
On the Security of NMAC and Its Variants

Fanbao Liu1, Changxiang Shen2, Tao Xie3, Dengguo Feng4

1 School of Computer, National University of Defense Technology, Changsha, 410073,
Hunan, P. R. China

2 School of Computer, Beijing University of Technology, Beijing, 100124, P. R. China
3 The Center for Soft-Computing and Cryptology, NUDT, Changsha, 410073,

Hunan, P. R. China
4 State Key Lab of Information Security, Chinese Academy of Sciences, Beijing, P. R.

China
liufanbao@yahoo.com.cn

Abstract. We first propose a general equivalent key recovery attack to
a H2-MAC variant NMAC1, which is also provable secure, by applying a
generalized birthday attack. Our result shows that NMAC1, even instan-
tiated with a secure Merkle-Damg̊ard hash function, is not secure. We
further show that this equivalent key recovery attack to NMAC1 is also
applicable to NMAC for recovering the equivalent inner key of NMAC,
in a related key setting. We propose and analyze a series of NMAC
variants with different secret approaches and key distributions, we find
that a variant NMAC-E, with secret envelop approach, can withstand
most of the known attacks in this paper. However, all variants includ-
ing NMAC itself, are vulnerable to on-line birthday attack for verifiable
forgery. Hence, the underlying cryptographic hash functions, based on
Merkle-Damg̊ard construction, should be re-evaluated seriously.

Keywords: NMAC, Keying Hash Function, Equivalent Key Recovery,
Verifiable Forgery, Birthday Attack.

1 Introduction

HMAC [3, 2], a derivative of NMAC, is a practically and commonly used, widely
standardized MAC construction nowadays. HMAC has two advantages. First,
HMAC can make use of current hash functions, the most widely used ones are
based on Merkle-Damg̊ard construction [17, 6], without modification. Second, it
is provable secure under two assumptions that the keyed compression function
of the underlying hash function and the key derivation function in HMAC are
pseudo random functions (PRFs) [2].

All in all, NMAC is the base of HMAC. For an iterated hash function H with
Merkle-Damg̊ard construction, NMAC is defined by

NMAC(Kout, Kin)(M) = H(Kout, H(Kin,M))

where M is the input message, Kin and Kout are two random and independent
secret n-bit keys.

After some prevalent iterated hash functions were broken [27, 12, 29, 31, 28],
the security of NMAC and HMAC instantiated with those hash function were
analysed [4, 8, 25, 30], which emphasized that NMAC and HMAC instantiated
with broken hash functions are weak.

There are mainly three kinds of approaches to construct MAC algorithm by
keying hash function in early days, which are secret prefix, secret suffix and secret
envelop approaches [24], respectively. The secret prefix approach prepends a
secret K to the message M before hashing computation, which is the basic design
unit for NMAC and HMAC. The secret suffix approach appends a secret key K
to the message M before hashing computation. The secret envelop approach,
involving two keys, prepends a secret key K1 and appends a secret key K2

to the message M , respectively, before hashing computation. Based on these
approaches and different key distributions, we propose some NMAC variants
(also are HMAC variants), and analyze their security, by checking whether they
are resistant for known attacks, for a better choice.

This paper analyses the security of the NMAC and its variants based on
the assumption that the underlying hash function is secure (weak collision re-
sistance), which is stronger than the origin assumption of that the underlying
compression function is a PRF [2]. We find that NMAC is not secure enough to
some extent, for example, its inner key is vulnerable to equivalent key recovery
attack, which needs O(2n/2) on-line queries and off-line computations, in the
related key setting.

Our Contributions. We propose a general equivalent key recovery attack to
NMAC1 by a generalized on-line birthday attack, which needs about 2n/2 on-line
MAC queries, and 2n/2 off-line MAC computations with any pre-set key. After
a inner collision pair (M0,M

′
0) is found, we get the exact value of intermediate

chaining variable ICV2 of the inner hashing of NMAC1, which conduces to a
selective forgery attack directly.

Based on the three earlier approaches to construct MAC algorithms and dif-
ferent key distributions, we propose a series of NMAC variants, we also analyse
those variants in order to find a better and securer one. We find a variant of
NMAC, named NMAC-E, with the modified version of the secret envelop ap-
proach, can withstand all known attacks to MAC algorithms.

Organization of this paper. This paper is divided into six sections. Sec-
tion 2 recalls the related definitions and background. Section 3 proposes and
crypt-analyses some NMAC variants with secret prefix approach. The security
of NMAC is also discussed, based on these variants. Section 4 proposes and
analyses the security of some NMAC variants with secret suffix approach. We
present and analyse a better choice of NMAC variant with the modified version
of the secret envelop approach, in section 5. We conclude the paper in the last
section.

2 Preliminaries

We first explain some notations related to this paper, then present brief de-
scription of cryptographic hash function with Merkle-Damg̊ard structure, some
properties of thus function, and finally, we present a brief description of NMAC
in this section.

2.1 Notations

n The length of hash result

b The length of a message block

H A concrete hash function with n-bit result

H̃ A hash function without message padding
h A compression function with a n-bit and a b-bit inputs,

and a n-bit output
IV The initial chaining variable of H
ICVi The intermediate chaining variables for the i-th iteration of H
K A secret key with n bits
kin A padded key like kout, with b bits
Kin A secret key like Kout, with n bits
x||y The concatenation of two bit strings x and y
⊕ The bit wise exclusive OR

pad(M) The padding bits of M with length information
padding The padding bits without length information, e.g. 1||0∗
|M | The length of the string M

2.2 Brief Description of Merkle-Damg̊ard Hash Function

Cryptographic hash functions with Merkle-Damg̊ard structure compress message
M of arbitrary length to a fixed length output H(M). MD5 [23] and SHA-1 [7]
are two typical Merkle-Damg̊ard structure hash functions in use, which takes a
variable-length message M (actually, |M | < 264) as input and outputs a 128-bit
and 160-bit hash values, respectively.

