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Abstract

Hard mathematical problems are at the core of security arguments in cryptography.
In this paper, we study mathematical generalizations of the famous Rubik’s cube puz-
zle, namely the factorization, representation and balance problems in non-Abelian groups.
These problems arise naturally when describing the security of Cayley hash functions, a
class of cryptographic hash functions with very interesting properties. The factorization
problem is also strongly related to a famous long-standing conjecture of Babai, at the in-
tersection of group theory and graph theory. A constructive proof of Babai’s conjecture
would make all Cayley hash functions insecure, but on the other hand it would have many
positive applications in graph theory and computer science. In this paper, we classify
existing attacks against Cayley hash functions and we review known results on Babai’s
conjecture. Despite recent cryptanalytic progress on particular instances, we show that
the factorization, representation and balance problems presumably remain good sources of
cryptographic hard problems. Our study demonstrates that Cayley hash functions deserve
further interest by the cryptography community.

Disclaimer. This paper contains essentially no new result but it rather collects and organizes
all the results that were independently found by two distinct scientific communities on the same
problems. Between September 2009 and May 2010, the first author gave a sequence of talks to
a cryptographic audience, entitled “Hash functions and Cayley graphs: the end of the story?”.
Surprisingly, many cryptographers seemed to either ignore the beautiful Cayley hash construc-
tion, or believe that it had been definitively broken. The very positive feedback received after
these talks motivated us to write this survey and to complete it with known results on Babai’s
conjecture.

1 Introduction

Presumably hard mathematical problems stand at the core of modern cryptography. A typical
security proof for a cryptographic protocol relates its resistance against a particular attack to
the hardness of some mathematical problem. Very few problems survived the thorough analysis
of scientists, the most established ones being the integer factoring problem and the discrete
logarithm problem on finite fields and elliptic curves. Other problems have been suggested, re-
lated for example to hyperelliptic curves, lattices [59], error-correcting codes [46] or multivariate
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polynomial equations [51]. They are currently less trusted than the three previous ones but they
might join or replace them in the future.

The Rubik’s cube is a famous 3D mechanical puzzle. It is notoriously “hard”, but of course
not in the cryptographic sense. Computer programs solve it instantaneously, and even human
champions need less than ten seconds. The Rubik’s cube has a strong mathematical structure:
the set of its configurations is a subgroup of some finite permutation group. Solving the Rubik’s
cube amounts to solving a factorization problem in this subgroup.

To any finite (multiplicative) group G and any set S of elements generating this group,
we can associate the problem of factoring any element of the group as a “short” product of
elements from S. Hardness results on this problem are only known for a few combinations of
groups and generating sets. For some reasons that will be made clear below, the factorization
problem is very easy in the case of the Rubik’s cube. On the other hand, it is equivalent to the
discrete logarithm problem in Abelian groups [6], and the related problem of finding the shortest
factorization is NP-hard for permutation groups [27, 35].

The factorization problem in non-Abelian groups may also be seen as an explicit version of a
conjecture of Babai stating that the diameter of any Cayley graph of a non-Abelian simple group
is “small” [2]. This famous conjecture has recently been proved for a few groups but using non
explicit techniques [33, 25, 32]. On the other hand, explicit factorization algorithms are known
in all finite simple non-Abelian groups but only for particular generators [4, 36, 39, 55, 60, 38].

The factorization problem in non Abelian groups was introduced to the cryptography com-
munity via Cayley hash functions, a class of cryptographic hash functions based on Cayley
graphs. Hash functions are a very important cryptographic primitive, used for digital signatures,
message authentication codes and many other applications. Although a few hash functions are
based on mathematical problems [21, 45], the most popular ones have an ad hoc design somehow
similar to a block cipher. Recent attacks on the standard SHA-1 prompted NIST to launch a
competition for a new secure hash algorithm [1].

At Eurocrypt’91, Zémor introduced a hash function based on a Cayley graph of the group
SL(2,Fp) [67]. The main security properties of this function are strongly related to the corre-
sponding factorization problem and to the related representation and balance problems. Besides
its nice mathematical structure, the function has the advantages of reasonably good efficiency
and natural parallelism. Unfortunately, its factorization problem was solved by Tillich and
Zémor, who then proposed new parameters in the group SL(2,F2n) [64, 62]. Thirteen years
later, the design was rediscovered and new parameters coming from LPS and Morgenstern
graphs were suggested [44, 49, 19, 54]. Recently, the LPS, Morgenstern and Tillich-Zémor hash
function have been broken as well, giving the feeling to the cryptography community that all
Cayley hash functions are necessarily insecure.

In this paper, we show that the factorization, representation and balance problems in non
Abelian groups still appear as potentially hard problems for general parameters. We first review
and classify known attacks against particular Cayley hash function proposals. We show that
the techniques used for these particular parameters can hardly be used against more general
functions. We then cover the progress on Babai’s conjecture. We show that despite 20 years
of active research, constructive proofs of the conjecture are only known for a few particular
parameters. Finally, we propose a set of parameters leading to both secure and efficient cryp-
tographic hash functions. Our study demonstrates that the Cayley hash function design is still
particularly appealing and that it deserves further interest by the cryptography community.

The paper is organized as follows. In Section 2, we recall the Cayley hash function design
and we define the balance, representation and factorization problems. In Section 3, we review
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the cryptanalysis of Cayley hash functions. In Section 4, we review known results on Babai’s
conjecture. We propose a new cryptanalytic challenge in Section 5 and we conclude in Section 6.

2 Cayley hash functions

In this section, we first review the construction of hash functions based on Cayley graphs. We
then define the balance, representation and factorization problems, and we justify that they are
potentially hard. We finally explicit the connection with the Rubik’s cube.

2.1 Construction and main features

In cryptography, a hash function is a function that takes as inputs bitstrings of arbitrary length
and that returns bitstrings of fixed, finite, small length. Such a function is typically required to
be collision resistant, second preimage resistant and preimage resistant.

