈ L and every PPT machine P∗ it holds that Pr[V(x, π) = 1|CRS←
CRSGen(1k), π ← P∗(CRS, x)] < negl(k).

• Unbounded Zero Knowledge For every PPT-machine D it holds that D cannot distin-
guish non-negligibly better than 1/2 between the two experiments Real and Ideal. In the
Real experiment a common reference string is generated by CRS ← CRSGen(1k). D is pro-
vided with CRS and unbounded oracle access to a prover P(CRS, ·, ·), that takes as input
(x, y) ∈ RL and outputs P(CRS, x, y). In the Ideal experiment a common reference string
is generated by (CRS, td) ← FakeGen(1k). D is provided with CRS and oracle access to a
simulator Sim(CRS, td, ,̇·), which takes as input (x, y) ∈ RL and outputs Sim(CRS, td, x).

• Proof of Knowledge Ext( ˜CRS, td, x, π) outputs a witness w s.t for every PPT-machine
P∗ it holds that Pr[V(CRS, x, π) = 1 and (x,w) /∈ RL|(CRS, td) ← FakeGen(1k), (x, π) ←
P∗(CRS), w ← Ext(CRS, td, x, π)] ≤ negl(k)

Our construction will use NIZKPoKs with reusable uniformly chosen common reference strings
[FLS90]. Note that any NIZK-system in the random CRS-model can be converted into a NIZKPoK-
system in the random CRS-model. The transformation requires an IND-CPA secure public-key
encryption scheme with dense public keys [RS92, NY90].

Definition 3. A resettably sound zero-knowledge argument of knowledge system for a language
L ∈ NP (with witness-relation RL) consists of a pair of PPT-machines (P,V), where the verifier
V is stateless, such that there exist two PPT-machines Sim and Ext and the following conditions
hold.

• Completeness For every (x,w) ∈ RL it holds that Pr[〈P(w),V〉(x) = 1] = 1.

• Computational Soundness For every x /∈ L and every PPT machine P∗ it holds that
Pr[〈P∗,V〉(x) = 1] < negl(|x|).

• Zero-Knowledge For every (x,w) ∈ RL and every stateful or stateless PPT V∗ it holds the
distributions Real = {〈P(w),V∗〉(x)} and Ideal = {Sim(x,V∗)} are computationally indistin-
guishable.
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• Proof of Knowledge For every x ∈ L and every PPT-machine P∗ with Pr[〈P∗,V〉 =
1 and (x,w) /∈ RL|w = Ext(x,P∗] < negl(|x|).

As in [BGGL01] we use the convention that V is the resettable next-message function of the
verifier that takes as input a transcript of the conversation and returns public coins for its next
message. We can assume w.l.o.g that the last message τ a prover P sends to a resettable verifier V
before it accepts encodes the entire conversation between P and V.

Finally, we need the notion of a adaptive soundness for argument-systems [DN07].

Definition 4. An argument-system (CRSGen,P,V) for a language L is called adaptively-sound, if
every PPT-machine P∗ has only negligible probability of winning the following experiment AS.

Experiment AS

• The experiment sets CRS← CRSGen(1k)

• (x, a)← P∗(CRS).

• Run s = 〈P∗(a),V(CRS, x)〉.

• P∗ wins if s = 1 and x /∈ L.

3 Fully Homomorphic Encryption with Fixed Random Coin Con-
sumption

We would like the amount of random coins used by Enc and Evaluate to be independent of the
size of the plaintexts with encrypt and circuits we evaluate. The construction to achieve this is
pretty simple, we just replace the random coins used by Enc and Evaluate with pseudorandom coins
generated from a fixed length seed. However, this construction cannot fulfill the strong correctness
notions provided in literature. We will therefore first provide a slightly relaxed notion of correctness
that is met by our construction. To avoid non-uniform hardness-assumptions we will first remove
the quantifiers in the definition of correctness in favor of a game-based definition.

Definition 5. Let FHE be a fully homomorphic encryption scheme. We say that FHE is correct
against PPT-adversaries, if every PPT machine A fails to win the following experiment except with
negligible probability.

Experiment COR

• The experiment generates (pk, sk)← FHE.KeyGen(1k).

• Let (C, x)← A(pk, sk).

• Let r, r′ be random coins. If FHE.Decsk(FHE.Evaluatepk(C,FHE.Encpk(x; r); r′)) 6= C(x) out-
put 1, otherwise 0.
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This correctness-definition is only required to hold against polynomial-sized circuits. We don’t
care if decryption-errors occur with higher probability when the scheme is evaluated on super-
polynomial-sized circuits 2.

We will now give a general construction that transforms an arbitrary fully homomorphic en-
cryption scheme into one where the Enc and Evaluate algorithms only consume a fixed amount of
k random coins, independent of their respective inputs.

Construction 6. Let FHE be a fully homomorphic encryption scheme and prg(l, s) be a pseudo-
random generator that expands a k-bit seed s to a length l string. The modified scheme FHE′ uses
the same KeyGen and Dec algorithms, but the following Enc and Evaluate algorithms.

• Encpk(m; s): Let m = (m1, . . . ,ml). Compute (r1, . . . , rl) ← prg(l · k, s). For i = 1, . . . , l
compute ĉ← FHE.Encpk(mi; ri). Output ĉ

• Evaluatepk(C, x̂; s): Let l be the amount of random coins required by FHE.Encpk(C, x̂). Com-
pute r ← prg(l, s) and ŷ ← FHE.Evaluatepk(C, x̂; r). Output ŷ.

We now show that this modification preserves correctness against PPT-adversaries.

Lemma 7. Assume the fully homomorphic encryption scheme FHE is correct against PPT-adversaries.
Given that prg is a secure pseudorandom generator, the scheme FHE′ given in Construction 6 is
also correct against PPT-adversaries.

Proof. Assume for contradiction that FHE′ is not correct against PPT-adversaries. Then there ex-
ists a PPT-machine A that wins the CORFHE′-experiment with non-negligible probability ε. How-
ever, since FHE is correct against PPT-adversaries and the keys of FHE and FHE′ are identically
distributed, it holds that A cannot win the CORFHE with a probability higher than ε/2. We will
use A to construct a PPT-distinguisher D that distinguishes the distribution generated by prg from
the uniform random distribution with advantage ε/2. D proceeds as follows.

• Generate (pk, sk)← KeyGen(1k)

• Run (C, x)← A(pk, sk).

• Let be the amount of random coins required by FHE.Evaluatepk(C,FHE.Encpk(x)). Send l to
the distinguishing experiment and let (r, r′) be the corresponding output.

• Check if C(x) 6= FHE.Decsk(FHE.Evaluatepk(C,FHE.Encpk(x; r); r′)). If so, output 1, other-
wise 0.

Now, if the sample (r, r′) returned by the PRG-experiment is distributed uniformly random,
then D’s output is identically distributed to the output of the CORFHE(A)-experiment. Thus
Pr[PRG0(D) = 1] = Pr[CORFHE(A) = 1] < ε/2. On the other hand, if the sample (r, r′) returned by
the PRG-experiment is pseudorandom, then D’s output is identically distributed to the output of
the CORFHE′(A)-experiment, thus Pr[PRG1(D) = 1] = Pr[CORFHE′(A) = 1] ≥ ε. Thus we conclude

AdvPRG(D) = |Pr[PRG0(D) = 1]− Pr[PRG1(D) = 1]| ≥ ε/2.

2In fact, one can construct schemes that meet this correctness-definition, but fail for the general definition
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4 Modeling Stateless Hardware and Program-Obfuscation in the
UC-Framework

In this Section, we will introduce the ideal functionalities for stateless hardware, program-obfuscation
and conditional decryption. We use the standard definitions for stateless hardware according to
[GIS+10]. For simplicity, we state the functionality in the two-party case where only a sender-
machine S and a receiver-machine R are present. This definition allows the sender S to wrap a
stateless machine T in a hardware token, and send this token to the receiver R who can query it
an arbitrary (polynomial) number of times. Additionally, we allow an adversarial sender to input
a malicious machine T∗ which is stateful instead of stateless. For the sake of readability, we omit
session and message identifiers.