M is first padded to be multiples of b bits, a ‘1’, added at the tail of M ,
followed by ‘0’s, until the bit length becomes (b− 64) on modulo b, and finally,
the length of the unpadded message M is added to the last 64 bits. The padded
M ′ is further divided into chunks of (M0,M1, . . . ,MN−1), each is a b-bit block.

The compression function h takes a b-bit block Mi and a n-bit chaining
variable ICVi, initialized to IV , as input, and outputs ICVi+1. For example,
ICV1 = h(IV ,M0), and H(M) = ICVN = h(ICVN−1,MN−1). For the details
of the concrete compression functions, please refer [22, 23, 7].

Padding rule. For two arbitrary distinct messages M and M ′, if |M | = |M ′|,
then, the padding bits of these two messages are just the same. Since MD5 [23],
MD4 [22] and SHA-1 [7] et al. share the same padding procedure, the padding
rule is also applicable to them.

Extension Attack. Let pad(M) denote the padding bits of M . For arbi-
trary unknown M0, let R = H(M0), then for M1 = M0||pad(M0)||x, where x is
randomly generated. We can generate the hash of M1 by computing H(M1) =
h(R, x||pad(M1)), with no knowledge about M0 except its length.

A Property of Hash Collision Pair. If two arbitrary distinct messages
m, m′∈{0, 1}∗ satisfy H(m) = H(m′), then m and m′ are called a collision pair.
Let |m|, the length of m, be multiples of message blocks, and |m| = |m′| further,
then for an arbitrary message x, H(m||x) = H(m′||x) always holds.

Security Properties of Hash Functions Cryptographic hash functions need
to satisfy the following security properties [16, 19]:

1. pre-image resistance: it should be computation infeasible to find a pre-image
for a given hash result;

2. collision resistance: it should be computation infeasible to find two different
inputs with the same hash result.

For an ideal hash function with n-bit result, finding a pre-image requires
approximately 2n hash operations. On the other hand, finding a collision requires
only 2n/2 hash operations; this follows from the birthday paradox [9]. In this
paper, we assume that the underlying hash functions of all MACs are secure,
which means (weak) collision resistance.

2.3 Kerckhoffs’ Principle

Kerckhoffs’ Principle. The security of a crypt-system should depend solely
on the secrecy of the key (password) [11].

The principle implies that the security of hash-based MAC should depend
solely on the secrecy of the used key, not the MAC form nor the collision re-
sistance of the underlying hash function. It should perform a pre-image attack
against the underlying hash function, to break a MAC whose key length is equiv-
alent to the underlying hash result.

2.4 Some Basic MAC Forms

There are three kinds of approaches to construct MAC in early days [24], which
are secret prefix, secret suffix, secret envelop, respectively.

Secret Prefix Approach The secret prefix MAC M-P1 is defined as:

M-PK(M) = H(K,M)

where the IV of H is replaced with a secret key K before hashing computation.
This approach is the basic design unit for NMAC and HMAC [3, 2]. However,
the secret prefix M-P is vulnerable to the extension attack, which transforms to
equivalent key recovery attack eventually [24]. M-P is also vulnerable to on-line

1 This is the keyed chaining variable version, the origin version is keyed input.

birthday attack, which means the security of M-P is dependent on the weak
collision resistance (WCR) of the underlying hash function.

Secret Suffix Approach The secret suffix MAC M-S is defined as:

M-SK(M) = H(M ||K)

where a secret key K is appended to the message M before hashing computa-
tion. This approach is vulnerable to off-line birthday attack [24], which means
the security of M-S is solely dependent on the collision resistance (CR) of the
underlying hash function.

Secret Envelop Approach The secret envelop MAC M-E is defined as:

M-E(K1,K2)(M) = H(K1,M ||K2)

where the IV of H is replaced with a secret key K1, and then the other key
K2 is appended to the message M , before hashing computation. This approach
is vulnerable to on-line birthday attack [24] (WCR dependent). M-E is also
vulnerable to divide-and-conquer exhaustive-search key recovery [18, 20], which
means that it needs about 2n+1 operations to recover both keys with n bits each,
instead of claimed 22n operations [24].

2.5 NMAC

NMAC [3, 2] proposed by Bellare et al., is the basis of the most widely used
cryptographic algorithms HMAC. NMAC is built from iterated hash function H,
where the IV of H is replaced with a secret n-bit key K, the NMAC algorithm
is defined as:

NMAC(M) = NMAC(Kout,Kin)(M) = H(Kout, H(Kin,M))

where keys Kin, Kout ∈{0, 1}n in NMAC are to replace the IV of hash function
H before further process. In practice, both keys are random and independently
generated [3].

3 The security of Some Variants with Secret Prefix

NMAC applies two keys Kin and Kout, we first discuss the security of some vari-
ants of NMAC through different key deployments, then we analyse the security
of NMAC.

3.1 The security of NMAC1 (the keyed IV version of H2-MAC)

We define NMAC1 as:

NMAC1(M) = H(H(Kin,M))

where the outer key Kout is omitted. A keyed input version of NMAC1 was also
proposed by Yasuda as H2-MAC [33]. It was claimed that H2-MAC gets rid
of the disadvantage of the secret key management without losing the original
advantage of HMAC2. This year, Wang announced an attack to recover the

2 H2-MAC is provable secure like HMAC [2]

equivalent key ofH2-MAC instantiated with the broken MD5 [29, 31], with about
297 on-line operations [26]. However, we point out that the absence of the outer
key is a real threat to the security of H2-MAC [15], which does not exist in
HMAC.

