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Abstract. We document our development of a library for elliptic curve
cryptography in JavaScript. We discuss design choices and investigate
optimizations at various levels, from integer multiplication and field se-
lection to various fixed-based EC point multiplication techniques.
Relying on a small volume of public precomputed data, our code provides
a speed-up of a factor 50 compared to previous existing implementations.
We conclude with a discussion of the impact of our work on a concrete
application: the Helios browser-based voting system.

1 Introduction

Current browsers offer fairly limited support for performing cryptographic oper-
ations on the client-side of web applications. The support of the TLS/SSL proto-
cols enables secure client-server communications, but these protocols can only be
useful in settings where the server is trusted by the client, and the implemented
cryptographic libraries are not exposed for other uses by web applications.

There are numerous applications, however, in which it is not desirable to
ask web application users to trust a server. E-voting is one of them: encrypting
ballots on the client side using a key that does not allow the server to decrypt
the vote content not only limits the trust that the voters need to place in the
voting server, but also substantially decreases the incentives for an attacker
to hack the voting server, since the server then only sees information that it
cannot interpret. While e-voting was the initial motivation for our work, being
able to run cryptographic protocols on the client-side also offers very interesting
perspectives for many other web applications, e.g., browser synchronization [18]
or auctions [6].

The JavaScript engine appears to be the most convenient choice for comput-
ing on the client side of web applications: a JavaScript engine is provided with all
major browsers. The interest of a cryptographic library in JavaScript is however
not limited to browsers, as JavaScript is also available and increasingly used
in other contexts in which cryptography is useful: one can think for instance
about documents such as PDF or OpenOffice files, but also about server-side
environments like Node.js.
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These various applications indicate that cryptographic libraries in JavaScript
would be very useful, and it is therefore not surprising that various such libraries
have been proposed already [4, 10, 20–22]. Even though some of these libraries
offer some level of support for ECC, the design criteria of these libraries are
essentially undocumented.

Running cryptographic operations in JavaScript in a browser presents con-
straints that are quite different from those appearing in classical cryptographic
applications. On the one hand, despite tremendous improvements during the last
two years, the performance of JavaScript code remains extremely low compared
to optimized compiled code executed on the same computer. On the other hand,
compared to other slow platforms like smart-cards, browsers offer an amount of
memory that is larger by orders of magnitude. Such constraints motivated our
independent study.

Our contributions. We present our development of elliptic curve cryptographic
primitives in JavaScript, offering the first documented study on this topic. In
particular:

– We compare several integer multiplication algorithms, determining when the
grade-school multiplication technique becomes outperformed by asymptoti-
cally more efficient algorithms like the Karatsuba multiplication.

– We compare the performances of operations in various finite fields (binary,
prime order, OEF).

– We define new NIST-style elliptic curves that are optimized for JavaScript
implementation.

– We compare several fixed-base point multiplication algorithms, and deter-
mine which ones are the most efficient as a function of the number of points
that one desires to store during precomputation.

Our implementation of EC point multiplication is more than 50 times faster
than the most efficient stable one [22], offering comparable security levels. We
stress however that this implementation does not rely on precomputation, while
we rely on a small volume of public precomputed data.

The remaining parts of this document are organized as follows. In Section 2,
we document our experiences with integer multiplication and various field oper-
ations, leading to the selection of new curves. In Section 3, we discuss various
point multiplication strategies. We then discuss applications of our work in the
context of voting protocols in Section 4, and conclude.

2 Field operations

We discuss the results of our investigation of arithmetic in prime fields. Our
investigation however also involved binary and optimal extension fields, but they
showed to be less efficient for our purpose. A summary of our results for these
other types of fields is provided at the end of this section, and a detailed account
is available in a separate report [12].



2.1 Big integer representation

JavaScript does not offer any support for the manipulation of big integers: one
single numeric literal exists [14], and numbers are represented as IEEE-754 dou-
bles.

In order to tackle this limitation, various strategies have been adopted.
One possibility is to use the LiveConnect feature of web browsers that enables
JavaScript to intercommunicate with a Java Virtual Machine: support for big in-
tegers and for basic operation on these integers is then provided by the JVM. This
is the approach that was adopted in the Helios voting system for instance [1, 2, 8]:
Helios performs big integer manipulations like modular exponentiation through
LiveConnect, but all higher level algorithms (ElGamal, . . . ) are implemented in
JavaScript directly. While this allows taking benefit of the JVM, this approach
is also fairly limited in terms of algorithmic efficiency since only basic modular
exponentiation is available: more efficient algorithms, for fixed-based exponenti-
ation or multi-exponentiation for instance, are therefore not used.