Functionality F stateless
wrap (parametrized by a security parameter k and a polynomial p(·))

• Create Upon receiving (create,T) from S, where T is a Turing machine, send create to R
and store T. Additional adversarial input : An adversarial sender can additionally input a
flag bad that indicates that machine T is stateful.

• Execute Upon receiving (run, w) from R, check if a create-message has already been sent by
S, if not output ⊥. If the flag bad is not set, run T(w) for at most p(k) steps, and let m be
the output (m = ⊥ if T does not halt in p(k) steps). Output m to R. If flag bad is set, check
if a previous state st has been stored (if not set st = 0) and compute (m, st) = T(w, st). Store
the new state st and output m to R.

The messages between F stateless
wrap and R are delivered immediately without scheduling by the

adversary. We model the ideal program-obfuscation FObf in the following way. The sender’s inputs
consist of pairs (id,M), where id is a unique identifier and M a program. Once the sender inputs
(id,M) into FObf , the functionality stores (id,M) and outputs id to the receiver. The receiver
can query FObf with inputs (id, x) and receives and output M(x), if a tuple (id,M) was stored
and x is a proper input for M , otherwise ⊥. However, in order to allow a receiver simulator to
mount a simulation, it receives as auxiliary output the specification specM of M (recall that specM
contains information like the number of gates of a circuit or a runtime bound for an oblivious
Turing machine) of M together with id. Since it cannot be avoided that a stateful hardware keeps
a counter of the number of its invocations, our functionality FObf has to reflect this by having a
counter too.

Functionality FObf (parametrized by a security parameter k, initialized with a counter cntr = 0).

• Setup Adversarial input by sender : A maximum number of invocations ninvoc. By default set
ninvoc =∞.

• Obfuscate Upon receiving a message (Obfuscate, id,M) from S, where M is a program, send
(obfuscation, id) to R and store (id, M). Auxiliary Output to Receiver-Simulator: specM .

• Query Upon receiving (Query, id, x) from R, find the unique stored tuple (id, M). If no such
tuple exists, output ⊥. Otherwise, compute M(x) and send it to R. Increase cntr by 1, shut
down if cntr = ninvoc.
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In order to prove our result modularly, we introduce an intermediate functionality we call Con-
ditional Decryption (CONDEC). CONDEC can be seen as an abstraction of stateless hardware that
forces the sender to behave honestly in our protocol for FObf . It basically takes decryption-queries
together with an (interactive) argument of its validity and decrypts after verifying correctness. Let
FHE be a fully homomorphic encryption scheme and SIG be an EUF-CMA secure signature scheme
and {Hi} be a family of collision-resistant hash-functions {0, 1}∗ → {0, 1}k. Let L be a language
that consists of tuples (k,H, pk, ŷ, x, `, c, s) such that there exists a string M̃ with |M̃ | = ` and
c = H(M̃) and ŷ = FHE.Evaluatepk(M̃, x; r), where the last expression has a computation-trace
that has at most length klog(k). Since |M̃ | ≤ klog(k), we can assume that ` = |M̃ | is represented by a
binary string of length log2(k). Clearly, it holds that L ∈ NT IME(klog k). Therefore, we can prove
membership in L using a constant round universal argument system of knowledge UA. Note that
the runtime of the verifier of UA only depends on the size of the statement (k,H, pk, ŷ, x, `, c, r).
It is thus independent of the machine M̃ since the runtime of M̃ can be upper bounded by klog(k).
We have an additional requirements for UA. Since our goal is to use stateless hardware to imple-
ment FObf , we require UA to be resettably sound. This can be achieved straightforwardly by a
transformation given in [BGGL01], where the random coins used by the verifier are replaced with
pseudorandom coins generated from the message-history using a pseudorandom function.

Let (P,V) be an argument-system for the language L based on the universal argument system
UA. Let L′ = {(k, pk, ŷ, x, M̃ , r) : ŷ = FHE.Evaluatepk(M̃, x; r)}. Given the soundness of (P,V)
and the collision-resistance of {Hi}, the following argument-system (P′,V′) for L′ is complete and
adaptively sound.

Construction 8. (parametrized by a security-parameter k)

• CRSGen(1k): Set H ←R {Hi}. Output H

• Prover P′: Upon input (H, (k, pk, ŷ, x, M̃ , s)), compute c = H(M̃), ` = |M̃ | and simulate
P((k,H, pk, ŷ, x, `, c), M̃)

• Verifier V′: Upon input (H, (k, pk, ŷ, x, M̃ , s)) simulate V(k,H, pk, ŷ, x, `, c, s)

Completeness of Construction 8 follows from the completeness of the argument-system (P,V).
We will prove adaptive soundness of Construction 8 in the next Subsection.

We want to avoid that the encrypted program M̃ has to be given to the CONDEC functionality,
because this would induce too much overhead to the token. Moreover, the token would not be
oblivious to the program actually executed. This would provide the environment with a covert
channel into the token.

The hybrid-functionality FCONDEC used in our protocol ΠObf utilizes the argument system (P,V).
However, to establish the security-reduction for ΠObf we will use the adaptive soundness of (P′,V′).
Finally, for the same reason as for FObf , we need to include a counter into FCONDEC. Let pk be
a public key of FHE and vk be a verification-key of SIG and H a hash-function from the family
{Hi} and F a pseudorandom function from a family of pseudorandom functions {Fi}. Let state0
be private coins for the stateless verifier V.

Functionality FCONDEC (parametrized by a security parameter k, initialized with a counter
cntr = 0)
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• Setup: Upon receiving a message (Setup, (state0, F,H, vk, sk)) from S, store (state0, F,H, vk, sk)
and send ready to R. Additional adversarial input : A maximum number of invocations ninvoc.
By default set ninvoc =∞.

• Coins: Upon receiving a message (coins, (x, c)) from the receiver R, compute s← F (x, c) and
return s to R. Increase cntr by 1, shut down if cntr = ninvoc.

• Verifier: Upon receiving a message (Verifier, (ŷ, x, `, c, τ)) from the receiver R, compute
s← F (x, c) and r ← V(state0, (k,H, pk, ŷ, x, `, c, s), τ) and output r. Increase cntr by 1, shut
down if cntr = ninvoc.

• Decrypt: Upon receiving a message (Decrypt, (ŷ, x, `, c, σ, τ)) from the receiver R, compute
s ← F (x, c) and check if both V(state0, (k,H, pk, ŷ, x, `, c, s), τ) and SIG.Verifyvk((`, c), σ)
accept and if yes output FHE.Decsk(ŷ), otherwise output ⊥. Increase cntr by 1, shut down if
cntr = ninvoc.

4.1 Adaptive Soundness

We now turn to prove adaptive soundness of Construction 8. First, observe that we do not need to
use the sophisticated construction for collision resistant hash-functions based on error-correcting
codes used in [BG02]. [BG02] need this construction since an efficient corrupted prover might
only be implicitly aware of a hash-collision of super-polynomial length. However, to extract such
a hash-collision, an extractor would have to run in super-polynomial time (this was the approach
taken in [Bar01]). However, this problem does not occur in the adaptive soundness experiment. A
corrupted prover first has to demonstrate explicit awareness of the statement (which has the same
length as the witness). Thus, the size of the witness that needs to be extracted is a-priori bounded
by a fixed polynomial depending on the corrupted prover. Thus the extractor runs efficiently.