On-Line Birthday Attack for Verifiable Forgery Attack If we apply on-
line birthday attack to NMAC1 oracle, after about 2n/2 queries, we can get
a collision pair (M,M ′), which satisfies NMAC1(M) = NMAC1(M ′). Then
NMAC1(M ||pad(M)||x) = NMAC1(M ′||pad(M ′)||x) always holds, for arbitrary
message x. This means that we can generate verifiable forgery of NMAC1, we
first query the corresponding MAC value of M ||pad(M)||x, and we get the very
MAC value for M ′||pad(M ′)||x, eventually.

After about 2n/2 on-line queries, any verifiable forgery to NMAC1, based on
the collision pair (M,M ′), can be made with one additional on-line query.

Equivalent Key Recovery Attack to NMAC1 It seems that we can’t get
the value of H(Kin,M) for the application of outer hashing. To find a way out,
we apply the generalized birthday attack with two groups [9] to NMAC1 and
then recover its equivalent key Ke = H(Kin,M0).

Here, we first define the notation N2 as N2 = H(H(C,M)), where C is an
n-bit constant or any parameter known to everybody, for example, the IV of H.
Generally speaking, N2 is the non-key version of NMAC1.

We use different 1-block messages M0s to generate the corresponding NMAC1

values, and use different 1-block messages M ′0s to generate the corresponding N2

values. The overall strategy of equivalent key recovery attack to NMAC1 is shown
as follows.

1. Generate a group one G1 with r = 2n/2 elements, by computing the corre-
sponding values of H(H(C,M ′0)) for r different Cs and M ′0s, which can be
randomly generated. Specifically, C can be set to the IV of H.

2. Generate a group two G2 with s = 2n/2 elements, by querying the corre-
sponding values to NMAC1 oracle with the secret key Kin for s different
M0s, where M0s are randomly generated.

3. There is a collision pair (M0,M
′
0) that not only satisfies NMAC1(Kin)(M0) =

N2
C(M ′0), but also satisfiesH(K,M0) = H(C,M ′0) (an inner collision between

N2 and NMAC1 happens), with good probability [9].
4. Since H(K,M0) = H(C,M ′0), and we know the value of C and M ′0, we can

compute the value of Ke = H(K,M0) = H(C,M ′0).
5. Let pad0 and pad1 be the padding bits of M0 and M0||pad0||x, respectively,

for arbitrary message x. Hence, we generate the result of H(K,M0||pad0||x)
by computing y = h(Ke, x||pad1), then we compute H(y) further, and finally
we get the very value of NMAC1(K,M0||pad0||x).

Success probability and Complexity. The probability Pr(|G1∩G2)| = 0
that there are no distinct element in the intersection of the two groups is denoted
by P (2n, r, s, 0). Let sp denote the success probability of the above attack (at

least one collision pair exists), then we can get the value of sp by computing
sp = 1 − P (2n, r, s, 0)≥0.632 [15]. The elements of group G1 computed by N2

need 2n/2 off-line N2 computations. The elements of group G2 computed by
NMAC1 need 2n/2 on-line NMAC1 queries. We can store the values of both
group using hash table. Then the above algorithm will require O(2n/2) time and
space. For more details about this kind of attack and its optimization, please
refer [15], which shows the equivalent key recovery attack to H2-MAC.

After an inner collision pair (M0,M
′
0) is found, we can apply N2

C(M ′0) to
compute the equivalent key of the NMAC1. Finally, we can use the recovered
equivalent key Ke to launch any selective forgery attack to NMAC1 without
on-line query, based on M0, which claims that the security of NMAC1 is broken.

Hence, we point out that the security of NMAC1 is solely dependent on the
(weak) collision resistance of the underlying hash function, not the strength of
the used key.

However, it is interesting to notice that H2-MAC, the keyed input version
of NMAC1, is provable secure under the assumption of that the underlying
compression function h is a PRF-AX [33], which means that (weak) collision
resistance of the underlying hash function can be dropped. Thus proof and as-
sumption obvious violate our result.

3.2 The security of NMAC2

We define NMAC2 as:

NMAC2(M) = H(Kout, H(M))

where the inner key Kin is omitted. This variant NMAC2 was also noted by
Bellare et al. in [3].

The outer hashing only accepts H(M) as legal input, which is an n-bit value.
Though we can learn the value of H(Kout, H(M)) easily, we can not use that
information to launch the extension attack to NMAC2.

Birthday Attack to NMAC2 We first apply off-line birthday attack toH(M).
After about 2n/2 off-line computations, we can get a collision pair (M,M ′),
which satisfies H(M) = H(M ′), and NMAC2(M) = NMAC2(M ′), eventually.
Then, the equation of NMAC2(M ||pad(M)||x) = NMAC2(M ′||pad(M ′)||x) al-
ways holds, for arbitrary message x. This means that we can generate verifiable
forgery to NMAC2, we first query for the MAC value of M ||pad(M)||x, and we
get the MAC value for M ′||pad(M ′)||x, eventually.

After 2n/2 off-line computations, any verifiable forgery to NMAC2, based on
the collision pair (M,M ′), can be made by additional one on-line query.

3.3 The security of NMAC3

We define NMAC3 as:

NMAC3 = H(Kio, H(Kio,M))

where the inner key and outer are both set to Kio.
The on-line birthday attack for verifiable forgery applied to NMAC1 is also

applicable to NMAC3. Here, we omit the details, for such verifiable forgery attack
can be implemented without any modification.

Further, we point out that the off-line birthday attack to get verifiable forgery
is also applicable to NMAC3 after some optimization. We show the strategy as
follows.