Another approach, which became practical very recently due to the tremen-
dous performance improvements of the JavaScript engines available in the major
browsers, is to develop a pure JavaScript big integer library (educational imple-
mentations of such libraries have however been available for quite a long time).
This is the approach we want to adopt here, as it removes the dependence of
any external browser plug-in.

We take as our starting point the JSBN library by Tom Wu [22], which is,
to the best of our knowledge, the most advanced big integer JavaScript library.
In this library, big integers are stored as arrays of smaller integers, the length of
which depends on the detected browser. Indeed, while JavaScript exposes signed
32 bits integers, considerable slowdowns appear when one computes with integers
that come close to these 32 bits, as demonstrated in Table 1. Our experiments
show that using arrays of 28 bit integers provides the most efficient results that
are usable on the major browsers. For these measurements, we used an average
netbook: Intel Core 2 Solo processor SU3500 (1.4 GHz) running Windows Vista.
The browser version were as follows: FFX: Mozilla FireFox 4.0.1; IE: Internet
Explorer 9.0.1; CHR: Google Chrome 11.0.696.71; SAF: Safari 5.0.5.

Table 1. Timings for multiplication in µs

FFX IE CHR SAF

28 bit words 5.3 7.6 3.2 8.2
30 bit words 13 16 4.3 12

As a result, in order to be able to exploit the integer representation in the
choice of the field in which we compute, we decided to only use the 28 bits
representation instead of having an adaptive integer representation according to
the browser type.



2.2 Integer Multiplication

JSBN uses long (or grade-school) multiplication. It was not clear however whether
performance improvements could come from using asymptotically more efficient
algorithms. Therefore, we implemented the classical Karatsuba algorithm [15],
which allows moving from O(n2) complexity to approximately O(n1.585) com-
plexity.

We provide an typical depiction of our experiments results in Figure 1, based
on the Safari browser. As can be observed on this picture, Karatsuba multiplica-
tion becomes efficient for integers that are more than 1300 bits long. This bound
is however strongly dependent of the browser that is used: on Firefox 3.6.23, the
switch happens for 600 bit integers, while it happens only for integers around
1800 bit long on Chrome 14 (on the same Ubuntu laptop).
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Fig. 1. Karatsuba multiplication becomes efficient around 1300 bit integers on our
netbook running Safari.

While these integer lengths remain considerably longer than the integers we
will manipulate for elliptic curve operations, this supports the adoption of Karat-
suba multiplication (or of variants of it, e.g., Knuth or Toom-Cook) if one wishes
to perform operations on larger integer. This might happen for cryptographic
protocols that rely on the hardness of factoring, e.g., RSA encryption which was
part of the motivations for the JSBN library, or Paillier encryption, but also if
one desires to work in subgroups of Z∗

p for instance.

Nevertheless, for our purpose, we adopted standard grade-school multipli-
cation. It would be interesting to see whether its efficiency could be further
improved by using scanning techniques such as those proposed in [13] for in-
stance.



2.3 Modular reductions

While computing in a prime field Fp, reduction modulo p is a common and poten-
tially expensive operation. In order to mitigate the cost of modular reductions,
various ECC standards recommend using specially chosen primes that facilitate
those reductions. For instance, the NIST prime p224 is equal to 2224−296+1 [19],
in which we can observe that both 224 and 96 are multiples of 32, an expected
word size for most implementations.

This 32-bit oriented choice is however clearly not optimal in our case, since
our computation is based on 28-bit words. As a result, we looked for similar
pseudo-Mersenne primes and found that p28224 = 2224 + 2140 + 256 + 1 is the
prime integer with the fewest non-zero coefficients bi in the set of integers of the
form 2224 + b72196 + b62168 + b52140 + b42112 + b3284 + b2256 + b1228 + b0 with
bi ∈ {−1, 0, 1}.

The JSBN library does not take into account the specific structure of the
modulus when it performs reduction, and therefore does not exhibit any per-
formance change when using p28224instead of p224. Substantial changes appear,
though, when using a specific modular reduction function, tailored for p28224.

The resulting performance of the prime field operations is given in Table 2, in
which all timings include modular reduction. The squaring and inversion imple-
mentations are those from the JSBN library (except for the reductions), that is,
the squaring is based on [17, Algorithm 4.16], and the inversion on [17, Algorithm
4.61].