Definition 1 Let n ∈ N and let H : {0, 1}∗ → {0, 1}n : m → h = H(m). The function H is
said to be [47]

• collision resistant if it is “computationally hard” to find m,m′ ∈ {0, 1}∗, m′ 6= m, such
that H(m) = H(m′).

• second preimage resistant if given m ∈ {0, 1}∗, it is “computationally hard” to find
m′ ∈ {0, 1}∗, m′ 6= x, such that H(m) = H(m′);

• preimage resistant if given h ∈ {0, 1}n, it is “computationally hard” to find m ∈ {0, 1}∗
such that h = H(m);

Remark. The words “computationally hard” can be understood in two different ways. From
a practical point of view, they mean that no big cluster of computers can perform the task. A
computational complexity of 280 operations is currently considered out of reach [29]. On the
other hand, from a theoretical point of view, it means that no probabilistic algorithm that runs
in time polynomial in n can succeed in performing the task for large values of the parameter n
with a probability larger than the inverse of some polynomial function of n [30].

Given a (multiplicative) group G and a subset S = {s1, ..., sk} thereof, their Cayley graph is
a k-regular graph that has one vertex for each element of G and one edge between two vertices
v1 and v2 if and only if the corresponding group elements gv1 , gv2 satisfy gv2 = gv1si for some
si ∈ S. We can build a hash function from this graph as follows. The message m is first written
as a string m = m1...mN where mi ∈ {1, ..., k}. Then the group product

h = sm1
sm2

...smN

is computed and it is mapped onto a bitstring. A hash function constructed this way is called
a Cayley hash function. The initial and final transformations do not influence the security. In
the remaining of the paper, we will consider hash functions as functions from {1, ..., k}∗ to G.

Classical hash functions like SHA are designed in a very different way: they mix pieces of the
message again and again until the result looks sufficiently random. Somehow, the “block-cipher-
like” design of these functions looks like a sack of nodes that discourages its study outside the
cryptography community. In contrast, Cayley hash functions have a clear, simple and elegant
mathematical design. As we will see below, their main security properties are strongly related
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to interesting mathematical problems with a history of 20 years. Moreover, the computation
of a Cayley hash value can be very easily parallelized: large messages can be cut into various
pieces distributed to different computing units, and the associativity of the group ensures that
the final result can be recovered from all partial products. Efficiency depends on the group and
the generators used. Cayley hash functions are rather slow to compute for most parameters, but
in some contexts they perform better than SHA-1 [23]. Malleability properties [9] are another
drawback. For example, given the hash value of m and m′, it is possible to compute the hash
value of m||m′. However, heuristic additional design can solve this problem [52].

The first instance of a Cayley hash function was introduced by Zémor at Eurocrypt’91 [67].
It uses the group SL(2,Fp) and the set S = {( 1 1

0 1 ) , ( 1 0
1 1 )} where p is a prime number of 160

bits. Soon after, Tillich and Zémor cryptanalysed this scheme and replaced its parameters by
G = SL(2,F2n) and the set S = {(X 1

1 0 ) ,
(
X X+1
1 1

)
} where F2n ≈ F2[X]/(p(X)) and p(X) is

an irreducible polynomial of degree about 160 over F2 [64, 62]. In both cases, S contains two
elements with “small” coefficients to accelerate the matrix multiplications.

In 2007, Charles et al. rediscovered the design and suggested using the Lubotzky-Philips-
Sarnak (LPS) Ramanujan graphs for their optimal expanding properties [44, 19]. For this
construction, the group G is PSL(2,Fp) where p is a prime of 160 bits and the set S contains
all the q+ 1 elements with reduced norm equal to some small prime q. Morgenstern Ramanujan
graphs seemed appealing for the same reasons [49, 54]. They use G = PSL(2,F2n) with F2n ≈
F2[X]/(p(X)) and p(X) is an irreducible polynomial of even degree about 160. The set S
contains the 3 elements of reduced norm 1+X. For both LPS and Morgenstern, the sets S have
a lot of symmetry since they contain exactly all the elements with the same (small) norms.

As we will see in Section 3, the particular choices for the generators in Zémor, Tillich-Zémor,
LPS and Morgenstern hash functions have facilitated their cryptanalysis.

2.2 Balance, factorization and representation problems

We now introduce the mathematical problems at the core of the security of Cayley hash func-
tions.

Definition 2 Let G be a group and let S = {s1, ..., sk} ⊂ G be a set generating this group. Let
L ∈ Z be “small”.

• Balance problem: Find an “efficient” algorithm that returns two words m1...m` and
m′1...m

′
`′ with `, `′ < L, mi,m

′
i ∈ {1, ..., k} and

∏
smi =

∏
sm′

i
.

• Representation problem: Find an “efficient” algorithm that returns a word m1...m`

with ` < L, mi ∈ {1, ..., k} and
∏
smi

= 1.

• Factorization problem: Find an “efficient” algorithm that given any element g ∈ G,
returns a word m1...m` with ` < L, mi ∈ {1, ..., k} and

∏
smi = g.

Remark. Again, the word “small” can be understood in two different ways. Messages larger
than a few gigabytes can hardly make sense in practice. On the other hand, from a theoretical
point of view, “small” means polylogarithmic in the size of the group, considering a family of
groups with increasing sizes. The word “efficient” means the opposite of “computationnally
hard”.

Without the length constraint, the representation problem would be trivial since sord(s) = 1
for any s ∈ G. With the stronger requirement of finding a product of minimal length, it becomes
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NP-hard [27, 35]. The factorization problem was described by Lubotzky as a “non-commutative
analog of the discrete logarithm problem ([43], p.102). Indeed, both the representation and the
factorization problems are equivalent to the discrete logarithm problem in Abelian groups if we
forbid trivial solutions [6]. On the other hand, the balance problem becomes trivial in Abelian
groups.