1. Query the corresponding MAC value of M0 to the NMAC3 oracle, which will
answer H(Kio, H(Kio,M0)).

2. Assume the unknown H(Kio,M0) be x0, and pad0 be the padding bits of x0.
We already know the corresponding value of H(Kio, x0) (an equivalent key
of the inner hashing), which is NMAC3(M0).

3. Based on the known H(Kio, x0), we launch an off-line birthday attack. We
can find a collision pair (Mx,M

′
x), which satisfies H(Kio, x0||pad0||Mx) =

H(Kio, x0||pad0||M ′x).
4. For arbitrary message x, we can launch a verifiable forgery attack.

However, since the value of H(Kio,M0) is unknown, how to use the above
information to launch a verifiable forgery attack is still a open problem.

3.4 The security of NMAC

As pointed out by Bellare et al., the on-line birthday attack for verifiable forgery
attack is also applicable to NMAC [2], here we omit the details. However, we
further notice that we can generate verifiable forgery for NMAC, by off-line
birthday attack, which is shown as the attack to NMAC2, once the inner key
Kin is leaked.

Related Key Attack to Recover the Equivalent Inner Key To recover
the equivalent inner key Ke with n-bit, we have the following setting for our
related-key attacks on NMAC.

There are two oracles NMAC(Kout,Kin) and NMAC(K′
out,K

′
in)

. The relation
between (Kout,Kin) and (K ′out,K

′
in) is set as follows:

Kout = K ′out and K ′in ∈ {Constants}

where these two oracles share the same outer key, and the inner key of the oracle
NMAC(K′

out,K
′
in)

can be any known constant.
The overall strategy of the equivalent inner key recovery attack to NMAC is

shown as follows.

1. Query NMAC(Kout,Kin) oracle for the corresponding values of 2n/2 different
M0s, store their values in group one G1.

2. Query NMAC(K′
out,K

′
in)

oracle for the corresponding values of 2n/2 different
M ′0s, store their values in group two G2.

3. A pair (M0,M
′
0) satisfies NMAC(Kout,Kin)(M) = NMAC(K′

out,K
′
in)

(M) (the
generalized birthday attack with two groups), and satisfies H(Kin,M0) =
H(K ′in,M

′
0) further (an inner collision happens).

4. Since H(Kin,M0) = H(K ′in,M
′
0), and we know the value of K ′in and M ′0,

hence we can calculate the very value of Ke = H(Kin,M0) = H(K ′in,M
′
0).

We conclude that the equivalent inner key of NMAC is totally dependent on
the generalized birthday attack (WCR), not the strength of the used inner key,
in the related key setting.

However, if the outer keyKout of NMAC is leaked, then, it needs a generalized
birthday attack to recover the equivalent inner key to break the entire system,
shown as the attack to NMAC1.

From these attacks, we claim that the security of NMAC is dependent on the
secrecy of one of the keys, even if its both key are independently and randomly
generated.

As pointed out by the editors of Cryptology ePrint Archive in our preliminary
version of this paper [14], the equivalent key recovery attack to NMAC is not
applicable to HMAC, since the HMAC keys are derived from a base key, and
there exists no related keys.

4 The security of Some Variants with Secret Suffix

In this section, we discuss the security of some NMAC variants NMAC-Si with
secret suffix approach.

We first prove that the security of original secret suffix M-S is totally depen-
dent on the collision resistance (CR) of the underlying hash function. We then
discuss the security of some variants of NMAC with secret suffix approach.

4.1 The Security of H(M ||K)

For an n-bit key K, we will prove as follows, the security of the secret suffix M-S
is totally dependent on the collision resistance of the underlying hash function,
instead of the pre-image resistance.

Theorem 1 The security of H(M ||K) is totally dependent on the collision re-
sistance of the underlying hash function H.

We prove Theorem 1 by giving the complexity of the worst case of the key
recovery attack and best case attack, respectively, which are all based on the
assumption that the message M is multiples of bytes. The worst case of the key
recovery attack is that we assume the collision attack of H has no control over
the content of the collision pair (M,M ′). The best case is that we assume the
collision attack has full control over some bytes of the collision pair. We notice
that the complexity of the collision attack is 2n/2 hash compressions by off-line
birthday attack, for a hash function H with n-bit output. The attack is based on
the “slice-by-slice” key recovery of trail key in secret envelop approach, proposed
by Preneel et al. [18].

Proof. The Best Case. Since the collision attack has full control over some bits
of the collision pair, to recover each byte of the key K, only (28 − 1) collision
pairs must be generated in the worst case. So we need to generate (28−1)(n/16)
collision pairs to recover the first n/2 bits of K, and we can recover the last n/2
bits of K through brute force attack, which needs 2n/2 hash compressions. So the
total complexity of the full key recovery attack is 2n/2×(28−1)×(n/16)+2n/2 <

2n/2+8+log
n/16
2 hash compressions.

The Worst Case. Since the collision attack has no control over any bit of
the collision pair, to recover the j-th (1≤j≤n/8) character of the key K, 28·j

collision pairs must be first generated. So we can recover the first n/4 bits of the
key by generating (28 + 28·2 + · · ·+ 2n/4) collision pairs, and we can recover the
last 3·n/4 bits through brute force attack, which needs 23·n/4 hash compressions.
The total complexity is 2n/2·(28 + 28·2 + · · ·+ 2n/4) + 23·n/4 ≈ 2n/2+n/4+1 hash
compressions. ut

Table 1. Complexity of Key Recovery Attack to Secret Suffix Approach

Cases Bit by Bit Byte by Byte Word by Word n-bit

The Best Case 2n/2+log
n/2
2 2n/2+8+log

n/16
2 2n/2+32+log

n/64
2 2n

The Worst Case 2n/2+n/4+1 2n/2+n/4+1 2n/2+n/4+1 2n

All in all then, the complexity of the key recovery to H(M ||K) is range from

2n/2+8+log
n/16
2 to 2n/2+n/4+1 hash compressions, which means that the security

of M-S is dependent on the collision resistance of the underlying hash function
H, instead of the pre-image resistance.