Theorem 1. The argument-system (CRSGen,P′,V′) in Construction 8 is adaptively sound, provided
that the argument system (P,V) is sound and the family of hash-functions {Hi} is collision-resistant.

We will split Theorem 1 in two lemmata establishing the indistinguishability between the fol-
lowing two experiments. Let P∗ be an arbitrary PPT-prover as in the definition of the adaptive
soundness experiment.

Experiment 1 This experiment is identical to the adaptive soundness experiment.

Experiment 2 Identical to experiment 1, except that this experiment only outputs 1 if addition-
ally to 〈P∗,V′〉(H, (k, pk, ŷ, x, M̃ , s)) = 1 and (k, pk, ŷ, x, M̃ , s) /∈ L′ it holds that (k,H, pk, ŷ, x, |M̃ |, H(M̃, s)) ∈
L.

Denote the output of experiment 1 by Exp1(P∗) and the output of experiment 2 by Exp2(P∗).

Lemma 9. Given that the argument-system (P,V) is sound, it holds that Pr[Exp1(P∗) = 1] −
Pr[Exp2(P∗) = 1] ≤ negl(k)
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Proof. We will show the contraposition. Assume that Pr[Exp1(P∗) = 1] > Pr[Exp2(P∗) = 1]+ε. We
will construct a corrupted prover P† that breaks the soundness-property of (P,V) with advantage
ε. Let x′ = (k,H, pk, ŷ, x, |M̃ |, H(M̃), s) and x′ = (k, pk, ŷ, x, M̃ , s).

First notice that Pr[Exp2(P∗) = 1] = Pr[Exp2(P∗) = 1 and x ∈ L] = Pr[Exp1(P∗) = 1 and x ∈
L]. It holds that Pr[Exp1(P∗) = 1 and x /∈ L] > ε, since

ε < Pr[Exp1(P∗) = 1]− Pr[Exp2(P∗) = 1]

= Pr[Exp1(P∗) = 1 and x /∈ L] + Pr[Exp1(P∗) = 1 and x ∈ L]− Pr[Exp2(P∗) = 1]

= Pr[Exp1(P∗) = 1 and x /∈ L]

As it holds that Pr[Exp1(P∗) = 1 and x /∈ L] > ε, a simple averaging argument shows that
there must exist a fixed H and a fixed random-tape r for P∗ such that the same holds. We
can therefore fix H and r. Let P∗’s outputs be a statement x′ = (k, pk, ŷ, x, M̃ , s), which we
can assume to be fixed. We will now show that P† breaks the soundness of (P,V) for the state-
ment x = (k,H, pk, ŷ, x, |M̃ |, H(M̃), s). The prover P† then simulates the interaction of P∗ with
V′ by forwarding the messages between P∗ and the verifier V he interacts with. We claim that
Pr[〈P†,V〉(x) = 1] > ε. Observe in Exp1 and the simulation of P† the views of P∗ are identically
distributed. Thus, the probability that V accepts is also the same in both experiments. Hence

Pr[〈P†,V〉 = 1 and x /∈ L] = Pr[〈P∗,V′〉(x′) = 1 and x /∈ L]

= Pr[Exp1(P∗) = 1 and x /∈ L] > ε

which means that P† breaks the soundness of (P,V) with advantage ε.

Lemma 10. Given that the family of hash-functions {Hi} is collision resistant, then it holds that
Pr[Exp2(P∗) = 1] ≤ negl(k)

Proof. Again we show the contrapositive, thus assume that Pr[Exp2(P∗) = 1] > ε. If Exp2 outputs
1, it holds that (k, pk, ŷ, x, M̃ , s) /∈ L′ but (k,H, pk, ŷ, x, |M̃ |, H(M̃), s) ∈ L. Thus there exists an
M̃ ′ with H(M̃ ′) = H(M̃) and |M̃ ′| = |M̃ | such that (k, pk, ŷ, x, M̃ ′, s) ∈ L. This necessarily implies
that M̃ 6= M̃ ′. Let Ext be a knowledge extractor for (P,V). Ext runs in time polynomial in the size of
the witness M̃ ′, which has the same size as M̃ . As the adaptive soundness experiment requires P∗ to
output a statement containing M̃ explicitly, the size of the witness M̃ ′ is upper bounded by a fixed
polynomial (e.g. runtime of P∗). Thus the extractor Ext runs in polynomial time. We construct an
adversary A against the collision-resistance of {Hi}. A’s input is a hash-function H sampled from
{Hi}. A first chooses random tapes for the machines P∗ and V. It runs P∗ on input H until P∗

outputs a statement (k, pk, ŷ, x, M̃ , s). Then A provides V with input (k,H, pk, ŷ, x, |M̃ |, H(M̃), s)
and simulates interaction between P∗ and V∗. The assumption Pr[Exp2(P∗) = 1] > ε yields that
V accepts with probability greater than ε. If V accepts, A runs the extractor Ext on P∗ to obtain
a witness M̃ ′. The extraction has non-negligible success probability, and thus A can output a
hash-collision (M̃, M̃ ′) with non-negligible probability.

5 From Conditional Decryption to Obfuscation

We are now ready to provide a construction of a composable obfuscation-scheme based on condi-
tional decryption. The idea of the protocol can be outlined as follows. The sender S encodes his
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input-programs M as inputs for universal circuits, universal oblivious Turing-machines or a similar
deterministic input-oblivious model of computation. Such programs M are then encrypted under
a fully homomorphic encryption scheme FHE. To allow the receiver to decrypt evaluation results
of encrypted circuits, the sender instantiates a conditional decrypt functionality FCONDEC with a
secret key sk for FHE and a verification-key vk for SIG. To allow the receiver to use this conditional
decryption oracle, S sends encrypted programs M̃ together with a hash-value c = H(M̃) and a
signature σ on c. The purpose of the signature is to make sure that the encrypted program M̃
was issued by the S and not manipulated by R. R can evaluate an obfuscation of a program M as
follows. First Rqueries FCONDEC for random coins to use for the homomorphic evaluation of M̂ .
The coins are provided by FCONDEC, as a corrupted R might use coins that lead to an decryption
error. Then, R homomorphically evaluates M̃ on her input x using said coins. She obtains a the
plaintext of the evaluation result M(x) by using FCONDEC. We will now provide a formal descrip-
tion of our protocol ΠObf . Let SIG be an EUF-CMA secure signature-scheme, FHE be an IND-CPA
secure fully homomorphic encryption scheme, {Fi} a family of pseudorandom functions and {Hi}
a family of hash-functions as above.

Protocol ΠObf

• Setup
Sender S:

– Compute (pk, sk) ← FHE.KeyGen(1k), (vk, sgk) ← SIG.KeyGen(1k), sample F ← {Fi},
H ←R {Hi} and choose private coins state0 ←R {0, 1}k for the verifier V.

– Input (state0, F,H, vk, sk) to FCONDEC.

– Send (H, pk) to R.

Receiver R:

– Upon receiving a tuple (H, pk), store it.

• Obfuscation
Sender S:

– Upon receiving input (Obfuscate, id,M) for a program M , check if id has already
been stored. If not, compute M̂ ← FHE.Encpk(M) and set M̃ = (M̂.specM ). Compute
c← H(M̃), ` = |M̃ | and σ ← SIG.Signsgk(`, c). Send (id, M̃ , `, c, σ) to R.

Receiver R:

– Upon receiving a tuple (id, M̃ , `, c, σ), store it.

• Query (only Receiver R)

– Upon receiving input (Query, id, x), check if a tuple (id, M̃ , `, c, σ) has been stored. If
not, abort and output ⊥.

– Input (coins, x, c) into FCONDEC and let s be the corresponding output.