In general, the factorization problem is at least as hard as the representation problem, which
is at least as hard as the balance problem. Clearly, a Cayley hash function is collision resistant if
and only if the balance problem is hard; it is second preimage resistant only if the representation
problem is hard; it is preimage resistant if and only if the corresponding factorization problem
is hard. In the remaining of this paper, we will freely move between the security properties of
Cayley hash functions and the hardness of the corresponding problems.

The balance, representation and factorization problems are related to famous problems in
group theory. The simplest of these problems is Dixon’s [26]: given a group G and a set S of
randomly chosen elements, what is the probability that those elements generate the group? The
answer is now known for all finite non Abelian simple groups [37, 42]. When the elements of S
generate G, it becomes natural to ask for the diameter of the corresponding Cayley graph. A
logarithmic lower bound log|S| |G| can be easily derived, but we don’t know whether the bound
is tight in general.

A large source of graphs with logarithmic diameter is provided by expander graphs [34].
Roughly speaking, an expander graph is a regular graph such that any set of its vertices has a
comparatively large set of neighbors. Expander graphs are very important for computer science,
with a wide range of applications. An intense research effort in the last ten years recently
culminated in proving that for any non-Abelian finite simple group, there exists a symmetric
set of generators such that the corresponding Cayley graph is an expander [16].

Since we cannot hope for logarithmic diameter in general, another problem that has often
been considered is the problem of finding optimal sets of generators: generators providing Cay-
ley graphs with diameters as close as possible from the lower bound [4, 38]. Finally, Babai
conjectured that the diameter of any undirected Cayley graphs of any non Abelian simple group
is polylogarithmic in the size of the group [2].

Babai’s conjecture has been one of the most challenging open problems in group theory. The
factorization problem can be seen as providing a constructive proof of Babai’s conjecture, and
it is therefore at least as hard as proving it. “Small” factorizations always exist in a Cayley
graph with logarithmic or polylogarithmic diameter, but they are not necessarily computed
by an efficient algorithm. Babai’s conjecture has recently been proved in many special linear
groups [33, 25, 32]. Under some wide condition on the generator sets, these groups are even
expanders [11, 13]. Unfortunately, the proofs of these results use non constructive techniques
from combinatorics and representation theory. Babai and Hayes [3] also proved the conjecture
for almost all generators sets of the symmetric group, but the core of the proof, a Chebyshev
argument, is non constructive.

Constructive proofs of the conjecture are known for all finite simple non-Abelian groups but
only for particular sets of generators [4, 36, 39, 55, 60, 38]. We sketch the proofs of these results in
Section 4. They do not generalize to arbitrary sets of generators. To the best of our knowledge,
the only groups where explicit factorizations can be computed for more than marginal sets of
generators are the groups PSL(2,Z/pkZ) and SL(2,Z/pkZ) for “small” p [24, 28]. We will
explain in Section 3.2 what makes these groups “particular”.

After 20 years of research by the mathematics, computer science and cryptography com-
munities, the hardness of the factorization problem in general is still a widely open problem.
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The challenge for cryptographers is to find groups G and sets S for which the group operations
with elements of S are efficient but the factorization, representation and balance problems are
difficult to solve.

2.3 A “toy” example: the Rubik’s cube

We now explicit the link between the factorization problem and the Rubik’s cube. Let E be
the set of all possible configurations of the Rubik’s cube, including configurations obtained by
disassembling and reassembling it. The permutation group G on E acts naturally on the cube: to
each g ∈ G we can associate the image by g of the initial configuration of the cube. The Rubik’s
group is the subgroup GR that is generated by the 6 elementary rotations of the faces. The
Rubik’s group has order |GR| = 1

1212!8!38212 and it is isomorphic to (Z7
3×Z11

2 )o((A8×A12)oZ2)
where × and o are respectively the direct and semi-direct group products [20]. Solving the
Rubik’s cube amounts to solving the factorization problem for the group GR and the set S
containing the 6 rotations of the faces.

3 Cryptanalysis of Cayley hash functions

In this section, we review known attacks on the balance, representation and factorization prob-
lems. We first describe generic attacks on Merkle-Damg̊ard hash functions, subgroup attacks,
trapdoor attacks and lifting attacks. Then we go to more elaborate cryptanalysis and we finally
explain why these problems are still worth studying in our sense.

3.1 Generic attacks on Merkle-Damg̊ard hash functions

Like any hash function, Cayley hash functions are susceptible to exhaustive search attacks
solving the factorization problem in time roughly |G|, and to birthday attacks [65] solving the
balance problem in time roughly |G|1/2. Moreover, Cayley hash functions are a particular case of
Merkle-Damg̊ard hash functions [22]. The “compression function” H : G × {1, ..., k} → G sends
an intermediary product sm1

sm2
...smn

and a k-digit mn+1 to the next intermediary product
sm1

sm2
...smn+1

. Because this compression function can be efficiently inverted by exhaustive

search, the factorization problem can be solved in time roughly |G|1/2 with a meet-in-the-middle
attack [58]. Since |GR| ≈ 265.2, the Rubik’s cube can already be solved by these simple tech-
niques.

3.2 Subgroup attacks

The group structure of Cayley hashes opens the door to even more efficient attacks. Let us
suppose that G has a subgroup tower decomposition G = G0 ⊃ G1 ⊃ G2 ⊃ ... ⊃ GN = {1}, and
that |Gi|/|Gi+1| is “small” for all i. Given S = {s1, ..., sk}, the representation problem can be

solved as follows. We generate random products of the si until we get an element s
(1)
1 ∈ G1,

and we repeat the operations until we get a set S(1) = {s(1)1 , ..., s
(1)
k′ } that can generate all the

elements of G2. We then recursively repeat the procedure starting from the group G1 and the set
S(1). A representation with the elements of S can be obtained by substitutions. The complexity
of this attack is roughly maxi |Gi|/|Gi+1|, but it can be reduced to maxi(|Gi|/|Gi+1|)1/2 using

a meet-in-the-middle strategy as follows. We obtain s
(1)
1 ∈ G1 more efficiently if we generate