We list the complexity of key recovery attack to H(M ||K) in Table 1, with
different limitations on the input message M . Word means that M must be
multiples of 32-bit words. However, as shown in Table 1, we point out that both
the best and worst case are exhaustive key search, if the message M is multiples
of n bits.

4.2 The security of NMAC-S1

We define NMAC-S1 as:

NMAC-S1 = H(H(M ||Kin))

where the outer key Kout is omitted.

Birthday Attack to NMAC-S1 After about 2n/2 off-line computations, an
inner collision pair (M,M ′) will be found, where M and M ′ are multiples of
blocks. Hence, we can construct a verifiable forgery for arbitrary x, which satisfies
that NMAC-S1(M ||x) = NMAC-S1(M ′||x).

Full Key Recovery Attack to NMAC-S1 We can directly apply the full key
recovery attack to H(M ||Kin), since the outer hashing does not hide the inner
collision. After that, we can fully recover the inner key of NMAC-S1, and then
can construct any verifiable forgery. The complexity of the key recovery attack
to NMAC-S1 can be shown Table 1.

4.3 The security of NMAC-S2

We define NMAC-S2 as:

NMAC-S2 = H(H(M)||Kout)

where the inner key Kin is omitted.

Birthday Attack to NMAC-S2 Since the inner collision can’t be hidden
by the outer hashing with the key Kout, we can launch an off-line birthday
attack to NMAC-S2. After about 2n/2 off-line computations, an inner colli-
sion pair (M,M ′) will be found, where M and M ′ are multiples of blocks.
Hence, we can construct a verifiable forgery for arbitrary x, which satisfies that
NMAC-S2(M ||x) = NMAC-S2(M ′||x). We first query the corresponding MAC
value of M ||x to the NMAC-S2 oracle, then, we get the very result for M ′||x.

However, it seems that no key recovery attack to NMAC-S2 can be launched
as NMAC-S1. H(M) is n bits long, and Kout is also n bits, which means that
the concatenation of both are inside one block, so the slice-by-slice key recovery
strategy can’t be applied. Exhaustive search must be performed to break the
outer key Kout, whose complexity is 2n MAC computations.

4.4 The security of NMAC-S3

We define NMAC-S3 as:

NMAC-S3 = H(H(M ||Kio)||Kio)

where the inner and outer keys are equal.

Birthday Attack to NMAC-S3 Since the inner collision can’t be hidden
by the outer hashing with the key Kio, we can launch an off-line birthday
attack to NMAC-S3. After about 2n/2 off-line computations, an inner colli-
sion pair (M,M ′) will be found, where M and M ′ are multiples of blocks.
Hence, we can construct a verifiable forgery for arbitrary x, which satisfies that
NMAC-S3(M ||x) = NMAC-S3(M ′||x). We first query the corresponding MAC
value of M ||x to the NMAC-S3 oracle, then, we get the very result for M ′||x.

Key Recovery Attack to NMAC-S3 We can directly apply the full key
recovery attack to H(M ||Kio), since the outer hashing does not hide the in-
ner collision. After that, we can fully recover the inner key Kio, which is also
the outer key, of NMAC-S3. Finally, we can construct any verifiable forgery.
The complexity of the key recovery attack to NMAC-S3, which is analogous to
NMAC-S1, is also shown in Table 1.

4.5 The security of NMAC-S

We define NMAC-S as:

NMAC-S = H(H(M ||Kin)||Kout)

where the inner and outer keys are different.

Birthday Attack to NMAC-S Since the inner collision can’t be hidden by
the outer hashing with the key Kout, we can launch an off-line birthday attack to
HMAC-S. After about 2n/2 off-line computations, an inner collision pair (M,M ′)
will be found, where M and M ′ are multiples of blocks. Hence, we can con-
struct a verifiable forgery for arbitrary x, which satisfies that NMAC-S(M ||x) =
NMAC-S(M ′||x). We first query the corresponding MAC value of M ||x to the
HMAC-S oracle, then, we get the very result for M ′||x.

Inner Key Recovery Attack to NMAC-S We can directly apply the full
key recovery attack to H(M ||Kin), since the outer hashing does not hide the
appearance of the inner collision. After that, we can fully recover the inner key
Kin of NMAC-S. However, with Kin, we can’t directly construct any verifiable
forgery, thanks to the outer hashing with the unknown Kout. The outer key Kout

can’t be recovered like Kin, which is also analysed in NMAC-S2. It seems that
we have to apply another off-line birthday attack to H(M), for a meaningful
verifiable forgery.

4.6 Counterpart for the Key Recovery Attack to NMAC-S Variants

To avoid the full key recovery attack to NMAC-S Variants, we modify the inner
hashing form H(M ||Kin). Let pad be the padding bits of M , we re-define the
inner hashing form as:

H(M ||pad||Kin)

where the inner key Kin resides on the last block, exactly on the first n bits of
the entire b bits. Hence, slice-by-slice key recovery strategy can’t be applied any
more, for launching key recovery attack.

However, the NMAC-S Variants after modification are still vulnerable to off-
line birthday attack for verifiable forgery attack.

5 The security of an NMAC Variant with Secret Envelop

In last two sections, we discuss the security of NMAC variants with secret prefix
and secret suffix, respectively. In this section, we discuss the security of an NMAC
variant, NMAC-E, with secret envelop approach.