– Compute ŷ ← FHE.Evaluatepk(M̃, x; r).
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– Setup a prover P with input (k,H, pk, ŷ, x, `, c, s) and witness-input (M̃). Let P interact
with the verifier V in FCONDEC by forwarding messages between FCONDEC and P (con-
verting messages sent by P into Verifier-messages for FCONDEC). Stop the simulation
once V accepts. Let τ be the last message sent by P.

– Input (Decrypt, (ŷ, x, `, c, σ, τ)) into FCONDEC and let y be the output of FCONDEC.

– Output y.

5.1 Proof of Security

5.1.1 Corrupted Sender

We first prove perfect UC-security in case of a corrupted sender, as this is the easy case. Let
AS be the dummy-adversary for a corrupted sender. We will construct a simulator SS. Since
the protocol ΠObf is non-interactive (messages are only passed from the S to R) and an honest
R is deterministic, the simulator’s task is rather simple. Let (state0, H, vk, sk) be AS’s inputs to
FCONDEC, with additional adversarial input ninvoc. SS first inputs ninvoc to FObf . Every time AS

sends a new message (id, M̃ , `, c, σ) to R, SS constructs a program M that does the following. M
takes an input x and simulates the interaction between a receiver-machine R and a conditional
decryption machine FCONDEC, where R gets input x and FCONDEC gets input (state0, H, vk, sk). M
outputs whatever R outputs. For any environment Z, the indistinguishability of RealAS

ΠObf
(Z) and

IdealSSFObf
(Z) follows by combining machines accordingly

5.1.2 Corrupted Receiver

We will now prove computational UC-security in case of a corrupted receiver. We will first state
the simulator SR against a corrupted receiver AR, which is w.l.o.g. the dummy adversary.

Simulator SR

• Prepare a simulated sender-machine S and run the setup-phase of S. Send S’s output (H, pk)
to AR. Setup a simulated FCONDEC and send the ready message from FCONDEC to AR.

• Upon receiving a message (obfuscation, id, specM ) from FObf , set M ← 0∗ to be the all-zero
program with specification specM , input (obfuscate, id,M) to the simulated sender S and
run it. Let m = (id, M̃ , `, c, σ) be the output of S. Send m to AR and store m.

• Upon receiving a message m = (coins, (x, `, c)) from AR, reply with random coins r and store
the tuple (m, r) to reply subsequent identical calls (simulated random oracle).

• Upon receiving a message m = (Verifier, (ŷ, x, `, c, r, τ)) from AR, forward m to the simu-
lated FCONDEC and forward the corresponding output to AR.

• Upon receiving a message m = (Decrypt, (ŷ, x, `, c, r, σ, τ)) from AR, check if (id, M̃ , `, c, r, σ)
has been stored, if not output ⊥ to AR. Check if it holds that ŷ = FHE.Evaluatepk(M̃, x; r)
and FCONDEC accepts message m. If not output ⊥. Otherwise input (Query, id, x) into FObf

and let y be the output. Output y to AR.
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Now we will show that for every PPT-environment Z, RealAR
ΠObf

(Z) and IdealSRFObf
(Z) are compu-

tationally indistinguishable. Consider the following sequence of hybrid experiments. In Experiment
i the environment Z interacts with a simulator Si.

Experiment 1 In this experiment, simulator S1 simulates the real protocol ΠObf .

Experiment 2 Identical to experiment 1, except that S2 aborts if the event happens that AR

sends a message (Decrypt, (ŷ, x, `, c, σ, τ)) to FCONDEC such that it holds SIG.Verifyvk((`, c), σ) = 1
but the signature σ has not been generated by S2.

Experiment 3 Identical to experiment 2, except that now S3 aborts if the event happens that
AR sends a message (Decrypt, (ŷ, x, `, c, σ, τ)) to FCONDEC and V accepts, even though it does not
hold that ŷ = FHE.Evaluatepk(M̃, x; 0∗).

Experiment 4 Identical to experiment 3, except that the coins-calls to FCONDEC are replied
with truly random coins.

Experiment 5 Identical to experiment 4, except that now y is computed by y ← M(x), where
M is the program that corresponds to (`, c).

Experiment 6 Identical to experiment 5, except that now, once the simulator S5 gets input
(obfuscate, id,M) the simulator chooses the string M ′ to be the all-zero program with the same
specification specM as M and computes M̂ ← FHE.Encpk(M ′) instead of M̂ ← FHE.Encpk(M).
This is the ideal experiment.

Remarks A few remarks are in place. While in experiment 1 it is possible that the conditional
decrypt functionality answers decryption queries that include tuples (`, c) that were not signed by
the sender, this is impossible in experiment 2. Computational indistinguishability of experiments
1 and 2 is established by the existential unforgeability of the signature scheme SIG. In experi-
ment 3 the simulator aborts if AR manages to convince FCONDEC of a false statement. Note that
an efficient simulator can decide whether ŷ = FHE.Evaluatepk(M̃, x; 0∗). Computational indistin-
guishability is established using the adaptive computational soundness property of the argument-
system (CRSGen,P′,V′). In experiment 4 the coins output by FCONDEC are truly random instead
of pseudorandom. Computational indistinguishability follows by the pseudorandomness-property
of the family {Fi}. In experiment 5 the outputs of FCONDEC are determined by evaluating the
program M on input x directly. Statistical indistinguishability follows from the correctness of
FHE. In experiment 6, encrypted programs M̂ are replaced by encryptions M̂ ′ of all-zero programs.
The IND-CPA security of the fully homomorphic encryption scheme FHE implies computational
indistinguishability.

Lemma 11. From Z’s view, experiment 1 and experiment 2 are computationally indistinguishable,
given that SIG is a existentially unforgeable signature scheme.

Proof. Unless S2 aborts, Z’s view is identically distributed in experiment 1 and experiment 2.
Thus a Z distinguishing between experiment 1 and experiment 2 must be able to provoke an
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abort with non-negligible probability. Assume there exists a PPT-environment Z and a non-
negligible ε(k) such that Pr[S2 aborts interacting with Z] ≥ ε(k), where the probability is taken
over the coins of S2 and Z. We now construct an EUF-CMA adversary B for the signature-
scheme SIG, i.e. B receives a signature-key vk∗ from the EUF-CMA experiment, has access to
a signature-oracle and wins if it succeeds in existentially forging a signature σ∗ for a message
of its choice m∗. B does the same as S2, except that it does not generate vk itself but sets
vk ← vk∗. Moreover, instead of signing the tuples (`, c) using the signature-key sk, it sends
signature queries c to its signature-oracle to get signatures σ. Finally, after an abort is decided
because it holds that SIG.Verifyvk((`, c), σ) = 1, even though (`, c) has not been signed by the
sender, B sets m∗ ← (`, c), σ∗ ← σ and returns (m∗, σ∗) to the EUF-CMA experiment. Obviously,
Z’s views are identically distributed when interacting with either S2 or B and thus it holds that
Pr[B existentially forges a signature] = Pr[S2 aborts interacting with Z] ≥ ε(n), which contradicts
the existential unforgeability of SIG.

Lemma 12. From Z’s view, experiment 2 and experiment 3 are computationally indistinguishable,
given that the adaptive resettable soundness-property of the argument-system (CRSGen,P′,V′) holds.