Table 2. Timings for modular prime field operations in µs

FFX IE CHR SAF

addition 0.28 0.34 0.13 0.41
multiplication 5.9 7.7 3.4 10

squaring 4.9 6.2 3 8.5
inversion 900 1050 550 1100

This table shows fairly important discrepancies between the browsers. These
values can however change substantially with browser updates. As expected, the
inversion operation is by far the most expensive.

2.4 Result outline in other fields

Binary field arithmetic is typically slower than prime field arithmetic in software
since integer multiplication is directly provided by processors and more efficient
than repeated bitwise operations. As a result, multiplication showed to be on
average 10 times slower on binary fields than on prime fields.

We also investigated optimal extension fields (OEF) [3]. These provide per-
formances that are slightly slower than those of prime field arithmetic, except
for inversion which is a bit more than 10 times faster.



Our efficiency measurements are summarized on a logarithmic scale in Fig-
ure 2 and detailed in [12]. The relative performance of operations in these fields is
essentially in line with traditional results appearing in the literature for software
implementation [11].

Fig. 2. Timing comparison of different field operations, in µs.

Since the main benefit of OEF, i.e., inversion, is not of interest for our ap-
plications, and since elliptic curves on OEF remain more experimental (they do
not appear in the main ECC standards), we decided to adopt the prime field
Fpwith our specially chosen prime p28224for the rest of our work.

3 Curve selection and operations

3.1 Curve selection

We selected a NIST-style pseudo-random curve [19] for p28224, that is, a curve
of the form E : y2 = x3 − 3x + b mod p28224 of prime order n with base point
(Gx, Gy). Our curve has the following parameters:

– b = 13675174559945691270660091572714686899958220410447750995672981802966
– n = 26959946667150639794667016480816204352639545292933842228829888218579
– Gx = 15022218326251922240529090945393257414013962585837380057002596801053
– Gy = 24039939147593575364998439277103263076917813793017813680357106378307

3.2 Choice of coordinates

The choice of a specific point representation has a substantial impact on the
efficiency of point addition and doubling operations. Following the analysis pro-
vided by Hankerson et al. [11, Table 3.3], we decided to store points in affine
coordinates, which is also the most efficient from a memory point of view, and
to keep intermediate computation results in Jacobian coordinates. Using the al-
gorithms from [11], the performance of point addition and doubling appear in
Table 3. Investigating more recent techniques (e.g., those described in [5]), would
certainly provide new improvements.



3.3 Point multiplication

The cryptographic protocols we consider involve a potentially large number of
point multiplications, but only with a very small number of fixed bases (2 for
ElGamal encryption for instance). Since a fairly large amount of memory is avail-
able in browsers for precomputation, exploring fixed-base point multiplication
algorithms is particularly promising.

These algorithms could be used in two ways: either the browser performs
precomputation himself and uses it later, or the precomputation is performed
on the server side and provided to the browser as part of the web application (it
could be certified and provided as part of the public key for instance).

We decided to adopt the second option, as requiring the browser to download
a few extra kilobytes of public information is not an issue in our context. To fix
the ideas, we decided to allow a volume of precomputed data of around 50 kB
per base point, which corresponds to the volume of a small photograph. As we
will see, a 10 times smaller volume of precomputed data already provides a very
substantial acceleration, and nothing prevents to enable browser-based precom-
putation in bandwidth constrained environments (though different algorithmic
choices should probably be made in that case).

We then explored various fixed point multiplication techniques, surveyed
in [11] for instance: fixed-base windowing [7] based on standard and NAF repre-
sentation and comb methods based on one or two precomputation tables (these
methods are also detailed in [12]).

The relative complexity of these fixed point multiplication techniques is de-
scribed in Figure 3, where the point doubling/addition ratio comes from our
measurements of Table 3. We can observe that the two windowing techniques
do not provide any extra benefit when more than 70 points are stored, while the
two comb methods keep improving, the one based on two tables (comb2) being
the most efficient. Generalization of the comb approach to more tables were also
explored [16], but do not provide any improvement for the data volumes we have
in mind.

Our limit of 50 kB of storage allows us to exploit more than 500 precomputed
points. In this case, the complexity of a point multiplication is slightly lower
than 50 point doubling operations. We observe that, by decreasing the number
of stored points by a factor 10, the point multiplication complexity increases by
a factor less than two, which might still be convenient if one desires to decrease
the volume of precomputed data.