5.1 A Modified Secret Envelop

We first propose a modified version of the secret envelop approach, which has the
advantage of both equivalent key recovery resistance and slice-by-slice key recov-
ery resistance. The modification is straightforward, we pad the input message
M with pad, which can be some fixed constants, before appending the second
key Ki2. We define the modified secret envelop M-E′ as:

M-E′(Ki1,Ki2) = H(Ki1,M ||pad||Ki2)

where Ki1 and Ki2 are both n-bit keys. Both keys can be generated from a base
key K, or generated randomly and independently. |M ||pad| is multiples of blocks
long. Ki2 resides on the first n bits of the last block.

Security Analysis. M-E′ is still vulnerable to the divide-and-conquer ex-
haustive search key recovery [18], hence, both keys can be generated from a base
key K without security loss. However, off-line birthday attack can’t be applied
thanks to the secret “IV”, the Ki1, and equivalent key recovery attack can’t be
launched thanks to the appended key Ki2. Further, slice-by-slice key recovery
attack can be avoided for the pad of M , as a result, the appended key can’t
be split into any slice. Finally, M-E′ is vulnerable to on-line birthday attack for
verifiable forgery, in fact, it seems that modifications must be made to the design
criteria of the underlying hash function [19, 5, 10, 21, 32], in order to avoid this
kind of attack.

5.2 The security of NMAC-E

We define NMAC-E as:

NMAC-E = NMAC-E(Ko1,Ko2,Ki1,Ki2) = H(Ko1,M-E′(Ki1,Ki2)||Ko2)

where all of the four keys are b-bit keys, which are generated randomly and
independently.

Off-Line Birthday Attack Resistance. NMAC-E is resistant to off-line
birthday attack for verifiable forgery, thanks to the secret “IV”, the Ki1. Without
any knowledge about the “IV”, the off-line birthday attack to find a collision
pair can’t be launched.

Equivalent Key Recovery Attack Resistance. NMAC-E is resistant to
equivalent key recovery attack, thanks to the appended key Ki2. Even if the
attacker can find out the result of M-E(Ki1,Ki2), no extension attack can be
launched, hence, no equivalent key recovery attack happens.

Slice-by-Slice Key Recovery Attack Resistance. NMAC-E is also re-
sistant to slice-by- slice key recovery attack. Since the key Ki2 always resides on
the first n bits of the last block of inner hashing, no splitting can be made to
Ki2, an exhaustive key search must be performed to break Ki2. For the key Ko2,
it always resides on the position from 2b-th bit to (2b + n − 1)-bit of the only
block of outer hashing, no splitting can be made to Ko2, hence, an exhaustive
key search must be performed to break Ko2.

Divide-and-Conquer Exhaustive-Search Key Recovery. However, the
divide-and-conquer exhaustive-search key recovery [18] can be applied to NMAC-
E. To recover these four keys, about 2n·4 MAC operations must be performed.
Hence, these four keys of NMAC-E can be generated by a key derivation function
based on a origin n-bit key K.

On-Line Birthday Attack. The on-line birthday attack is applicable to
NMAC-E, after about 2n/2 on-line MAC queries, a collision pair may be found
that NMAC-E(M) = NMAC-E(M ′). It means NMAC-E(M0||pad(M0)||x) =
NMAC-E(M ′0||pad(M ′0)||x) always holds, for arbitrary message x, which can lead
to a verifiable forgery attack to NMAC-E.

We list the security properties of all NMAC variants discussed in this paper,
in Table 2. OFBAR stands for off-line birthday attack resistance, ONBAR
stands for on-line birthday attack resistance, EKRAR means equivalent key
recovery attack resistance, SSKRAR means slice-by-slice key recovery attack
resistance, DCESKRR stands for divide-and-conquer exhaustive- search key
recovery resistance. φ means there only one key exists.

Table 2. Security Comparison between NMAC Variants

MAC OFBAR ONBAR EKRAR SSKRAR DCESKRR

NMAC1 Yes No No Yes φ
NMAC2 Yes No No Yes φ
NMAC3 Yes No No Yes No
NMAC Yes No No Yes No

NMAC-S1 No No Yes No φ
NMAC-S2 No No Yes No φ
NMAC-S3 No No Yes No No
NMAC-S No No Yes No No
NMAC-E Yes No Yes Yes No

Performance Analysis of NMAC-E. NMAC-E introduces two extra keys
and a padding process, compared to NMAC. However, since the padding happens
at the tail of the message M , and the filling bits of pad are some constants, which
aims to align the input block M ′ to be multiples of b bits, the cost of padding is
negligible, especially for long message. The introduced extra two keys reside on
the tail of the padding bits, the last precess block of the underlying hash function,
in fact, each key replaces the former n padding bits of the Merkle-Damg̊ard style,
hence, both keys introduce no extra cost.

Further, we can easily prove that NMAC-E is a PRF (pseudorandom func-
tion) under the sole assumption that the underlying compression function h is a
PRF (any PRF is a secure MAC). The proof is straightforward. First, H(Ki1,M)
is a pf-PRF (prefix free PRF) if the underlying compression function h is a PRF
[1]. Second, H(Ki1,M ||pad) is also a pf-PRF, since the pad is some fixed con-
stants. Third, M-E′(Ki1,Ki2) = H(Ki1,M ||pad||Ki2) is a PRF, if h is a PRF and
H(Ki1,M ||pad) is a pf-PRF [1]. Since the outer hashing of NMAC can be done
by applying the compression function h once, it is also a PRF. Finally, we con-
clude that NMAC is a PRF, if h is a PRF, a detailed version of this proof is
shown in [13].

To utilize the advantage of NMAC-E and to employ the underlying hash
functions as a black box like HMAC, we also propose a “HMAC” version of the
NMAC-E, named HMAC-E.

We define HMAC-E as:

HMAC-E = HMAC-E(ko1,Ko2, ki1,Ki2) = H(Ko1||H(Ki1||M ||pad||Ki2)||Ko2)

where ki1 and ki2 are b-bit keys, Ki2 and Ko2 are n-bit keys. The key derivation
(KD) of HMAC-E is shown as follows, where Ci are pre-defined b-bit constants.