Proof. Assume there exists a PPT-environment Z that distinguishes between experiment 4 and
experiment 5 with non-negligible advantage ε(k). But this means that with probability ε(k) AR

is able to convince FCONDEC of a false statement ŷ = FHE.Evaluatepk(M̃, x; 0∗). Thus it holds
that Pr[S3 aborts in decrypt-call ] ≥ ε(k). We will now construct an adaptive corrupted prover
P∗ that breaks the adaptive resettable soundness property of (CRSGen,P′,V′). Let q(k) = poly(k)
be an upper bound on the number of different statements AR tries to prove to FCONDEC. P∗ first
guesses an index i ∈ {1, . . . , q(k)} of a statement for which Z provokes S3 to abort. Clearly, the
probability that P∗ guesses the right index i is ≥ 1/q(k). P∗ will answer all queries of AR that
do not refer to the i-th statement like S3, using the simulated verifier of FCONDEC. However, once
AR sends a query with the i-th different statement (ŷi, xi, M̃i) for the first time, P∗ announces
the statement (pk, ŷi, xi, M̃i) to the adaptive soundness experiment. From now on, P∗ forwards all
messages from AR to FCONDEC that involve the statement (ŷi, xi, M̃i) to the experiment, and uses
the verifier-messages it receives from the experiment as verifier-messages of FCONDEC. Given that
the coins returned by the verifier are computationally indistinguishable from uniformly random,
an efficient Z will not notice a difference when interacting with either S3 or P∗. It holds that
Pr[P∗ aborts in decrypt-call ] ≥ Pr[S3 aborts in decrypt-call ]−negl(k) ≥ ε′(k) for a non-negligible
ε′(k). Thus we have that

Pr[P∗ convinces V′ of false statement] = Pr[P∗ guesses the right i and aborts in decrypt call]

≥ ε′(k)/q(k)

which is non-negligible in k.

Lemma 13. From Z’s view, experiment 3 and experiment 4 are computationally indistinguishable,
given that {Fi} is a family of pseudorandom functions

Lemma 14. From Z’s view, experiment 4 and experiment 5 are computationally indistinguishable,
given that the fully homomorphic encryption-scheme FHE is correct against PPT-adversaries.
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Proof. Conditioned to the event that no decryption-error occurs, experiment 4 and experiment 5
are perfectly indistinguishable. Assume there was an environment Z that can provoke decryption-
errors with non-negligible advantage ε. We will now construct a PPT-adversary B that breaks the
correctness-property of FHE. Assume that the corrupted receiver R makes at most p(k) = poly(k)
coins-calls to FCONDEC. B first guesses an index i ∈ {1, . . . , p(k)} for which a decryption-error
will occur. B then simulates S4 using the public-key pk and the private key sk provided by the
COR-experiment. Let (x, `, c) by the i-th coins-call made by R, where c = H(M̂) for a encrypted
program M̂ . B then outputs (M̂, x). Now, the probability that a decryption-error occurs is > ε.
Let i0 be the index of a coins-call for which a decryption-error occurs. The probability that B
guesses i0 is ≥ p(k). Therefore, the probability that a decryption-error occurs at the index i guessed
by B is > ε/p(k), which is non-negligible.

Lemma 15. From Z’s view, experiment 5 and experiment 6 are computationally indistinguishable,
given that FHE is a IND-CPA secure fully homomorphic encryption scheme.

Proof. Assume that Z distinguishes between experiment 5 and experiment 6 with non-negligible
advantage ε(k). We will construct a IND-CPA adversary B that breaks the IND-CPA security
of FHE with non-negligible advantage. We will employ a hybrid-argument in this proof. Let
p(k) = poly(k) be an upper bound for the number of sender-inputs (obfuscate, id,M) that Z
provides. B first chooses a t ∈ {1, . . . , p(k)} uniformly at random. B then does exactly the same as
S5, except for the following. Instead of generating the public key pk itself, B sets pk ← pk∗, where
pk∗ is the public key that was provided to B by the IND-CPA experiment. For all sender-inputs
(obfuscate, id,Mi) of Z with i < t, B computes M̂i ← FHE.Encpk(Mi), like S5 does. For the t-th
input (obfuscate, id,Mt), B sends the challenge-messages Mt and M ′t to the IND-CPA experiment,
where M ′t is an all-zero program with the same specification as Mt. B receives a challenge-ciphertext
M̂∗ from the experiment and sets M̂t ← M̂∗. For all further inputs (obfuscate, id,Mi) with
i > u, B chooses M ′i to be the all-zero program with the same specification as Mi and sets M̂i ←
FHE.Encpk(M ′i), like S6. When the simulation terminates, B outputs whatever Z outputs.

Let u ∈ {0, 1} be the secret coin of the IND-CPA experiment that decides whether Mt or a
random M ′t is encrypted in M̂ . We will calculate Pr[B = 1|u = 0] and Pr[B = 1|u = 1]. It holds
that

Pr[B = 1|u = 0] =

p(k)∑
i=1

1

p(k)
Pr[B = 1|t = i, u = 0]

Pr[B = 1|u = 1] =

p(k)∑
i=1

1

p(k)
Pr[B = 1|t = i, u = 1]

Observing that for i = 1, . . . , p(k) − 1 the view of Z is identically distributed for either t = i
and u = 0 or t = i+ 1 and u = 1, we get that

Pr[B = 1|t = i, u = 0] = Pr[B = 1|t = i+ 1, u = 1].
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thus it holds that

|Pr[B = 1|u = 0]− Pr[B = 1|u = 1]| = 1

p(k)
|Pr[B = 1|t = p(k), u = 0]− Pr[B = 1|t = 1, u = 1]|

=
1

p(k)

∣∣Pr[ZS4 = 1]− Pr[ZS5 = 1]
∣∣ =

ε(k)

p(k)

Hence B distinguishes u = 0 from u = 1 with non-negligible advantage and thus breaks the IND-
CPA security of FHE, contradicting the assumption.

6 Implementing Conditional Decryption with Stateless Hardware

Next we will provide a protocol that UC-implements the CONDEC-functionality with a stateless
hardware token. To provide additional security guarantees, we allow a corrupted sender to create
malicious stateful hardware tokens. As the isolation between the environment and the token is
essential for receiver-security, we need to eliminate possible narrow-band channels between the two.
We therefore need to make two restrictions to the class of programs that can be obfuscated. We
restrict to programs that have both a fixed input-size and output-size, that are polynomial in the
security parameter. If we allowed inputs or outputs of arbitrary length, the environment could
encode messages for the token in the length of the inputs or outputs. We need to make all calls of
R to FCONDEC indistinguishable for a malicious token T∗. This means in particular that all messages
from R to the token T need to have the same length. As the length of the inputs x and outputs y
are fixed, and all other messages that R sends to FCONDEC have also a fixed length independent of
M , we can use a padding to pad all messages to the maximum length. A straightforward approach
to implement FCONDEC with a stateless token would be to run a general resettable multiparty-
computation protocol between the receiver and the token. However, a general approach might
increase the round-complexity of a decrypt-call, which is so far constant. Since we already require
a fully-homomorphic encryption scheme for the construction of protocol ΠObf , we can use an efficient
two-round protocol based on fully homomorphic encryption and NIZKPoKs to implement FCONDEC.
Our protocol will require two common reference strings. We first give an outline of the protocol
ΠCONDEC. Let CRS1 and CRS2 be two reusable common reference strings and let FHE be a fully
homomorphic encryption scheme. Let the input of S be a. In the setup phase, the sender first
computes a commitment c ← com(a; r), using a non-interactive perfectly binding commitment-
scheme com. The sender S creates a stateless token T with the following functionality. T gets
messages that consist of a public key pk, a ciphertext m̂ and a NIZKPoK π1 with respect to CRS1.
The proof π1 states that m̂ is a proper encryption of a query to FCONDEC under the public key pk.
If π1 is valid, T generates random coins r′, r′′ by applying a pseudorandom function to (pk, m̂, π1).
Using the coins r′, T computes ŝ← FHE.Evaluatepk(FCONDEC, a, m̂; r′). Finally, T computes, using
CRS2 and coins r′′, a NIZKPoK π2 which states that for the tuple (pk, c, m̂, ŝ) it holds that there
exists an input a and coins r such that c = com(a; r) and ŝ = FHE.Evaluatepk(FCONDEC, a, m̂; r′).
T then outputs (ŝ, π2). This concludes the description of the token. S sends the wrapped token T
together with the commitment c to R. Upon receiving the commitment c and the wrapped token T,
the receiver R stores c and generates a pair of public and secret key (pk, sk) for FHE. We now give a
description of the receiver R in the query-phase. Let m be an input of R. R first encrypts m under
the public key pk and obtains a ciphertext m̂. R then uses CRS1 to compute a NIZKPoK π1 that
m̂ is a valid ciphertext. R sends m̂ together with the proof π1 to T and receives an output (ŝ, π2).
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If the proof π2 is valid for the statement (pk, c, m̂, ŝ) with CRS2, then R decrypts s← FHE.Decsk(ŝ)
and outputs s. Finally, in order to plug our last protocol ΠCRS for the offline initialization-phase
into protocol ΠCONDEC. We require S to issue the token to R before the common reference strings
are computed (as the token will be involved in the generation of the common reference strings).
To provide the token with common reference strings for the NIZKPoKs, the sender authenticates
them with a signature.