3.4 Point multiplication efficiency

The performance of our point operations is given in Table 3, based on the same
computer and browser versions as before.

As before, those results are quite sensitive to the browser and computer that
are used. For instance:
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Fig. 3. Complexity of point multiplication as a function of the number of stored points.
Windowing methods reach a minimum around 60 points, while comb methods keep
improving.

Table 3. Timings for EC point operations in µs

FFX IE CHR SAF

addition 83 95 55 120
doubling 73 81 49 104

multiplication 3300 3300 1900 4200

– on a recent laptop (Intel Core i7-640M Processor at 2.8GHz) and using
Chrome 14, a point multiplication operation takes 550µs, which is already
almost 4 times faster than the time reported for Chrome in Table 3,

– on an iPad 2, a point multiplication takes 14100µs.1

Our implementation can also be compared to the one provided in the JSBN
library [22], which is based on standard NIST curves, uses NAF point multi-
plication, and does not use precomputation. The point multiplication that took
550µs on the recent laptop mentioned above takes then around 30000µs with
the JSBN implementation, presenting a slowdown of a factor 54 for the same
security level. This gain comes from the various changes we made compared to
the JSBN implementation: optimized modulus choice, specific modular reduction
algorithm, choice of point representation, and precomputation.

1 We thank Benôıt Dumoulin for taking this measurement.



4 Application to e-voting

One possible use context for our ECC library is the Helios open-audit voting
system [1, 2, 8], which has been used with two different cryptographic protocols
on the client side:

1. The commonly deployed version, proposed in [2], is based on homomorphic
tallying and uses a variant of the CGS protocol of Cramer et al. [9].

2. For some elections, mixnet-based tallying has also been used [8].

The homomorphic tallying approach enables a very simple election workflow,
where the work of the election trustees is minimal: they only need to decrypt
the election outcome, which is even cheaper than preparing a ballot. However,
the ballot preparation procedure is fairly expensive for the voter, as it requires
the equivalent of 6 point multiplications per candidate.

This computational complexity was the actual motivation for the adoption
of a mixnet-based approach, when an election involving around 250 candidates
was organized: adopting mixnets reduced the amount of computation to the
equivalent of 5 point multiplications per ballot, but implied a substantially more
complicated tallying procedure, including the setup of mix servers and requiring
the trustees to decrypt all mixed ballots individually.

The fixed point multiplication techniques we explored in the previous section
are particularly suitable for the CGS protocol. Indeed, all point multiplications
are performed with respect to only two bases: a public group generator and an
ElGamal public key which is made of a single point.

Using the Chrome browser on the average netbook described with our pre-
vious measurements, the time required to perform 1500 point multiplications
when preparing a ballot for 250 candidates would be around 3 seconds, which is
quite usable. It is not even necessary to require the voter to wait during those
3 seconds, as all point multiplications can be made independent of the voter
choices, which can be encoded through point additions performed at the end of
the ballot preparation procedure. The point multiplication operations can then
be performed in separated worker threads while the voter performs his choices.

So, the library we presented in this paper provides an answer to the efficiency
concern in Helios for elections involving a large number of candidates, and is
expected to substantially increase the proportion of elections that can benefit
from the simplicity of homomorphic tallying procedures.

5 Conclusion

Starting from the work of Tom Wu in the JSBN library for the support of big
interger operations in JavaScript, we explored various strategies for the imple-
mentation of elliptic curve cryptography in pure JavaScript. Our resulting im-
plementation, relying on a limited amount of precomputed data, offers a speedup
of a factor 50 compared to the one proposed in the JSBN library. The efficiency
of our implementation opens the way of substantial improvements in various



JavaScript applications, and we discussed the Helios voting system as an exam-
ple.

There are a number of directions that remain open for further research.

– We concentrated our effort on NIST-type elliptic curves. It would be very
interesting to explore whether other curve families would provide better re-
sults.

– Our library assumes that the precomputed data for fixed point multiplica-
tion are provided by an external application server. Including the cost of
precomputation in the choice of the point multiplication technique would be
another very interesting direction.

The adoption of our cryptographic library for real world applications remains
currently limited by the lack of availability of secure randomness in JavaScript.
Some efforts were already realized [4, 21], based on variants of the Fortuna design
for entropy accumulation. More recently, since version 11, the Chrome browser
exposes secure randomness through a new window.crypto.getRandomValues API,
which provides a much more convenient and reliable solution. We hope to see
secure randomness become available in other browsers within a near future.
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