KDHMAC-E =

Ki1 = H(K⊕C1)⊕C1

Ki2 = H(K⊕C2)

Ko1 = H(K⊕C3)⊕C3

Ko2 = H(K⊕C4)

Performance Analysis of HMAC-E. HMAC-E introduces four extra
hashing for key derivation, it needs more time than HMAC for key prepara-
tion. However, it is negligible for long messages. The input message M must be
padded first before being transferred to the underlying hash function, however,
the padding content only depends on the message length, which needs negligible
time to be accomplished. We point out that both keys Ko1 and Ko2 of outer
hashing may be removed for simplifying key management, without security loss.
A formal security proof for HMAC-E and some optimizations over HMAC-E are
provided in [13].

6 Conclusion and Future Work

In this paper, we propose some variants of NMAC, and analyse their security,
based on the assumption that the underlying hash functions are secure (WCR
and CR). We first point out that NMAC1, a keyed input version H2-MAC pro-
posed in [33], is vulnerable to equivalent key recovery attack with complexity
about 2n/2 on-line queries. The security of NMAC1 and H2-MAC are totally de-
pendent on the weak collision resistance of the underlying hash function, which
directly violates the claimed provable security.

Further, we point out the inner key of NMAC is vulnerable to equivalent
key recovery attack, in a related key setting. The security strength of NMAC

depends on one of its two keys, even if its both keys are independently and
randomly generated.

We also propose a securer variant NMAC-E, which has some advantages
compared to NMAC, and HMAC-E. We notice that all kinds of NMAC variants
are vulnerable to the on-line birthday attack for verifiable forgery. In fact, a pair
(M0,M

′
0), which has the same MAC value after about 2n/2 on-line queries, is

acceptable to some extent3. The only problem is that, there are so many collision
pairs after the concatenation of arbitrary message x, once a collision pair is found.
It implies that hash functions based on Merkle-Damg̊ard construction must be
re-fined.

Acknowledgement

We thank the editors of IACR Cryptology ePrint Archive for their valuable com-
ments, for the preliminary version of this paper named “Cryptanalysis of HMAC
and Its Variants”. This work was partially supported by the program Core Elec-
tronic Devices, High-end General Purpose Chips and Basic Software Products in
China (No. 2010ZX01037-001-001), and supported by the 973 program of China
under contract 2007CB311202, and by National Science Foundation of China
through the 61070228 project.

References

1. Bellare, M., Canetti, R., Krawczyk, H.: Pseudorandom functions revisited: the
cascade construction and its concrete security. Foundations of Computer Science,
Annual IEEE Symposium on 0, 514 (1996)

2. Bellare, M.: New Proofs for NMAC and HMAC: Security Without Collision-
Resistance. In: Dwork, C. (ed.) Advances in Cryptology - CRYPTO 2006, Lecture
Notes in Computer Science, vol. 4117, pp. 602–619. Springer Berlin / Heidelberg
(2006)

3. Bellare, M., Canetti, R., Krawczyk, H.: Keying Hash Functions for Message Au-
thentication. In: Koblitz, N. (ed.) Advances in Cryptology CRYPTO’ 96, Lecture
Notes in Computer Science, vol. 1109, pp. 1–15. Springer Berlin / Heidelberg (1996)

4. Contini, S., Yin, Y.: Forgery and Partial Key-Recovery Attacks on HMAC and
NMAC Using Hash Collisions. In: Lai, X., Chen, K. (eds.) Advances in Cryptol-
ogy ASIACRYPT 2006, Lecture Notes in Computer Science, vol. 4284, pp. 37–53.
Springer Berlin / Heidelberg (2006)

5. Coron, J.S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-damgrd revisited: How to
construct a hash function. In: Shoup, V. (ed.) Advances in Cryptology CRYPTO
2005, Lecture Notes in Computer Science, vol. 3621, pp. 430–448. Springer Berlin
/ Heidelberg (2005)

6. Damg̊ard, I.: A Design Principle for Hash Functions. In: Brassard, G. (ed.) Ad-
vances in Cryptology CRYPTO’ 89 Proceedings, Lecture Notes in Computer Sci-
ence, vol. 435, pp. 416–427. Springer Berlin / Heidelberg (1990)

3 It is not a forgery in this situation, since we have already queried the MAC oracle
for their corresponding MAC results.

7. Eastlake, D.E., Jones, P.: US secure hash algorithm 1 (SHA1). RFC 3174, Internet
Engineering Task Force (Sep 2001), http://www.rfc-editor.org/rfc/rfc3174.txt

8. Fouque, Pierre-Alain and Leurent, Gatan and Nguyen, Phong: Full key-recovery
attacks on hmac/nmac-md4 and nmac-md5. In: Menezes, A. (ed.) Advances in
Cryptology - CRYPTO 2007, Lecture Notes in Computer Science, vol. 4622, pp.
13–30. Springer Berlin / Heidelberg (2007)

9. Girault, M., Cohen, R., Campana, M.: A Generalized Birthday Attack. In: Barstow,
D., Brauer, W., Brinch Hansen, P., Gries, D., Luckham, D., Moler, C., Pnueli, A.,
Seegmller, G., Stoer, J., Wirth, N., Gnther, C. (eds.) Advances in Cryptology EU-
ROCRYPT 88, Lecture Notes in Computer Science, vol. 330, pp. 129–156. Springer
Berlin / Heidelberg (1988)

10. Hirose, S., Park, J., Yun, A.: A simple variant of the merkle-damg̊ard scheme with
a permutation. In: Kurosawa, K. (ed.) Advances in Cryptology ASIACRYPT
2007, Lecture Notes in Computer Science, vol. 4833, pp. 113–129. Springer Berlin
/ Heidelberg (2007)