random products gj of the si and random products hj of the s−1i until getting a couple (gj , hj′)

such that s
(1)
1 := gjh

−1
j′ ∈ G1. These attacks can be extended to solve the factorization problem

as well.
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Subgroup attacks were first introduced by Camion against an early scheme of Bosset [10, 17].
At Crypto’00, Steinwandt et al. attacked the Tillich-Zémor hash function as follows. Assuming
n = n1n2, the group SL(2,F2n1 ) and its conjugates are subgroups of SL(2,F2n). Matrices of
these subgroups have “small” orders, and they can be easily identified since their traces belong
to F2n1 [61]. The “level by level” resolution method for the Rubik’s cube is also a subgroup
attack: each level can be associated to the subgroup of the Rubik’s group containing all the
permutations that preserve the levels solved so far. Since the order of GR is very smooth, many
other subgroup attacks could be constructed against the Rubik’s cube. Finally, we observe that
the factorization algorithms of Dinai [24] for the groups SL(2,Z/pkZ) is a subgroup attack in
essence, with the subgroup tower SL(2,Z/pkZ) ⊃ SL(2,Z/pk−1Z) ⊃ ... ⊃ SL(2,Z/pZ) ⊃ {I}.
The case of PSL(2,Z/pkZ) is similar [28].

Subgroup attacks decompose the factorization, representation and balance problems into
smaller similar problems in the left, right or bilateral quotients of Gi by Gi+1. Solving these
smaller problems is sufficient to solve the original problems. The condition that |Gi|/|Gi+1| is
“small” for all i is sufficient but not necessary. In fact, if the quotient of some Gi by Gi+1

has a “nice” and “manageable” structure, like an Abelian additive group or the multiplicative
group of a “not too large” finite field, the problems can be solved in that quotient much more
efficiently than by exhaustive or birthday searches. In [56], Petit et al. studied the diagonal
and triangular subgroups of SL(2,F2n) and all their conjugates. For the Tillich-Zémor hash
function, they showed that finding two messages hashing to the same subgroup conjugate to the
triangular subgroup of SL(2,F2n) was not harder than finding a collision for the whole function.

3.3 Trapdoor attacks

A trapdoor attack assumes a particular situation where the person who chooses the group G and
the set S has an incentive to cheat. In [61], Steinwandt et al. gave the following trapdoor attack
on the Tillich-Zémor hash function. They generate random products of (X 1

1 0 ) and
(
X X+1
1 1

)
over F2[X] (without modular reductions) and compute the trace of the resulting matrix. Then,
they choose as modular polynomial p a divisor of the trace that has a sufficiently large degree.
Therefore, the matrix has trace 0 modulo p hence it is of order 2 in the group SL(2,F2[X]/(p(X)).
Keeping the factorization of the random matrix secret, they are therefore able to compute a
solution to the representation problem even if nobody else can do so.

3.4 Lifting attacks

Modular reductions are essential in the hash functions of Zémor, Tillich-Zémor, LPS and Mor-
genstern. Without modular reductions, the elements of S would generate a free group. The
outputs would “grow” indefinitely with the length of the message. Moreover, they would belong
to a subset of a matrix ring with unique factorization, and the message digits could be recovered
one by one from right to left. Thanks to modular reductions, some information is lost in the
products, the group generated by S is no longer free and factorization is no longer trivial. The
goal of a lifting attack is to “undo” the mixing work performed by the reductions.

Lifting attacks have been the most powerful technique against Cayley hash functions. They
were first used by Tillich and Zémor against Zémor hash function [64]. The crucial observation
for their attack is that any matrix of SL(2,Z+) is a product of ( 1 1

0 1 ) and ( 1 0
1 1 ). Indeed, the

well-known Euclidean algorithm on integers can be written in matrix form(
ai−2
ai−1

)
=

(
1 qi−1

1

)(
1
qi 1

)(
ai
ai+1

)
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and moreover
(
1 q
0 1

)
= ( 1 1

0 1 )
q

and
(
1 0
q 1

)
= ( 1 0

1 1 )
q
. The factorization problem is solved as follows:

given a matrix M =
(
a b
c d

)
∈ SL(2,Fp), a matrix (A B

C D ) ∈ SL(2,Z+) that reduces to M modulo
p is selected. If A ≤ B the Euclidean algorithm is applied to (A,B), else it is applied to (C,D).
The length of the factorization is the sum of the partial quotients. Tillich and Zémor argue that
this sum is “small” on average and that “large” sums are “unlikely” to appear. Independently,
Larsen [39] provided an algorithm that returns factorizations of length O(log p log log p) in time
polynomial in log p and with a constant probability.

The cryptanalysis of Zémor hash function is particularly simple because the set of matrices
generated by ( 1 1

0 1 ) and ( 1 0
1 1 ) is dense in SL(2,Z+) (actually it is equal to SL(2,Z+)). This

observation led Tillich and Zémor to propose a new scheme with G = SL(2,F2n) and S =
{(X 1

1 0 ) ,
(
X X+1
1 1

)
}. They showed that the density of the set generated by S in SL(2,F2[X]) is

about 2−n. Given a matrix M =
(
a b
c d

)
∈ SL(2,F2n), it seems therefore harder to find a matrix

(A B
C D ) ∈ SL(2,F2[X]) that reduces to M modulo p, and can be written as a product of (X 1

1 0 )
and

(
X X+1
1 1

)
. We will see in Section 3.6 that this scheme was nevertheless broken by a more

elaborate lifting attack.