We will now provide the full construction of protocol ΠCONDEC and prove UC-security. Let
Fwrap
stateless be the wrapper functionality for the stateless hardware, FHE be a fully homomorphic

encryption scheme, SIG be an EUF-CMA secure signature scheme, com be a non-interactive per-
fectly binding commitment scheme, CRS1 and CRS2 be two reusable common reference strings. We
define the languages L1 = {(pk, m̂) : ∃(m, r) s.t. m̂ = FHE.Encpk(m; r)} and L2 = {(pk, c, m̂, ŝ) :
∃(a, r′, r′′) s.t. c = com(a; r′) and ŝ = FHE.Evaluatepk(FCONDEC, a, m̂; r′′)}. Let (P1,V1) be a NIZKPoK-
system for L1 and (P2,V2) be a NIZKPoK-system for L2. Let {Fi} be a family of pseudorandom
functions with appropriate range.

Protocol ΠCONDEC

• Trusted Setup

– Set CRS1 ← CRSGen1(1k)

– Set CRS2 ← CRSGen2(1k)

• Setup
Sender S:

– Upon receiving input (Setup, a), compute c ← com(a; r) with fresh coins r, sample an
F ←R {Fi} and generate (sgk, vk)← SIG.KeyGen(1k).

– Setup a token T with the following specification.
Token T:

∗ Upon receiving input ((CRS1,CRS2), σ, pk, m̂, π1), check if SIG.Verifyvk((CRS1,CRS2), σ)
and V1(CRS1, (pk, m̂), π1) = 1, if not abort.

∗ Set (r′, r′′)← F (pk, m̂, π1).

∗ Compute ŝ← FHE.Evaluatepk(FCONDEC, a, m̂; r′).

∗ Compute π2 ← P2(CRS2, (pk, c, m̂, ŝ), (a, r, r
′); r′′).

∗ Output (ŝ, π2)

– Send c, σ to R and input T into Fwrap
stateless.

Receiver R:

– Upon receiving a message (c, σ), store (c, σ) and compute (pk, sk)← FHE.KeyGen(1k).

• Queries
Receiver R:

– Upon receiving a messagem = (Verifier,m′) orm = (Decrypt,m′), padm to maximum-
length of messages that FCONDEC takes for security parameter k.
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– Compute m̂← FHE.Encpk(m; r). Compute π1 ← P1(CRS1, (pk, m̂), (m, r)).

– Input ((CRS1,CRS2), σ, pk, m̂, π1) into Fwrap
stateless. Let (ŝ, π2) be the corresponding output.

– Check if V2(CRS2, (pk, c, m̂, ŝ), π2) = 1, if so output s = FHE.Decsk(ŝ), otherwise abort.

6.1 Proof of Security

Let Sim1 and Ext1 be the simulator and extractor for (CRSGen1,P1,V1) and Sim2 and Ext2 the
same for (CRSGen2,P2,V2) respectively. Let RL1 and RL2 be the witness-relations for L1 and L2

6.1.1 Corrupted Receiver

We will now prove computational UC-security against a corrupted receiver. LetAR be the corrupted
receiver, which is w.l.o.g. the dummy adversary. We first state the simulator SR

Simulator SR

• Set (CRS1, td1)← FakeGen1(1k) and (CRS2, td2)← FakeGen2(1k).

• Simulate the setup-phase of a honest sender S with random fake input a′ and send the message
(c, σ) to AR. Let T be the token output be S. Let H be a random oracle with the same size
as the pseudorandom function F .

• Upon receiving a message ((CRS1,CRS2), σ, pk, m̂, π1) from AR, do the following

– Reject if (CRS1,CRS2) were not signed by S.

– Run the extractor Ext1(CRS1, td1, (pk, m̂), π1) to obtain a witness (m, r) for (pk, m̂) ∈
L1. Reject if ((pk, m̂), (m, r)) /∈ RL1 .

– Input m into FCONDEC. Let s be the corresponding output.

– Compute (r′, r′′)← H(pk, m̂, π1)

– Compute ŝ← FHE.Encpk(s; r′) and π2 ← Sim2(CRS2, td2, (pk, c, m̂, ŝ); r
′′).

– Output (ŝ, π2) to AR.

Let Z be a PPT environment. We will now prove indistinguishability between RealAR
ΠCONDEC

(Z)

and IdealSRFCONDEC
(Z). Consider the following sequence of experiments.

Experiment 1 Simulator S1 simulates the real protocol ΠCONDEC.

Experiment 2 Identical to experiment 1, except that CRS1 is computed by (CRS1, td1) ←
FakeGen1(1k).

Experiment 3 Identical to experiment 2, except that CRS2 is computed by (CRS2, td2) ←
FakeGen2(1k).

Experiment 4 Identical to experiment 3, except that the token rejects if for the signature σ it
holds that SIG.Verifyvk((CRS1,CRS2), σ) = 1 even though (CRS1,CRS2) were not signed by the S.
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Experiment 5 Identical to experiment 4, except that the token now extracts m by (m, r) ←
Ext1(CRS1, td1, (pk, m̂), π1) and rejects if ((pk, m̂), (m, r)) /∈ RL1 even though V1(CRS1, (pk, m̂)) =
1.

Experiment 6 Identical to experiment 5, except that the pseudorandom function F is replaced
by a random oracle H.

Experiment 7 Identical to experiment 6, except that the proof π2 is computed by π2 ←
Sim2(CRS2, td2, (pk, c, m̂, ŝ); r

′′).

Experiment 8 Identical to experiment 7, except that the commitment c on a is replaced by a
commitment c′ on a random fake-input a′.

Experiment 9 Identical to experiment 8, except that the encrypted output ŝ is computed by
ŝ← FHE.Encpk(FCONDEC(a,m); r′), where a is the sender-input. This is the ideal experiment.

Remarks The indistinguishability for experiment 1 and 2 as well as experiment 2 and 3 follows
directly by the indistinguishability of real and fake common reference strings. Indistinguishabil-
ity between experiment 3 and experiment 4 is established using the EUF-CMA-security of SIG.
The indistinguishability of experiment 5 and experiment 6 easily follows by the pseudorandomness-
property of {Fi}. The indistinguishability of experiment 7 and experiment 8 folows by the compu-
tational hiding property of the commitment-scheme com. Finally, the statistical indistinguishability
of experiment 8 and experiment 9 follows by a simple hybrid argument using the circuit-privacy of
FHE. We will now establish the remaining steps.

Lemma 16. From Z’s view, experiment 4 and experiment 5 are computationally indistinguishable,
provided that (CRSGen1,P1,V1) has the proof of knowledge property.