11. Kerckhoffs, A.: La cryptographie militaire. Journal des sciences militaires IX, 5–83
(Jan 1883)

12. Leurent, G.: MD4 is Not One-Way. In: Nyberg, K. (ed.) Fast Software Encryption,
Lecture Notes in Computer Science, vol. 5086, pp. 412–428. Springer Berlin /
Heidelberg (2008)

13. Liu, F., Shen, C., Xie, T.: A security proof for HMAC-E. unpublished (2011)

14. Liu, F., Shen, C., Xie, T., Feng, D.: Cryptanalysis of HMAC and Its Variants.
unpublished (2011)

15. Liu, F., Xie, T., Shen, C.: Breaking H2-MAC using Birthday Paradox. submission
to Cryptology ePrint Archive (2011)

16. Menezes, A.J., Vanstone, S.A., Oorschot, P.C.V.: Handbook of Applied Cryptog-
raphy. CRC Press, Inc., Boca Raton, FL, USA, 1st edn. (1996)

17. Merkle, R.: One Way Hash Functions and DES. In: Brassard, G. (ed.) Advances
in Cryptology CRYPTO 89 Proceedings, Lecture Notes in Computer Science, vol.
435, pp. 428–446. Springer Berlin / Heidelberg (1990)

18. Preneel, B., Van Oorschot, P.: On the security of iterated message authentica-
tion codes. IEEE Transactions on Information Theory 45(1), 188 – 199 (1999),
authentication codes;

19. Preneel, B.: Cryptographic Primitives for Information Authentication State of
the Art. In: State of the Art in Applied Cryptography, Lecture Notes in Computer
Science, vol. 1528, pp. 49–104. Springer Berlin / Heidelberg (1998)

20. Preneel, B., van Oorschot, P.: On the Security of Two MAC Algorithms. In: Mau-
rer, U. (ed.) Advances in Cryptology EUROCRYPT 96. Lecture Notes in Com-
puter Science, vol. 1070, pp. 19–32. Springer Berlin / Heidelberg (1996)

21. Ristenpart, T., Shrimpton, T.: How to build a hash function from any collision-
resistant function. In: Kurosawa, K. (ed.) Advances in Cryptology ASIACRYPT
2007, Lecture Notes in Computer Science, vol. 4833, pp. 147–163. Springer Berlin
/ Heidelberg (2007)

22. Rivest, R.: The MD4 Message-Digest algorithm. RFC 1320, Internet Engineering
Task Force (Apr 1992), http://www.rfc-editor.org/rfc/rfc1320.txt

23. Rivest, R.: The MD5 Message-Digest algorithm. RFC 1321, Internet Engineering
Task Force (Apr 1992), http://www.rfc-editor.org/rfc/rfc1321.txt

24. Tsudik, G.: Message authentication with one-way hash functions. SIGCOMM
Comput. Commun. Rev. 22, 29–38 (October 1992)

25. Wang, L., Ohta, K., Kunihiro, N.: New Key-Recovery Attacks on HMAC/NMAC-
MD4 and NMAC-MD5. In: Smart, N. (ed.) Advances in Cryptology EUROCRYPT
2008, Lecture Notes in Computer Science, vol. 4965, pp. 237–253. Springer Berlin
/ Heidelberg (2008)

26. Wang, W.: Equivalent Key Recovery Attack on H2-MAC Instantiated with MD5.
In: Kim, T.h., Adeli, H., Robles, R.J., Balitanas, M. (eds.) Information Security
and Assurance, Communications in Computer and Information Science, vol. 200,
pp. 11–20. Springer Berlin Heidelberg (2011)

27. Wang, X., Lai, X., Feng, D., Chen, H., Yu, X.: Cryptanalysis of the Hash Functions
MD4 and RIPEMD. In: Cramer, R. (ed.) Advances in Cryptology EUROCRYPT
2005, Lecture Notes in Computer Science, vol. 3494, pp. 551–551. Springer Berlin
/ Heidelberg (2005)

28. Wang, X., Yin, Y., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup, V.
(ed.) Advances in Cryptology CRYPTO 2005, Lecture Notes in Computer Science,
vol. 3621, pp. 17–36. Springer Berlin / Heidelberg (2005)

29. Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer, R.
(ed.) Advances in Cryptology EUROCRYPT 2005, Lecture Notes in Computer
Science, vol. 3494, pp. 561–561. Springer Berlin / Heidelberg (2005)

30. Wang, X., Yu, H., Wang, W., Zhang, H., Zhan, T.: Cryptanalysis on
HMAC/NMAC-MD5 and MD5-MAC. In: Joux, A. (ed.) Advances in Cryptology
- EUROCRYPT 2009, Lecture Notes in Computer Science, vol. 5479, pp. 121–133.
Springer Berlin / Heidelberg (2009)

31. Xie, T., Liu, F., Feng, D.: Could The 1-MSB Input Difference Be The Fastest
Collision Attack For MD5?. Eurocrypt 2009, Poster Session, Cryptology ePrint
Archive, Report 2008/391 (2008), http://eprint.iacr.org/

32. Yasuda, K.: How to fill up merkle-damgrd hash functions. In: Pieprzyk, J. (ed.)
Advances in Cryptology - ASIACRYPT 2008, Lecture Notes in Computer Science,
vol. 5350, pp. 272–289. Springer Berlin / Heidelberg (2008)

33. Yasuda, K.: HMAC without the “Second” Key. In: Samarati, P., Yung, M., Mar-
tinelli, F., Ardagna, C. (eds.) Information Security, Lecture Notes in Computer
Science, vol. 5735, pp. 443–458. Springer Berlin / Heidelberg (2009)