A lifting strategy was also used by Tillich and Zémor against the LPS hash function [63].
In this attack, the elements of PSL(2,Fp) are lifted to elements of SL(2,Z[i]) where i2 = −1.
Unlike in the attack against Zémor hash function, the lifts of the generators do not generate
the whole SL(2,Z[i]), but only a subset Ω of very small density. However, the lifting attack is
still possible because Ω has a very simple characterization. Since Ω contains all the elements of
norm q, Ω contains exactly all the elements whose norms are powers of q. Tillich and Zémor
solve the representation problem by lifting the identity to Ω, which amounts to solving the norm
equation

(λ+ wp)2 + 4(xp)2 + 4(yp)2 + 4(zp)2 = qe

with λ,w, x, y, z, e ∈ Z (once the identity is lifted, factoring it becomes trivial). The equation is
solved as follows: they arbitrarily fix e = 2e′ with qe

′
> 4p2, and λ+wp = qe

′ − 2mp2 for some
m. The norm equation can be “simplified by 4p2”, resulting in an equation of the form

x2 + y2 + z2 = N

for some N depending on m. Finally, the last equation is solved by generating random values
for z, checking that the resulting equation x2 + y2 = N ′ := N − z2 has a solution (a sufficient
condition is that all the prime factors of N ′ congruent to 3 modulo 4 appear an even number of
times in the factorization of N ′), and finally solving this equation with the continued fraction
method (or equivalently, with the Euclidean algorithm). A similar attack was developed against
the Morgenstern hash function [53].

3.5 Preimages for LPS and Morgenstern hash functions

The cryptanalysis of LPS hash function was extended to solve the factorization problem [53].
Following the approach of Tillich and Zémor, finding preimages for the LPS hash function
amounts to solving the norm equation

(Aλ+ wp)2 + (Bλ+ xp)2 + (Cλ+ yp)2 + (Dλ+ zp)2 = qe

where A,B,C,D are fixed and λ,w, x, y, z, e ∈ Z. For A = 1, B = C = D = 0 this equation
particularizes the previous one, but the general equation seems much harder to solve. Petit et al.
therefore introduced a two-steps strategy that combines ideas from lifting attacks and subgroup
attacks. First, they write any matrix as a product of diagonal matrices and the elements of S.
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The same ideas apply to Morgenstern hash function. Second, they compute preimages of any
diagonal matrix by solving the norm equation

(Aλ+ wp)2 + (Bλ+ xp)2 + (yp)2 + (zp)2 = qe.

Their method is to first fix λ to satisfy the equation modulo p, then w and x to satisfy it modulo
p2, and finally y and z to satisfy it over the integers. The resulting algorithm is probabilistic.
The authors provide good arguments (but no definite proof) that it finishes in polynomial time
and produces messages of logarithmic length.

3.6 Cryptanalysis of the Tillich-Zémor hash function

Despite the partial attacks described above, the Tillich-Zémor hash function resisted 15 years
of cryptanalysis attempts until it was definitely broken by Grassl et al. [31] and Petit and
Quisquater [55]. An important observation for both attacks is that the hardness of the factor-
ization, representation and balance problem does not change if we replace the generators (X 1

1 0 )

and
(
X X+1
1 1

)
by (X 1

1 0 ) and (X 1
1 0 )

−1 (X+1 1
1 0

)
(X 1

1 0 ) =
(
X+1 1
1 0

)
. The new matrices are strongly

related to the Euclidean algorithm in F2[X] since an iteration of this algorithm can be written
in a matrix form (

ai−1
ai

)
=

(
qi 1
1

)(
ai
ai+1

)
.

Mesirov and Sweet [48] proved that for any irreducible polynomial p ∈ F2[X], there exists a
polynomial q ∈ F2[X] such that all partial quotients appearing in the execution of the algorithm
on p and q are X or X + 1. Their proof implicitly contains an algorithm computing this q. In
this attack, Grassl et al. apply this algorithm to the polynomial p defining the field, to obtain a
preimage m to some matrix ( p qc d ) =

(
0 q
c d

)
mod p. They finally show how simple manipulations

of this message lead to a collision.
The attack is reminiscent of the lifting attack. The density obstacle mentioned in Section 3.4

is bypassed by lifting a matrix
(
0 q
c d

)
to SL(2,F2[X]) without constraining the values of q, c and

d modulo p. The key tool for the lifting step is Mesirov and Sweet’s algorithm.

Petit and Quisquater extended Grassl et al.’s attack to solve both the representation and the
factorization problems. First, they observe that another simple manipulation of the preimage
of
(
0 q
c d

)
leads to a preimage of a matrix

(
1 0
α0 1

)
for some α0 ∈ F2n . This last matrix has order

2, leading to a solution to the representation problem. Second, they show how to write any
matrix as a product of elements of S and of matrices of the form ( 1 0

α 1 ). Finally, they show
how to compute any matrix of this form from a small set of precomputed matrices

( 0 qi
ci di

)
, and

they provide two precomputing algorithms. When n is prime, one of them produces explicit
polylogarithmic factorizations (of length O(n3)) in deterministic time O(n3). The algorithm

recursively finds preimages of
(

0 b2i1
ci di

)
for some b1, ci, di ∈ F2n , 1 ≤ i ≤ 2n, from which it

deduces preimages of
(

1 0
X+b2i1 1

)
and then preimages of any matrix of the form ( 1 0

α 1 ).

3.7 Further attacks and secure (?) instances

Subgroup attacks are easy to prevent by choosing the group G carefully. Lifting attacks seem
more difficult to thwart since they have become more and more sophisticated. However, simple
modifications of the generators have been suggested to counter existing attacks, and the resulting
functions remain safe today.
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We have seen that the parameters s0 = ( 1 1
0 1 ) , s1 = ( 1 0

1 1 ) of Zémor hash function made the
lifting strategy particularly easy. Tillich and Zémor suggested to replace them by s20, s

2
1 or by

s40, s
4
1 [64]: these parameters are still safe today. After cryptanalysing the LPS and Morgenstern

hash function, Tillich and Zémor [63] and Petit et al. [53] also suggested small modifications in
the generators that would make the functions safe to their attacks.