Proof. Assume that Z distinguishes between experiment 4 and experiment 5 with non-negligible
advantage ε(k). We will construct a corrupted prover P∗ that defeats the knowledge-extractor
Ext1 of (CRSGen1,P1,V1). Conditioned that S4 does not abort, experiment 4 and experiment 5
are identically distributed. Thus and environment Z distinguishing between experiment 4 and
experiment 5 must provoke an abort of S5 with probability at least ε(k). Let q(k) be a polynomial
upper bound on the number of queries AR sends to Fwrap

stateless. P∗ first guesses an index i ∈ [q(k)]
of a query for which an abort is provoked. Moreover, P∗ uses the fake common reference string it
received as an input as CRS1 rather than generating it with the FakeGen algorithm. P∗ proceeds
as S4, but once AR sends the i-th query xi = ((pki, m̂i), π1,i), P∗ outputs ((pki, m̂i), π1,i). Clearly,
from Z’s views are identically distributed when interacting with S4 or P∗. Thus it holds that
Pr[P∗ defeats Ext1] = Pr[S5 aborts with query i] ≥ ε(k)/q(k) which is non-negligible.

Lemma 17. From Z’s view, experiment 6 and experiment 7 are computationally indistinguishable,
given that (CRSGen2,P2,V2) is unbounded zero-knowledge.

Proof. Assume that Z distinguishes experiment 6 and experiment 7 with non-negligible advantage
ε(k). We will construct a distinguisher D that distinguishes between the Real and Ideal experiment
for (CRSGen2,P2,V2) with non-negligible probability. Instead of computing π2 by invoking the
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prover P2(CRS2, (pk, c, m̂, ŝ), (a, r, r
′); r′′) like S6, D forwards ((pk, c, m̂, ŝ), (a, r, r′)) ∈ RL2 to its

oracle to obtain π. Otherwise D proceeds in the same way as S6. Clearly, if D is connected to the
Real experiment, Z’s view is distributed identically to experiment 6. Likewise, if D is connected to
the Ideal experiment, then Z’s view is distributed identically to experiment 7. Thus, D distinguishes
between Real and Ideal with advantage ε(k).

6.1.2 Corrupted Sender

We will next prove computational UC-security against a corrupted sender. Let AS be the corrupted
sender, which is w.l.o.g. the dummy adversary. We first state the simulator SS. Let p(k) be a
polynomial upper runtime bound for an honest receiver R. We need to assume such a runtime-
bound for an honest receiver, since there is no efficient way to decide the bounded halting problem
for a malicious token T∗ other than running T∗. If the receiver R has an a-priori upper runtime-
bound p(k), the simulator can query the token T∗ at least as often as an honest R would, thereby
determining the number of invocations after which T∗ halts.

Simulator SS

• Set (CRS1, td1)← FakeGen1(1k) and (CRS2, td2)← FakeGen2(1k).

• Wait until AS sends a token T and a message (c, σ).

• Generate a pair of public and secret keys (pk, sk)← FHE.KeyGen(1k).

• Set m← 0∗ to be the all-zero message.

• Set m̂← FHE.Encpk(m; r) for fresh coins r and π1 ← Sim1(td1, (pk, m̂))

• Input (pk, m̂, π1) into T. Let (ŝ, π2) be the corresponding output by T.

• If V2(CRS2, (pk, c, m̂, ŝ), π2) = 0 abort.

• Compute (a, r′, r′′)← Ext2(CRS2, td2, (pk, c, m̂, ŝ), π2), abort if extraction fails.

• Repeat for i = 1, . . . , p(k):

– Set m̂i ← FHE.Encpk(m) and π1,i ← Sim1(CRS1, td1, (pk, m̂i)).

– Input (pk, m̂i, π1,i) into T. Let (ŝi, π2,i) be the corresponding output by T.

– Abort loop if V2(CRS2, (pk, c, m̂i, ŝi), π2,i) rejects.

• Let ninvoc be the number of the iterations after which the loop terminated.

• Input (a, ninvoc) into FCONDEC.

Let Z be a PPT environment. We will now prove indistinguishability between RealAS
ΠCONDEC

(Z)

and IdealSSFCONDEC
(Z). Consider the following sequence of experiments.

Experiment 1 The simulator S1 simulates the real protocol ΠCONDEC.
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Experiment 2 Identical to experiment 1, except that now CRS1 is chosen by (CRS1, td1) ←
FakeGen1(1k).

Experiment 3 Identical to experiment 2, except that now CRS2 is chosen by (CRS2, td2) ←
FakeGen2(1k).

Experiment 4 Identical to experiment 3, except that now S4 computes a by (a, r′, r′′) ←
Ext2(CRS2, td2, (pk, c, m̂, ŝ), π2) and aborts if the extraction fails.

Experiment 5 Identical to experiment 4, except that now R’s output is computed by FCONDEC(a,m).

Experiment 6 Identical to experiment 5, except that now the π1,i are computed by π1,i ←
Sim1(CRS1, td1, (pk, m̂i)).

Experiment 7 Identical to experiment 6, except that now all messages m̂ sent by R to T are
replaced by all-zero messages 0∗. This is the ideal experiment.

Remarks The indistinguishability of experiments 1,2 and 3 again follows trivially from the
indistinguishability of real and fake common reference strings. The indistinguishability of ex-
periment 3 and experiment 4 follows by the proof of knowledge-property of the proof system
(CRSGen2,P2,V2). The indistinguishability of experiments 4 and 5 is established by the soundness-
property of (CRSGen2,P2,V2). The indistinguishability of experiment 5 and experiment 6 is estab-
lished along the lines Lemma 17. Finally, the indistinguishability of experiment 6 and experiment
7 is established using the IND-CPA security of FHE, analogous to Lemma 15.

7 Common Random Reference Strings with Stateless Hardware

In this Section, we show how to emulate a common random reference string with a stateless hardware
token. We will therefore UC-implement a coin-toss protocol between S and R. The result of that
coin-toss can then be used as common reference string in protocol ΠCONDEC. Note that such
a protocol must inherently make use of non-black-box techniques. It holds that any black-box
simulation-strategy (that makes only black-box use of code of the token T) against a corrupted S
leads to a successful adversarial strategy for a corrupted R. The reason for this is that any black-box
use of the token by a sender-simulator, in particular rewinding, can be implemented by a corrupted
receiver against a honest stateless token. Furthermore, such a coin-toss protocol requires interaction
between S and R. The reason for this is that any simulation-strategy against a corrupted receiver
can also be implemented by a stateful corrupted token T against an honest receiver. We will first
outline the protocol ΠCRS. The idea is that S commits itself to some random coins x ∈ {0, 1}k by
hardwiring them into the token T. T will only unveil those coins once R knows the answer of a
certain hard question. Specifically, R has to prove to T that it knows the preimage a of some value
b under a one-way permutation F , i.e it knows an a such that b = F (a). Once R sends his own
random coins y ∈ {0, 1}k to S, S sends x together with the answer a to R, computes CRS← x⊕ y
and outputs CRS. R can then prove knowledge of a to T and check whether T answers with the
same y. If yes, R also computes CRS ← x ⊕ y and outputs z. The critical part of this protocol is
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the choice of the argument-system that is used to prove knowledge of the solution a to the token T.
Since T is stateless, we have the requirement that the argument-system that is resettably sound.

We now provide a formal statement of protocol ΠCRS and a UC-security-proof. Let Fwrap
stateless be

the stateless hardware wrapper-functionality, let F : {0, 1}k → {0, 1}k be a one-way permutation
and (P,V) be a resettably sound zero-knowledge argument system of knowledge for the language
L = {(k, b) ∈ {0, 1}k : ∃a ∈ {0, 1}k s.t. b = F (a)}. Let ` = poly(k) be the desired length of the
output CRS.

Protocol ΠCRS

• Sender S:

– Choose an a←R {0, 1}k uniformly at random. Set b← F (a).

– Choose an x←R {0, 1}` uniformly at random.

– Choose random private coins state0 for V uniformly at random.