From an efficiency point of view, the group SL(2,F2n) appears as the most interesting one.
The Tillich-Zémor hash function was broken by an elaborate lifting attack. Its key ingredient
is Mesirov and Sweet’s algorithm that is specific to quotients X and X + 1. Despite some
attempts to extend this algorithm [18, 41, 8] (see also the more general surveys [7, 40]), a
simple substitution of X by some small power of X in one of the matrices of the Tillich-Zémor
function would already make it safe today. The results of Lauder [41] tend to show that the
only other generator sets to which this cryptanalysis can be extended should contain more than
two Euclidean algorithm matrices. More precisely, those sets are

S :=

{(
ti 1
1 0

)
|ti ∈ G

}
where G is one of the following additive groups:

< X,X2 +X >, < X,X3 +X2 +X,X4 +X >,
< X + 1, X2 + 1 >, < X + 1, X3 + 1, X4 +X3 +X + 1 >,
< X,X2 +X + 1 >, < X + 1, X3 +X + 1, X4 +X3 +X2 + 1 >,
< 1, X2 +X + 1, X3 + 1 >, < X,X3 +X2 + 1, X4 +X2 +X + 1 >,

< X + 1, X3 +X2 + 1, X5 +X + 1, X6 +X5 +X2 + 1 >,
< X,X3 + 1, X5 +X4 + 1, X6 +X4 +X + 1 > .

Of course, we can also obtain other insecure instances by conjugating all the elements of an
insecure generator set by the same matrix. Similarly, no change of variable (replacing X by
another polynomial in the definition of the generators) can improve the security of a given
generator set. However, given our current state of knowledge the generator set

S :=

{(
t0 1
1 0

)
,

(
t1 1
1 0

)}
is secure for any t0, t1 such that t0 + t1 6= 1, despite its closeness with the parameters of Tillich-
Zémor hash function.

3.8 The end of the story ?

At first sight, the cryptanalysis of Zémor, LPS, Morgenstern and Tillich-Zémor hash function
removes the confidence on the security of any Cayley function. However, the balance, represen-
tation and factorization problems still appear as potentially hard for most groups G and sets
S. The attacks that we reviewed in this section provide us with some lessons to keep in mind
when choosing parameters. In particular, they show the role of the subgroups and the danger
of additional structure and symmetric parameters. They also emphasize a strong link with the
Euclidean algorithm when G is SL(2, .). However, the functions that were broken were all very
special in a sense: Zémor and Tillich-Zémor use a set of generators with “small” coefficients, and
LPS and Morgenstern use the set of all matrices with the same (small) reduced norm. Despite
the increasing sophistication of lifting attacks, slight modifications of the original functions seem
to resist known attacks. If the balance, representation and factorization problems were solved
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for some parameters, the general case is still widely open. We now show that the factorization
problem is also widely studied outside the cryptography community, with very limited success
so far.

4 Progresses on Babai’s conjecture

In the late eighties, Babai made the following conjecture: for every non-Abelian finite simple
group G and every symmetric generating set S of G, the diameter of the corresponding Cayley
graph is smaller than c1(log |G|)c2 , where c1, c2 are absolute constants [2]. Clearly, solving the
factorization problem for some group and generator set amounts to providing a constructive
proof of Babai’s conjecture for the same parameters. Babai’s conjecture has been well-studied
for 20 years, with the following results:

• For any group, there exist particular sets of generators for which it is true. In many cases,
the factorization problem is solved for these particular sets.

• In the case of groups of Lie type of bounded rank (and in particular for special linear groups
of bounded dimension), the conjecture is true for any generator set, but no factorization
algorithm is known in general.

• For the cases SL(2,Z/pkZ) and PSL(2,Z/pkZ), p “small” discussed in Section 3.2, a
factorization algorithm is known for any generator set.

We point out two important differences between the factorizations considered in this section and
in the previous one. First, the factorizations here may involve negative powers of the generators,
making the problem somewhat easier. Second, the instances considered in the previous section
were chosen with the hope that the factorization problem would be difficult, whereas here they
were specially chosen to make it “particularly easy”. In our exposition of these results below, we
provide the generators and sometimes a high-level sketch of the proofs that the resulting Cayley
graphs have small diameters. However, we refer to the original papers for the often clever and
beautiful ideas involved in the details of these proofs.

4.1 Symmetric groups

The alternating groups An are better studied through the slightly bigger corresponding sym-
metric groups Sn. Clearly, Babai’s conjecture holds for alternating groups if and only if it holds
for symmetric groups. Babai et al. [4] showed how to write any element of Sn as a product
of O(n log(n)) elements chosen among a set of 2 well-chosen elements and their inverses. We
reproduce their demonstration when n is even.

The group Sn acts naturally on Zn−1 ∪ {∞}. Let α0 : x 7→ 2x and α1 : x 7→ 2x + 1, both
permutations fixing ∞. Let also γt be the transposition (t,∞). Then any element of Sn can be
written as a word of less than 2n(2 log n+ 1) generators α0, α1, γ0 (and their inverses). Indeed,
any permutation can be written with less than 2n transpositions γt. Moreover, γt decomposes
as w−1t γ0wt where wt is any permutation fixing∞ and sending 0 to t. Finally, wt can be written
with less than log(n) generators α0 and α1 using the binary decomposition of t.

Quisquater reduced the number of generators to 2 as follows. Let β0 be the product of all
3-cycles (x, 2x, 2x + 1) where 2j ≤ x < 2j+1 for all even values j. Let β1 be the product of all
3-cycles (x, 2x, 2x+ 1) where 2j ≤ x < 2j+1 for all odd values j. Let also δt be the transposition
(1, t). Like before, any element of Sn can be written as a word of less than 2n(2 log n + 1)
generators β0, β1, δ1 (and their inverses). However, we have (δ1β1)3 = δ1 and (δ1β1)−2 = β1, so
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we can also write any elements of Sn as a word of less than 6n(2 log n + 1) generators β0, δ1β1
(and their inverses).

4.2 Special linear groups, dimension 2

Projective linear groups are better handled through the corresponding special linear groups.
Clearly, Babai’s conjecture is true for the first ones if and only if it is also true for the second
ones.

For SL(2,Fpn), Babai et al. [4] provide a set of 3 generators that give diameter O(log(pn)).
Their demonstration is as follows. Let

x(t) :=

(
1 t
0 1

)
h(b) :=

(
b−1 0
0 b

)
r :=

(
0 −1
1 0

)
for b 6= 0, t ∈ Fpn . Then

x(t1 + t2) = x(t1)x(t2) and h(b)−1x(t)h(b) = x(tb2)

for all b 6= 0, t1, t2 ∈ Fpn , and if ad− bc = 1 we have(
a b
c d

)
= x(−c−1 + ac−1)r−1x(−c)rx(−c−1 + dc−1).

For the case p odd and n = 1, they take S = {x(1), h(1/2)r}. For the case p odd and n ≥ 2,
they take S = {x(1), h(1/2)r, h(θ)} where θ is a generator of Fpn over Fp. For the case p = 2,
they take S = {x(1), r, h(θ)}. The proofs are straightforward.

Other generator sets lead to similar or better results. We have seen that the algorithm of
Larsen [39] for G = SL(2,Fp) provides factorizations of length O(log p log log p) in the matri-
ces ( 1 1

0 1 ) and ( 1 0
1 1 ). For G = SL(2,F2n) with n prime, the preimage algorithm of Petit and

Quisquater [55] reduces the set of generators to two elements, the Tillich-Zémor generators.
Moreover, the factorizations returned only involve positive powers of the generators. Interest-
ingly, the matrices x(t) also play an important role in this algorithm.

4.3 Special linear groups, dimension > 2

The literature contains a few interesting results for G = SL(m,Fpn) when m ≥ 3. The problem
does not seem much harder than for m = 2 because SL(2,Fpn) is contained as a subgroup of
SL(m,Fpn). Moreover, one can take benefit of the extra dimensions to shorten the factorizations
as in Riley’s algorithm below. Nevertheless, the factorization problem has only been solved for
particular generators.

In the case m ≥ 12, p odd, Kantor [36] has proved that the matrices

s0 =



0 1
0 1

0
. . .

. . . 1
(−1)m−1 0

 and s1 =



( 0 1
1 0 ) (

0 1/2
2 0

) (
0 1/2θ
2θ 0

) (−1 0
0 1

) (−1 1
0 1

)
I


produce a graph with diameter O(log |G|) when θ is a generator of F∗pn . Interestingly, the matrix
s1 is an involution.
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Let ri be the matrix identity except in its entries (i, i) to (i + 1, i + 1) where it equals(
1

−1
)
. Let Xij be the set of matrices equal to the identity except in the position (i, j), let D

be the set of diagonal matrices and let N be the subgroup generated by D and the matrices
ri. The main steps of the proof are as follows. Any element of X34 and X56 is a product of
respectively O(log p) and O(n log p) matrices s0, s−10 and s1. Any element of < X12, X21 > can
be constructed with O(n log p) factors. Any element of H can be generated with O(mn log p)
factors. Finally, any element of N can be generated with O(m2n log p) factors, and the result
for G follows. Kantor provided similar results for m ≥ 10, p odd, and for m ≥ 8, p = 2.

When n = 1 and for any m ≥ 3, Riley [60] has given an algorithm that writes any element
as a word of length smaller than Cm3 log p in the elements

s0 =



0 1
0 1

0
. . .

. . . 1
(−1)m−1 0

 and s1 =


1 1

1
1

. . .

1

 ,

where C is some absolute constant. For 1 ≤ i, j ≤ m, let eij be the elementary matrix that
has 1’s along the diagonal, 1 in its (i, j) entry, and 0 elsewhere. Any eij can be written as a
product of at most 10m generators s0 and s1, and the m2−m matrices eij generate SL(m,Fp).
An explicit factorization with respect to the eij can be recovered with the Euclidean algorithm,
like for Zémor hash function in Section 3.4. In pathological cases, this factorization may contain
large powers of eij . Riley found very nice short factorizations for these large powers. When the
exponent is a Fibonacci number, a clever combination of eij matrices and their inverses provides
us with the factorization needed. The general case is deduced from Zeckendorf’s decomposition
of integers as a sum of Fibonacci numbers [66].

Riley’s result was improved by Kassabov and Riley [38] to words of length smaller than
O(m2 log p), which is essentially optimal. Let a row matrix be an upper diagonal matrix with
ones in the diagonal differing from the identity in only one row. Let a column matrix be defined
similarly. Kassabov and Riley have showed that any row and column matrix can be generated
with at most m log p elements s0 and s1. Moreover, any matrix of SL(m,Fp) can be written
with at most m row matrices, m column matrices and m elementary matrices. Kassabov and
Riley also generalized these results to SL(2,Z/kZ), k integer.

4.4 Other groups

Similar results were obtained for all finite simple non Abelian groups. In particular, there exists
a constant C such that any finite simple non-abelian group G has a set S of at most four
generators such that every element of G can be written as a product of elements of S ∪ S−1
of length smaller than C log |G| [5, 38]. The proof decomposes the group G into products of a
restricted set of elementary subgroups (as for example in [50]) and then treats these elementary
cases separately. The most interesting cases are the cases covered in Sections 4.1 and 4.3.

4.5 Non explicit results

All the results on Babai’s conjecture that we have described so far are for particular generators
making the factorization problem somewhat easier.

In a recent breakthrough, Helffgott [33] showed that Babai’s conjecture is true for SL(2,Fp)
with p prime and any generator sets (hence also for PSL(2,Fp)). However, his proof does not
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provide explicit factorizations. The arguments are purely combinatorics. Starting from a small
set of generators, Helffgott proves that this set must grow “significantly” under multiplication
and division by itself, unless it is already a “large” fraction of SL(2,Fp), from which all the
elements can be easily constructed. In the proof, the growth of matrix sets is reduced to the
growth of the sets containing their traces, and these sets are studied through the sum-product
estimates of Bourgain-Katz-Tao [12]. Helffgott’s results were extended to the groups SL(2,Fpn)
and to directed graphs by Dinai [25], to the groups SL(3,Fp) by Helffgott himself [32], and to all
groups of Lie type with bounded rank independently by Pyber and Szabó [57] and by Breuillard
et al. [15]. For groups of Lie type with unbounded rank new ideas will be required [57], and
unfortunately none of the previous results provides any explicit factorization algorithm. It is
also worth noticing that under some wide conditions on the generator sets, the Cayley graphs
of SL(d,Fp) do provide interesting families of expander graphs [11, 15, 57, 13].