– Program a stateless token T with the following functionality

∗ Upon receiving a message (Verifier, τ), run V(state0, τ) and output whatever V
outputs.

∗ Upon receiving a message (Unveil, τ), check if V(state0, τ) accepts, if so output x,
otherwise output ⊥.

– Input T into Fwrap
stateless and send b to R

• Receiver R:

– Wait for the ready message from Fwrap
stateless and a message b from S.

– Choose y ←R {0, 1}` uniformly at random.

– Send y to S.

• Sender S:

– Upon receiving a message y from R, send (x, a) to R and output CRS← x⊕ y

• Receiver R:

– Wait for a message (x, a) from S.

– Setup a prover P for the statement (k, b), witness-input a and fresh random coins r.

– Simulate the computation of the prover P, by forwarding messages τ from P as input
(Verifier, τ)) to Fwrap

stateless and forwarding the output s of Fwrap
stateless to P. Stop the

simulation once P terminates. Let τ the last message sent by P.

– Input (Unveil, τ) into Fwrap
stateless. Let x′ be the corresponding output.

– Check if x = x′. If so, output CRS← x⊕ y, otherwise abort.

7.1 Proof of Security

We will now prove computational UC-security against both corrupted sender and receiver.
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7.1.1 Corrupted Receiver

We will start with a corrupted receiver. Let AR be the dummy-adversary for a corrupted receiver.
Let Ext be the knowledge-extractor for the argument of knowledge-system (P,V). We will now
state the simulator SR.

Simulator SR

• Simulate the first round of a sender S and forward the message b to AR. Use the token-code
T output by S to simulate the Fwrap

stateless functionality for AR. Let a be the preimage of b under
F .

• If AR sends a Unveil-query to Fwrap
stateless, reply ⊥, regardless if V would accept.

• Let CRS be the output of the ideal FCRS-functionality. Upon receiving a message y from AR,
set x← CRS⊕ y.

• Reprogram the token T to use the input x, send (x, a) to AR and proceed as in the real
protocol.

Let Z be a PPT environment. We will now prove computational indistinguishability between
RealAR

ΠCRS
(Z) and IdealSRFCRS

(Z) for the case of a corrupted receiver. Consider the following sequence
of experiments.

Experiment 1 Simulator S1 simulates the real protocol ΠCRS.

Experiment 2 Identical to experiment 1, except that Fwrap
stateless outputs ⊥ if AR sends a Unveil-

query for which the verifier V accepts before having sent his coins y to S.

Experiment 3 Identical to experiment 2, except that S’s coins x are computed by x← CRS⊕ y,
where CRS is an a-priori fairly chosen common random reference string. This is the ideal experiment.

Remarks Experiment 1 and experiment 2 are computationally indistinguishable, given that the
permutation F is strongly one way. Experiment 2 and experiment 3 are identically distributed, as
both x and CRS are uniformly and independently distributed.

Lemma 18. From Z’s view, experiment 1 and experiment 2 are computationally indistinguishable,
given that F is a one-way permutation.

Proof. From Z’s view, experiment 1 and experiment 2 are identically distributed conditioned to
the event that AR does not convince V before sending his own coins y. Thus, a Z distinguishing
between experiment 1 and experiment 2 must convince V before sending y. Assume that Z causes
this event with non-negligible probability ε(k). We will construct an adversary A that inverts the
one-way permutation F with non-negligible probability. A simulates a prover P∗, by simulating the
interaction of Z and S1. However, its set b ← b∗, where b∗ is its own input, instead of computing
b like S1. If AR sends its coins y to S, A aborts. If P∗ convinces the simulated verifier V that it
knows an a such that b = F (a), A will run the extractor Ext((k, b),P∗) to obtain a witness a. If it
holds F (a) = b∗, A outputs a. Altogether, A inverts F with advantage ε(k).
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7.1.2 Corrupted Sender

Next, we will prove computational UC-security for the case of a corrupted sender. Let AS be
the dummy-adversary for a corrupted sender and let Sim be the non-black-box simulator for the
argument-system (P,V), that takes as input a statement (k, b) and the code V∗ of a malicious
verifier. The simulator SS is given as follows.

Simulator SS

• Let T∗ be the stateful token sent by AS and b be the message sent by AS.

• Construct from T∗ a corrupted stateful verifier V∗ that does the following. On input a message
τ , simulate T∗ on input (Verifier, τ) and keep its state.

• Run the non-black-box simulator Sim on the statement (k, b) and the verifier-code V∗. From
the transcript created by Sim, take the messages τ1, . . . , τn sent by the prover P.

• Input the messages (Verifier, τi) for i = 1, . . . , n into a new instance of T∗. Then input
(Unveil, τn) to T∗. Let x be T∗’s output.

• Set y ← CRS⊕ x, where CRS is the output of the ideal FCRS-functionality.

• Send y to S. Let x′ be the response of S.

• If x 6= x′ abort.

Let Z be a PPT environment. We will now prove computational indistinguishability between
RealAR

ΠCRS
(Z) and IdealSRFCRS

(Z) directly, given that the argument-system (P,V) is zero knowledge.

Lemma 19. RealAR
ΠCRS

(Z) and IdealSRFCRS
(Z) are computationally indistinguishable, provided that the

argument-system (P,V) is computational zero-knowledge.

Proof. Set Exp1 = RealAR
ΠCRS

(Z) and Exp2 = IdealSRFCRS
(Z). Denote Expi(r) when the environment Z

is ran with coins r in Expi. Assume for contradiction that |Pr[Exp1 = 1] − Pr[Exp2 = 1]| ≥ ε(k)
for a non-negligible ε(k). Then there exist coins r for the environment Z such that |Pr[Exp1(r) =
1]−Pr[Exp2(r) = 1]| ≥ ε(k), otherwise the triangle inequality yields a contradiction to |Pr[Exp1 =
1]−Pr[Exp2 = 1]| ≥ ε(k). Henceforth fix the coins of Z to be r. Let V∗ be the verifier constructed
in the second step of SS and (k, b) the statement sent by S. We can now construct a distinguisher D
that distinguishes the distributions D1 = {〈P,V∗〉(k, b)} and D2 = {Sim((k, b),V∗)} with advantage
ε(k). LetX be a challenge-sample forD. D continues the simulation of ΠCRS, but takes the messages
P sends to V from its sample X instead of running the prover P like in ΠCRS. D then continues
the simulation and outputs whatever Z outputs. Clearly, if X is a sample from then D1, then D’s
output is identically distributed as Exp1. Likewise, if X is distributed according to D2, then D’s
output is distributed according to Exp2. Thus |PrX←RD1 [D(X) = 1]−PrX←RD2 [D(X) = 1]| ≥ ε(k),
contradicting the computational zero-knowledge property of (P,V).
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7.2 Using the same token for ΠCRS into ΠCONDEC

We conclude that protocol ΠCRS can be plugged into the protocol ΠCONDEC while using the same
stateless hardware functionality. This can be done, as the only thing the token sees in this protocol
is a zero-knowledge proof and we do not need to hide the common reference string from the token.
This is the case because protocol ΠCONDEC requires the token to learn the common reference strings
in order to verify and proof statements. However, we chose to state the two protocols separately
for ease of presentation.

8 Conclusion

In this work, we constructed a reusable general purpose obfuscation-scheme based on a single
stateless hardware token, that prohibits adaptive behavior by a malicious token. Since the VBB-
obfuscation of the conditional decryption functionality is impossible (as follows readily from our first
result), the use of a single stateless token seems to be a minimal setup assumption. Our scheme is
even secure against an unbounded sender, as long as the token’s computational power is restricted.
An interesting application of the latter feature is serialization of efficient two-party computations,
where one party is computationally unbounded. The idea is that the computationally unbounded
party sends her encrypted inputs together with the obfuscated program to the computationally
bounded party, who executes the obfuscated program.
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