4.6 The end of the story ?

The recent interest of the mathematics community for Babai’s conjecture and the progresses
made after Helfgott’s big contribution [33] lead to some hope that the conjecture may be proved
in a not too far horizon. However, the techniques that are currently used (involving tools
from combinatorics and representation theory) have not provided us with explicit factorization
algorithms. Constructive proofs of Babai’s conjecture are known in some cases but only for
particular sets of generators. A simple look at Sections 4.1, 4.2 and 4.3 of this paper suffices
to see that these sets are very far from generic. After more than 20 years of active research on
Babai’s conjecture, a new breakthrough is probably needed in order to solve the factorization
problem for arbitrary generator sets.

5 A new cryptographic challenge

We have seen in the previous sections that the balance, representation and factorization problems
are potentially hard problems for generic parameters. However, cryptographic applications
require parameters that are not only secure but that also lead to efficient implementations.
Matrix groups over finite fields are appealing since the group operation can be implemented
with a few additions and multiplications in the field. Moreover, they are among the most
studied and best understood groups, giving more confidence on security.

Special linear groups and projective special linear groups are a bit more appealing than
general linear groups. The reason is that solving the factorization problem in the quotients
GL(m,K)/PSL(m,K) or GL(m,K)/SL(m,K) is essentially equivalent to solving a discrete
logarithm problem in K∗ or K∗2. Choosing K sufficiently large to make the discrete logarithm
difficult would render Cayley hash functions too inefficient (a few multiplications per bit of
message, more than discrete logarithm-based hash functions). The security for GL, SL and
PSL is essentially equivalent for smaller fields, but using general linear groups would give the
false feeling that the security is larger. The best choice for m seems to be m = 2. As mentioned
in Section 4.3, taking m > 2 will not necessarily increase the security and might even decrease
it a little bit. Besides, taking m = 2 is clearly better from an efficiency point of view.

The groups SL(2,F2n) are more interesting than the groups SL(2,Fp): the arithmetic op-
erations are much more efficient in F2n than in Fp, especially in hardware. A few additional
restrictions must be set on n. Clearly, n must be large enough such that birthday attacks
(Section 3.1) are impossible. It must also be prime in order to avoid the subgroup attacks of
Steinwandt et al. [61] (Section 3.2). Finally, it seems wise to require both 2n+1 and 2n−1 to be
either primes or small multiples of primes in order to prevent other kinds of subgroup attacks.
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The parameters n ∈ {127, 157, 223, 251, 383, 509} seem satisfying for a security of roughly n/2
bits.

Having fixed a family of groups, we now turn to the generators. The parameters chosen by
Tillich and Zémor for their function (Section 2.1) are particularly appealing from an efficiency
point of view, but unfortunately they are vulnerable to the attacks of Section 3.6. According
to Section 3.7, the generator set S :=

{(
X3 1
1 0

)
,
(
X+1 1
1 0

)}
seems secure for any t0, t1 such that

t0 + t1 6= 1. These generators have the advantage of requiring only one multiplication and a few
additions per bit. To reduce even further the cost of the group operation to a few additions, we
suggest taking t0 = X3 and t1 = X + 1. This gives us the following challenge:

Challenge 1 Solve the balance, representation or factorization problem for G := SL(2,F2n)
and S :=

{(
X3 1
1 0

)
,
(
X+1 1
1 0

)}
.

6 Conclusion

Cayley hash functions are very appealing to cryptography. They have a simple and elegant
design, a nice mathematical structure and a natural parallelism. However, their main security
properties rely on the hardness of mathematical problems that are non standard to cryptog-
raphy. The recent cryptanalysis of all Cayley hash function proposals (Zémor, Tillich-Zémor,
LPS, Morgenstern) has cast doubts on the hardness of these mathematical problems in the
cryptography community.

In this paper, we have argued that these doubts are unjustified, or at least premature. Indeed,
we have shown that

• The four Cayley hash functions that were broken had parameters that seem particularly
weak a posteriori. The cryptanalysis techniques used against these functions cannot be
easily applied to other parameters. In particular, small changes in the four functions make
them immune against existing attacks.

• The mathematical problems supporting the security properties of Cayley hash functions
have a rich history in mathematics, if not in cryptography. They originate at least to the
work of Babai in the late eighties, and in particular to its conjecture on the diameter of
the Cayley graphs of finite non-Abelian simple groups.

• The research on these problems has been very active and it has involved distinguished
mathematicians like Babai, Bourgain, Gamburd, Green, Helfgott, Kantor, Lubotzky,
Tao,... Nevertheless, very few instances have been solved today after 20 years.

The Rubik’s cube is a notoriously hard mechanical puzzle... for humans. The factorization
problem in non-Abelian groups is its natural mathematical generalization. Our survey demon-
strates that this problem is potentially hard from a cryptographic point of view. It is also
interesting in its own right, intersecting and connecting group theory, graph theory, number
theory, combinatorics, the Euclidean algorithm,... Any new result on secure and unsecure Cay-
ley hash function instances will be beneficial not only to cryptography but also to the numerous
applications of Cayley graphs and expander graphs in mathematics and computer science. From
a purely cryptographic point of view, the challenge is to find a set of parameters that leads not
only to hard problems but also to reasonably efficient implementations. We hope that this paper
will revive the interest for Cayley hash functions, and will be useful to those willing to study
the hardness of the subjacent mathematical problems.
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